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ABSTRACT

The exceptional success of deep learning comes at the cost of long training ses-
sions, and a slow iterative process of proposing new architectures that have to be
hand-engineered through years of experience. Neural Architecture Search (NAS)
is the line of research that tries to automatically design architectures with better
performances at a given task. The performance of a network in a task can be
predicted by a score, even before the network is trained: this is referred to as zero-
shot NAS. However, the existing score remains unreliable for architectures with
high accuracy. We develop in this direction by exploring different related scores.
We study their time efficiency and we improve on their dependence with the fi-
nal accuracy, especially for high values of the score. We propose a monotonicity
metric to evaluate the adequate relative scoring of the architectures, as a way to
avoid imposing a linearity assumption too early. We find that our use of noise im-
proves the score, but a more substantial improvement comes when the evaluation
of the score is done in the parameter space. We hope this effort will help clarify
promising directions to speed up automatic discovery of good neural architectures
without training.

1 INTRODUCTION

Machine learning in the deep learning era has proven to be able to solve impressively complex tasks
(Krizhevsky et al., 2012; Silver et al., 2018; Badia et al., 2020). However the process of finding
the best architecture for a given task is still cumbersome. This process typically involves training
multiple networks, and different research groups proposing incremental improvements, which can
take years to develop. Given the inefficiency associated with finding the best architecture for solving
a task, a line of research has been focused on improving the speed at which the optimal architecture
can be found for a given task.

A recent significant step forward has been taken in (Mellor et al., 2020), where a score has been
proposed to predict how well an architecture will perform in a task before training. The score relies
exclusively on the Jacobian of the architecture with respect to the input, which represents the task. A
drawback of such score is that it seems to be linearly correlated to the final accuracy for low values
of the score, but fails to discriminate architectures for higher values of the score. The computational
cost of their approach is dominated by an eigenvalue decomposition that has a complexity ofO(B3),
where B is the number of samples in the batch. This can be problematic when larger inputs are
considered, or if the metric has to be repeated at different layers in the architecture or with different
noise conditions to improve its dependence with the final accuracy.

Our contributions are therefore:

• a new set of scores to predict how an architecture is going to perform, that are more dis-
criminative at higher levels of accuracy

• we propose a metric based on the degree of monotonicity of a function in order to quantify
the quality of each score without assuming a linear dependence
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2 RELATED WORK

Neural architecture search can be generalized as three distinct problems: 1. defining a search space,
2. evaluating the networks in the search space and 3. navigating the search space based on a given
heuristic. Most works rely on the training or validation accuracy for the second problem, which is
expensive to compute. Training a network is time-consuming, especially if some hyperparameters
search must be added on top. Standard techniques rely on training with a reduced training set in
either size (Xu et al., 2020) or dimension (Chrabaszcz et al., 2017), without hyperparameters tuning
or with a limited number of epochs (Baker et al., 2017). Unfortunately, these simplifications can add
a significant bias on the reliability of the computed heuristic (Zela et al., 2018).

Reusing trained weights between similar networks in the search space can bring down the compu-
tational cost. Network morphism consist of growing a network while keeping the originally trained
weights (Wei et al., 2019) in the network, which is a good way of keeping training requirements at a
minimum. Similarly, one shot architecture search methods do the opposite. By training a large archi-
tecture representing several networks in the search space, one can find sub-graphs with pre-trained
weights and therefore avoid subsequent training of the sub-graphs. This method unfortunately will
not scale well with larger search spaces. Moreover, it is still unclear if the relative accuracy of the
sub-graphs is maintained (Sciuto et al., 2019).

Unlike one shot NAS where one model still needs to be trained, zero shot NAS methods attempt to
predict performance before actual training. The networks in the search space are evaluated by a score
without access to post-training performances or weights. These methods are the ultimate goal in
solving the aforementioned second problem of NAS. To the knowledge of the authors, only (Mellor
et al., 2020) has obtained such a metric. While their work is promising, the proposed method fails to
distinguish between high-performing network architectures, which is what is going to be addressed
in this paper.

3 METHODOLOGY

3.1 DATASETS

We perform our tests on one batch of 256 samples from CIFAR 10, CIFAR 100 (Krizhevsky, 2009)
and ImageNet 16 (Russakovsky et al., 2015). We test our proposed scores on the architectures from
the NAS-Bench-201 (Dong and Yang, 2020), which are a collection of 56 = 15625 architectures,
built by combining 5 standard blocks for image processing (Zero, Identity, 3 × 3 convolution, 1 ×
1 convolution, 3 × 3 average pool), on a graph with 6 fixed edges. All the architectures have
been trained on the mentioned datasets by the authors of NAS-Bench-201, to make the final score
available, and alleviate the comparability problem faced by the NAS community. The scores we
propose below are applied on the untrained networks. The gradients at initialization can then be
calculated and used before applying the update rule on the parameters (training).

3.2 QUANTIFYING FUTURE PERFORMANCE BEFORE TRAINING

Jacobian Score (JS): This score was proposed by (Mellor et al., 2020) and was built on the observa-
tion that the Jacobians with respect to the inputs for each sample in a minibatch appeared to be most
uncorrelated for the architectures that perform best after training. We first compute the Jacobian of
the loss of the network L with respect to the samples in the input batch JB =

(
∂L
∂x1

, · · · , ∂L
∂xB

)
,

where B is the total number of samples in a batch. We then compute ΣJ , the correlation of those
vectors. The eigenvalues σJ,i of ΣJ allow us to compute their proposed score:

S = −
B∑
i=1

[log(σJ,i + k) + (σJ,i + k)−1]

which represents the negative KL divergence between an uncorrelated Gaussian and the Gaussian
with kernel ΣJ . k is a small constant chosen for numerical stability as k = 10−5. We normalize their
metric to have values between zero and one, rescaling and shifting with the maximum and minimum
values from their experiments, in order to compare it easily with the scores proposed below. As
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well, given that the accuracy is bounded between 0% and 100%, it seems desirable that a score that
predicts accuracy should be bounded too.

Jacobian Score Cosine (JSC): We designed this score substituting the eigenvalue based similarity
performed on the JS score, by a cosine similarity between the Jacobians of each input sample. The
goal was to take advantage of the O(B) complexity of the cosine similarity, versus the O(B3)
complexity of calculating the eigenvalues, operation needed in (JS). Our proposed variation is

S = 1− 1

B2 −B

B∑
i=1

|JNJT
N − 1| 1

20

where Jacobian J is flattened, and normalized into JN , to have B vectors of module one. We
perform the comparison of the Jacobian of every sample by multiplying all the pairs, and we remove
the diagonal in p = JNJ

T
N − 1. Experimentally we found that our metric performed best when

Jacobians in the same direction were given the same value of one as Jacobians in opposite direction,
while orthogonal Jacobians had to be considered different, that’s why we take the absolute value
of p. We found that taking the 20th-root of that number improved the scoring, but there is room
for fine-tuning. Finally, we take the mean of the non-diagonal elements. The final one and the
subtraction outside the mean, makes sure that orthogonal Jacobians are given the highest value. The
calculation of roots makes this score O(B logB) instead of O(B), which is still an improvement
over O(B3).

Small Noise Score (SNS): With this score we wanted to capture the notion that a good architecture
should be robust against noise, and end up making the same decision as it would without noise.
We propose a few variants based on defining the noisy version of the batch as noisyB,a = xB +
a · var(xB) · ε, with noise of different amplitudes a and where ε ∼ N (0, 1). We define the Noised
Score likeNSa = 1−|JS(xB)−JS(noisyB,a)|, since experimentally we found it performed better
than NSa = JS(noisyB,a) and NSa = JS(xB) · JS(noisyB,a) (results not shown). Therefore
we define our first noisy score with a small noise: SNS = NS1/10.

Small Noise Score Cosine (SNSC): Equivalent to SNS but changing JS by JSC in the definition,
to understand if decreasing the complexity of the similarity operation could bring an advantage.

Large Noise Score (LNS): Equivalent to SNS with a larger noise, LNS = NS10, to understand
the dependence of the noised score on the strength of the distortion of the input.

Large Noise Score Cosine (LNSC): LNSC is equivalent to LNS, performing cosine similarity
instead of the eigenvalue based similarity, to understand again the effect of the complexity of the
similarity on speed. Therefore LNSC = 1− |JSC(xB)− JSC(noisyB)|.
More Noised Jacobian Score (MNJS): In this line of reasoning, we hypothesized that the ar-
chitectures should be robust to different degrees of noise. Therefore, we propose the metric
MNJS = JS ·NS1/10 ·NS10 ·NS100.

More Noised Jacobian Score Cosine (MNJSC): Equivalent to the previous one but changing JS
by JSC in the definition to understand the effect of the choice of similarity operation.

Parameters Jacobian Score (PJS): In a different line of reasoning, we argue that the value of
the Jacobian in the parameters space should have a larger impact in the final performance than
the Jacobian with respect to the input. Therefore we take the mean of the eigenvalue based score
performed on the parameters of each layer. Let (Wi)

N
i=1 be the sequence of parameter tensors, where

i starts closer to the input and ends closer to the ouput of the network, N represents the number of
parameter tensors in the network, and each tensor has shape shape(Wi) = (j1, j2, · · · , jKi

), where
jk,Ki ∈ N+. In contrast to JS, the similarity is not evaluated among different samples in the
batch, since the gradient update of the parameters is taken over the mean loss over the samples of
the batch. Once the Jacobian of the loss with respect to the tensor Wi is computed, it is flattened,
keeping intact only the first axis j1. The good performance of this choice is not yet well understood
and it has to be investigated further. We will call the resulting collection of vectors as Jj1 . We
compute the correlation of this collection of vectors, and performed its eigenvalue decomposition to
use the similarity definition of JS and assign a score for each parameter tensor Si. The final score is
the mean over Si, S = 1

N

∑N
i=1 Si.

Parameters Jacobian Score Cosine (PJSC): An equivalent of the previous score where the
eigenvalue-based similarity has been substituted by a cosine similarity.
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JS JSC SNS SNSC LNS LNSC MNJS MNJSC PJS PJSC WPJS WPJSI
noise × × × × × ×

parameter space × × × ×
cosine similarity × × × × ×

Table 1: Summary of scores features.

Weighted Parameters Jacobian Score (WPJS): Trying to capture the intuition that the representa-
tions closer to the last layers might benefit more from being disentangled than the layers at the input,
we perform again PJS at each layer, but this time weighting the mean by giving higher weight to
scores of parameter tensors close to the end. The resulting score is S = 1

N
2

N(N+1)

∑N
i=1 i · Si,

where the extra normalization term makes sure the score is still bounded between 0 and 1.

Weighted Parameters Jacobian Score Inverse (WPJSI): In case our hypothesis on WPJS was
wrong, we tested the opposite hypothesis: early layers will be more influential to the final score.
Here we define the new score as S = 1

N
2

N(N+1)

∑N
i=1(N + 1− i) · Si.

3.3 QUANTIFYING THE QUALITY OF THE SCORE

As the authors of Mellor et al. (2020) noted, JS tends to be more discriminative for low values of
the score than for high values. This can be problematic, given that we are interested in finding the
architecture with the highest performance. We use the slope of the linear regression between the
test accuracy and the score to study the quality of each score. However using the slope relies on the
assumption that the dependence is linear. To avoid such a strict assumption on scores that we might
not understand well enough yet, we introduce a monotonicity score between sequences X and Y :

monotonicity(X,Y ) =
2

N2
S −NS

∣∣∣∣∣∣
NS∑
j=1

∑
i>j

sign((xi − xj) · (yi − yj))

∣∣∣∣∣∣
where X = {xi}NS

i=1 and Y = {yi}NS
i=1, NS is the number of samples, and sign(·) is the sign

function. The absolute value makes sure that both extremes of the sign function are good: when X
and Y grow together sign(·) = 1 and it should be classified as monotonic, and when X and Y grow
consistently in opposite directions sign(·) = −1 and it should be classified as monotonic too. The
non-monotonic case happens whenX and Y do not grow consistently together. The score will be one
for monotonic functions, and lower for functions that are not consistently monotonic. Our definition
is related to the Kendall-tau correlation (Kendall, 1938): monotonicity(X,Y ) = |τ(X,Y )|. We
performed the metric on several familiar functions in figure 1.

(a) (b) (c) (d) (e) (f)

Figure 1: Monotonicity score on familiar functions. Panels (a) and (b) show how both y = exp(x)
and y = − exp(x) are assigned the same monitonicity value. Panel (c), (d) and (e) show how
increasing the Gaussian noise on top of y = − 1

2x, decreases the monotonicity of the dependency.
Last panel (f) shows how y = sin(x) has a very low value of monotonicity, different from zero given
that the values at x = −10 and x = 10 are not at the same height. By design, exponential and linear
monotonicity are given the same monotonicity value.
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Figure 2: Metrics score versus accuracy. We plot log(1 − score), to better display the distribution of points, against the final accuracy of a given architecture.
A point in the panel corresponds to a given architecture. On the left all 1000 points drawn randomly from the NAS-Bench-201 dataset are displayed, while on the
right only those with a score higher than the median score. We can see that all the metrics seem to have a reasonable linear dependence with the accuracy on the
left panel. If we want a reliable metric, it has to be useful for all its range of values. The authors of Mellor et al. (2020) found that their score was not discriminative
for high values, which can be observed in the right panel and compared with other metrics. Visually, all scores seem to suffer from the same behavior, we quantify
the degree in the rest of the article.

5



Under review as a conference paper at ICLR 2021

4 RESULTS AND DISCUSSION

We show in figure 3 left panel how most of our proposed scores outperform the original JS at finding
on average a better architecture. Some of them do so with a lower variance in the decision. It is
especially remarkable that our hypothesis that the parameters space was more predictive turns out to
be consistent with our findings. Cosine similarity does improve the speed, but it is typically a minor
improvement of less than 5% the time, as it can be seen in figure 3 right panel. The gain is expected
to improve with the increase of the batch size, and when the similarity is evaluated several times in
the score, as it is the case for example in MNJS and MNJSC, where we see a more pronounced gain
in speed. Noisy scores seem to stay on par with the original one in terms of accuracy, with a loss in
speed, given that they rely on evaluating the original JS or JSC several times: on the clean batch xB
and on several noisyB,a.

Figure 3: Best accuracy retrieved by each metric and evaluation time per architecture. On
the left, we performed all our scores on CIFAR-10, CIFAR-100 and ImageNet, and we plot the
accuracy after training of the architecture with the highest score. The vertical colored bar represents
the mean best accuracy found over 5 runs of 1000 samples, and the black line represents the standard
deviation. The dark red horizontal line on top shows the highest accuracy in the NAS-Bench-201
dataset. Cosine similarity based scores perform similarly to eigenvalue-based similarity scores.
Scores on the parameter space perform consistently better. On the right, the time each score took to
evaluate one architecture. Cosine based scores give a small gain in speed. Parameter space scores
have comparable times as input space scores.

We show in figure 2 how each score distributes the architectures with respect to the final test accu-
racy. On the left for 1000 different architectures and on the right the 500 architectures above the
median score. Instead of plotting the score itself, we plot log(1− score) to better display the distri-
bution of dots. It can be seen that for high values of the score (low values of log(1 − score)), both
JS and JSC tend not to be discriminative anymore, while other metrics such as PJS or PJSC, seem
to behave better in that regime. However the improvement is not visually clear.

We quantify this observation in figures 4 and 5. In figure 4 we compute the monotonicity of each
score, for 1000 randomly sampled architectures from the NAS-Bench-201 dataset on the left, and for
the 500 above the median score on the right. We consider that if the monotonicity is similar in both
panels, independently of the region of the score, the score is more reliable. As it can be seen, most
scores keep a monotonicity value on the right panel more similar to the one in the left panel, than the
original JS, especially the scores in parameter space. To make sure the conclusions hold with more
standard metrics, we performed the analysis comparing the slopes of the linear regressions. Similarly
as for monotonicity, we consider that if the slope in the left panel is similar to the slope in the right
panel, the score is more reliable, since it does not depend on the percentile region considered. A
similar conclusion can be drawn when a linear regression is performed on log(1 − score) and the
slopes are compared (figure 5). When all the randomly sampled architectures are considered, JS
results in a linear regression with a pronounced slope, but for high values of the score, the slope
drops to close to zero, while other metrics such as SS, LS, WPJS and WPJSI seem to be able to
maintain a similar slope in both settings.
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5 DISCUSSION

Interestingly, both WPJS and WPJSI are the top performers, in terms of best accuracy found with
smallest variance, best times and best monotonicities above the median score. The slight systematic
improvement of WPJSI against WPJS, are not strong enough to suggests that Jacobians close to
the input have more impact on final test accuracy. In fact, we observed that even the score S =
1
N

2
N(N+1)

∑N
i=1 Si improved over PJS, defined as S = 1

N

∑N
i=1 Si, but the reason remains not well

understood. A stronger conclusion that can be drawn is that parameter space is more informative
of final performance than input space given that PJS, PJSC, WPJS and WPJSI all outperformed
the other scores in terms of best architecture selected (figure 3), monotonicity and slope (figures
4 and 5). It is remarkable as well that both WPJS and WPJSI placed the best architecture in the
1000 architectures sample, within the top 1.6 percentile in the score, for the three datasets, while the
original JS score placed the best architecture within the 30.8 percentile.

The intuition that led us to investigate parameter space is that perpendicular gradients might be
the early signature of the attempt of the network to build disentangled representations, which will
ease decision making after training. It is reasonable to assume that disentangled representations are
more effective if they happen at every intermediate layer than if they happen only at the input. This
intuition seems supported by the present study. The intuition that led us to explore noise at the input
is that an effective network should be able to make the same decision for distorted inputs. This
intuition seems supported by the present study. The hypothesis that cosine similarity would bring
a speed up is supported by the current study, but for the small batches used, it does not provide a
significant improvement over the eigenvalue based similarity.

The fact that scores evaluated in the parameter space do not require the input to be differentiable,
eases its use for language models. However our preliminary studies suggest that more research is
necessary to generalize this line of investigation to models that do not involve convolutions.

Combining this family of scores with approaches such as AutoML-Zero (Real et al., n.d.) by lever-
aging both techniques strengths: it would make the discovery process (1) more efficient than training
all networks, (2) more efficient than scoring all networks randomly generated, and (3) more efficient
than training all networks evolved since the score would give an estimate of the performance after
training.

Figure 4: Monotonicity of each score with respect to the accuracy. On the left, evaluated on 1000
randomly drawn architectures from the NAS-Bench-201, on the right evaluated on the architectures
above the median score. Even if the quality of the monotonicity is high for JS when considering the
1000 architectures, the decrease in monotonic quality is more pronounced for higher values of the
JS score than for most of the other scores. Parameter space metrics seem to resist better.
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Figure 5: Slope of each score with respect to the accuracy. On the left, the slope of the linear
approximation of the log(1 − score) against accuracy dependency of 1000 architectures sampled
from the NAS-Bench-201 dataset. On the right the slope of the linear regression performed on
the architectures with a score above the median. The absolute value of the slope is shown to ease
the comparison with monotonicity. The slope of JS dependency decreases drastically, while metrics
such as LS, SS, WPJS and WPJSI keep a consistent slope in both scenarios. A desirable property for
a score is that a consistent slope should be maintained throughout its range, without drastic changes
for different percentiles, to ease its usability.

6 CONCLUSION AND FUTURE WORK

A desirable property for scores that predict the final accuracy of an architecture on a given task is
that the score has a monotonic or even linear correspondence with the final accuracy. We proposed
a family of scores that derive from the original proposition JS. Final best accuracy architecture
retrieved by noised scores was generally better than the original JS, but scores in the parameter
space gave a more pronounced improvement of the best architecture retrieved.

We propose a monotonicity metric to measure how each score follows the validation accuracy. We
use the monotonicity score and the slope of the linear regression on the data to conclude that scores
that evaluate the Jacobian in the parameter space are more robust, and the addition of noise to the
original score can improve its behavior. The scores based on adding noise to the input gave an
improved monotonicity on CIFAR10, but less so on CIFAR100, and they had worse monotonicity
on ImageNet16. Parameter space based scores did seem to improve the monotonicity more consis-
tently. Zero shot Neural Architecture Search holds the promise of drastically speeding up progress
in efficient architecture design and therefore deep learning and AI in general.
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