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Abstract001

Controlling the output of Large Language002
Models (LLMs) through context-sensitive con-003
straints has emerged as a promising approach004
to overcome the limitations of Context-Free005
Grammars (CFGs) in guaranteeing generation006
validity. However, such constraints typically007
require manual specification—a significant bar-008
rier demanding specialized expertise. We in-009
troduce a framework that automatically learns010
context-sensitive constraints from LLM inter-011
actions through a two-phase process: syntac-012
tic exploration to gather diverse outputs for013
constraint learning, followed by constraint ex-014
ploitation to enforce these learned rules during015
generation. Experiments demonstrate that our016
method enables even small LLMs (1B param-017
eters) to learn and generate with perfect con-018
straint adherence, outperforming larger coun-019
terparts and state-of-the-art reasoning models.020
This work represents the first integration of021
context-sensitive grammar learning with LLM022
generation, eliminating manual specification023
while maintaining generation validity.024

1 Introduction025

Large Language Models (LLMs) have revolution-026

ized natural language processing, demonstrating027

unprecedented capabilities across diverse domains028

(Brown et al., 2020; Dubey et al., 2024). However,029

ensuring correctness in LLM outputs remains a030

critical challenge, particularly when outputs must031

adhere to specific formal constraints. While recent032

advances in controlled decoding have enabled en-033

forcement of syntactic correctness through Context-034

Free Grammars (CFGs) (Geng et al., 2023; Beurer-035

Kellner et al., 2024; Park et al., 2024, interalia), en-036

suring semantic validity requires additional mecha-037

nisms.038

The fundamental limitation lies in the expressiv-039

ity gap between CFGs and real-world requirements.040

Many domains demand not only local structural041

correctness but also relationships between distant042

elements in a sequence, nested structures, and so on 043

(Scholak et al., 2021). Such constraints can only 044

be expressed by more powerful formalisms like 045

Context-Sensitive Grammars (CSGs). For instance, 046

a CFG may capture the language aibjck, where any 047

number of a’s must be followed by any number of 048

b’s and then c’s, but only a CSG can capture depen- 049

dencies such as equal counts, i.e., anbncn. Conse- 050

quently, domain-specific solutions were proposed 051

for tasks like semantic parsing (Lei et al., 2025; 052

Poesia et al., 2022; Roy et al., 2023), and later, gen- 053

eral domain-independent frameworks have been 054

developed (Albinhassan et al., 2025) to broaden 055

applicability. However, a barrier to adoption exists, 056

as formal specifications for context-sensitive con- 057

straints demand expertise that may not be readily 058

available. This contrasts with CFGs, which are 059

more widely accessible for many structured gener- 060

ation tasks (Wang et al., 2023). 061

We introduce a framework that automatically 062

learns context-sensitive constraints from LLM out- 063

puts. Our approach operates in two phases: (1) 064

syntactic exploration, where we leverage a CFG- 065

constrained temperature-sampling mechanism to 066

collect diverse syntactically valid outputs, which 067

are then labeled by an oracle and used to learn 068

context-sensitive constraints through a logic-based 069

learner; and (2) constraint exploitation, where these 070

learned constraints control LLM generation to guar- 071

antee context-sensitive correctness. This represents 072

the first integration of context-sensitive grammar 073

learning with LLM generation. 074

Our empirical results on synthetic grammar syn- 075

thesis tasks demonstrate our framework can suc- 076

cessfully learn the ground-truth context-sensitive 077

constraints via LLM interactions. As such, our ap- 078

proach induces control in LLM generations and 079

guarantees constraint adherence for even small 080

models (i.e., 1B parameters) — a capability even 081

state-of-the-art reasoning models (i.e., DeepSeek- 082

R1 (Guo et al., 2025)) fail to achieve consistently. 083
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2 Related Work084

Significant work in controlled decoding has fo-085

cused on CFG-based approaches (Beurer-Kellner086

et al., 2023; Willard and Louf, 2023, interalia),087

where LLM generations must conform to the gram-088

mar’s specification (Welleck et al., 2024). These089

methods address syntactic validity but are un-090

able to enforce context-sensitive constraints critical091

for many real-world tasks. Semantic parsing via092

LLMs aim to capture such constraints; however,093

they employ domain-specific rules (Scholak et al.,094

2021; Roy et al., 2023; Poesia et al., 2022). Re-095

cent work develops a unifying domain-independent096

framework for controlling LLM outputs accord-097

ing to CSGs and semantic constraints via Answer098

Set Grammars (ASGs) (Albinhassan et al., 2025),099

though these constraints remain handcrafted.100

Wang et al. (2023) propose grammar prompt-101

ing, where an LLM predicts CFGs for specific102

tasks to control generation. However, the approxi-103

mated grammar remains context-free and may be104

incorrect. In contrast, we extend Albinhassan et al.105

(2025) by automatically learning context-sensitive106

constraints expressed as formal annotations over107

CFGs. These constraints are learned via a state-of-108

the-art logic-based learner using LLM-generated109

examples labeled by an oracle. Thus, adapting to110

new tasks without handcrafting constraints with111

guaranteed correctness on the learned grammar.112

3 Background113

Formal Languages A formal language L ⊆ Σ∗114

is a set of strings composed of a vocabulary Σ.115

L is generated by a grammar G = ⟨N,T, P, S⟩116

where N are non-terminals, T = Σ are termi-117

nals, P are production rules, and S ∈ N is the118

start symbol. CFGs compose of rules of the form119

A → α where A ∈ N,α ∈ (N ∪ T )∗, allow-120

ing them to capture syntax. While CSGs encode121

rules of the form αAβ → αγβ where A ∈ N ,122

α, β ∈ (N ∪ T )∗, γ ∈ (N ∪ T )+. Hence, CSGs123

can capture context-dependent patterns (Linz and124

Rodger, 2022). As such, while a CFG captures125

L1 = {aibjck : i, j, k ≥ 0}, only a CSG can ex-126

press L2 = {anbncn : n ≥ 0}.127

Answer Set Grammars ASGs (Law et al., 2019)128

extend production rules of CFGs with context-129

sensitive constraints expressed in a logic-based lan-130

guage called ASP (Lifschitz, 2019). A string w131

belongs to the language represented by an ASG132

GASG, i.e., w ∈ L(GASG), if there exists a parse133

tree derivation whose logic representation (in ASP) 134

is satisfiable — meaning a set of logical statements, 135

rules, or constraints must all be true simultaneously. 136

For instance, the CFG component of an ASG cap- 137

tures L1, and the context-sensitive annotations cap- 138

ture L2 by imposing constraints on the number 139

of occurrences of terminal symbols. These annota- 140

tions have been shown to be learnable from positive 141

and negative examples of a CSG using the logic- 142

based learner ILASP (Law et al., 2014). For ex- 143

ample, given L1, a positive example (i.e., aabbcc) 144

and a negative example (i.e., aabc), ILASP learns 145

constraints for equal counts of a’s, b’s, and c’s. 146

4 Methodology 147

Our approach learns context-sensitive constraints 148

for language model generation through a two-phase 149

process: syntactic exploration and constraint ex- 150

ploitation. Syntactic exploration works as follows: 151

(1) Starting with a CFG, we generate diverse sam- 152

ples from a syntactically constrained LLM via 153

temperature-sampling (we alter temperature to ob- 154

tain diverse sequences (Renze, 2024)); (2) We 155

use an oracle to label the samples into positive 156

(w ∈ L(GCSG)) and negative (w /∈ L(GCSG)) 157

sets; (3) We feed the labeled examples to the ASG 158

learner to learn the context-sensitive annotations 159

over the given CFG that covers all samples. For 160

constraint exploitation, we follow Albinhassan et al. 161

(2025) to constrain the LLM’s generation to con- 162

form to the learned context-sensitive constraints. 163

4.1 Syntactic Exploration 164

(1) CFG-Constrained Diverse Sampling. To 165

learn the context-sensitive constraints of a target 166

grammar GASG, we require samples that both sat- 167

isfy and violate these constraints while maintaining 168

syntactic validity. Let pθ denote a language model 169

with parameters θ that defines a distribution over 170

tokens pθ(yt|x, y<t) given input x and context y<t. 171

We seek to learn the grammar ĜASG by collecting a 172

dataset D containing both positive (y ∈ L(GASG)) 173

and negative examples (y ∈ L(GCFG) \ L(GASG)) 174

of the underlying context-sensitive constraints. 175

Following Albinhassan et al. (2025), we define 176

a constraint function C : V∗ → 2V that maps any 177

prefix y<t = (y1, . . . , yt−1) ∈ V∗ to the set of 178

valid next tokens according to a grammar G: 179

C(y<t) = {yt ∈ V | ∃w ∈ L(G) : (y<t ◦ yt)
is a prefix of w}

(1) 180
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where ◦ denotes token concatenation and V is181

the vocabulary of the language model’s tokenizer.182

We define a temperature-based syntactically con-183

strained sampling generator to construct D with suf-184

ficient diversity to capture various context-sensitive185

violations. The sampling generator g with parame-186

ters ϕ = {T , N,CCFG} is:187

g(y|x; pθ, ϕ) =
{
y(n,k) ∼ qCCFG(· | x; pθ, τk),

n ∈ [N ], k ∈ [|T |]
} (2)188

where each y(n,k) is a generated sequence, CCFG189

the constraint function for grammar GCFG, N is190

the number of sequences per temperature value,191

and T = {τ1, . . . , τT } is the temperature schedule.192

Each sequence is sampled as y ∼ qCCFG , where:193

qCCFG(yt | x, y<t; pθ, τ) ∝

exp
(
sθ(yt | x, y<t) I[yt ∈ CCFG(y<t)]

τ

)
(3)194

where sθ is the model logit function, τ is the tem-195

perature parameter, and I(·) is the indicator func-196

tion. This guarantees that any sampled sequence197

belongs to L(GCFG).198

For a given task with M problem instances199

{xi}Mi=1, applying this generator to all xi ∈ M200

yields a dataset D = {yi,j,k : i ∈ [M ], j ∈201

[N ], k ∈ [T ]}, where |D| = M ·N · |T |.202

(2) Oracle Labeling. We employ a task-specific203

oracle V : Σ∗ → {0, 1} to annotate each generated204

sequence. The oracle is treated as a deterministic205

ground truth labeler for the constraints, returning206

V (y) = 1 if y satisfies all constraints and 0 other-207

wise. This transforms our dataset into:208

E = {(yi,j,k, V (yi,j,k)) : yi,j,k ∈ D} (4)209

The diversity in temperature sampling ensures210

positive and negative examples are sufficiently pop-211

ulated, providing the ASG learner with comprehen-212

sive coverage of the constraint space.213

(3) Constraint Learning via ASG Learner. We214

segment E into E+ and E−, containing samples215

conforming to and violating the constraints, respec-216

tively, as given by the oracle. We feed as input217

to the ASG learner GCFG, E+, and E−. Conse-218

quently, ĜASG is constructed by learning the ASP219

annotations over GCFG such that ĜASG covers all220

samples in E (see Appendix A for formal details).221

4.2 Constraint Exploitation 222

With the learned ASG ĜASG, we transition from 223

syntactic exploration to constraint exploitation. Fol- 224

lowing Albinhassan et al. (2025), we sample se- 225

quences y ∼ qĈASG
encoding the constraint function 226

ĈASG for the learned grammar ĜASG. This is simi- 227

lar to Equation (3) without temperature variations. 228

At this point, the model has no further access to the 229

oracle, relying entirely on the learned constraints 230

to ensure context-sensitive validity. 231

5 Experiments 232

5.1 Task Definition 233

We evaluate our approach on two synthetic gram- 234

mar synthesis tasks, where the LLM must gen- 235

erate strings from a target context-sensitive lan- 236

guage. Following Albinhassan et al. (2025), we 237

adopt L1 = {anbncn | n ≥ 1} and craft L2 = 238

{anbncm | n,m ≥ 1}. Each problem instance 239

xi ∈ M prompts the LLM to generate strings with 240

various values of n and m, producing diverse ex- 241

amples that capture both valid and invalid patterns 242

with respect to the context-sensitive constraints for 243

the ASG learner. 244

5.2 Experimental Setup 245

Models. We evaluate closed- and open-source mod- 246

els across various sizes: GPT-4.1, o1, o3-mini, o4- 247

mini, and DeepSeek-R1 through their respective 248

APIs, and Llama models (3.2 1B, 3.2 3B, 3.1 8B, 249

and 3.1 70B) which we run locally (see Appendix C 250

for GPU cluster details). All models are prompted 251

identically using few-shot examples. 252

ASG Learning Configuration. We sample 253

10 generations at each temperature value τ ∈ 254

{0, 0.1, ..., 1.0} for the syntactic exploration phase 255

to construct a diverse dataset D. The oracle V (y) 256

is implemented as a Python program to check con- 257

straint validity, i.e., checks the counts of a’s, b’s, 258

and c’s and their respective ordering. The ASG 259

learner constructs ĜASG by learning the ASP anno- 260

tations over GCFG from these examples segmented 261

into E+ and E−. 262

Unconstrained and Constraint Exploitation 263

Sampling Mechanisms. For API-based models, 264

we use their standard generation settings. For 265

Llama models, we employ three sampling ap- 266

proaches: (1) unconstrained rejection sampling, 267

where we generate 50 samples and select a gen- 268

eration based on the oracle’s feedback; and con- 269

strained generation, where we apply (2) the learned 270

3



Model G
Accuracy

anbncn anbncm

GPT 4.1 - 63.3% 76.7%
o1 - 86.7% 96.7%
o3 mini - 63.3% 86.7%
o4 mini - 90.0% 93.3%
DeepSeek-R1 - 80.0% 86.7%
Llama 1B - 20.0% 6.7%
Llama 1B GASG 100.0% 100.0%
Llama 1B ĜASG 100.0% 100.0%
Llama 70B - 76.7% 53.3%
Llama 70B GASG 100.0% 100.0%
Llama 70B ĜASG 100.0% 100.0%

Table 1: Accuracy results for anbncn and anbncm with
different LLMs (Model) and grammar constraints (G).

ASG and (3) a handcrafted ASG for comparison271

with Albinhassan et al. (2025).272

Evaluation Metrics. We evaluate methods us-273

ing context-sensitive validity accuracy, defined as274

the percentage of generated sequences that belong275

to the ground-truth grammar GASG.276

5.3 Results and Analysis277

Table 1 summarizes our findings across models and278

constraints (see Appendix B for results on 3B and279

8B). We analyze two key aspects: the effectiveness280

of our ASG learning approach, and the impact of281

learned constraints on accuracy.282

Ground-Truth ASGs are Learned. Table 1283

showcases that constraining LLM pθ with the284

ground-truth grammar (GASG) and the learned285

grammar (ĜASG) both provide 100% accuracy and286

conform to all constraints. Whilst it could be287

the case that our sampling mechanism with the288

ASG learner only learned a subset of constraints289

sufficient for the LLM not to make any errors,290

i.e., the LLM already captures some of these via291

the prompt, manual inspection confirmed ĜASG292

is identical to GASG. The reasons behind this are293

twofold: (1) our syntax-constrained temperature-294

based sampling approach effectively covers the295

space of context-sensitive constraints sufficiently,296

i.e., the necessary positive and negative examples;297

(2) the ASG learner based on ILASP guarantees298

that all examples will be covered, and if a solution299

exists, it will be found (see Law et al. (2015) for300

soundness and completeness proofs).301

Guaranteed Correctness via Constraints.302

When applying the learned ASG constraints dur-303

ing generation, all models—even the smallest 1B- 304

parameter model—achieve 100% accuracy on both 305

context-sensitive tasks. In contrast, unconstrained 306

generation with larger and closed-source models 307

fails to provide such guarantees, with Llama 70B 308

achieving only 76.7% and 53.3% accuracy, and 309

GPT-4.1 obtaining 63.3% and 76.7% on L1 and 310

L2, respectively. Although increasing the scale 311

of model parameters improves performance (e.g., 312

Llama 1B’s 20.0% and 6.7% vs. Llama 70B), un- 313

constrained models still lack reliability and robust- 314

ness in generation. 315

Despite employing significantly more computa- 316

tional resources through extended reasoning steps 317

(Valmeekam et al., 2025; Guo et al., 2025; Al- 318

binhassan et al., 2025), state-of-the-art reasoning 319

models (i.e., o1, DeepSeek-R1, etc.) still pro- 320

duce invalid sequences. Consider o4-mini, the 321

best performing unconstrained model, still only 322

achieves 90.0% and 93.3% on L1 and L2, respec- 323

tively. These results demonstrate that our neuro- 324

symbolic constraint learning approach provides 325

correctness guarantees that cannot currently be 326

achieved through scale or inference time multi-step 327

reasoning alone. Most notably, a 1B-parameter 328

model eliminates the need for handcrafted con- 329

straints by learning and enforcing the ground-truth 330

constraints, consistently outperforming all uncon- 331

strained models. This emphasizes the complemen- 332

tary strengths of neural language generation and 333

symbolic constraint enforcement. 334

6 Conclusion and Future Work 335

We presented a novel framework for automating 336

the learning of context-sensitive constraints for con- 337

trolled LLM generation. The synergistic combi- 338

nation of syntactic exploration and constraint ex- 339

ploitation eliminates the need for manual constraint 340

specification while maintaining correctness guar- 341

antees. Our empirical results demonstrate that this 342

method enables small LLMs to learn and generate 343

with perfect constraint adherence, outperforming 344

larger and specialized reasoning models. 345

We plan to extend our work to real-world settings 346

where constraints represent semantic relationships 347

with intrinsic meaning (i.e., semantic parsing, agent 348

planning). We further aim to explore active learn- 349

ing settings using ASG’s sample-efficient one-shot 350

learning ability. Thus, enabling continuous con- 351

straint refinement in lifelong learning tasks where 352

a complete ASG may not be initially captured. 353
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Limitations354

Our approach demonstrates promising results, yet355

several limitations warrant consideration. First, the356

syntactic exploration phase lacks formal conver-357

gence guarantees. While temperature-based sam-358

pling empirically captured sufficient constraint vio-359

lations in our synthetic domains, we cannot guar-360

antee comprehensive coverage of larger constraint361

spaces. Establishing theoretical connections be-362

tween sampling strategies, sample efficiency, and363

constraint space coverage remains an open chal-364

lenge.365

Second, our framework currently addresses only366

hard constraints where outputs are strictly valid or367

invalid. Many real-world NLP tasks, such as ma-368

chine translation or question answering, involve369

soft constraints where outputs exist on a spec-370

trum of acceptability. This binary classification371

approach limits applicability to domains requiring372

nuanced evaluation of correctness.373

Third, our method assumes the underlying lan-374

guage model has been trained on data containing375

the relevant terminals and has developed statistical376

priors aligned with the target formal languages. For377

domains with limited representation in the training378

corpus, the generated samples may be insufficient379

to capture the full spectrum of context-sensitive380

constraints. We acknowledge these limitations and381

aim to address them in our future work (Section 6).382
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A ASG Example and Learning Details499

A.1 ASG Example500

Figure 1 illustrates the ASG learned via the ASG501

learner based on ILASP for the language L =502

{anbncn : n ≥ 1}. The ASG consists of two503

key aspects:504

1. A CFG expressed in Extended Backus–Naur505

form, i.e., as → “a" as. Here, the non-506

terminals are as, bs, and cs, the terminals are507

a, b, and c, the start symbol is start, and508

→ denotes the production rules (i.e., the non-509

terminal on the left-hand side of the arrow can510

be replaced by the terminal on the right-hand511

side of the arrow).512

start −→ as bs cs {
:- size(X)@1, not size(X)@2.
:- size(X)@1, not size(X)@3.

}

as −→ "a" as {
size(X+1) :- size(X)@2.

} | {
size(0).

}

bs −→ "b" bs {
size(X+1) :- size(X)@2.

} | {
size(0).

}

cs −→ "c" cs {
size(X+1) :- size(X)@2.

} | {
size(0).

}

Figure 1: The learned ASG for anbncn using our ap-
proach. This grammar utilizes ASP constraints (in bold
and surrounded by {}) to enforce the context-sensitive
condition that all three symbol sequences maintain equal
length.

2. Context-sensitive constraints annotating the 513

production rules expressed in ASP code (for 514

further details on ASP, please see Lifschitz 515

(2019)). The constraints are encoded via curly 516

braces {. . . } in the ASG and illustrated in 517

bold text. The first rule’s constraints enforce 518

that all three non-terminals must generate se- 519

quences of equal length by requiring size(X) 520

to be consistent across all child positions. 521

Terminal productions implement a counting 522

mechanism where each recursive rule incre- 523

ments the size counter by one, while base 524

cases initialize size(0). The @ symbol refers 525

to specific child positions in productions and 526

parse trees, enabling position-dependent con- 527

straint checking. For example, size(X)@1 528

refers to the count accumulated in the first 529

child of the parse tree. 530
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A.2 Constraint Learning via ASG Learner531

and ILASP.532

Section 4.1 provides an intuitive description of533

how the ASG learner, based on ILASP, learns the534

context-sensitive constraints. Following (Law et al.,535

2019), we now formally define an ASG learning536

task as T = ⟨GCFG, SM , ⟨E+, E−⟩⟩. Here, GCFG537

serves as the base CFG grammar, SM is the search538

space of possible ASP annotations on production539

rules to construct GASG, and E+, E− are positive540

and negative examples, respectively.541

Given these inputs, ILASP learns a minimal hy-542

pothesis H ⊆ SM containing ASP annotations543

over GCFG such that:544

∀y ∈ E+ : y ∈ L(GCFG : H) (5)545

∀y ∈ E− : y /∈ L(GCFG : H) (6)546

where GCFG : H denotes the ASG (GASG)547

constructed by extending GCFG with annotations548

from H . The learned constraints in H encode549

context-sensitive rules (e.g., enforcing count(a) =550

count(b) = count(c) for anbncn as in Figure 1).551

Given ILASP searches for a solution covering all552

examples, we remove duplicate samples when we553

feed E+ and E− to the ASG learner.554

B Further Results555

Section 5.3 showcased context-sensitive accuracy556

results with respect to various LLMs and grammar557

constraints. Here, Table 2 presents results with558

Llama 3.2 3B and Llama 3.1 8B, which we omitted559

from the main text due to space requirements. Sim-560

ilar conclusions can be drawn as before. Hence, we561

omit any further discussions.562

C GPU Specification563

Our experiments were conducted using a GPU clus-564

ter with nodes containing 2× Intel Xeon Platinum565

8358 CPUs (2.60GHz, 32 cores each) and NVIDIA566

L40S GPUs (48GB GDDR6), where we utilized567

up to 4 GPUs with 96GB RAM.568

Model G
Accuracy

anbncn anbncm

GPT 4.1 - 63.3% 76.7%
o1 - 86.7% 96.7%
o3 mini - 63.3% 86.7%
o4 mini - 90.0% 93.3%
DeepSeek-R1 - 80.0% 86.7%
Llama 1B - 20.0% 6.7%
Llama 1B GASG 100.0% 100.0%
Llama 1B ĜASG 100.0% 100.0%
Llama 3B - 20.0% 23.3%
Llama 3B GASG 100.0% 100.0%
Llama 3B ĜASG 100.0% 100.0%
Llama 8B - 46.7% 10.0%
Llama 8B GASG 100.0% 100.0%
Llama 8B ĜASG 100.0% 100.0%
Llama 70B - 76.7% 53.3%
Llama 70B GASG 100.0% 100.0%
Llama 70B ĜASG 100.0% 100.0%

Table 2: Accuracy results for anbncn and anbncm with
different LLMs (Model), including Llama 3.2 3B and
3.1 8B, and grammar constraints (G).
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D Prompt Example569

System Instruction:

You are an expert in formal languages, specifically, Context-Free and Context-Sensitive Grammars. You can
read and understand grammars, and given a grammar specification, you can generate words that consistently conform
to the grammar, its language, and rules without a single mistake. For each message, generate a word (a sequence of
characters belonging to the language) that conforms to the grammar specification anbncn. This grammar represents the
language of strings consisting of n number of a’s, followed by n number of b’s, and finally followed by n number of c’s,
where all n’s are equal (i.e., the number of a’s, b’s, and c’s are all equal) and in the specified order. Each message will
specify a max n value, meaning, the individual number of a’s, b’s, and c’s cannot exceed that amount, and you must aim to
maximise n (length of words) up to the specified max, thereby, prefering longer words of the grammar’s language.

Only respond with a single word that conforms to the grammar, do not generate any additional text beyond
the correct word with respect to the grammar.

Example Interactions:

User: Generate a valid word/string of the grammar anbncn, where you should prefer larger numbers of n (i.e.,
longer sequences) and the max n value is 3.
Assistant: aaabbbccc

User: Generate a valid word/string of the grammar anbncn, where you should prefer larger numbers of n (i.e., longer
sequences) and the max n value is 10.
Assistant: aaaaaaaaaabbbbbbbbbbcccccccccc

Figure 2: Prompt template for the anbncn language generation task. The system instruction defines the formal
language requirements, followed by example interactions demonstrating expected inputs and outputs.

Figure 2 illustrates the prompt used for the anbncn task, with a similar style for our anbncm task.570

Akin to Albinhassan et al. (2025), we adopt a standard few-shot prompting strategy, where we provide a571

description of the task, syntax, and constraints in natural language and formal language notation.572
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