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ABSTRACT

Due to the effectiveness of contrastive-learning-based knowledge distillation
methods, there has been a renewed interest on relational knowledge distillation.
However, these methods primarily rely on the transfer of angle-wise information
between samples, using only the normalized penultimate layer’s output as the
knowledge base. Our experiments demonstrate that properly harnessing relational
information derived from intermediate layers can further improve the effectiveness
of distillation. Meanwhile, we found that simply adding distance-wise relational
information to contrastive-learning-based methods negatively impacts distillation
quality, revealing an implicit contention between angle-wise and distance-wise
attributes. Therefore, we propose a Multi-stage Decoupled Relational (MDR)
knowledge distillation framework equipped with an adaptive stage selection to
identify the stages that maximize the efficacy of transferring the relational knowl-
edge. Furthermore, our framework decouples angle-wise and distance-wise infor-
mation to resolve their conflicts while still preserves complete relational knowl-
edge, thereby resulting in an elevated transferring efficiency and distillation qual-
ity. To evaluate the proposed method, we conduct extensive experiments on mul-
tiple image benchmarks (i.e. CIFAR100, ImageNet and Pascal VOC), covering
various tasks (i.e. classification, few-shot learning, transfer learning and object
detection). Our method exhibits superior performance under diverse scenarios,
surpassing the state of the art by an average improvement of 0.88% on CIFAR-
100 across extensively utilized teacher-student network pairs.

1 INTRODUCTION

Over the past decades, unprecedented development in neural-network-based computer vision has
created numerous real-world applications, ranging from image classification (He et al., 2016b; Hu
et al., 2018; Ma et al., 2018b), object detection (Ren et al., 2015), and semantic segmentation (Long
et al., 2015; Zhao et al., 2017). However, these neural networks demand substantial computational
and storage resources due to their large model sizes, resulting in expensive and cumbersome model
deployment. To address this limitation, various model compression techniques have been system-
atically explored, such as pruning (He et al., 2017), quantization (Habi et al., 2020), Neural Ar-
chitecture Search (NAS) (Wan et al., 2020), and Knowledge Distillation (KD) (Hinton et al., 2015).
Among them, KD stands out for its compatibility with other compression techniques, superior gener-
alization ability (Zhao et al., 2022; Liu et al., 2021; Chen et al., 2021) and model structure flexibility,
thus making it vital in applications such as object detection (Yang et al., 2022; Chong et al., 2022)
and Multiple Object Tracking (MOT) (Zhang et al., 2021; Lee et al., 2020).

KD aims to transfer knowledge from a heavy-weight model (teacher) to a light-weight one (student).
A straightforward approach is to align the student’s output probability distribution with that of the
teacher (Hinton et al., 2015). However, due to the limited scope of information in this distribution,
subsequent research has shifted towards matching outputs of intermediate layers (Romero et al.,
2014; Heo et al., 2019), which further bifurcates into feature-based and relation-based methods. Re-
viewKD (Chen et al., 2021), a feature-based method, exploits the residual structure to selectively
refine the outputs of multiple intermediate layers. In comparison, prominent relation-based ap-
proaches excel by combining the relational matrix from multiple samples with contrastive learning
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(a) The impact of different stage on Top-1 accu-
racy of SSKD. MixUp is used in the experiment,
and all means using all stages’ information.
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Figure 1: Experimental results on relational information of samples in CIFAR100.

in unsupervised domain. Particularly, SSKD (Xu et al., 2020), a seminal work, transfers knowledge
by fitting the angle-wise relational matrix composed of positive and negative sample pairs.

Despite these successes, we argue that existing contrastive-learning-based knowledge distillation
methods have yet to realize their full potential for two primary reasons. First, these methods only
use single-stage output features for relationship extraction, thereby overlooking the utility of multi-
stage relational information between samples. Second, they rely only on inter-sample angle-wise
information, neglecting the informative distance component for relational representation.

However, leveraging these missed opportunities presents certain challenges. On one hand, as shown
in Fig.1a, the mere incorporation of multi-stage relational information does not necessarily improve
the distillation efficacy, even when the volume of transferred information increases. This suggests
that raw multi-stage relational data may introduce redundant or even harmful information during the
knowledge transfer from the teacher to the student model. On the other hand, Fig. 1b highlights the
limitations of solely relying on angle-wise relationships. We calculated the length distribution (de-
notes the distance from the origin point) of the penultimate layer’s output from the student model,
in order to eliminate the influence of angle-wise information. Fig. 1b shows the length distribution
of penultimate features from models trained by various KD methods, where a larger overlapping
area with the teacher’s distribution implies greater retention of distance information. This observa-
tion reveals that using only the angle-wise relationship between samples for knowledge distillation
leads to evident information loss of the length distribution. Moreover, as demonstrated by RKD
(Park et al., 2019), directly fitting both angle-wise and distance metrics between samples results in
complex, interdependent matrices, and thereby culminates in sub-optimal performance.

To address these constraints, we introduce the Multi-stage Decoupled Relational (MDR) knowl-
edge distillation framework. Utilizing a novel Adaptive Stage Selection (ADSS) strategy, MDR
selects the most suitable stages for each sample based on the relational representation capability of
both its angle-wise and distance-wise relational information. In addition, the proposed framework
decouples inter-sample relationships into angle-wise and length-wise dimensions, allowing for a si-
multaneous and unconflicted transfer of both types of information. Moreover, in order to prevent
Self-supervised Module (SM) from neglecting length information during feature normalization in
contrastive-learning-based methods, we present a novel training methodology for SMs that replaces
the training paradigm based on contrastive learning with an auxiliary classifier. This modification
preserves length attributes while enhancing angle-wise representation capability. Our evaluation
demonstrates that MDR framework surpasses the state of the art (SOTA) by an average of 0.88% on
CIFAR-100 across extensively utilized network pairs.

To summarize, this paper makes the following contributions:

• We present critical insights into the constraints of the existing contrastive-learning-based
knowledge distillation frameworks. We delineate the avenues to further improve the meth-
ods through the optimized selection of multi-stage information and the strategic decoupling
of angle-wise and length-wise relational representation.

2



Under review as a conference paper at ICLR 2024

• We propose adaptive stage selection to enable valuable multi-stage information extraction.
We further present the concept of relationship decoupling to partition relationships into
angle-wise and length-wise components for streamlined training process of the student. In
addition, we formulate a new training paradigm for the SM to compensate for the loss of
length-wise information and augment its contrastive learning representation capability.

• We cohesively integrate these innovations into a novel MDR distillation framework. Our
comprehensive evaluation results show that MDR framework consistently exceeds SOTA
performance across extensively utilized network pairs on CIFAR-100, with an accuracy
improvement up to 1.22%.

2 PRELIMINARY

In this section, we provide a brief review of KD and the details of contrastive-learning-based knowl-
edge distillation methods.

The existing KD methods can be broadly classified into response-based, feature-based, and relation-
based methods. In particular, the response-based methods transfer the dark knowledge from the
teacher by approximating the distribution of soft targets, which can be formulated as:

Lkd = τ2KL(σ(zs; τ)∥σ(zt; τ)), (1)

where zs and zt are the logits from the student and the teacher respectively; σ(·) is the softmax func-
tion that produces the category probabilities from the logits, and τ is a temperature hyper-parameter
to scale the smoothness of the distribution; KL means Kullback-Leibler divergence, which is the
measurement of dissimilarity between two categorical distributions.

The main idea of the feature-based KD methods is to mimic the feature representations between
student and teacher, which can be formulated as the following loss function:

Lfeat =
∑
k

Lf (Ts(F s
k ), Tt(F t

k)), (2)

where for stage k, F s
k and F t

k denote the feature maps from the student and the teacher respectively;
Ts, Tt denote the student and the teacher transformation module respectively; Lf (·) denotes the
function which compute the distance between two feature maps. Using multi-stage information has
become the prevailing approach for feature-based methods (Yang et al., 2021; Chen et al., 2021).

In contrast to the methods that distill knowledge from individual samples, the relation-based KD
methods exploit the relationship between distinct samples, which can be formulated as:

Lrela(Ft, Fs) = LR2(ψ(ti, tj), ψ(si, sj)), (3)

where (ti, tj) ∈ Ft and (si, sj) ∈ Fs, Ft and Fs are the sets of feature representations of samples
from the teacher and student respectively; ψ(·) denotes the similarity function of (ti, tj) or (si, sj);
LR2(·) is the correlation function of the feature representations between teacher and student (e.g.,
Huber loss). However, the existing relation-based methods focus on the design of the relational
matrix and neglect the valuable multi-stage information.

As the predominant relation-based method, contrastive-learning-based knowledge distillation cap-
tures inter-sample relationships to transfer knowledge by leveraging the cosine similarity within the
representation space. Given a mini-batch containing N samples {xi}i=1:N (i.e., anchor set P), we
apply strong data augmentation t(·), such as Random Rotation (Xu et al., 2020) or MixUp (Yu et al.,
2022), to each sample and obtain {x̃i}i=1:M ((i.e., positive set P̃) where M = 3N . Both xi and x̃i
are fed into the teacher or student networks to extract their representations ϕi = f(xi), ϕ̃i = f(x̃i).
The similarities between xi and x̃i can be represented by the following matrix A:

Ai,j = cosine(z̃i, zj) =
dot(z̃i, zj)

||z̃i||2||zj ||2
, (4)

where z̃i and zj are the outputs of SM, which transforms ϕ̃i and ϕi into a contrastive learning
representation space. Ai,j represents the similarity between x̃i and xj . (x̃i, xi) refers to the positive
pair and (x̃i, xj)i ̸=j the negative pair. The SM consists of a 2-layer perceptron with a pooling layer,
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Figure 2: Illustration of our proposed MDR framework. ADSS selects the appropriate stage
for information transfer (the first stage is selected in this example). Relational Decoupled Mod-
ule (RDM) transforms the relational information among multiple samples within the corresponding
stage into angle-wise (e.g. [α1, α2, α3]) and length-wise (e.g. [l1, l2, l3]) representations. Lang and
Llen are used to transfer decoupled relational information. The red cross indicates that the informa-
tion at this stage is filtered in this case.

which is trained by maximizing the similarity between positive pairs. A commonly used contrastive
objective is defined as:

Lcon = −
∑
i

log
exp(Ai,i/τ)∑
k exp(Ai,k/τ)

. (5)

In addition to the angle-wise relational matrix formation, the distance-wise relational matrix between
samples can also be used to transfer knowledge (Park et al., 2019), which can be expressed as:

Di,j = ||z̃i − zj ||2. (6)

However, utilizing both the angle-wise and distance-wise matrices simultaneously leads to a de-
graded performance due to their strongly coupled relationship.

3 METHODOLOGY

In light of the aforementioned problems and limitations of the existing methods, we present our
proposed framework and featuring an adaptive stage selection strategy followed by the concept of
relationship decoupling.

3.1 ADAPTIVE STAGE SELECTION STRATEGY

As mentioned in Sec.1, the existing contrastive-learning-based knowledge distillation methods only
use single-stage output features for relationship extraction. However, as shown in Fig. 1a, the output
of each stage contains valuable angle-wise relational information for the student to learn. To better
exploit these information, we adopt a multi-stage framework to transfer knowledge. Specifically,
for each distillation stage, both teacher and student networks are equipped with SMs to capture
relational information. We augment the data set using MixUp and derive the anchor set P and the
positive set P̃ . To fully exploit the representation capability, we incorporate both the angle-wise and
distance-wise information instead of solely relying on angle-wise relationships in the loss function.
Therefore, unlike Eqn. 3, the loss of multi-stage knowledge transfer is represented as:

Lrela =
∑
k

∑
i∈P̃,j∈P

LR2(Bs,k
i,j ∥B

t,k
i,j ), (7)

where for k-th stage, Bs is a probability matrix, consisting of student’s similarity matrix As (Eqn. 4)
or Ds (Eqn. 6) with softmax (with temperature scale τ ) along the dimension of all samples from P
in the mini-batch. The same procedure is applied to the teacher to obtain Bt.
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As shown in Fig. 1a, incorporating multi-stage relational information straightforwardly does not
necessarily improve the distillation efficacy. We argue that every stage contains beneficial informa-
tion, but using all stages introduce redundant or even harmful information during the knowledge
transfer. In order to obtain just enough relational information effectively, we propose an adaptive
stage selection strategy to select the most appropriate stage for angle-wise knowledge transfer.

Since both the intra-class (positive pairs) and inter-class (negative pairs) correlation can reflect the
representational capability, it is insufficient to use only the cosine similarity of positive pairs as a
metric. Moreover, the representation ability at each stages weigh differently towards the final out-
come, making it inappropriate to use the absolute value of similarity for direct comparison. There-
fore, we use relative numerical ranking instead of absolute cosine similarity. Specifically, we cal-
culate the cosine similarity between each positive sample and all anchor samples using Eqn. 4, and
sort them at each stage individually within the mini-batch. This procedure facilitates a holistic com-
parison of the representational ability for the identical positive samples between different stages.
By comparing the order of the similarity between a positive sample and its corresponding anchor in
each stage, we select the highest-ranking stage for knowledge transfer.

As illustrated in Fig. 2, we exploit distance-wise relationship, in order to convey more compre-
hensive information during distillation. As for the stage selection, we use absolute distance as the
criterion and also exploit relative numerical ranking by using the following formula:

AS({Mk
i }

K

k=1) = argmin
k

{Rank(Mk
i )}

K

k=1, (8)

where K is the number of stages in a network; Mk
i is angle-wise or distance-wise similarity matrix

between positive samples i and all anchor samples in the mini-batch; and Rank is the function that
sorts the similarity in a descending order.

3.2 RELATIONAL DECOUPLED MODULE

As shown in Fig. 1b, exclusively depending on angle-wise relationship during distillation leads to
information loss of the length distribution. Therefore, it is crucial to utilize both angle-wise and
distance-wise information in order to comprehensively capture the relational information between
samples for distillation. Yet, it is challenging to effectively combine these two types of information.
For example, RKD directly used two types of information, but the best distillation results are often
obtained by taking one of the two. This is because the distance metric contains both angle and length
(the latter indicating distance from the origin) information, which may obstruct the comprehension
of angle information while learning distance information. In the feature representation space, the
sample distance does not align with the principles of contrastive learning as described in Eqn. 5.
Specifically, the distance between the positive pairs does not always need to be close. Therefore,
conflicts arise when fitting angle-wise and distance-wise relationships simultaneously.

To solve this problem, we propose the concept of relationship decoupling. As illustrated in Fig. 2,
we decouple the relationship between samples into angle and length difference, and the latter can be
expressed by the following equation:

Diffi,j =
1

µi
| ||z̃i||2 − ||zj ||2 | , (9)

where µ is a normalization factor for length difference. Similar to RKD, we set µ to be the average
length difference between pairs from P and P̃ in the mini-batch:

µi =
1

|P2|
∑
j∈P

| ||z̃i||2 − ||zj ||2 | . (10)

Unlike the traditional way of transferring angle-wise knowledge, we directly use MSE loss to fit the
length-wise relational matrix. The length-wise loss and angle-wise loss are defined respectively as:

Llen =
∑

i∈P̃,j∈P

MSE(Diffs,ki,j ,Diff
t,k
i,j ) s.t. k = AS({Dt,k

i,j }
K

k=1
), (11)

Lang = τ2
∑

i∈P̃,j∈P

KL(Bs,k
i,j ∥B

t,k
i,j ) s.t. k = AS({Bt,k

i,j }
K

k=1
). (12)
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Table 1: Top-1 accuracy (%) comparison of SOTA distillation methods across various teacher-
student pairs on CIFAR-100. The numbers in Bold and underline denote the best and the second-best
results, respectively. For a fair comparison, MixUp and classic KD loss are added to all methods.

Teacher WRN40-2 WRN40-2 ResNet56 ResNet110 VGG13 ResNet32×4 ResNet32×4 ResNet50

AvgAcc. 76.41 76.41 73.44 74.07 75.38 79.42 79.42 79.34
Student WRN40-1 WRN16-2 ResNet20 ResNet32 VGG8 ResNet8×4 ShuffleV2 MobileV2

Acc. 71.98 73.26 69.06 71.45 70.68 72.50 71.82 64.60

KD 73.99 75.81 71.31 73.23 73.33 73.69 74.73 68.09 73.02
FitNet 74.44 75.63 71.59 73.26 74.02 75.28 75.30 66.77 73.29

AT 74.67 75.77 71.60 74.03 73.92 75.42 75.51 67.20 73.52
SP 73.91 75.44 71.02 73.88 73.31 74.09 75.20 69.11 73.25
CC 73.98 75.41 71.43 74.30 73.39 74.87 75.44 69.34 73.52

RKD 73.91 75.33 70.74 73.54 73.66 74.85 75.50 68.82 73.29
PKT 74.78 75.42 71.78 73.99 73.65 74.45 76.00 68.72 73.60
CRD 74.45 75.89 71.55 74.24 74.08 75.88 76.46 69.76 74.04

CRCD 74.41 76.07 71.49 73.92 74.31 75.50 76.23 69.99 73.99
SSKD 75.64 75.72 71.34 73.71 74.88 76.01 78.53 71.91 74.72

ReviewKD 75.41 76.42 72.04 74.10 75.03 75.91 78.02 70.21 74.64
DKD 75.02 76.44 72.09 74.39 74.91 76.49 76.58 70.51 74.56

ML-LD 74.89 76.45 71.64 73.85 74.68 75.60 76.88 70.79 74.35

Ours 76.79 77.09 72.77 75.18 75.97 77.94 79.27 72.52 75.94

The final loss for the student network is the combination of aforementioned terms, including the
original training loss Lcls , the response-based loss Lkd, and the relation-based loss Lang and Llen:

L = λ1Lcls + λ2Lkd + λ3Lang + λ4Llen, (13)

where the λi is the balancing weight.

Before training the student, we freeze the teacher’s backbone and train the SM. SM is typically
trained by explicitly improving the representational ability of contrastive learning (Eqn. 5) in exist-
ing methods, which neglect length-wise information during feature normalization to prioritize angle-
wise relationships. To preserve length-wise information while maintaining the representational abil-
ity of contrastive learning, we place a classifier behind each SM and directly use cross-entropy (CE)
loss. This approach ensures that the dimensions of the outputs are consistent while retaining the
relational information. Compared with the prior training methods, the contrastive learning repre-
sentational ability of SM is further amplified with CE loss. Moreover, training through a classifier
is more effective for SM to obtain the global information of the data set, rather than the relational
information between samples within a mini-batch.

4 EXPERIMENTS

To demonstrate the effectiveness of our work, we evaluate MDR in various tasks: classification,
few-shot learning, transfer learning and object detection. Moreover, we present various ablation
study for the proposed method. Besides, our codes will be publicly available for reproducibility.

4.1 EXPERIMENTAL SETTINGS

We conduct evaluations on standard CIFAR-100 (Krizhevsky et al., 2009) and ImageNet (Rus-
sakovsky et al., 2015) benchmarks across the widely applied network families including ResNet
(He et al., 2016a), WRN (Zagoruyko & Komodakis, 2016a), VGG (Simonyan & Zisserman, 2015),
MobileNet (Sandler et al., 2018), ShuffleNet (Ma et al., 2018a) (see Appendix A.1 for the details of
these datasets and related evaluation metrics). Moreover, we employ the SIL-10 (Coates et al., 2011)
and TinyImagenet (Russakovsky et al., 2015) datasets to assess the transferability of learned repre-
sentations generated by distillation method. We compare MDR with a wide range of representative
KD methods, including KD (Hinton et al., 2015), FitNets (Romero et al., 2014), AT (Zagoruyko &
Komodakis, 2016b), SP (Tung & Mori, 2019), CC (Peng et al., 2019), RKD (Park et al., 2019), PKT
(Passalis & Tefas, 2018), OFD (Heo et al., 2019), CRD (Tian et al., 2019), SSKD (Xu et al., 2020),
CRCD (Zhu et al., 2021), ReviewKD (Chen et al., 2021), DKD (Zhao et al., 2022), ML-LD (Jin
et al., 2023). Due to the page limitation, more settings can be found in Appendix A.2.
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Table 2: Top-1 and Top-5 accuracy (%) comparisons of SOTA distillation methods on ImageNet.
Part of the compared results are from (Jin et al., 2023). * means the results from our reproduction.

Acc. Teacher Student KD AT RKD CRD SSKD* ReviewKD DKD ML-LD* Ours

Top-1 73.31 69.75 70.66 70.70 71.34 71.38 71.41 71.61 71.70 71.28 71.92
Top-5 91.42 89.07 89.88 90.00 90.37 90.49 90.44 90.51 90.41 90.15 90.68

Table 3: Linear classification accuracy (%) of transfer learning on the student ResNet8×4 pre-
trained using the teacher ResNet32×4.

Transferred Dataset Baseline KD FitNet RKD CRD SSKD ReviewKD DKD Ours

CIFAR100→SIL-10 69.76 69.56 70.94 71.41 70.76 71.89 71.90 72.15 73.56
CIFAR100→TinyImageNet 34.29 34.77 38.07 38.02 38.17 38.56 38.54 38.74 39.88

4.2 COMPARISON WITH THE STATE OF THE ARTS

Results on CIFAR-100. We compare our MDR with representative distillation methods using a
variety of teacher-student pairs, with both identical and different architectural styles on the CIFAR-
100 dataset. As shown in Table 1, our MDR consistently outperforms other methods by a significant
margin. Specifically, our method achieves an average of 0.88% accuracy improvement over the
current top-performing methods for both identical and distinct architecture pairs. The amount of
accuracy improvement is larger than those of many previous methods. Moreover, there’s an average
improvement of 1.22% in accuracy over SSKD (more experiments in Appendix A.3). These results
indicate that our proposed MDR can effectively exploit the decoupled relationship across multiple
stages between samples for knowledge distillation. Note that the student’s accuracy surpasses the
teacher’s in certain identical architecture pairs, such as WRN40-2→WRN40-1. This underscores
our method’s capability to comprehensively extract more valuable information from teachers.

Results on ImageNet. We further evaluated a teacher-student pair on the large-scale ImageNet, us-
ing ResNet34 as a teacher and ResNet18 as a student. As shown in Table 2, our MDR achieves the
best performance in both Top-1 and Top-5 accuracy categories. Specifically, MDR improves the ac-
curacy by 0.51% over SSKD for Top-1 accuracy. These ImageNet results highlight the effectiveness
of MDR on large-scale datasets.

Transferability of Learned Representations. Beyond achieving superior accuracy on the object
dataset, it is imperative for the student network to produce generalized feature representations that
can exhibit robust transferability to novel semantic recognition datasets. To this end, we adopt the
strategy of freezing the backbone fS(·) that has been pre-trained on the upstream CIFAR-100. We
then train two linear classifiers based on the fixed penultimate features for downstream classifica-
tion on the STL-10 and TinyImageNet, respectively (Tian et al., 2019). Table 3 shows the ability
of transfer learning using different KD methods. Specifically, our MDR method outperforms the
best-competing DKD by an accuracy gain of 1.41% on STL-10 and an accuracy gain of 1.14% on
TinyImageNet, demonstrating its superior transferability to various recognition tasks.

Efficiency under Few-shot Scenario. We evaluate our method against conventional KD, CRD,
SSKD and PACKD (Yu et al., 2022) in a few-shot learning environment, using retention rates
of 25%, 50%, and 75% of the original training samples. To ensure a fair comparison, we

Table 4: Top-1 accuracy (%) comparison on CIFAR-
100 under few-shot scenario with various percentages of
training samples.

Percentage KD CRD SSKD PACKD Ours

25% 64.40 64.71 67.82 68.63 69.11
50% 68.37 68.90 70.08 70.73 71.17
75% 69.97 70.86 70.47 71.70 72.35

maintain a consistent data split strategy
for each few-shot scenario, while keep-
ing the original test set intact. Our eval-
uation utilizes the ResNet56-ResNet20
pair. As depicted in Table 4, our method
consistently outperforms the other tech-
niques by large margins across various
few-shot scenarios. Notably, compared
with the baseline trained on the complete
set, our method achieves higher accu-
racy with only 25% of the training data.
This outcome is attributed to our method’s ability to effectively learn general relational information
from limited data. In comparison, the previous methods typically focus on mimicking inductive
biases from intermediate feature maps or incomplete relationships, which may overfit on the limited
dataset and reduce generalization on the test set.
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Transferability for Object Detection. We further evaluate the student network ResNet-18,

Table 5: Comparison of detection mAP (%)
on Pascal VOC using ResNet-18 as the back-
bone pre-trained by various KD methods.

Baseline KD CRD SSKD Ours

76.18 77.06 77.36 77.60 78.42

which is pre-trained with the teacher ResNet-34
on ImageNet, as a backbone for downstream ob-
ject detection on Pascal VOC (Everingham et al.,
2010). For this evaluation, we adopt the Faster-
RCNN (Ren et al., 2017) framework, adhering to
the standard data pre-processing and fine-tuning pro-
tocols. Table 5 shows our method’s superior detec-
tion performance, surpassing the original baseline by
2.24% mAP and the best-competing SSKD method
by 0.82% mAP. These results underscore our method’s efficacy in guiding a network to achieve
superior feature representations for diverse semantic recognition tasks.

4.3 ABLATION STUDIES

In this section, we provide ablation studies to analyze the effects of each component of MDR. The
experiments are conducted on CIFAR-100 for classification task.
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Figure 3: Ablation study on CIFAR100. Student network ResNet8×4, ShuffleV1 and ShuffleV2,
are trained under teacher network ResNet32×4.

Effect of Adaptive Stage Selection. As shown in Fig. 3a, MS means using multi-stage decoupled
relational information to transfer, which contains angle-wise and length-wise information in each
stage. Applying angle-wise adaptive stage selection strategy (MS + ADSS A) substantially boosts
the accuracy upon the original multi-stage information, indicating that we extract a larger amount of
beneficial angle-wise relationship. As we further add distance-wise adaptive stage selection strategy
(MS + ADSS A + ADSS D), an even higher accuracy is achieved thanks to the positive contribution
of valuable distance-wise information.

Effect of Relational Decoupled Module. To explore the effectiveness of proposed RDM, we con-
duct the evaluation in three variants: only using angle-wise information (Lang), angle-wise and
distance-wise information (Lang + Ldist), both angle-wise and length-wise information (Lang +
Llen) and all three information (Lang +Llen +Ldist). The results are shown in Fig. 3b, where cou-
pled information (Ldist) often have a negative impact on distillation, and RDM boosts the accuracy
compared to the others.

To assess the impact of CE loss for SM training, we compare the teacher’s SMP accuracy and
student’s accuracy under three cases: no SM, with contrastive loss, and with CE loss. SMP accuracy
shows the faction of positive samples correctly assigned to the corresponding anchor. As shown in
Fig. 3c, compared with the no-SM case, training with contrastive loss improves SMP accuracy,
which is further improved by CE loss in both types of accuracy.

The number of adaptive stages. We validate various number of adaptive stages based on angle

Table 6: Ablations on the number of adaptive stages.

Tea-Stu pair info category N = 1 N = 2 N = 3 N = 4

VGG13→VGG8 angle-wise 75.97 75.88 75.83 75.53
VGG13→VGG8 length-wise 75.97 75.81 75.84 75.66

Res50→MobileV2 angle-wise 72.52 72.32 72.19 72.01
Res50→MobileV2 length-wise 72.52 72.29 72.33 72.21

and distance respectively:
1/2/3/4 with two teacher-
student pairs, including
identical and distinct archi-
tectures. For the fairness
of the comparison, when
verifying the number of
adaptive stages based on
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angle, length-wise one is fixed to be 1, and vice versa. As shown in Table 6, regardless of angle-wise
or length-wise information, the best result is achieved when the number of adaptive stages is 1.
Combined with stage selection, the accuracy improves steadily.

Due to the page limitation, more ablation studies and experiment analysis can be found in Appendix
A.4 and A.5, and more related visualizations can be found in Appendix A.7.

5 RELATED WORK

Knowledge distillation trains a smaller network using the knowledge from a larger network. Based
on the types of the distilled knowledge, existing KD frameworks can be divided into three categories:
response-based, feature-based and relation-based methods (Gou et al., 2021).

Response-based KD, also known as the classic KD (Hinton et al., 2015), usually relies on the neural
response of the last output layer of the teacher model. The main idea is to directly mimic the final
prediction (logits) of the teacher model. DKD (Zhao et al., 2022) proposes a decoupled approach us-
ing the fundamental concept of KD. Unlike our proposed decoupled approach, DKD only separates
the output categories into target and non-target classes, and assigns different importance to them.
HSAKD (Yang et al., 2021) trains separate classifiers for each stage while transferring multi-stage
response-based information.

Featured-based KD, represented by FitNet (Romero et al., 2014), encourages the student mod-
els to mimic the intermediate-level features from the hidden layers of teacher models. VID (Ahn
et al., 2019) and PKT (Passalis & Tefas, 2018) reformulate knowledge distillation as a procedure of
maximizing the mutual information between the teacher and the student networks. There are also
other methods using multi-stage information to transfer knowledge. OFD (Heo et al., 2019) uses a
novel distance function to transfer the information from the teacher to the student; ReviewKD (Chen
et al., 2021) proposes a new multi-stage architecture that allows the student to select the appropriate
teacher stage for distillation. In contrast, our method employs an adaptive stage selection strategy to
extract the most relevant relational information applicable to distillation for different samples.

Relation-based KD emphasizes the exploitation of relationships between distinct layers or samples.
FSP (Yim et al., 2017) guides the student model by generating a relation matrix between different
layers of the teacher model. SP (Tung & Mori, 2019), CC (Peng et al., 2019), and RKD (Park et al.,
2019) utilize the relationships between samples to guide the student in learning higher-dimensional
representations. Leveraging the success of contrastive learning in unsupervised tasks (Peng et al.,
2019; Park et al., 2019), many methods utilize the representation space of contrastive learning to
model the relationships between samples. CRD (Tian et al., 2019) pioneered the integration of con-
trastive learning into knowledge distillation, SSKD (Xu et al., 2020) separately trains the teacher’s
SM to extract richer knowledge, PACKD (Yu et al., 2022) uses an optimal transport-based positive
pair similarity weighting strategy to better transfer discriminative information from teachers to stu-
dents. However, all of the existing contrastive-learning-based methods extract relationships at the
penultimate feature layer. According to our experiments, we found that effective relational informa-
tion can also be extracted from intermediate layers. Therefore, we propose a multi-stage distillation
framework with adaptive stage selection strategy to comprehensively extract relational knowledge
between samples. Moreover, our novel method decouples the relationship between samples into an-
gle and length difference, compensating information loss in length-wise relationships in the existing
contrastive-learning-based methods.

6 CONCLUSION

In this paper, we propose a novel framework equipped with an adaptive stage selection strategy for
relation-based knowledge distillation, which enables efficient extraction of relational information
across multiple stages. By decoupling the relationship into angle and length difference and intro-
ducing a novel training method for the self-supervised module, our approach enables the student
to acquire knowledge more effectively. Experiment results show that our method significantly sur-
passes SOTA performance on the standard image classification benchmarks in the field of KD. It
also opens the door for further improvements of knowledge transfer methods based on relationship.
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A APPENDIX

A.1 DATASETS AND METRICS

CIFAR-100. CIFAR-100 (Krizhevsky et al., 2009) contains 50K images for training and 10K im-
ages for testing, labeled into 100 fine-grained categories. The size of each image is 32×32. We
evaluate the proposed MDR on this dataset with image recognition and report the top-1 accuracy.

ImageNet. ImageNet (Russakovsky et al., 2015) consists of 1.2M images for training and 50K
images for validation, covering 1,000 categories. All images are resized to 224 × 224 during training
and testing. We report the top-1 and top-5 accuracy on this dataset for image recognition.

STL-10 and TinyImageNet. STL-10 (Coates et al., 2011) is composed of 5K labeled training
images and 8K test images in 10 classes. TinyImageNet (Russakovsky et al., 2015) is composed of
100K training images and 10k test images in 200 classes. We evaluate the proposed MDR on this
dataset with image recognition and report the top-1 accuracy.

Pascal VOC. Following the consistent protocol, we use Pascal VOC (Everingham et al., 2010)
trainval07 + 12 for training and test07 for evaluation. The result set consists of 16551 training
images and 4952 test images in 20 classes. The image scale is 1000×600 pixels during training and
inference. The comparison of detection performance toward average precision (AP) on individual
classes and mean AP (mAP).

A.2 IMPLEMENTATIONS

Training details. On CIFAR-100, the batch size and initial learning rate are set to 64 and 0.05. We
train the models for 240 epochs in total with SGD optimizer, and decay the learning rate by 0.1 at
150, 180, and 210 epochs. The weight decay and the momentum are set to 5e-4 and 0.9. We set τ in
Lkd for P to be 4, P̃ to be 0.75, τ in Lang and Llen to be 0.5. We set λ1 = 0.1, λ2 = 2.7, λ3 = 300,
λ4 = 1.0 in Eqn. 13. We conduct experiments on one Tesla T4 GPU. On ImageNet, we adopt the
SGD optimizer to train the student networks for 100 epochs with a batch size of 512. The initial
learning rate is 0.2 and decayed by 10 when the epoch is 30, 60 and 90. The optimizer with 5e-4
weight decay and 0.9 momentum is adopted. We set τ in Lkd for P to be 1, P̃ to be 1, τ in Lang and
Llen to be 0.5. We set λ1 = 1.0, λ2 = 2.0, λ3 = 300, λ4 = 1.0 in Eqn. 13. Our inplementation on
Pascal VOC for object detection follows the same setting used in (Yang et al., 2021). Following the
consistent protocol, we use trainval07 + 12 for training and test07 for evaluation. We train the model
by SGD optimizer with a momentum of 0.9 and a weight decay of 1 × 10−4. The initial learning
rate starts at 0.01 and is decayed by a factor of 10 at the third epoch within a total of four epochs.
We conduct experiments on 4 Tesla V100 GPUs. On STL-10 and TinyImageNet, we train the linear
classifiers by the SGD optimizer with a momentum of 0.9, a batch size of 64 and a weight decay
of 0. The initial learning rate starts at 0.1 and is decayed by a factor of 10 at 30, 60 and 90 epochs
within the total 100 epochs. We conduct experiments on one Tesla T4 GPU.

To ensure a fair comparison, we use the same data augmentation MixUp and classic KD loss for
all methods. For the identical network, we maintain the same training hyperparameters, including
learning rate, epoch and weight dacay. In particular, we align the data augmentation methods and
hyperparameter configurations used in the ML-LD original code with those in our other experiments.

During the training stage of teacher’s SMs, we connect a classifier after each SM (composed of a
layer of fully connected), and directly uses category information for supervised learning. In this pro-
cess, except for SM and classifier, the backbone part of the network remains frozen. On CIFAR100,
we train the SMs for a total of 60 epochs, with the learning rate decayed by a factor of 10 at the 30th
and 45th epochs. On ImageNet, we train the SMs for 30 epochs, with the learning rate decayed by
10 at the 10th and 20th epoch. Other settings remain consistent with the distillation process.

All experiments are conducted based on the Pytorch framework.

Architectural Design of SMs. As discussed in the main paper, we attach one SM after each convo-
lutional stage. The SM is composed of global average pooling(GAP) and two fully-connected(FC)
layer. For training teacher SMs, we attach one FC layer for CE loss, where the input dimension is
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Table 7: Architectural details of SMs for various networks for CIFAR-100 classification.

Network Name SM1GAP SM2GAP SM3GAP SM4GAP SS Modules input dim Classifier

WRN-40-2 (8× 8) (8× 8) (8× 8) - [512, 256, 128, -] (128, 100)
WRN-40-1 (8× 8) (8× 8) (8× 8) - [256, 128, 64, -] (128, 100)
WRN-16-2 (8× 8) (8× 8) (8× 8) - [512, 256, 128, -] (128, 100)

resnet56 (8× 8) (8× 8) (8× 8) - [256, 128, 64, -] (128, 100)
resnet20 (8× 8) (8× 8) (8× 8) - [256, 128, 64, -] (128, 100)

ResNet32×4 (8× 8) (8× 8) (8× 8) - [1024, 512, 256, -] (128, 100)
ResNet8×4 (8× 8) (8× 8) (8× 8) - [1024, 512, 256, -] (128, 100)
ResNet-50 (8× 8) (8× 8) (4× 4) (2× 2) [1024, 512, 1024, 2048] (128, 100)
VGG-13 (16× 16) (8× 8) (4× 4) (4× 4) [128, 256, 512, 512] (128, 100)
VGG-8 (16× 16) (8× 8) (4× 4) (4× 4) [128, 256, 512, 512] (128, 100)

MobileNetV2 (8× 8) (8× 8) (4× 4) (2× 2) [48, 16, 48, 160] (128, 100)
ShuffleNetV1 (8× 8) (8× 8) (4× 4) - [960, 480, 960, -] (128, 100)
ShuffleNetV2 (8× 8) (8× 8) (4× 4) - [464, 232, 464, -] (128, 100)

Table 8: Architectural details of SMs for various networks for ImageNet classification.

Network Name SM1GAP SM2GAP SM3GAP SM4GAP SM’s input dim Classifier

ResNet-34 - (28× 28) (14× 14) (7× 7) [-, 128, 256, 512] (256, 1000)
ResNet-18 - (28× 28) (14× 14) (7× 7) [-, 128, 256, 512] (256, 1000)

ResNet-50 - (28× 28) (14× 14) (7× 7) [-, 512, 1024, 1024] (256, 1000)
MobileNetV1 - (14× 14) (7× 7) (1× 1) [-, 512, 1024, 2048] (256, 1000)

same as the dimension of SM’s output feature (e.g., 128 on CIFAR-100, 256 on ImageNet) and the
output dimension is same as the number of categories.

We illustrate the overall architecture of SMs for various networks on CIFAR-100 on Table 7 and
ImageNet on Table 8, including the family of WRN, ResNet, VGG, MobileNet and ShuffleNet.
In the specific case of ResNet34→ResNet18 in the ImageNet classification task, we specifically
utilize the output of the second to fourth stages for extracting relational information. Our decision
is grounded on the observation that the accuracy of SMP in the first stage is less than 10%. This
finding implies that the first stage lacks significant representation information necessary for effective
contrastive learning.

A.3 CIFAR-100 AND IMAGENET RESULTS ON OTHER TEACHER-STUDENT PAIRS.

Table 9: Top-1 accuracy (%) comparison of SOTA distillation methods across various teacher-
student pairs on CIFAR-100 (as a supplement to Table 1). The numbers in Bold and underline
denote the best and the second-best results, respectively.

Teacher-Student pair KD FitNet AT RKD CRD DKD ML-LD SSKD ReviewKD Ours

ResNet32×4→ShuffleV1 74.52 73.76 76.37 74.00 75.66 76.68 76.81 78.37 77.60 78.92
ResNet50→VGG8 73.51 73.29 73.88 73.84 74.10 75.46 75.54 76.02 75.41 76.52

WRN40-2→ShuffleV1 75.55 76.19 77.03 75.71 77.22 76.91 76.52 77.21 77.39 78.47

To complement the data presented in Table. 1, we conducted additional experiments exploring dif-
ferent network configurations. We observed that, in comparison to network pairs with the same
architecture, the distillation improvement achieved by using different network architectures was rel-
atively minor. Furthermore, our distillation method consistently enhanced the accuracy of the stu-
dent model to a level surpassing that of the teacher model. This outcome validates the effectiveness
of knowledge extraction from the teacher model and its successful transfer to the students.

We further evaluated a teacher-student pair on the large-scale ImageNet, using ResNet50 as a teacher
and MobileNetV1 as a student. As shown in Table 10, our MDR achieves the best performance in
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Table 10: Top-1 and Top-5 accuracy (%) comparisons of SOTA distillation methods on ImageNet.
Part of the compared results are from (Zhao et al., 2022) and (Jin et al., 2023). * means the result of
our reproduction.

Acc. Teacher Student KD AT OFD CRD SSKD* ReviewKD DKD ML-LD* Ours

Top-1 76.16 68.87 68.58 69.56 71.25 71.37 72.48 72.56 72.05 72.04 72.84
Top-5 92.86 88.76 88.98 89.33 90.34 90.41 91.17 91.00 91.05 91.10 91.19

both Top-1 and Top-5 accuracy categories. Specifically, MDR improves the accuracy by 0.36%
over SSKD for Top-1 accuracy. These ImageNet results highlight the effectiveness of MDR on
large-scale datasets.

A.4 ABLATION STUDIES.

ADSS with different distance-wise criterion. Table 6 summarizes the effects of different distance-
wise criterion. To ensure a fair comparison, different experiments are carried out under the same
angle-wise adaptive stage selection strategy.

In addition to the baseline of not using distance information(w/o L), we take the All Stages’ out-
puts (AS) and the Penultimate Layer’s outputs (PL), introduced by RKD. We also consider relative
longest length (RLL), which means selecting the stage where the length order of the sample is the
highest, and the opposite for relative shortest length (RSL). Additionally, we exploit the correct
class confidence for auxiliary classifier’s output (CS) to determine the best stage. Furthermore, we
believe that although distance and angle are decoupled in learning, angle-wise information needs to
be referred to in the judgment of the most appropriate stage of distance, so the anglular informa-
tion between samples is also integrated into the judgment: directly using the Decision of angle-wise
adaptive stage selection strategy (DA) and use of Relative Shortest Distance (RSD).

Table 11: Ablations on distance-wise criterion.

Teacher-Student w/o L AS PL RLL RSL CS DA RSD

WRN40-2→WRN40-1 76.47 76.43 76.40 76.59 76.44 76.55 76.68 76.79
WRN40-2→WRN16-2 76.81 76.76 76.80 76.90 76.81 76.79 76.88 77.09

Res56→Res20 72.34 72.33 72.31 72.30 72.39 72.55 72.42 72.77
Res110→Res32 74.86 74.70 74.99 75.10 75.01 74.89 74.87 75.18
VGG13→VGG8 75.69 75.66 75.70 75.61 75.99 75.74 75.67 75.97

ResNet32×4→ResNet8×4 77.60 77.65 77.69 77.75 77.73 77.50 77.59 77.94
ResNet32×4→ShuffleV2 78.89 78.80 79.05 79.09 78.88 79.02 79.01 79.27

ResNet50→MobileV2 72.37 72.21 72.31 72.41 72.55 72.20 72.30 72.52
ResNet32×4→ShuffleV1 78.61 78.77 78.71 78.66 78.57 78.90 78.44 78.92

ResNet50→VGG8 76.33 76.23 76.31 76.44 76.31 76.33 76.33 76.52
WRN40-2→ShuffleV1 78.23 78.29 78.26 78.31 78.44 78.21 78.38 78.47

Table. 11 shows that utilizing the RSD as the criterion for distance-wise adaptive stage selection
yields the most effective performance overall. Apart from RSD, CS exhibits a positive influence on
the majority of network pairs. Notably, RSL has attained superior outcomes on VGG13→VGG8
and ResNet50→MobileV2, albeit with greater instability compared to RSD. The other criterion
demonstrate considerably smaller positive effects than RSD. Therefore, we ultimately adopt RSD as
the criterion for distance-wise adaptive stage selection.

Effect of Adaptive Stage Selection. We extended the experiment in Fig. 3a. On different teacher-
student pairs, we experimented by adding only multi-stage angle-wise information (MS A), multi-
stage angle-wise and length-wise information (MS), and adding ADSS strategy only on angle-wise
information (MS + ADSS A), and using ADSS strategy for angle-wise and length-wise information
at the same time (MS + ADSS A + ADSS D).
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Table 12: Ablations on Adaptive Stage Selection.

Teacher-Student MS A MS MS+ADSS A MS+ADSS A+ADSS D

WRN40-2→WRN40-1 75.97 76.10 76.68 76.79
WRN40-2→WRN16-2 76.23 76.40 76.92 77.09

Res56→Res20 71.66 71.89 72.50 72.77
Res110→Res32 74.08 74.31 74.92 75.18
VGG13→VGG8 75.13 75.21 75.66 75.97

ResNet32×4→ResNet8×4 76.67 76.95 77.69 77.94
ResNet32×4→ShuffleV2 78.61 78.69 79.11 79.27

ResNet50→MobileV2 71.88 71.93 72.21 72.52
ResNet32×4→ShuffleV1 78.45 78.51 78.84 78.92

ResNet50→VGG8 76.09 76.10 76.44 76.52
WRN40-2→ShuffleV1 77.48 77.63 78.20 78.47

Statistics on the number of samples in each stage with ADSS.
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(a) angle-wise ADSS.
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(b) distance-wise ADSS.

Figure 4: Statistics on the number of samples in each stage with ADSS on CIFAR-100.

We performed a statistical analysis of the number of stage selections based on angle and distance
for various teacher networks in the CIFAR-100 training set. The results are illustrated in Fig. 4.

As shown in Fig. 4a, regarding the angle-wise ADSS, notable disparities exist in the number of
choices across different stages. However, a consistent trend is observed: the proportion of choices
is generally higher in the initial and final stages, while relatively lower in the intermediate stages. A
plausible explanation is that in the initial stage, the feature extraction capability is limited, primarily
capturing shallow features of the original input. As the network deepens, subsequent stages exhibit
stronger feature extraction abilities, with a heightened focus on local characteristics. The final stage,
which connects to the classifier, is essential to discern significant feature difference among distinct
categories, resulting in the strongest representation capability.

By employing the distance-wise ADSS, we observed a relatively small variation in the number of
samples across each stage. This finding suggests that the distance-wise representation space exhibits
weaker correlation with the network depth, as compared to the angle-wise one.

Sensitivity analysis for angle-wise and length-wise loss.

Table 13: Ablations on angle-wise and length-wise weight.

λ3 50 100 300 500 700 900

Top-1 77.71 / 72.40 77.83 / 72.56 77.94 / 72.52 77.81 / 72.45 77.80 / 72.33 77.66 / 72.23

λ4 0.2 0.5 1.0 1.5 2.0 4.0

Top-1 77.69 / 72.33 77.85 / 72.46 77.94 / 72.52 77.80 / 72.40 77.71 / 72.33 77.60 / 72.21

We performed a sensitivity analysis for angle-wise and length-wise loss for various teacher-student
networks in the CIFAR-100. ResNet32×4→ResNet8×4 (left) and ResNet50→MobileNetV2 (right)
are set as the teacher and the student, respectively. As shown in Table. 13, the best results were
achieved when λ3 is around 300 and λ4 is 1.0. Our other experiments were conducted under this set
of hyperparameter settings.
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A.5 EXPERIMENT ANALYSIS.

Table 14: Comparison of detection AP (%) on individual classes and mAP (%) on PASCAL VOC
using ResNet-18 as the backbone, pretrained by various KD methods over the Faster-RCNN. The
numbers in bold and underline denote the best and the second-best results, respectively.

Method mAP AP(Average Precision)

aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv

Baseline 76.2 79.0 83.4 77.5 63.4 65.0 80.3 85.5 86.7 59.4 81.7 69.1 84.2 84.2 81.3 83.7 48.3 80.0 73.6 82.6 74.6
KD 77.1 78.6 84.4 78.0 68.0 62.8 82.9 85.9 88.4 60.7 81.5 68.6 85.9 84.4 82.7 84.5 48.8 79.5 74.8 85.0 75.9

CRD 77.4 77.5 84.9 77.3 66.3 65.6 82.3 86.6 88.2 62.1 81.8 70.8 85.7 84.9 82.8 84.3 51.6 81.1 75.2 83.1 75.2
SSKD 77.6 78.6 84.2 78.2 66.2 63.3 82.8 86.1 87.3 63.4 84.4 71.8 84.5 85.1 83.1 83.9 51.9 80.1 77.2 84.1 76.0
ours 78.4 81.2 83.8 81.6 67.4 68.0 83.7 85.9 87.4 63.0 83.8 68.4 86.8 86.2 83.7 85.0 53.7 81.1 74.8 84.4 78.6

The comparison of detection performance toward average precision (AP) on individual classes and
mean AP (mAP) is shown in Table. 14. Our method outperforms the original baseline by 2.24%
mAP and the best-competing SSKD by 0.82% mAP. Moreover, our method can also achieve the
best or second-best AP in most classes compared with other widely used KD methods. Notably, our
method has achieved the best AP in 12 categories, with a significant improvement observed in the
bird category, surpassing the second-best AP achieved by SSKD by 3.4%. Furthermore, we have
attained the second-best AP in 4 categories, with an average difference of 0.5% from the best AP.
These results verify that our method can guide a network to learn better feature representations for
semantic recognition tasks.

A.6 LIMITATIONS

Since our method needs to first train the teacher’s SM module and obtain the relationship matrix of
angle and length, it takes a longer time than the traditional KD method. For example, in a single GPU
Tesla-V100 to the res32x4→res8x4 pair, the training time on the CIFAR-100 dataset for traditional
KD is around 90min, whereas for MDR is around 470min.

In addition, compared with other relational distillation methods that only use the penultimate layer
information for distillation, this method needs to use the middle layer information, so the teacher
and the student need to have the same number of stages. Therefore, there is a constraint on the
selection of distillable networks.

A.7 VISUALIZATIONS

In this part, we present some visualizations to show that our MDR does bridge the teacher-student
gap in the relation-level. In particular, we visualize the MSE loss of relational matrix between
ResNet32×4 and ResNet8×4 in Fig. 5. We find that our MDR significantly improves the similarity
of angle-wise, length-wise and distance-wise relational matrix between the student and the teacher.
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(a) MSE loss of angle-wise relational matrix.

(b) MSE loss of length-wise relational matrix.

(c) MSE loss of distance-wise relational matrix.

Figure 5: MSE loss of relational matrix between ResNet32×4 and ResNet8×4. We visualize
the MSE loss of angle-wise (top) ,length-wise (middle) and distance-wise (bottom) relational matrix
between the models trained by RKD (left), the models trained by SSKD (middle), and the models
trained by our MDR (right). The experiments are conducted on the sampled CIFAR-100 validation
set (10,000 samples). We compute relational matrix with a batch size of 25 for the penultimate
stage, so these are 400 values for each experiment. For better presentation, we rank these values and
organize them as the heatmap representation. The smaller the value, the more similar the matrix are.
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