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ABSTRACT

Recent advances in deep learning have led to significant progress in the computer
vision field, especially for visual object recognition tasks. The features useful
for object classification are learned by feed-forward deep convolutional neural
networks (CNNs) automatically, and they are shown to be able to predict and
decode neural representations in the ventral visual pathway of humans and mon-
keys. However, despite the huge amount of work on optimizing CNNs, there has
not been much research focused on linking CNNs with guiding principles from
the human visual cortex. In this work, we propose a network optimization strat-
egy inspired by both of the developmental trajectory of children’s visual object
recognition capabilities, and Bar (2003), who hypothesized that basic level infor-
mation is carried in the fast magnocellular pathway through the prefrontal cortex
(PFC) and then projected back to inferior temporal cortex (IT), where subordinate
level categorization is achieved. We instantiate this idea by training a deep CNN
to perform basic level object categorization first, and then train it on subordinate
level categorization. We apply this idea to training AlexNet (Krizhevsky et al.,
2012) on the ILSVRC 2012 dataset and show that the top-5 accuracy increases
from 80.13% to 82.14%, demonstrating the effectiveness of the method. We also
show that subsequent transfer learning on smaller datasets gives superior results.

1 INTRODUCTION

Humans possess the ability to recognize complex objects rapidly and accurately through the ventral
visual stream. In a traditional feed-forward view, the ventral visual stream processes the input stim-
ulus from the primary visual cortex (V1), carries the response through V2 and V4, and finally arrives
at the interior temporal (IT) cortex, where a more invariant object representation for categorization
is obtained (DiCarlo & Cox, 2007). Among all of the cortical regions, V1 is the best understood, as
it can be well-characterized by 2-D Gabor filters (Carandini et al., 2005), and some subregions in IT
are known to be activated by category-specific stimulus, such as faces (FFA and OFA; Kanwisher
et al. (1997); Puce et al. (1996)), words (VWFA; McCandliss et al. (2003)), and scenes (PPA; Ep-
stein et al. (1999)). Nevertheless, it remains unclear what the feature representations between V1
and IT are, or how the increasingly complex representations progress through the ventral stream
hierarchy, although some answers have been proposed (Cox, 2014; Güçlü & van Gerven, 2015).

In the past few years, the advances in deep learning, especially solving computer vision problems
using deep convolutional neural networks (CNNs), has shed light on the representations in the ven-
tral visual pathway. Deep CNNs stack computations in a hierarchical way, repeatedly forming 2-D
convolutions over the input, applying pooling operation on local regions of the feature maps, and
adding non-linearities to the upstream response. By building and training deep CNNs with mil-
lions of parameters using millions of images, these systems become the most powerful solutions to
many computer vision tasks, such as image classification (Krizhevsky et al., 2012; He et al., 2015a),
object detection (Girshick et al., 2014), scene recognition (Zhou et al., 2014), and video catego-
rization (Karpathy et al., 2014). Several studies have even shown that these systems are on a par
with human performance, in tasks such as image classification (He et al., 2015b), and face recog-
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nition (Taigman et al., 2014). These results suggest their potential power to help us understand the
ventral visual system.

More recently, many studies have been done to optimize and improve the performance of deep
CNNs, such as increasing the depth (Simonyan & Zisserman, 2014; Szegedy et al., 2015), optimizing
the activation function (He et al., 2015b), pooling layers (Lee et al., 2015), and modifying the loss
functions (Lee et al., 2014; Romero et al., 2014). Despite the huge success of these engineering
approaches, very little has been done to link optimizing deep CNNs by adding guiding principles
from the human brain on how visual object recognition is achieved. In fact, while deep CNNs have
been used to model and explain the neural data in IT (Yamins et al., 2014; Cadieu et al., 2014;
Agrawal et al., 2014; Güçlü & van Gerven, 2014; 2015), inspiration in the opposite direction has not
been as evident.

In this study, we examine the effect of one property of visual object recognition in the brain - the
primacy of basic level categorization - as a method for training deep CNNs. This idea is drawn
from two different perspectives: behavioral studies of the development of object categorization, and
a hypothesized neural mechanism of top-down basic level facilitation in cortex. The basic level
is one of three levels of abstraction for categorization of natural objects: subordinate, basic and
superordinate. For example, a gala apple (subordinate level) is a type of apple (basic level) which is
a type of fruit (superordinate level). Behavioral studies show that the mean reaction times for basic
level categorization are fastest (Tanaka & Taylor, 1991), suggesting the primary role of basic level
categories in visual processing. Other studies show that infants and young children categorize at the
basic level earlier than the subordinate level (Bornstein & Arterberry, 2010), and even earlier than
the superordinate level (Mervis & Crisafi, 1982; Mandler & Bauer, 1988; Behl-Chadha, 1996).

In terms of adult visual processing, Bar (2003) proposed the hypothesis that there is top-down basic
level facilitation from the prefrontal cortex (PFC) during visual object recognition. The top-down
signal comes from a ”fast” pathway (via fast-responding magnocellular cells) from V2 to the PFC
where basic level object categorization is subserved. The signal is then projected back as ”initial
guesses” to IT, and to be integrated with the bottom-up feed-forward subordinate level object recog-
nition information. More recent work (Kveraga et al., 2007; Bar et al., 2006) supports the hypothesis
by showing that magnocellular-biased stimuli significantly activated pathways between PFC and IT
by increasing the connection strength, based on the human neuroimaging data they collected.

To model the basic level facilitation process based on the development of object categorization, we
first train a deep CNN on 308 basic level categories using the ImageNet dataset from the Large
Scale Visual Recognition Challenge (ILSVRC) 2012 (Russakovsky et al., 2015), and then continue
training at the subordinate level on the 1000-way classification task. We show that the top-5 accuracy
for 1000-way classification task increases to 82.14%, compared to 80.13% achieved by training
directly on the subordinate level task using the default parameters in Caffe. We also show that while
the facilitation effect tend to appear using many training strategies, the improvement obtained by
basic-level pretraining outperforms the others. We then fine-tune this network on Caltech-101 (Fei-
Fei et al., 2007) and Caltech-256 datasets (Griffin et al., 2007), and show the network trained first
on basic level categorization achieves the best generalization. Our result suggests that applying
knowledge of human brain on object recognition helps build better models in computer vision tasks.

2 METHOD

Bar’s theory of basic level facilitation is consistent with behavioral studies of the development of
object categorization that show that young children first learn to categorize basic level objects rather
than subordinate or superordinate categories. Mervis & Crisafi (1982) show that children were at
ceiling for basic level categories starting from 2 1

2 years of age, but they can only get subordinate
level categorization correct until age 5 1

2 . Behl-Chadha (1996) show that even 3-month-old infants
can distinguish pictures of tables from chairs or beds, but they do not display a sensitivity to the
differences between furniture and vehicles. A possible reason why basic level categorization is
achieved first is that it is most cognitively efficient and the easiest to acquire (Rosch & Lloyd,
1978). These studies imply that acquiring basic level categorization first may help the development
of subordinate level processing.
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In this work, we combine the developmental theory and Bar’s hypothesis of basic level facilitation
for object recognition as a guiding principle for our deep neural network model. We extend Bar’s
hypothesis to the idea that PFC can train IT at basic level processing before it learns fine-grained
distinctions. To implement this idea, we first selected a subset of basic level categories from the
ILSVRC 2012 categories and trained a deep CNN on these categories. We then trained the network
on a classification task using 1000 categories, starting from the weights learned by the basic level
network. The details of how we selected the basic level categories and the following training process
are described in the next section.

2.1 CHOOSING THE BASIC LEVEL CATEGORIES

In the prototype theory proposed by Rosch et al. (1976); Rosch & Lloyd (1978), basic level cate-
gories have the following properties: 1) They share common attributes (e.g., cars) 2)They share the
same motor movements (e.g., chairs, a chair is associated with bending of one’s knees); 3) They
have similar shapes (e.g., apples and bananas); 4) The average shapes of the basic level categories
are identifiable. Functionally, basic level categories are thought to be decomposition of the world
into maximally informative categories.

We obtained basic level categories from the ImageNet ILSVRC 2012 dataset (Russakovsky et al.,
2015). The dataset contains 1860 object categories (synsets). The synsets are organized using a
hierarchical tree, of which 1000 leaf nodes are labeled as the 1000 categories for the classification
task in ILSVRC 2012. As there are no explicit labels for the basic level categories, we selected them
from all of the 1860 synsets (the 1000 ”leaf” categories and the 860 nodes above them). Since the
basic level categories are located at various levels of the tree (for example, ”dog” has height 5, ”fish”
is at height 9, and ”wolf” is at height 2), we have to find them manually.

Figure 1: Distribution of the basic level
categories across height of the Ima-
geNet synsets tree. Most of the cate-
gories are located at the lower part of
the tree, and the distribution is more
balanced than the ILSVRC 2012 cate-
gories.

We did this by using Amazon Mechanical Turk (AMT),
where we collected answers of all 1860 synsets for
a three-way choice (subordinate, basic, superordinate?)
task using the aforementioned properties of basic level
categories. We had to arbitrate some disagreements in
which were the basic level categories by hand. After ob-
taining the manually-selected basic level categories, we
allocated all descendants in the tree of each category to
that category, and assigned a new class label for this new
basic level category. If a leaf node belongs to more than
one basic level category (for example, ”minivan” belongs
to ”car” and ”van”), we simply assigned it to the first an-
cestor it met. Finally, we obtained a total of 308 basic
level categories out of the 1860 synset nodes. Again, not
everyone will agree with the final choices, but this will
still make the point. Figure 1 shows the distribution of
the basic level categories along with the height of the Im-
ageNet synsets tree. The actual categories we selected are
listed in the supplementary material.

After we obtained the 308 basic level classes, we re-
labeled all images in the training and validation set of the
ILSVRC 2012 dataset. The number of images for each
basic level category ranges from to 891 (hatchet) to 147,873 (dogs). To reduce the bias of the net-
work towards learning a particular category, we set the maximum number of training images per
category to be 4000, which is approximately the mean across all basic level categories. We finally
obtained 699,294 training images to train the basic level network.

Using these 308 basic level categories, we trained a deep convolutional neural network on the basic
level categorization task, minimizing the cross-entropy error between the label and network’s output:

W ∗Basic = argminWBasic ∑
i

H (y(i)basic, P(i)
s ),

where y(i)basic is the label of the basic level category for the ith training example, and Ps is the softmax
activation of the network. Next, starting from the learned weights W ∗Basic, we trained the network to
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perform the 1000-way subordinate classification task on the ILSVRC 2012 dataset. We obtained the
final weights by optimizing the following function:

W ∗Sub = argminWSub ∑
i

H (y(i)sub, P(i)
s |W ∗Basic).

2.2 RELATION TO PRIOR WORK

Using basic level facilitation is, in a sense, opposite to the technique of transfer learning. In transfer
learning, a large deep network is trained on a large number of categories using a large dataset, such
as objects (ImageNet; (Russakovsky et al., 2015)) or scenes (Places; (Zhou et al., 2014)). Beginning
with the weights learned from the pre-trained network, the network output level is replaced and then
just the output weights are trained on datasets of a similar type but with a much smaller number of
categories, in order to get better generalization power. During transfer learning, the weights of the
deep CNN are fixed (except for the last layer), and the transfer learning result is much better than
training directly on the smaller dataset (Zeiler & Fergus, 2014), which often leads to overfitting.

In contrast, our approach starts by training a network with a relatively small dataset with fewer
number of categories than the final dataset to be learned. One can view this approach as a way of
doing weight initialization, as it may help to find a good starting point on the error surface of the
more complicated task.

More recently, Hinton et al. (2015) proposed a curriculum learning training method for deep net-
works, namely ”knowledge distillation (KD).” In KD, a ”student” network is not only optimized
on the error between the output and the network activation, but also on the error between its own
output activation and the (relaxed) output activation of a pre-trained ”teacher” network. Hinton et al.
(2015) show that by adding the knowledge provided by the teacher network, the student network
learns better representations.

Romero et al. (2014) extend the idea of KD to hint-based training: the activation of the teacher’s
hidden layer can serve as hint to a guided hidden layer in the student network using linear regression
to add a back-propagated signal from the teacher network. By combining the idea of hint-based
training and KD, Romero et al. (2014) show that they can train a thinner but much deeper network
more quickly with fewer parameters than the teacher network, with an accompanying boost in gen-
eralization accuracy. In our approach, we can think of the ”hint” as the weights of the hidden layers
of the pre-trained basic level network. We can ultimately extend our model to follow the hint-based
learning process using a two-pathway model, which we leave for future work.

3 RESULTS

3.1 NETWORK TRAINING

The network structure used in this section is exactly the same as AlexNet (Krizhevsky et al., 2012)
provided in the Caffe deep learning framework (Jia et al., 2014). This method, however, can gen-
erally be applied to any network structures and training strategies. The network has 5 hidden con-
volutional layers and 3 fully connected layers, and the number of feature maps for all layers are
96−256−384−384−256−4096−4096−308. There are approximately 57 million trainable pa-
rameters in the network. We trained our network using stochastic gradient descent with mini-batch
size of 256, momentum of 0.9, dropout rate of 0.5, and weight decay of 0.0005. We set the initial
learning rate to 0.01, and decrease it by a factor of 10 every 100,000 iterations. We trained the net-
work for 400,000 iterations (about 146 epochs) on a single NVIDIA Titan Black 6GB GPU, which
took about 4 days. We achieved a top-5 accuracy of 81.31% on the validation set for the basic level
categories.

Starting from the learned basic level network, we continued training the subordinate 1000-way clas-
sification task using the whole ILSVRC 2012 dataset. We kept the network structure intact, except
for changing the output nodes to 1000 to accommodate the task switch. The 1000-way softmax
nodes were initialized using the weights of their corresponding basic level category output weights
(for example, the 118 subordinate categories belong to basic category ”dog” are initialized using the
same trained weights of category ”dog” from the pretrained basic level network). In Bar (2003), the
fast pathway shares the resources in the early visual cortex (V1 to V2/V4) with the slow pathway.
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Network Top-5 Accuracy
Reference Net 80.13%

Reference-400K+400K 81.16%
Facilitated-400K+400K 81.48%

Facilitated-400K+400K & Basic top layer weights 82.14%
Random-400K+400K 81.17%

Table 1: Experiment result. A+B means A iterations of pretraining plus B iterations training on
ILSVRC 2012 dataset. The network using basic level pretraining and high-level information (top
layer weights) of basic level categorization outperforms the others. All networks show some degree
of improvement compared to the reference network.

Since the features in V1 to V4 can be characterized by the representation of layer 1 to layer 3 of the
deep network (Güçlü & van Gerven, 2015), we lowered the learning rate of the first 3 convolutional
layers to 1/10 of the higher layers to account for this fact, as they are already learned well. We
trained the network for an additional 400,000 iterations (about 80 epochs) to make sure the learning
converges.

The trained ”facilitated” network achieved a top-5 accuracy of 82.14% on the validation set for the
1000-way classification task, comparing to the accuracy of 80.13% using the reference net in Caffe.1.
In order to examine whether the improvement is obtained simply because of using more training
iterations or fewer categories of pre-training, we performed several additional control experiments:
First, we pretrained the reference net for 400,000 iterations, and continued training the pretrained
network for and additional 400,000 iterations, using the exactly the same training parameters and
network structure as the facilitated net. We obtained the top-5 accuracy of 81.16%. Second, we
pretrained a network using 305 random categories in the ImageNet synset tree that do not overlap
with the selected basic-level categories, and trained additional 400,000 iterations on the 1000-way
classification task using the same setting as facilitated network. The top-5 accuracy was 81.17%.
Third, we initialized the weights to train the facilitated network to be random instead of using the
weights from the pretrained basic level network, and the final accuracy was 81.48%. The above
results suggest that simply having longer training iterations or fewer categories of pre-training is not
sufficient to get the improvement that basic-level categorization achieves. Furthermore, the high-
level basic-level information (top-layer weights in the CNNs) plays a crucial role to generate this
facilitation, which is consistent with Bar’s hypothesis. All experimental results are summarized in
Table 1.

3.2 FEATURE GENERALIZATION

In this section, we explore the generalization power of the learned feature to other datasets, namely
Caltech-101 and Caltech-256. We use three models: the basic level pre-trained model (basic), the
ImageNet-reference model (reference), and the 1000-way classification model facilitated by the
basic level task (facilitated). We keep all except the output layer of our models fixed and train a
softmax output layer on top, using the appropriate number of classes of the dataset.

To avoid contamination of the generalization task due to overlapping images between Caltech
datasets and ILSVRC 2012 dataset, we used normalized correlation to identify these ”overlap” im-
ages, as Zeiler & Fergus (2014) did. We identified 32 common images (out of 9144 total images) for
Caltech-101 dataset and 206 common images (out of 30607 total images) for Caltech-256 dataset,
and removed them from the dataset. To evaluate the performance of these datasets, we generated
3 random splits of training data and testing data on these datasets, and computed the averaged per-
formance across the splits. For the Caltech-101 dataset, we randomly selected 15 or 30 images per
category to train the output weights, and tested on up to 50 images per class and report the averaged
classification accuracy (mean class recall). For the Caltech-256 dataset, we randomly selected 15,
30, 45, or 60 images per category to train the output weights, and tested on up to 50 images per class
and report the averaged classification accuracy. The results are reported in Figure 2.

1The same result as the benchmark, see: https://github.com/BVLC/caffe/wiki/
Models-accuracy-on-ImageNet-2012-val
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Figure 2: Transfer learning results on Caltech-101 (left) and Caltech-256 (right) datasets. We plot
the classification accuracy (y axis) as the number of training images per class varies (x axis). Blue
line: using the basic level pre-trained model (basic). Green line: using the ImageNet-reference
model (reference). Red line: using the 1000-way classification model facilitated by the basic level
task (facilitated). Clearly the facilitated model outperforms the other two models.

From Figure 2, we can clearly see that the facilitated model performs the best under all conditions.
For the Caltech-101 dataset, it achieves the averaged classification accuracy of 89.01% using 30
training examples per class. For the Caltech-256 dataset, it achieves the averaged classification ac-
curacy of 72.99% using 60 training examples per class. The result suggests that the final learned
features based on basic level categorization task have better generalization power than training di-
rectly from the subordinate level classification task. One thing to note is using the basic level network
alone is sufficient to boost the performance to an adequate level (only 3.38% and 6.77% difference
to the top performance for Caltech-101 and Caltech-256, respectively), indicating the feature learned
by the basic level categorization task alone is already very generic and can be used for other task.

In addition, we investigated the learned features through the whole training process to better un-
derstand why the basic-level facilitation effect emerges. We did this by measuring transfer to the
Caltech-101 and Caltech-256 datasets as a function of training epochs. We examined the curve for
simply starting with the basic level network and the facilitated network (i.e., continuing training on
1000 categories). Hence, in the left side of Figure 3, we start with the basic-level network trained
on the 308 basic level categories and then train a new set of output weights for 50K iterations on the
Caltech datasets. Hence each point on the red line represents performance on the 308 categories,
and the corresponding points on the blue and green lines are the performance on the Caltech datasets
after 50K iterations of training, starting with the weights from the red point. The right panel can
be thought of as a continuation of the left panel, where the first point corresponds to 20K iterations
of training on the 1000-way categorization task2. The result is shown in Figure 3. The boost in
performance at 100k iterations in the two graphs are due to lowering the learning rate at that point.

From Figure 3, we can clearly see that there is a early saturation effect for the Caltech-101 and
Caltech-256 datasets, on both basic-level pretraining and facilitated network training. The early sat-
uration effect on basic-level pretraining is easily explained, as the accuracy for 308-way basic-level
categorization peaks after 160K training iterations, suggesting the basic-level pretraining can be fin-
ished earlier. The early saturation effect on the facilitated network (right panel) is more interesting:
although the 1000-way classification accuracy keeps increasing as the training iterations increase,
accuracy for Caltech-101 datasets peaks at 160K training iterations and starts fluctuating from then
on. This suggests the feature learned for categorizing the more subordinate 1000 ILSVRC 2012
categories may not favor the Caltech-101 dataset, which contains a lot of basic level categories. For

2It would not make sense to start with 0 iterations on the 1000 categories, as the output weights would not
be tuned to the categories
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Figure 3: Generalization performance of Caltech-101 dataset (blue line) and Caltech-256 dataset
(green line) as a function of training iterations in basic level network training (left) and facilitated
network training (right). The red line represents the task that the network is training on: basic level
categorization (left) and ILSVRC 2012 classification (right).

the Caltech-256 dataset, however, the peak is later at 280K training iterations. This may be because
the Caltech-256 dataset is less biased towards basic-level categories. As the earlier training epochs
in the facilitated network may introduce more bias toward the basic-level categorization, this result
suggests that better performance on more basic-level biased datasets can be obtained using more
basic-level biased feature at earlier stage, and better performance on more subordinate-level biased
datasets (like ILSVRC 2012) can be obtained using more subordinate-level biased features at a later
stage. The learned feature of basic level categorization, as a guidance, may provides useful infor-
mation for the subordinate level task. The learned weights by the basic level categorization task
(especially the top layer) serve as an excellent starting point on the error surface of the subordinate
level task. This information back-projection, or ”initial guess”, is crucial to help the subordinate
level task reach good performance.

4 CONCLUSION AND DISCUSSION

We explored the possibility of further optimizing the training of deep networks by adding guiding
principles from human development. In particular, we modeled the basic level facilitation effect for
visual object recognition, based on data on the development of object categorization (Bornstein &
Arterberry, 2010) and the basic level facilitation proposed by Bar (2003). We selected basic level
object categories from the ImageNet tree hierarchy, trained a basic level categorization network, and
continued the training on the 1000-way subordinate level classification task. Our results show that
we can get superior classification accuracy using the facilitated network than other training strate-
gies, suggesting the basic level information is a useful prior for the subordinate level classification
task. However, the gains are small, and so it is left for future work to assess whether there are better
pre-training strategies.

A more encouraging result is shown in Figure 2, where the network that has been pre-trained on
basic level categories shows better transfer to the Caltech datasets than the reference network. Fur-
thermore, this pretraining advantage depends upon training on all 1000 categories after training on
basic level ones - there is not good transfer from simply pretraining on basic level categories. This
suggests that basic level pretraining is regularizing the network. To the best of our knowledge, this
is the first time that the idea of a basic level facilitation effect in visual object recognition has been
modeled.
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In our experimental setting, the object category hierarchies are pre-set by ImageNet synset trees,
and we selected basic level categories utilizing the tree structure. However, there are methods to
automatically find the basic-level categories if the tree is not available, or if the data is unlabeled
(Marszałek & Schmid, 2008; Bart et al., 2008; Sivic et al., 2008). Although there are other methods
to exploit the basic and subordinate level category information(Ordonez et al., 2015; Yan et al.,
2014),our method is a simple CNN structure, and is easily scaled up to more categories.

Our results suggest that we should pay more attention to the structure and neural mechanisms of
the visual cortex when building computer vision-related models, especially nowadays, when deep
networks are widely used and are considered to be good models of the ventral visual stream. For
example, another fact concerning the ventral stream that we have not considered here is that there
are two processing pathways: the object recognition pathway through the Lateral Occipital Complex
(LOC) and the scene recognition pathway through the PPA. Zhou et al. (2014) show that by combin-
ing features learned in an object recognition network and a scene recognition network, classification
results on some datasets improve compared to using a single network. Wang & Cottrell (2015) show
that combining the information of the entire scene with individual processing helps recognize the
urban tribe categories. Clearly, much can be done in this field.

Furthermore, the large number of applications of Artificial Intelligence using deep networks may
help us understand more about the brain, especially the visual processes in cortex, such as the de-
velopment of hemispheric lateralization (Wang & Cottrell, 2013), and the experience moderation
effect for object recognition (Wang et al., 2014). Previous visual processing models (Riesenhuber
& Poggio, 1999; Cottrell & Hsiao, 2011) are shallow and not deep enough to fully characterize the
visual pathway. The emergence of deep networks provides us with a more powerful tool to help us
model these cognitive phenomena, thus improving our understanding of the brain.
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SUPPLEMENTARY MATERIAL: THE BASIC LEVEL CATEGORIES

Table 2 lists all of the 308 basic level categories obtained from the 1860 ILSVRC 2012 synsets. We
shorten the names of some categories if they are excessively long.

Table 2: The Basic Level Categories

abacus fastener, fastening, holdfast, fixing pole
acorn fence, fencing pot, flowerpot
aircraft file, file cabinet, filing cabinet power drill
alcohol, alcoholic drink filter prayer rug, prayer mat
altar fish primate
ant, emmet, pismire flower printer
Arabian camel, dromedary fly prison, prison house
arachnid, arachnoid footgear procyonid
armor, armour footwear promontory, headland, head
artichoke, globe artichoke fountain protective garment
ashcan, trash can, garbage can four-poster puck, hockey puck
attire, garb, dress fox quilt, comforter, comfort, puff
baby bed, baby s bed frog, toad, toad frog, anuran racket, racquet
bag fungus radiator
Band Aid game equipment radio telescope, radio reflector
bannister, banister geyser radio, wireless
basket, handbasket glass, drinking glass remote control, remote
beacon, lighthouse, beacon light robe ridge
bear gown robe
bee grille, radiator grille rodent, gnawer
beetle grocery store, grocery roof
bell pepper guillotine rubber eraser, rubber
big cat, cat gymnastic apparatus, exerciser salamander
binder, ring-binder hand blower, blow dryer scarf
bird hand tool scoreboard
book jacket, dust cover hard disc, hard disk, fixed disk screen
bookcase hat, chapeau, lid sea lion
bovid hatchet seat belt, seatbelt
bowl hay seat
box heater, warmer seed
brassiere, bra, bandeau helmet sewing machine
bread, breadstuff, staff of life hermit crab shaker
breakwater, groin, groyne hip, rose hip, rosehip sheath
breathing device hippopotamus, hippo shelter
bridge, span homopterous insect, homopteran shield
broom housing, lodging shoji
bubble hyena, hyaena shop, store
building, edifice iPod shore
bullet train, bullet iron, smoothing iron ski
bus, autobus, coach isopod skirt
butterfly jean, blue jean, denim sled, sledge, sleigh
cabinet jersey, T-shirt, tee shirt slot machine, coin machine
camera, photographic camera joystick snake, serpent, ophidian
cap, cover keyboard instrument soap dispenser
headdress, cap keyboard solar dish, solar collector
car mirror kitchen appliance source of illumination
cardoon knife space bar
carpenter’s kit, tool kit lacewing, lacewing fly space shuttle
cash machine, cash dispenser lampshade, lamp shade squash
cassette player lawn mower, mower stage
cassette leporid, leporid mammal stethoscope

12



Workshop track - ICLR 2016

castle lighter, light, igniter, ignitor stick
cat, true cat lizard street sign
CD player llama stretcher
centipede lobster stringed instrument
chain saw, chainsaw loupe, jeweler s loupe suit, suit of clothes
chain lumbermill, sawmill sunglass
chiffonier, commode magnetic compass support
cliff, drop, drop-off marsupial, pouched mammal supporting structure
cloak mashed potato swab, swob, mop
coelenterate, cnidarian mask sweater, jumper
coil, spiral, volute, whorl, helix maze, labyrinth swimsuit, swimwear
column, pillar measuring cup swine
comic book measuring instrument switch, electric switch
computer, computing machine mechanical device syringe
condiment memorial, monument table lamp
cooking utensil, cookware menu tape player
course military uniform teddy, teddy bear
crab milk can telephone, phone, telephone set
crane mitten television, television system
crayfish, crawfish modem toilet tissue, toilet paper
crocodilian reptile, crocodilian mollusk, mollusc, shellfish toiletry, toilet articles
cruciferous vegetable monitor top, cover
cucumber, cuke monotreme, egg-laying mammal traffic light, traffic signal
curtain, drape, drapery mountain tent trap
dam, dike, dyke mountain, mount tray
desk movable barrier triceratops
diaper, nappy, napkin mushroom trilobite
dictyopterous insect musteline mammal, mustelid triumphal arch
dining table, board muzzle turtle
dish necklace tusker
disk brake, disc brake necktie, tie vacuum, vacuum cleaner
dock, dockage, docking facility odonate valley, vale
dog, domestic dog, Canis familiaris optical instrument watercraft
doormat, welcome mat orthopterous insect, orthopteron vessel
dough oscilloscope, scope viverrine, viverrine mammal
drilling platform, offshore rig overgarment, outer garment walking stick, walkingstick
dugong, Dugong dugon packet wallet, billfold, notecase
ear, spike, capitulum paddle, boat paddle wardrobe, closet, press
echinoderm paintbrush weapon, arm
edentate pajama, pyjama, pj s, jammies weight, free weightt
edible fruit parachute, chute whale
electric fan, blower patio, terrace wheeled vehicle
electro-acoustic transducer pen whistle
electronic device pencil sharpener white goods
elephant percussion instrument wild dog
entertainment center person, individual, someone wind instrument, wind
envelope Petri dish window shade
equine, equid photocopier wing
espresso pick, plectrum, plectron wolf
fabric, cloth, material, textile piggy bank, penny bank wooden spoon
face powder pillow worm
farm machine plow, plough
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