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Abstract
We describe HYPOTHESAES, a general method
to hypothesize interpretable relationships between
text data (e.g., headlines) and a target variable
(e.g., clicks). HYPOTHESAES has three steps:
(1) train a sparse autoencoder on text embeddings
to produce interpretable features describing the
data distribution, (2) select features that predict
the target variable, and (3) generate a natural lan-
guage interpretation of each feature (e.g., men-
tions being surprised or shocked) using an LLM.
Each interpretation serves as a hypothesis about
what predicts the target variable. Compared to
baselines, our method better identifies reference
hypotheses on synthetic datasets (at least +0.06
in F1) and produces more predictive hypotheses
on real datasets (∼twice as many significant find-
ings), despite requiring 1-2 orders of magnitude
less compute than recent LLM-based methods.
HYPOTHESAES also produces novel discoveries
on two well-studied tasks: explaining partisan dif-
ferences in Congressional speeches and identify-
ing drivers of engagement with online headlines.

1. Introduction
Large language models (LLMs) show promise as a tool for
hypothesis generation. Discovering relationships between
text data and a target variable is an important and funda-
mental task with diverse applications in economics, political
science, sociology, medicine, and business (Grimmer, 2010;
Rathje et al., 2021; Sun et al., 2022; Gentzkow & Shapiro,
2010; Monroe et al., 2009; Nelson, 2020; Ranard et al.,
2016; Ting et al., 2017). What features of a restaurant re-
view predict a low rating? What features of a social media
post predict whether it will go viral? What features of a
patient’s clinical notes predict if they will develop cancer?
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Automated approaches to answering these questions have
the potential to significantly expand and accelerate scientific
discovery (Ludwig & Mullainathan, 2023). Indeed, multiple
lines of work—spanning decades of research—have sought
to extract text features that can predict a target variable
(Blei et al., 2003; Monroe et al., 2009). Recent LLM-based
hypothesis generation methods are especially exciting since
they operate directly at the level of human-interpretable
natural language concepts (Zhou et al., 2024; Batista & Ross,
2024). Concretely, hypothesis generation methods take a
dataset of texts linked to a target variable (e.g., headlines and
their engagement level) and hypothesize natural language
concepts that predict the target variable (e.g., mentions being
surprised or shocked or asks a question to the reader).

However, basic hurdles impede the full usage of LLMs for
hypothesis generation. Consider two natural approaches.
The first prompts an LLM with positive and negative ex-
amples and asks it to hypothesize concepts that distinguish
them (Zhou et al., 2024; Batista & Ross, 2024; Ludan et al.,
2024). However, due to context window and reasoning limi-
tations, we can only give LLMs a few training examples at
a time, making this hard to scale. A second approach aims
to interpret a model fine-tuned to predict the target variable
(Zhong et al., 2024), leveraging the full training dataset.
However, neurons are often hard to interpret (Elhage et al.,
2022). In summary, efficient and scalable learning of statis-
tical relationships requires numerical representations of text
(e.g., neurons), but interpreting neurons is hard.

Our first contribution is a theoretical framework that con-
nects model interpretation and hypothesis generation, clari-
fying the challenge above. Proposition 3.1 gives a “triangle
inequality” for hypothesis generation: if a neuron is predic-
tive of the target variable, then a sufficiently high-fidelity
interpretation of the neuron is also predictive. This result di-
rectly motivates a general hypothesis generation procedure:

1. (Feature generation) Learn interpretable neurons (i.e.,
that tend to fire in the presence of human concepts).

2. (Feature selection) Select neurons that predict the target
variable.

3. (Feature interpretation) Generate high-fidelity natural
language interpretations of these neurons.
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Figure 1. HYPOTHESAES is a general method that outputs natural language hypotheses from text datasets.

Our second contribution is a method, HYPOTHESAES, that
successfully implements this procedure. A primary chal-
lenge is learning the interpretable neurons in step 1—after
all, a long line of work has established the challenge of inter-
preting neural networks (Olah et al., 2017; Kim et al., 2018;
Elhage et al., 2022). To overcome this, we train a sparse
autoencoder (SAE; Makhzani & Frey (2014)) on pre-trained
text embeddings from our dataset. Neurons in the SAE
hidden layer are highly interpretable, while retaining the
explanatory power of embeddings (Cunningham et al., 2023;
Bricken et al., 2023; Templeton et al., 2024; Gao et al., 2024;
O’Neill et al., 2024). Intuitively, this architecture leverages
the fact that natural language is sparse; only a small fraction
of all human concepts are expressed at a time. In step 2,
we select neurons that are predictive of the target variable
(e.g., using Lasso). In step 3, we automatically generate
high-fidelity interpretations of these predictive neurons by
prompting an LLM with texts that activate the neuron, build-
ing on recent work in autointerpretability (Bills et al., 2023).
These interpretations serve as hypotheses.

We evaluate HYPOTHESAES against recent state-of-the-
art methods. We consider three synthetic tasks, as well as
three real-world tasks of practical interest: hypothesizing
the relationship between headlines and engagement, speech
text and political party, and review text and rating. Example
HYPOTHESAES hypotheses are given below:

Task Example Hypotheses (Abbreviated)

Headline
Engagement

(+) mentions being surprised or shocked
(-) asks a question directly to the reader

Speaker Party (Rep.) discusses illegal immigration
(Dem.) criticizes tax breaks for the wealthy

Restaurant
Rating

(+) mentions plans to return to the restaurant
(-) mentions issues related to food safety

HYPOTHESAES produces many more significant hypothe-
ses than three baseline methods. On three real-world tasks,
45/60 hypotheses generated by our method are significant,
compared to at most 24 for the baselines. On two datasets,
we identify new hypotheses which previous detailed analy-
ses have not uncovered. Intuitively, by decoupling feature
generation from the prediction task, HYPOTHESAES is able
to explore a wider range of hypotheses.

HYPOTHESAES is also more than 10× faster and cheaper
than recent LLM baselines, with similar runtime and cost
to BERTOPIC, a standard embedding-based topic model.
Filtering hypotheses based on the predictiveness of neu-
rons is significantly cheaper than directly evaluating natural
language concepts, since all neuron activations of an input
can be computed from a single forward pass of an SAE (in
comparison to one LLM call per natural language feature).

2. Related Work
2.1. Hypothesis Generation

Classical text analysis methods, such as comparing n-
gram frequencies between groups (Fightin’ Words; Monroe
et al. (2009)) or topic modeling (LDA, Blei et al. (2003);
BERTopic, Grootendorst (2022)) remain standard tools to
discover relationships between text and target variables
(Grimmer et al., 2022). A challenge with these methods
is that their outputs—lists of words or documents—are not
immediately interpretable by humans (Chang et al., 2009).
As a result, applying these methods for scientific discovery
requires sufficient domain expertise to prespecify hypothe-
ses and assess whether the data support them (Demszky
et al., 2019; Gentzkow et al., 2016; Sun et al., 2022).

Recently, several LLM-based methods aim to automate inter-
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pretable concept discovery from text datasets. Grootendorst
(2024) prompts LLMs to generate cluster labels, Pham et al.
(2024) use LLMs for end-to-end topic modeling in natu-
ral language, and Lam et al. (2024) build an LLM-driven
interface to discover topics guided by user input. Another
literature uses LLMs to propose concepts in bottleneck mod-
els (Koh et al., 2020): Ludan et al. (2024) prompt LLMs
with a task description to generate predictive concepts, and
Feng et al. (2024) use LLMs to provide a prior distribution
over concepts. Sun et al. (2024) and Zhong et al. (2024) also
use LLMs to propose concepts, guided by neurons from a
supervised model. Finally, Zhou et al. (2024) and Batista
& Ross (2024) focus specifically on hypothesis generation:
LLMs propose natural language descriptions of predictive
relationships, which can then be tested for generalization.

Unlike several of these methods, HYPOTHESAES decouples
feature generation (unsupervised, using the SAE), selection
(supervised), and interpretation (the only LLM-dependent
step). Comparing to baselines from each class of methods
(§5.3), we illustrate quantitative and qualitative improve-
ments over classical and fully-LLM-driven baselines.

2.2. Sparse Autoencoders

A recent line of work demonstrates that sparse autoencoders
(Makhzani & Frey, 2014) are an effective architecture to
learn interpretable features from intermediate layers of large
language models (Cunningham et al., 2023; Bricken et al.,
2023; Templeton et al., 2024; Bills et al., 2023). This litera-
ture is primarily motivated by mechanistic interpretability:
since the neurons in the hidden layer of sparse autoencoders
correspond to interpretable features, they can be strategi-
cally altered to steer the behavior of language models. In the
present work, we instead apply sparse autoencoders to learn
interpretable text features for the purpose of hypothesizing
interpretable relationships between text data and a target
variable. We follow O’Neill et al. (2024), who show that
SAE features can guide semantic search applications, in
training a sparse autoencoder directly on text embeddings.

3. Theoretical Framework
In this section, we derive a theoretical result that shows
how a language model with highly interpretable neurons
can be used for hypothesis generation, as well as where
performance loss arises in such a procedure.

Let Z be an indicator for whether a neuron fires for a given
text input (i.e., whether the activation exceeds a threshold).
Let Ẑ be an indicator for whether the text contains a speci-
fied natural language concept. Let Y be the target variable.
Define the predictiveness of Ẑ as the separation score

S(Ẑ) := |E[Y |Ẑ = 1]− E[Y |Ẑ = 0]|.

Define S(Z) analogously.1 We measure the fidelity of the
interpretation Ẑ by

δ(Ẑ, Z) :=
1−min {recall, precision}
min{Pr[Ẑ = 0],Pr[Z = 0]}

, (1)

where precision is how often the neuron fires when the con-
cept is present and recall is how often the concept is present
when the neuron fires. Lower δ implies higher fidelity. High
recall and precision means the interpretation approximates
the neuron’s behavior, and is not overly narrow or generic.
Empirically, the denominator min{Pr[Ẑ = 0],Pr[Z = 0]}
is close to 1 (neurons and concepts activate infrequently),
so maximizing fidelity is approximately maximizing the
minimum of recall and precision.

Proposition 3.1 (A Triangle Inequality for Hypothesis Gen-
eration). Suppose Y is supported on [0, 1]. Then

|S(Ẑ)− S(Z)| ≤ δ(Ẑ, Z). (2)

Intuitively, the result shows that if Ẑ is a high-fidelity pre-
dictor of Z, then it will also have a similar separation score.
A full proof is given in Appendix F.2

Notice that what we ultimately care about is S(Ẑ) (how
predictive our actual natural language hypothesis is), but
our procedure focuses primarily on generating, selecting,
and then interpreting the neuron Z. Proposition 3.1 shows
that as long as we can generate a sufficiently high-fidelity
interpretation Ẑ of each neuron Z, then we can focus on
finding predictive neurons as a way to ultimately find natural
language hypotheses. In particular, the result shows that

S(Ẑ) = S(Z) + (S(Ẑ)− S(Z)) (3)

≥ S(Z)︸ ︷︷ ︸
neuron

predictiveness

− δ(Ẑ, Z)︸ ︷︷ ︸
interpretation

fidelity

. (4)

Equation (4) shows that to find a natural language concept
such that S(Ẑ) is large, it suffices to first identify Z such that
S(Z) is high (i.e., find a predictive neuron) and then Ẑ such
that δ(Ẑ, Z) is small (i.e., find a high-fidelity interpretation).

This directly motivates the actual procedure employed in
HYPOTHESAES. First, we learn interpretable neurons Z
using an SAE. Second, we identify which neurons Z are

1Separation score is one way we evaluate hypotheses empirically.
We suspect that analogs of Proposition 3.1 hold for alternative
measures of predictiveness, like explained variance.

2There are two main observations that enable us to show the result.
First, we focus on |E[Y |Ẑ = 1]− E[Y |Z = 1]|, and show that
if the false negative rate (FNR) is greater than the false discovery
rate (FDR), this value is bounded by the FNR; otherwise, it is
bounded by the FDR. Second, we show roughly that as long
as Pr[Ẑ = 1],Pr[Z = 1] < Pr[Ẑ = 0],Pr[Z = 0], then
|E[Y |Ẑ = 0]− E[Y |Z = 0]| < |E[Y |Ẑ = 1]− E[Y |Z = 1]|.
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predictive. Third, we generate high-fidelity interpretations
Ẑ of these neurons with an LLM.

Equation (4) also gives us a lens by which to analyze HY-
POTHESAES empirically. The result decomposes the perfor-
mance of hypotheses Ẑ into two parts: the predictiveness of
the neurons Z and the fidelity of the interpretations Ẑ. For
example, if the SAE neurons are similarly predictive to the
text embeddings they encode, then most performance loss
(compared to predicting directly from embeddings) comes
from low-fidelity neuron interpretation. Imperfect neuron
interpretations can be due to either neurons being funda-
mentally uninterpretable (there doesn’t exist a high-fidelity
interpretation), or due to difficulties in actually finding the
interpretation. These challenges arise in steps 1 (training the
SAE) and step 3 (generating the interpretation) respectively.
We perform such an empirical analysis in Appendix C.3.

4. Methods
In the previous section, we established theoretically that we
can generate hypotheses by learning interpretable neurons,
identifying which neurons are predictive, and then gener-
ating high-fidelity interpretations of the neurons. We now
describe our method, HYPOTHESAES, which accomplishes
these steps in practice.

Given a dataset of training examples {(xi, yi)}i∈[N ], where
xi is the input text and yi is the target variable annotation,
HYPOTHESAES outputs H natural language concepts that
serve as hypotheses. The goal is for these natural language
concepts to predict the target variable.

4.1. Feature Generation: Training Sparse Autoencoders.

Let ei denote a D-dimensional text embedding of xi. We
train a k-sparse autoencoder (Makhzani & Frey, 2014).
k-sparse autoencoders have successfully generated inter-
pretable features both when applied to intermediate layers
of language models, as well as text embeddings (Gao et al.,
2024; O’Neill et al., 2024). The SAE encodes a text em-
bedding ei as follows (we use OpenAI’s text-embedding-3-
small, where D = 1536, in our experiments):

zi = ReLU(TopK(Wenc(ei − bpre) + benc)), (5)
êi = Wdeczi + bdec, (6)

where bpre ∈ RD,Wenc ∈ RM×D, benc ∈ RM ,Wdec ∈
RD×M , bdec ∈ RD, and TopK sets all activations except
the top k to zero. In a basic k-sparse autoencoder, the loss
on one input is

L = ||ei − êi||22. (7)

We follow Gao et al. (2024); O’Neill et al. (2024) in further
adding an auxillary loss to avoid “dead latents.” We describe
details and hyperparameters in Appendix B.

Empirically, the dimensions of zi are often highly inter-
pretable, corresponding to human concepts. M sets the total
number of concepts learned across the entire dataset, and k
sets the number of concepts that can be used to reconstruct
each instance. The output of this first step is an N × M
activation matrix, ZSAE.

4.2. Feature Selection: Target Prediction with SAE
Neurons.

To select a predictive subset of SAE neurons, we fit an
L1-regularized linear or logistic regression predicting the
target variable Y from the activation matrix ZSAE (Tibshi-
rani, 1996). Formally, for regression3, we optimize

min
β

L(β;λ) = 1

N
||y − ZSAEβ||22 + λ||β||1,

where y is a length-N vector, ZSAE is an N×M matrix, and
β is a length-M vector of feature coefficients for each SAE
neuron. The L1 penalty produces sparse coefficient vectors
β where some coefficients are exactly zero (indicating a
dropped feature). To generate H hypotheses, we perform
binary search to identify a value of λ which produces exactly
H nonzero coefficients.

4.3. Feature Interpretation: Labeling Neurons with
LLMs.

In this step, we generate high-fidelity interpretations (i.e.,
natural language concepts) of the subset of predictive neu-
rons. To generate interpretations of a neuron, we prompt an
LLM with example texts from a range of neuron activations
and instruct it to identify a natural language concept that is
present in high-activation texts and absent in low-activation
texts. We generate multiple interpretations by running this
procedure several times, and choose the best interpretation
according to a measure of fidelity we describe below.

We test a variety of approaches for generating interpretations
inspired by recent literature on automated interpretability
(Bills et al., 2023; Templeton et al., 2024). In our final pro-
cedure, we sample high- and low-activating texts from the
neuron’s positive activation distribution, with the sampling
percentile bins given in Appendix B.2. (Compared to zero-
activating texts, texts with a low but nonzero activation act
as hard negatives, improving the generated concept’s pre-
cision.) Treating these as true positives and true negatives,
respectively, we prompt an LLM to generate a natural lan-
guage concept that distinguishes 10 samples of each class.
We then define an interpretation’s fidelity as its F1 score in
this prediction task, using an LLM to annotate 100 positive
and 100 negative samples for the presence of the concept.

3For classification we analogously use an L1-regularized loss:
L(β;λ) = 1

N
BCE(y, σ(ZSAEβ)) + λ||β||1, where BCE is the

binary cross-entropy loss and σ(·) is the sigmoid function.
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We use GPT-4o with temperature 0.7 to generate concepts
and GPT-4o-mini with temperature 0 for concept annotation.

This approach produced predictive interpretations when
compared to other prompting and evaluation schemes,
though some other methods performed similarly (see Ap-
pendix C for details). Importantly, we found experimentally
that higher-fidelity interpretations according to our mea-
sure have better predictive performance (Appendix C.1),
justifying our approach to selecting interpretations.

5. Experiments
5.1. Datasets

We evaluate on synthetic and real-world datasets, described
below. Appendix A provides more details on all datasets.

Synthetic datasets: recovering known, reference hy-
potheses. Our synthetic evaluation is motivated by real-
world settings in which there are multiple disjoint hypothe-
ses we would like to discover. We therefore use two datasets
from prior work on interpretable clustering (Pham et al.,
2024; Zhong et al., 2024): WIKI and BILLS. We construct
a target variable that is positive if a text belongs to one of
a pre-specified list of reference categories; these are the
ground-truth “hypotheses” to recover. Both datasets are
labeled by humans with granular hierarchical topics, such
as Media and Drama: Television: The Simpsons in WIKI
and Macroeconomics: Tax Code in BILLS.

We generate ground-truth labels based on the most frequent
granular topics: articles in any of the top-5 topics are labeled
‘1’, and all others are labeled ‘0’. This produces 5 reference
hypotheses, e.g., the bill is about Macroeconomics: Tax
Code is one of them. For WIKI, we also include a more
challenging variation of recovering the top-15 most frequent
topics. WIKI contains 11,979 total articles (15% positive
for WIKI-5; 35% for WIKI-15), and BILLS contains 21,149
(24% positive). For both datasets, we reserve 2,000 items for
validation (i.e., SAE hyperparameter selection) and 2,000
heldout items to evaluate hypotheses; we use the remaining
items for SAE training and feature selection.

Real-world datasets: Generating hypotheses that predict
a target variable. We apply HYPOTHESAES to three real-
world datasets which have been studied in prior work:

• HEADLINES (Matias et al., 2021): Which features of
digital news headlines predict user engagement? Each
instance is a pair of differently-phrased headlines for
the same article; users on Upworthy.com were randomly
shown one, and the task is to identify which headline re-
ceived higher click-rate. We reserve a large heldout set to
improve statistical power: our split sizes are 8.8K training,

1K validation, and 4.4K heldout.

• YELP (Yelp, 2024): Which features of Yelp restaurant
reviews predict users’ 1-5 star ratings? We use 200K
reviews for training, 10K for validation, and 10K for
heldout eval.

• CONGRESS (Gentzkow & Shapiro, 2010): Which features
of U.S. congressional speeches predict party affiliation?
Speeches are from the 109th Congress (2005–07) with
binary labels (Rep. or Dem.). Our split sizes are 114K
training, 16K validation, and 12K heldout.

On each of these tasks, our goal is to identify interpretable
natural language features that predict the target variable.
The former two are studied in prior work on hypothesis
generation (Zhou et al., 2024; Batista & Ross, 2024; Lu-
dan et al., 2024); the latter is a longstanding application in
computational social science (Grimmer et al., 2021).

5.2. Evaluation Metrics

Synthetic datasets. On the synthetic datasets, we eval-
uate how well we recover the reference hypotheses. We
run HYPOTHESAES by setting H to the number of refer-
ences (e.g., 5 for WIKI-5). We use GPT-4o-mini to annotate
each inferred hypothesis on the heldout set, producing an
Nheldout ×H binary matrix of annotations. Following Zhong
et al. (2024), we compute the optimal matching between ref-
erence and inferred hypotheses via the Hungarian algorithm
on the H ×H correlation matrix of reference vs. inferred
hypothesis annotations, and we report three metrics:

• F1 Similarity: For each matched (reference, inferred)
pair, we compute the F1-score between the presence of the
ground-truth reference topic and the inferred hypothesis
annotations. We report the mean across the H pairs.

• Surface Similarity: For each matched pair, we prompt
GPT-4o to assess whether the hypotheses are the same,
related, or distinct, with corresponding scores of 1.0, 0.5,
and 0.0. To improve stability, we sample 5 outputs at
temperature 0.7 and average them. We report the mean
value of this score across the H pairs. (Table 4 shows
examples; Figure 6 provides the prompt.)

• Overall AUC: Using annotations from the H inferred hy-
potheses, we fit a multivariate logit and compute AUC to
evaluate predictive performance. (Recall that the ground-
truth label is a logical OR of the reference topics.)

The first and second metrics are taken directly from Zhong
et al. (2024); they assess whether the inferred hypotheses
quantitatively and qualitatively match the ground-truth. The
third metric assesses overall prediction quality. Some hy-
potheses may not match a reference but still be predictive,
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Source Overall AUC # Sig Significant Hypotheses: Green: ↑ clicks ; Red: ↓ clicks Sep. AUC

HYPOTHESAES 0.693 15

mentions photography, images, or visual representations 0.26 0.51
mentions situations or behaviors that evoke discomfort or embarrassment 0.16 0.58
includes a reference to being surprised, shocked, or unprepared 0.16 0.56
focuses on a female subject and her personal journey 0.14 0.52
mentions or heavily emphasizes a video or video-related content 0.13 0.53
mentions a surprising or unexpected action or outcome 0.13 0.58
focuses on a male protagonist or subject 0.11 0.53
contains phrases about looking or seeing something 0.09 0.52
mentions uniqueness or exclusivity using superlative or comparative language 0.09 0.53
mentions a response to or confrontation with offensive behavior 0.09 0.53
mentions politicians, government actions, or political topics -0.10 0.52
asks a question directly to the reader -0.12 0.53
addresses collective human responsibility or action -0.13 0.56
mentions environmental issues or ecological consequences -0.15 0.51
mentions actions or initiatives that positively impact a community -0.16 0.53

BERTOPIC 0.619 1 headlines emphasize emotional reactions to short, impactful videos 0.15 0.59

NLPARAM 0.660 5

has an element of surprise in its structure 0.14 0.57
frames the content within a gender-specific context 0.11 0.53
includes an inspiring transformation -0.08 0.51
uses a play on words or puns -0.09 0.54
poses a rhetorical question -0.12 0.55

HYPOGENIC 0.646 3
implies a personal story or anecdote that invites curiosity 0.15 0.56
uses strong emotional language or evokes curiosity 0.12 0.58
poses a rhetorical question that may disengage the reader -0.11 0.55

Table 1. Hypotheses on HEADLINES with p < 0.05 after Bonferroni correction in a multivariate regression. ‘Sep.’ is the separation score
(§3): E[Y |Ẑ = 1]− E[Y |Ẑ = 0], where positive scores predict higher click-rates. The ‘AUC’ column provides AUCs of individual
hypotheses. ‘Overall AUC’ uses all 20 hypotheses, including insignificant ones. Hypotheses for all methods are abbreviated for space.

so this metric rewards any interpretable hypotheses that
contribute predictive value, even if they are not optimal.

Real datasets. On the real datasets, we generate 20 hy-
potheses per method, and assess the hypothesis sets for two
qualities: (1) breadth: how many distinct, predictive hy-
potheses were identified? (2) predictiveness: how well do
the hypotheses collectively explain the label? We again com-
pute an Nheldout ×H annotation matrix for each method’s
hypotheses, and measure these constructs as follows:

• Breadth: We fit a multivariate logit (for binary labels) or
OLS (continuous) regressing the target variable against all
of the hypothesis annotations, and report the count of hy-
potheses that have a significant, nonzero coefficient4. This
metric benefits distinct hypotheses and penalizes redun-
dancy. Breadth is important since the utility of hypotheses
is often determined by criteria beyond predictiveness. For
example, a hypothesis may be more useful if it is con-
nected to past theories or suggests a new direction for
investigation. More breadth increases the likelihood that
a hypothesis satisfying these criteria is produced.

• Overall Predictive Performance: Similar to the syn-
thetic datasets, we report the overall prediction quality

4We use a Bonferroni-corrected p-value threshold of 2.5e-3.

using all of the hypotheses in a shared regression, report-
ing AUC for classification and R2 for regression.

• Qualitative Annotation: We recruit three computational
science researchers to rate each hypothesis for (1) help-
fulness and (2) interpretability (details in App. E). These
attributes are inspired by prior work (Lam et al., 2024).

5.3. Baselines

We compare HYPOTHESAES against recent, state-of-the-
art methods (§2). For fair comparison, we run all methods
with the same embeddings and LLMs as our method, un-
less stated otherwise: OpenAI’s text-embedding-3-small for
embeddings; GPT-4o for hypothesis proposal; and GPT-4o-
mini for hypothesis annotation. We run each method to
produce H hypotheses and evaluate all methods identically.

BERTOPIC (Grootendorst, 2022) is a neural topic model
that produces topics by clustering text embeddings. To
produce H hypotheses from BERTOPIC, texts are clustered
into topics, and we fit an L1-regularized model to predict Y
from topic ID; like our method, we set the penalty such that
there are exactly H nonzero coefficients. We assign each
topic a natural language label by prompting an LLM with a
sample of documents and top terms (prompt in Figure 8).

NLPARAM (Zhong et al., 2024) trains a neural network
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WIKI, H = 5 WIKI, H = 15 BILLS, H = 5 HEADLINES YELP CONGRESS

METHOD F1 SURF. AUC F1 SURF. AUC F1 SURF. AUC CT. AUC CT. R2 CT. AUC

HYPOTHESAES 0.58 0.70 0.84 0.47 0.61 0.84 0.67 0.78 0.89 15 0.69 15 0.76 15 0.70
BERTOPIC 0.48 0.48 0.77 0.40 0.43 0.79 0.65 0.88 0.85 1 0.62 12 0.65 10 0.64
NLPARAM 0.15 0.30 0.69 0.16 0.34 0.77 0.32 0.50 0.74 5 0.66 11 0.58 8 0.65
HYPOGENIC 0.15 0.20 0.60 0.12 0.39 0.64 0.25 0.30 0.70 3 0.65 12 0.78 5 0.68

Table 2. HYPOTHESAES performs best at recovering reference human-annotated topics on WIKI-5, WIKI-15, and BILLS. We also
evaluate on three real-world datasets: HEADLINES, YELP, and CONGRESS. “Ct.” refers to the count of significant hypotheses, out of 20
candidates; HYPOTHESAES generates the most significant hypotheses.

with a length-K bottleneck layer to predict Y from text
embeddings, and then uses an LLM to propose labels cor-
responding to each one of the bottleneck neurons’ activa-
tions. The hypotheses are iteratively refined; a hypothesis
is retained only if its annotations (computed on the entire
dataset) improve the loss. We run NLPARAM for the default
10 iterations, with 3 candidate hypotheses per neuron.

HYPOGENIC (Zhou et al., 2024) directly prompts a lan-
guage model to propose hypotheses given a task-specific
prompt and labeled examples. They use a bandit reward
function to score hypotheses and propose new ones based on
incorrectly-labeled examples. We run HYPOGENIC with de-
fault parameters; note that the method uses the same model
for proposal and annotation, which defaults to GPT-4o-mini.

Training set size. A key advantage of HYPOTHESAES is
that feature generation and selection require only an SAE
forward pass, which is cheap even for large datasets; the only
LLM-dependent step is feature interpretation. BERTOPIC
also scales well, as it only uses LLM inference for topic
labeling. In contrast, NLPARAM and HYPOGENIC score
and select hypotheses by annotating every training example,
so their inference costs scale with training set size. Running
either method on 200K Yelp reviews, for instance, would
cost >$500 and 78 hours (compared to ∼$1 and 20 min-
utes for HYPOTHESAES). To compare to the baselines as
favorably as possible, we allow each method to use up to
50× the cost and runtime of ours. To fit this budget, we
use up to 20,000 training samples for NLPARAM and HY-
POGENIC, which accommodates the full training sets on
WIKI, BILLS, and HEADLINES; we use random subsets for
YELP and CONGRESS. Notably, this sample budget is sig-
nificantly larger than either method uses in their publication
experiments (4,748 for NLPARAM; 200 for HYPOGENIC),
suggesting our comparisons are generous to the baselines.

6. Results
6.1. Synthetic Datasets

HYPOTHESAES recovers ground-truth hypotheses. Ta-
ble 2 shows quantitative metrics: HYPOTHESAES beats all
baselines on 8 of 9 dataset-metric pairs. As captured by sur-
face similarity, most of HYPOTHESAES’s inferred hypothe-

ses either perfectly match or are related to the references.
On WIKI-5 (Table 4), we retrieve two hypotheses exactly;
the other three are slightly too specific (HYPOTHESAES
infers a topic is about a New York State Route or highway,
but the reference includes all Northeastern roads, not just
New York) or broad (it infers historical battles but does
not specify battles since 1800), but all inferred hypotheses
are always related to a reference, i.e., has surface similarity
≥ 0.5. No baselines meet this standard on WIKI-5: NL-
PARAM and HYPOGENIC output 3/5 and 2/5 hypotheses
that are unrelated to any of the reference topics, respectively.
BERTOPIC performs well, but outputs redundant hypothe-
ses about state highways and misses ‘battles’ entirely.

Our hypotheses also closely match ground-truth when used
to annotate heldout data. The mean F1 score compares
how closely annotations according to an inferred hypothesis
(e.g. is about a Simpsons episode) match ground-truth labels
(whether the WIKI article belongs to the human-annotated
Simpsons category). HYPOTHESAES beats all baselines
on this metric, especially outperforming NLPARAM (+0.36,
on average) and HYPOGENIC (+0.40). Finally, regressing
the label using each method’s annotations, HYPOTHESAES
achieves higher AUC than all baselines. Overall, HYPOTHE-
SAES usually outperforms BERTOPIC—which is designed
exactly for this topic inference setting—and substantially
outperforms two state-of-the-art LLM hypothesis generation
methods.

6.2. Real-World Datasets

Table 2 shows quantitative metrics for the real-world
datasets. Tables 1, 5, and 6 show all significant hypotheses
on HEADLINES, CONGRESS, and YELP respectively.

HYPOTHESAES identifies more distinct hypotheses than
other methods. Compared to baselines, HYPOTHESAES
produces the most hypotheses which are significant in a
multivariate regression. Importantly, this evaluation reflects
successful generalization: the hypotheses are learned on the
training and validation sets, and they remain significantly
associated with the target variable when annotated by GPT-
4o-mini on the heldout set. Across the three datasets, 45 out
of 60 candidate hypotheses are significant, substantially
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ahead of the 24, 23, and 20 for NLPARAM, BERTOPIC,
and HYPOGENIC respectively.

When evaluating overall predictive performance, HYPOTHE-
SAES beats baselines on 8 of 9 comparisons, demonstrating
strongly predictive hypotheses. The exception is that HY-
POGENIC achieves 2% higher R2 on Yelp. However, HY-
POGENIC’s most predictive hypotheses, such as expresses
disappointment with the overall dining experience, essen-
tially restate the rating prediction task. While most LLMs
can perform such a prediction, these hypotheses do not
reveal specific insights about the task. In contrast, our hy-
potheses—in Table 6 for YELP—tend to be more specific:
we find that negative reviews mention food poisoning, rude
and aggressive staff, or dishonest business practices.

HYPOTHESAES’s outputs are rated as qualitatively
helpful and interpretable. The results of our qualitative
evaluation (Figure 2) confirm the above intuition: most of
the predictive concepts generated by HYPOTHESAES are
rated helpful (24 out of 30) and interpretable (29 out of 30)5.
Several hypotheses from NLPARAM and HYPOGENIC, de-
spite being predictive, do not pass these checks. The total
count of hypotheses that are predictive, helpful, and inter-
pretable generated by HYPOTHESAES (23) far exceeds any
baseline (BERTOPIC is second-best with 7).

Figure 2. HYPOTHESAES produces a larger number (left) and per-
centage (right) of significant hypotheses that are rated helpful and
interpretable. We report majority vote of 3 ratings per hypothesis.

6.3. Non-SAE Ablations

To isolate the value of the SAE, we conduct ablation ex-
periments. Because our method differs from baselines in
multiple ways—e.g., our neuron interpretation procedure
differs from that of NLPARAM—it is worth asking what
gain the SAE specifically provides. To answer this question,
we run the following ablations on the real-world datasets:

• Embedding: We skip training an SAE and directly select
20 features, via Lasso, from text embeddings. The rest of
our method is unchanged.

5To reduce annotator workload, our qualitative evaluation only
included results from HEADLINES and CONGRESS, since these
are more well-studied social science tasks than YELP.

• PCA: Same as Embedding, but we first use PCA to re-
duce the embedding dimension from 1536 down to 256.

• Bottleneck: Inspired by bottleneck models (Yang et al.,
2023), we fit a neural network to predict y using text
embeddings as input and a single hidden layer with 20
neurons. We generate hypotheses by interpreting the hid-
den neurons (in the same way we interpret SAE neurons).

We show results in Table 7. In addition to the count of
significant hypotheses and overall predictiveness, we also
report average neuron fidelity.

We establish two benefits of the SAE: the neuron interpreta-
tions are (1) higher fidelity and (2) cover a wider variety of
non-redundant concepts. Regarding (1), interpretations of
SAE neurons achieve a mean F1 of 0.84, compared to 0.64
for the best ablation (bottleneck). Regarding (2), we see im-
provements to downstream metrics: the SAE produces many
more significant hypotheses (45/60 across the three datasets,
vs. 30/60 for the best ablation) and achieves slightly higher
predictiveness. Qualitatively, the SAE neurons yield more
specific interpretations, while the ablations tend to yield
generic ones. Both benefits (1) and (2) are consistent with
the SAE producing monosemantic neurons, which are easy
to interpret and specific enough to avoid redundancy.

6.4. Evaluating Hypothesis Novelty

Beyond quantitative comparisons against baselines, we eval-
uate if HYPOTHESAES discovers new hypotheses even on
datasets that have been thoroughly analyzed in prior work.

CONGRESS. A classic study from Gentzkow et al. (2016)
identifies bigrams and trigrams in Congressional speeches
that mark Republican (R) or Democrat (D) speakers. We
compare to their work by computing counts, in each speech,
of their full reported n-gram lists (150 R / 150 D); we also
run HYPOTHESAES to produce 100 hypotheses, of which
33 are significant. A regression using only n-gram counts
achieves AUC 0.61, while including our 33 hypotheses in-
creases AUC to 0.74. Notably, 28 out of 33 hypotheses re-
main significantly predictive when controlling for n-grams,
showing that our hypotheses add signal to classical methods.

Beyond predictive performance, HYPOTHESAES offers two
qualitative advantages. First, our hypotheses are inherently
interpretable. For example, while Gentzkow et al. (2016)
report that “oil companies” correlates with Democrats, it
requires context to interpret: are speakers referring to oil
companies positively or negatively? In contrast, HYPOTHE-
SAES’s corresponding hypothesis is criticizes oil compa-
nies or oil industry practices. Second, our hypotheses cap-
ture nuanced patterns that n-grams cannot expresss, like
criticizes government resource allocation, highlighting dis-
parities between domestic needs and actions abroad.
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HEADLINES. To test our discoveries against more mod-
ern methods, we compare to Batista & Ross (2024), an LLM
hypothesis generation study designed for HEADLINES and
aimed at producing new insights for marketing researchers.
Each of their 5 hypotheses is validated via human annotation.
Using our heldout evaluation protocol, we compute anno-
tations using their hypotheses, which achieve AUC 0.59 at
predicting binary engagement; adding in HYPOTHESAES’s
15 significant hypotheses increases AUC to 0.70. Crucially,
all 15 of our hypotheses remain significant when control-
ling for the prior discoveries in a shared regression.

Several other prior works have also studied HEADLINES
using classical dictionary-based methods (Robertson et al.,
2023; Gligorić et al., 2023; Banerjee & Urminsky, 2024;
Aubin Le Quéré & Matias, 2025). HYPOTHESAES qualita-
tively improves on these findings by producing more specific
hypotheses. For example, Robertson et al. (2023) find that
negative words increase engagement, and positive words
decrease it. HYPOTHESAES supports this finding, and also
make it more precise: we find that situations that evoke
discomfort or embarrassment and mentions of offensive
behavior increase clicks, while initiatives that positively
impact a community decreases them (Table 1). Banerjee &
Urminsky (2024) find that words in an “emotional intensity”
dictionary increase engagement, which may be difficult to
operationalize; our corresponding finding is that headlines
referencing being surprised, shocked, or unprepared in-
crease engagement. Our findings are more precise, and can
therefore provide richer insights to researchers.

These results demonstrate that HYPOTHESAES, despite
no dataset-specific design, uncovers novel hypotheses that
advance prior work from domain experts—suggesting broad
applicability across diverse settings.

6.5. Costs

In Table 3, we report the runtimes, LLM inference to-
ken counts, and costs (at current OpenAI API pricing) for
all methods on CONGRESS. The trends are similar for
all datasets. Runtimes include training the SAEs on one
NVIDIA A6000 GPU. Training is fast because our SAEs
can afford to be small (∼103 features, compared to 107 in
Gao et al. (2024)), since our focus is to learn domain-specific
features rather than features of all language.

HYPOTHESAES is much more efficient than NLPARAM
and HYPOGENIC. Despite the fact that these methods are
trained on less data—20K examples vs. 114K for HYPOTHE-
SAES—HYPOTHESAES is ∼30-50× faster and 10-50×
cheaper. This is because NLPARAM and HYPOGENIC
score hypotheses by annotating every example in the dataset.
As a result, their LLM annotation requirements scale with
both the number of hypotheses H and dataset size N , while
HYPOTHESAES’s scales only with H .

Method Time (min) Tokens (M) Cost

HYPOTHESAES 18.1 0.2 / 7.2 $1.29
SAE-NOVAL 7.9 0.1 / 0.0 $0.15
NLPARAM 904.9 2.8 / 414 $69.92
HYPOGENIC 575.4 0.0 / 72 $11.02
BERTOPIC 3.0 0.1 / 0.0 $0.19

Table 3. Runtimes and costs for hypothesis generation on
CONGRESS. We report millions of tokens for GPT-4o (concept
generation) and GPT-4o-mini (concept annotation) respectively as
{# 4o} / {# 4o-mini}. Input and output token counts are summed
(>99% are input tokens). SAE-NOVAL is our method without the
fidelity validation step (i.e., for each neuron, we generate only one
label instead of choosing from three based on fidelity). Costs are
in USD and based on OpenAI pricing as of 01/2025.

BERTOPIC is cheapest, and remains a good baseline for a
resource-limited analysis. However, HYPOTHESAES can
also be made cheaper by skipping the non-essential label
validation step: instead of generating 3 candidate labels
per neuron and choosing the highest-fidelity one, we can
simply generate 1 label per neuron and use it directly. This
reduces cost to that of BERTOPIC, while still exceeding its
performance; we describe this ablation in Appendix B.2.

7. Conclusion
We propose HYPOTHESAES, a scalable method to generate
interpretable hypotheses from black-box text representa-
tions. On three synthetic and three real-world tasks, HY-
POTHESAES outperforms state-of-the-art topic modeling
and LLM baselines, at less than 10× the time and cost of
the latter. Beyond the tasks we study, the method applies
naturally to the many settings in the social sciences where
a large text corpus is labeled with a target variable of in-
terest (Ziems et al., 2024; Bollen et al., 2011; Card et al.,
2022; Breuer et al., 2025). In future work, an exciting direc-
tion is extending our method to explain non-text datasets,
like images (Dunlap et al., 2024) and proteins (Vig et al.,
2021), as well as text datasets from specialized domains like
healthcare (Hsu et al., 2023; Robitschek et al., 2025). More
generally, there are many applications where we can accu-
rately predict a target variable, but producing new scientific
insights remains difficult. Our work helps bridge this gap.

Software and Data
Code is available on GitHub �, and can be installed via
pip with pip install hypothesaes. A notebook to re-
produce experimental results in the paper is available in
the repository. All data used in the paper are available on
HuggingFace. A demo to visualize all SAE neurons and
how well they predict the target for HEADLINES, YELP, and
CONGRESS is available at � hypothesaes.org.
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REFERENCE INFERRED F1 SURFACE

Other music articles > Performers, groups, composers, and
other music-related people

is about a rock band or a musical act 0.39 0.5

Earth science > Tropical cyclones: Atlantic is about hurricanes or tropical storms 0.52 1.0

Battles, exercises, and conflicts > Modern history (1800 to
present)

is about a historical battle 0.36 0.5

Television > The Simpsons episodes is about episodes of The Simpsons television show 0.92 1.0

Transport > Road infrastructure: Northeastern United States is about a New York State Route 0.71 0.5

Table 4. Evaluating hypotheses inferred by HYPOTHESAES against the reference topics on WIKI.

Source Overall AUC # Sig Significant Hypotheses: Red: ↑ Republican ; Blue: ↑ Democrat Sep. AUC

HYPOTHESAES 0.702 15

contains the phrase ’I ask unanimous consent’ 0.30 0.53
mentions hearings conducted by Senate Committees or Subcommittees 0.18 0.52
mentions scheduling or details about Senate votes or amendments 0.17 0.55
discusses illegal immigration and its associated implications 0.15 0.51
mentions victories or successes in military or political contexts 0.15 0.51
mentions freedom or liberty 0.06 0.50
discusses economic growth or growth rates 0.01 0.50
discusses government spending or budgetary issues -0.09 0.54
mentions the need for reform or proposes reforms -0.17 0.58
mentions key figures related to the civil rights movement -0.22 0.51
criticizes government policies or actions -0.29 0.63
mentions the U.S. national debt or raising the debt limit -0.40 0.51
criticizes tax breaks or advantages for the wealthy -0.44 0.52
criticizes Republican leadership or policies -0.45 0.60
criticizes the administration’s handling of the Iraq war -0.45 0.52

BERTOPIC 0.636 10

Senate procedural requests and adjournment schedules 0.39 0.53
Requests for unanimous consent to authorize committee meetings 0.32 0.53
procedural discussions and scheduling of votes 0.20 0.56
discusses immigration and border security 0.13 0.51
mentions individuals with professional titles or roles 0.08 0.53
debates on earmarks and federal spending processes 0.05 0.50
discusses the Darfur conflict and international intervention -0.30 0.50
Congressional oversight of defense contracting in Iraq -0.33 0.50
discusses Asian Pacific American communities -0.36 0.50
Critiques Republican majority leadership -0.46 0.55

NLPARAM 0.650 8

expresses strong patriotism 0.09 0.51
contains specific legislative references 0.08 0.53
mentions specific individuals or organizations -0.03 0.52
includes numerical data -0.08 0.53
addresses a critical national issue -0.14 0.56
expresses strong support or opposition -0.15 0.58
advocates for specific groups or communities -0.17 0.55
employs emotional or dramatic language -0.23 0.58

HYPOGENIC 0.675 5

focuses on national security and immigration enforcement 0.18 0.51
discusses social issues such as healthcare and civil rights -0.22 0.58
mentions of government inefficiencies or calls for reform -0.27 0.62
advocates for civil liberties and critiques government overreach -0.29 0.57
emphasizes the need for government accountability -0.37 0.62

Table 5. CONGRESS hypotheses, for each method, with p < 0.05 after Bonferroni correction in a multivariate regression. The ‘Sep.’
column shows the separation score: E[Y |Ẑ = 1]− E[Y |Ẑ = 0], where positive scores predict Republican speech and negative scores
predict Democratic speech. The ‘AUC’ column provides univariate AUCs for individual hypotheses. ‘Overall AUC’ uses all hypotheses,
including insignificant ones.
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Source Overall R2 # Sig Significant Hypotheses: Green: ↑ rating ; Red: ↓ rating Sep. R2

HYPOTHESAES 0.755 15

expresses extreme enthusiasm or excitement with phrases like ’holy fuck’, ’can’t
wait to go back’, or extensive use of exclamation points

1.45 0.23

uses exclamation marks enthusiastically to convey positive sentiment 1.41 0.23
mentions anticipation or plans to return to the restaurant or order again 1.20 0.17
explicitly states that a food item or restaurant is the best, often using superlative
language

1.10 0.07

mentions mediocrity or averageness of food or experience -1.84 0.31
mentions issues related to food safety, hygiene, or improper food handling -1.98 0.15
mentions issues with restaurant staff communication or behavior -2.23 0.44
mentions dissatisfaction or criticism of service, staff, or management -2.25 0.61
mentions food poisoning or symptoms of foodborne illness -2.32 0.02
mentions rude or aggressive behavior from restaurant staff -2.37 0.30
mentions dissatisfaction with restaurant policies, rules, or restrictions -2.37 0.53
criticizes the behavior or attitude of staff -2.40 0.50
complains about rude or unprofessional behavior from staff or management -2.42 0.46
mentions dishonest or unethical business practices by the establishment -2.48 0.17
describes a specific instance of poor customer service -2.50 0.50

BERTOPIC 0.647 12

praises the combination of excellent food quality and friendly, attentive service 1.61 0.33
describes detailed experiences with food quality, preparation, and flavor nuances 0.46 0.03
criticizes the freshness, quality, or preparation of sushi and fish dishes -1.77 0.07
describes issues with restaurant closures or inaccurate operating hours -1.77 0.10
complains about uncleanliness of restaurant spaces -1.91 0.05
criticizes the quality and authenticity of Chinese dishes -1.94 0.06
criticizes Italian dishes, particularly pasta and sauces -1.94 0.04
complains about issues with pizza orders -2.08 0.16
criticizes breakfast food quality, portion sizes, and service experience -2.15 0.37
complains about issues with delivery orders -2.20 0.25
complains about poor service related to waiting times and staff behavior -2.31 0.49
complains about rude or unprofessional behavior from bartenders or bar staff -2.31 0.31

NLPARAM 0.583 11

uses enthusiastic or excessively positive language 1.90 0.47
describes exceptional food quality 1.65 0.35
describes a positive recurring experience 1.45 0.26
recommends the restaurant to others 1.29 0.18
uses exclamation marks to express enthusiasm 1.22 0.17
mentions attentive or friendly staff 1.01 0.12
expresses enthusiasm for the ambiance or atmosphere 0.92 0.07
mentions thoughtful accommodation of customer preferences 0.79 0.01
describes generosity in portion sizes 0.69 0.02
comments on portion size 0.02 0.00
mentions long wait times to receive service -1.70 0.15

HYPOGENIC 0.775 12

highlights a pleasant atmosphere or enjoyable dining experience 2.40 0.66
expresses a willingness to return or recommend the restaurant to others 2.13 0.55
expresses a desire to return or recommends the place to others 1.89 0.45
describes food as delicious or highlights specific dishes with positive adjectives 1.83 0.42
notes issues with food quality, such as being cold or poorly cooked -1.87 0.29
includes complaints about long wait times for food or service -1.94 0.30
expresses disappointment with the quality of food compared to expectations -2.17 0.49
mentions poor service or unresponsive staff during the dining experience -2.36 0.51
complains about poor customer service or rude staff -2.41 0.50
complains about poor service or unhelpful staff -2.42 0.60
expresses disappointment with the overall dining experience -2.42 0.67
expresses disappointment with the overall experience or ambiance -2.43 0.67

Table 6. YELP hypotheses, for each method, with p < 0.05 after Bonferroni correction in a multivariate regression. ‘Sep.’ is the separation
score: E[Y |Ẑ = 1]− E[Y |Ẑ = 0], where positive scores predict higher restaurant ratings. The ‘R2’ column provides univariate R2

values of individual hypotheses. ‘Overall R2’ uses all 20 hypotheses, including insignificant ones. Hypotheses for all methods are
abbreviated.
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Method Total Count Avg. Predictiveness Avg. Fidelity

SAE 45 / 60 0.717 0.836
Embedding 30 / 60 0.706 0.545
PCA 23 / 60 0.697 0.547
Bottleneck 27 / 60 0.699 0.640

Table 7. Experiments testing ablations of the SAE on the three real-world datasets: HEADLINES, YELP, CONGRESS. Using the SAE
yields many more significant hypotheses, slightly more predictive hypotheses, and much higher fidelity interpretations (i.e., interpretations
that better explain the underlying neuron activations). The count of significant hypotheses is aggregated across the three datasets.
Predictiveness is averaged across the three datasets. Fidelity is averaged across the 60 selected neurons (3 datasets, 20 neurons selected
per dataset).

A. Data Preprocessing
WIKI. We download the dataset as processed by Pham et al. (2024); the data are derived from the WikiText corpus
assembled by Merity et al. (2016). The articles are categorized by Wikipedia editors; each article has a supercategory,
category, subcategory (e.g., Media and Drama > Television > The Simpsons Episodes). We focus on recovering article
subcategories, since these are the most specific and therefore most difficult to fully recover. After filtering out duplicates and
infrequent (<100 articles) subtopics, the dataset contains 11,979 items spanning 69 subcategories. For the WIKI-5 dataset,
we set the ground-truth topics to the 5 most common subcategories. That is, we label all 1,771 articles (14.8%) in these
subcategories as positives, while all other article subcategories are negatives. The WIKI-15 dataset is constructed similarly
using the 15 most common subcategories (4,190 positives, 35.0%).

BILLS. We also download BILLS from Pham et al. (2024); the dataset was originally assembled by Hoyle et al. (2022)
using GovTrack6. The bills are from the 110th-114th U.S. Congresses (Jan 2007 - Jan 2017). Each bill has a topic and
subtopic. After filtering out very short bill texts (which may not have been properly transcribed), duplicate bill texts, bills
with no subtopic, and bills with infrequent (<100) subtopics, there are 20,834 items spanning 70 subtopics. We label the
5,038 bills (24.2%) with the 5 most common subtopics as positives, and all others as negatives.

HEADLINES. We use the HEADLINES dataset as collected and released by the Upworthy Research Archive (Matias et al.,
2021). All of the data is derived from web traffic to Upworthy.com, a digital media platform known for its attention-grabbing
articles. The dataset consists of thousands of A/B tests, where users were randomly shown one of several possible headline
variations for the same underlying article. Each headline is linked to a corresponding number of impressions and clicks,
allowing researchers to estimate the causal effect of headline text on click-rate (clicks/impressions, also referred to as
clickthrough-rate or engagement).

To preprocess the data, we start by downloading all publicly available data from the Upworthy archive7, which includes
clicks and impressions for 122,565 distinct headlines (we remove 28K rows from a problematic data range as recently
reported by the dataset authors8). We then group headlines which have the same test id (signifying that those headlines
were randomized against one another). There are 14,128 such groups with at least two headlines. Following Zhou et al.
(2024), we take the headlines with max and min click-rates in each group, and design a binary classification task to predict
which headline in the pair received higher engagement. That is, we construct tuples (headline A, headline B, label), where
headline A and headline B are randomly shuffled, and the label is 1 if headline A received higher click-rate than headline B.

Following Batista & Ross (2024), we take specific care to prevent train-holdout leakage on this dataset. Specifically, the same
headline texts may be used in multiple randomized experiments (i.e., the same headline may occur in different test id’s).
We ensure that no identical headlines will appear in both the train split and the heldout split; we encourage future researchers
to follow this practice, since splitting on test id alone does not fully prevent headline leakage.

To handle the pairwise design, we train the SAE on the embeddings of all unique headlines in the training set, and then
compute the activation matrices ZA

SAE and ZB
SAE for all of the headline A’s and headline B’s respectively. We select predictive

6https://www.govtrack.us/congress/bills/
7https://upworthy.natematias.com/index
8https://upworthy.natematias.com/2024-06-upworthy-archive-update.html
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neurons by identifying columns in the matrix difference ∆ZSAE := ZA
SAE − ZB

SAE which are predictive of y.

YELP. We download the Yelp Open Dataset9, and we filter to the 4.72M reviews where the business contains the
‘Restaurant’ tag. From this, we randomly sample training, validation, and heldout sets (200K, 10K, and 10K respectively).

CONGRESS. We download all congressional speech transcripts from the 109th U.S. Congress (Gentzkow & Shapiro,
2010)10, which met from January 2005 to January 2007. We filter speeches which are very short (less than 250 characters)
and include only speeches from Republican or Democrat speakers; the dataset is roughly balanced (51.7% Republican). If a
speech is longer than ten sentences, we split it into ten sentence chunks, and exclude any chunks beyond the first five (to
avoid over-representation of specific speeches). For the heldout set, we restrict to one chunk per speech to ensure that our
hypotheses generalize to a diverse corpus. Ultimately, we use 114K speech chunks for training, 16K for validation, and 12K
for heldout eval. If a speech has multiple excerpts, we ensure that all of them are included in the same split to avoid leakage.

B. Hyperparameters
B.1. Training sparse autoencoders

We train k-sparse autoencoders, where each forward pass masks all neurons besides the top-k activating ones (Makhzani
& Frey, 2014; Gao et al., 2024). The most influential hyperparameters, which we tune for each dataset, are M and k. We
choose (M,k) by maximizing validation performance. Specifically, for each combination of (M,k), we evaluate validation
AUC (or R2 on YELP) after fitting an L1-regularized predictor with exactly H ≪ M nonzero coefficients. We constrain M
and k to powers of two to tractably limit the search space.

These parameters, broadly, control the level of granularity of the concepts learned by each SAE neuron: M is the total
number of concepts which can be learned across the entire dataset, and k is the number of concepts which can be used to
represent each instance. For intuition, assume that with (M,k) = (16, 4) on YELP, the SAE learns a single neuron that fires
when reviews mention price; with (M,k) = (32, 4), the SAE may learn separate neurons for reviews which mention high
prices vs. low prices (described as “feature splitting” in Bricken et al. (2023)); with (M,k) = (32, 8), the SAE may learn to
represent more niche features altogether, such as the number of exclamation marks. In general, increasing either parameter
yields more granular features, at the risk of producing some neurons that are uninterpretable or redundant.

In some cases we would like features at multiple levels of granularity: for example, we may want both the general feature
“mentions prices” and the more specific feature “mentions that the cocktails were cheap during happy hour”, but training a
single large SAE (e.g. (1024, 32)) may only produce features as specific as the latter. A simple solution is to train multiple
SAEs of different sizes, concatenate their activation matrices, and select features from any of them. We find that this
approach is helpful (improves validation AUC) on the HEADLINES dataset. Ultimately, we use the following values:

• WIKI-5: (32, 4).

• WIKI-15 & BILLS: (64, 4).

• HEADLINES: (256, 8); (32, 4).

• YELP: (1024, 32).

• CONGRESS: (4096, 32).

Following prior work, we add several optimizations to improve SAE training. Following best practices based on results
from Bricken et al. (2023), we (i) tie the weights of the pre-encoder bias and the decoder bias, bpre = bdec; (ii) initialize bpre
to the geometric median of the training set; (iii) initialize Wdec = WT

enc; and (iv) force all decoder rows to have unit norm.

To minimize the number of “dead” latent neurons in the SAE—neurons which are never selected by the TopK filter—we
use an auxiliary loss (Gao et al., 2024; O’Neill et al., 2024). The auxiliary loss term provides nonzero gradients for up to

9https://business.yelp.com/data/resources/open-dataset/
10https://data.stanford.edu/congress text
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kaux neurons which were not active in the last several forward passes. We fit these neurons to the residual reconstruction
error left by the TopK neurons. That is, let zAuxK

i consist of the activations of the top kaux dead neurons in zi; then

Laux = ||Wdecz
AuxK
i − (ei − êi)||22,

and the full loss, then, is L = LTopK + wauxLAuxK.

Hyperparameters for the auxiliary loss and other training hyperparameters are given below (identical for all experiments):

• kaux: 2 · k; that is, up to 2 · k dead neurons are used to fit the TopK reconstruction error.

• Dead neuron threshold steps: 256. This is the number of consecutive steps for which a neuron was not selected by
TopK to be considered “dead.”

• Auxilliary loss coefficient waux: 1/32. This parameter gives the weight of the auxiliary reconstruction’s loss.

• Batch size: 512; learning rate: 5e-4; gradient clipping threshold: 1.0.

• Epochs: Up to 200, with early stopping after 5 epochs of validation loss not decreasing.

B.2. Interpreting neurons with LLMs

There are several parameters for neuron interpretation which we fix across experiments:

• Interpretation model: GPT-4o (version 2024-11-20).

• Temperature: 0.7.

• Number of highly-activating examples: 10.

• Number of weakly-activating examples: 10.

• Maximum word count per example: 256 (examples longer than this are truncated).

• Number of candidate interpretations: 3 (we choose the highest-fidelity interpretation out of 3 candidates).

• Number of samples to evaluate fidelity: 200.

In Appendix C, we describe experiments which justify these choices: they either improve fidelity or have no effect compared
to alternate choices. We also provide the full interpretation prompt in Figure 5.

There is one hyperparameter which we adjust per dataset: the bin percentiles from which we sample highly-activating
and weakly-activating examples for the neuron interpretation prompt. By default, highly-activating texts are sampled from
the top decile of positive activations [90, 100], and weakly-activating texts are sampled from the bottom decile of positive
activations [0, 10]. This works well in general, especially for larger datasets (YELP, CONGRESS). For smaller datasets like
WIKI, the [90, 100] bin produces interpretations which are too specific (e.g., “articles about Napoleon”, even if the neuron
fires on articles about European leaders more generally). Note that this requires a judgment call: what is “too specific”
depends on practitioner needs. For example, on WIKI, we choose bins such that the resulting interpretations are roughly as
granular as the topics in the dataset11. We ultimately choose the following percentile bins for highly-activating texts:

• WIKI-5, WIKI-15, HEADLINES: [80, 100].

• BILLS: [50, 100].

• YELP, CONGRESS: [90, 100].

11Choosing this parameter requires similar decision-making to choosing the minimum cluster size in BERTOPIC.
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Choosing the number of candidate interpretations depends on budget. In Appendix C we find that selecting the
interpretation with highest fidelity from a pool of 3 candidates increases the resulting fidelity modestly, yet statistically
significantly; we therefore use 3 candidate interpretations for all experiments. However, we also ablate this step—that is,
generating a single candidate interpretation and using it directly, without computing fidelity. On CONGRESS (we did not test
on the other datasets), the resulting hypotheses are of similar quality: 14/20 are significant, with AUC 0.70, compared to
15/20 significant and AUC 0.70 when using 3 candidate interpretations12. This variant of our method, SAE-NOVAL, costs as
little as BERTOPIC (Table 3).

C. Supporting Experiments
Our final neuron interpretation procedure for our main experiments is described in §4, with hyperparameters provided
in Appendix B.2. Here, we describe several experiments to justify our procedure. The section is organized as follows.
In C.1, we show that our metric of interpretation fidelity—the F1 score comparing concept annotations against neuron
activations—is a useful selection metric to improve downstream hypothesis quality. In C.2, we test several different
interpretation strategies and hyperparameters and measure their impacts on fidelity. In C.3, we analyze how much prediction
signal is lost at each stage of our method, shedding light on how future work can improve hypothesis quality.

C.1. Higher-fidelity interpretations improve hypotheses.

To test whether fidelity is a useful metric to select from different neuron interpretations, we conduct the following experiment
on the Yelp dataset:

1. Train an SAE (Step 1), and identify the top-20 predictive neurons via Lasso (Step 2).

2. Generate 10 candidate interpretations (at temperature 0.7, and with different random samples in the interpretation
prompt) for each neuron using the hyperparameters in B.2 (Step 3).

3. Compute the fidelity for each candidate interpretation: that is, binarizing 100 examples in the top decile of the neuron’s
positive activations as positives, and 100 examples in the bottom decile of the neuron’s positive activations as negatives,
compute the F1 score between the GPT-4o-mini annotations according to the interpretation against the binarized neuron
activations.

4. Store two sets of neuron interpretations: one set includes the interpretations with the best F1 score for each neuron
(high-fidelity), and the other set includes the interpretations with the worst F1 score for each neuron (low-fidelity).

5. Compute annotations on the full heldout set (10K examples) for the high-fidelity hypotheses and the low-fidelity
hypotheses, and compare how predictive they are as measured by R2.

This procedure yields three interesting results. First, there is enough variation in the 10 candidate interpretations such that
the best and worst F1 scores are substantially different: the median best F1 is 0.79, while the median worst F1 is 0.53.
Second, we find that the high-fidelity set is indeed more predictive: in a multivariate OLS, the high-fidelity set achieves an
R2 of 0.76, compared to 0.61 for the low-fidelity set.

Third, most importantly, using a neuron’s high-fidelity interpretation results in a more predictive hypothesis, on average.
Figure 3 shows that, for 17 out of 20 neurons, moving from the low-fidelity interpretation to the high-fidelity interpretation
increases the R2 of the resulting hypothesis (p-value, paired t-test: 0.002). For example, for one neuron, the high-fidelity
interpretation is “mentions disputes or issues related to billing or refunds” (F1: 0.79), while the low-fidelity interpretation is
more generically “mentions an attempt by the restaurant or management to address or respond to a problem or complaint.”
The former hypothesis achieves heldout R2 = 0.10 with restaurant rating, while the latter is not significantly correlated with
rating (R2 = 0.003). These experiments show that fidelity—as measured via F1 score—is a useful heuristic to choose
between multiple candidate neuron interpretations, when our goal is to produce predictive hypotheses.

Finally, following prior work (Bills et al., 2023), we also tested another metric of fidelity: the R2 between the concept
annotations and the neuron activations across 100 top-activating samples and 100 random samples. Choosing the top
candidate interpretation based on this alternative fidelity metric did not produce hypotheses that were significantly more or
less predictive than using our F1 fidelity metric.

12To illustrate this point, we tested solely on CONGRESS; we expect similarly modest differences on other datasets.
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Figure 3. For 17 of the top 20 neurons on YELP, a higher-fidelity neuron interpretation results in a more predictive hypothesis. Fidelity
is measured by the F1 score between the concept annotations and the neuron activations on a sample of 100 highly-activating and 100
weakly-activating examples. We generate 10 candidate interpretations for each neuron, and compare the interpretations with best- and
worst-F1. Predictiveness is measured by computing the R2 between the concept annotations and Y (restaurant rating) for 10K heldout
examples.

C.2. Effects of the neuron interpretation procedure on fidelity.

Having established that improving interpretation fidelity improves downstream predictiveness, we search across different
hyperparameters for neuron interpretation to maximize fidelity. Our final procedure is to generate 3 candidate interpretations
for each neuron by prompting GPT-4o with 10 examples in the top decile of positive activations vs. 10 examples in the
bottom decile of positive activations. We use the highest fidelity interpretation out of these 3. There are two sources of
non-determinism: each candidate interpretation is generated with a different random seed to sample examples, and we use
an LLM temperature of 0.7.

To compare this strategy against other strategies—or to compare strategy A and strategy B more generally—we compute
interpretations, and their F1 scores, for the top 100 neurons on YELP under both strategies separately. We run a t-test
comparing the pairs of resulting F1 scores to test whether one strategy produces consistently higher F1 scores than the other.

We observe the following:

• Number of candidate interpretations: Relative to baseline (generating 3 candidate interpretations and taking the one
with highest F1 score), generating only a single candidate interpretation is significantly worse (-0.04). Generating 5
candidate interpretations improves significantly on 3 (+0.01 F1, paired t-test p = 0.003), but the improvement is modest
and results in a slower, more expensive method. Therefore, we use only 3 candidate interpretations.

• Top-random vs. high-weak sampling strategy: Prior work (e.g. Templeton et al. (2024); Bills et al. (2023)) interprets
SAE neurons by prompting with the top-activating texts and random texts. Relative to our baseline (prompting with
highly-activating texts, but not necessarily top-activating; and weakly-activating texts instead of random), this alternate
approach has no significant effect on F1 score, though the interpretations tend to be more specific: that is, they have higher
precision and lower recall. This is because a neuron’s absolute top-activating examples generally share a more specific
characteristic than examples sampled randomly from the top decile. Though neither strategy wins clearly in terms of F1,
we choose high-weak sampling for our experiments because, empirically, top-random produces hypotheses which can be
too specific (thereby lowering predictiveness); this is discussed further in B.2. Our code defaults to top-random for
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simplicity, but practitioners should treat sampling strategy as a tunable hyperparameter that depends on desired hypothesis
granularity.

• Continuous vs. binary prompt structure: Prior work (e.g. Zhong et al. (2024)) prompts the interpreter LLM with a
sorted list of texts and their continuous activations. Relative to our baseline (showing separate lists of positive samples
and negative samples), this significantly lowers F1 score (-0.06), so we use the binary prompt structure.

• Chain-of-thought: Prior work (e.g. O’Neill et al. (2024)) uses a chain-of-thought reasoning prompt to interpret neurons,
where the LLM is encouraged to iteratively discover a concept which all of the positive samples contain and none of the
negative samples contain. Relative to baseline, we found that CoT has an insignificant but weakly negative effect (-0.03
mean F1), and also sometimes fails to output any interpretation. However, this is still a promising line for future work: it’s
possible that while GPT-4o does not reason well, better models or reasoning-specific models (OpenAI o1, DeepSeek R1,
etc.) will produce higher fidelity labels with chain-of-thought.

• Sample count: Relative to baseline (prompting with 20 total samples, 10 highly-activating and 10 weakly-activating),
prompting with 10 total samples lowers average F1 score by 0.03. Prompting with 50 samples has no effect, so we use 20
to favor shorter prompts.

• Temperature: Relative to baseline (temperature 0.7), using a lower (0.0) or higher (1.0) temperature has an insignificant
but weakly negative effect (-0.01 in mean F1), so we use 0.7.

C.3. Localizing losses in predictive performance to different steps of the method.

HYPOTHESAES starts from embeddings and ultimately produces hypotheses, after three steps. It is worth asking—how does
predictive performance change at each step of our method? Answering this question points to possible improvements: if the
SAE’s full hidden representation is much less predictive of restaurant ratings than the input text embeddings, perhaps we
need a larger (more expressive) SAE, or more data to train the SAE’s representations; meanwhile, if the largest performance
loss comes from translating neurons into natural language hypotheses, perhaps we need a stronger LLM for interpretation.

Figure 4 displays this experiment. At each stage, we fit a logistic or linear regression on the training set to predict the labels
on HEADLINES, YELP, and CONGRESS. The four stages are: (i) text embeddings (length-1536 vectors of floats); (ii) the
full SAE activation matrix, ZSAE (length-288, 1024, and 4096 vectors of floats for the three tasks, respectively); (iii) the
activations of the top-20 selected SAE neurons (length-20 vectors of floats); and (iv) the annotations from the interpreted
hypotheses (length-20 vectors of binary 0/1 values).

Figure 4. Performance losses at each step of the HYPOTHESAES pipeline. The leftmost point shows the performance of training a
supervised single-layer model to predict the outcome using text embeddings; the second point shows the supervised performance using
the full SAE representation; the third point shows the supervised performance using the top-20 SAE neurons; the rightmost point shows
the supervised performance using the top-20 hypothesis annotations after neuron interpretation.

The trends depend on the dataset. On HEADLINES, we find that the performance drops most at the first stage (-0.08 AUC):
the full SAE is significantly less expressive than the original embeddings. This could suggest using a larger SAE, but
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empirically we find that increasing the SAE size does not improve AUC, perhaps because there is not enough data (∼14K
headlines) to make use of more parameters. On YELP, we find that performance is mostly retained until neuron interpration,
at which point R2 drops by 0.06. This suggests some combination of: our neuron interpretations are imperfect, GPT-4o-mini
is not annotating the hypotheses faithfully, or binary annotations are not expressive enough to capture the neuron activations
(which are continuous). Finally, on CONGRESS, the only drop comes from using the top-20 neurons to predict the label
instead of the full SAE representation (4096 neurons). This implies that 20 features aren’t expressive enough; or, more
optimistically, that there are more than 20 distinct hypotheses to discover on this dataset (see §6.4). Remarkably, there
are no losses in the interpretation step on the CONGRESS dataset, suggesting that on this dataset our interpretations are
very high-fidelity. Ultimately, this analysis can be a useful diagnostic tool to direct one’s efforts when trying to improve
hypothesis quality: losses from embedding ⇒ full SAE suggest that the dataset and/or the SAE are too small; losses from full
SAE ⇒ top-H SAE suggest that H is too small; losses from top-H SAE ⇒ top-H hypotheses suggest that the interpretation
step can be improved. Meanwhile, if the top-H hypotheses achieve similar AUC to the underlying embeddings, this implies
that there may be no more “juice to squeeze” in the dataset.

D. Hyperparameters for Baseline Methods
BERTOPIC (Grootendorst, 2022). To run BERTOPIC13, we feed in the same OpenAI embeddings that we use for
HYPOTHESAES, and otherwise use default choices for the algorithm: UMAP for dimensionality reduction, HDBSCAN
for clustering, and c-TF-IDF to compute the top words associated with each topic. We tune the minimum cluster size
hyperparameter in BERTOPIC, which controls topic granularity. The default value is 10, which often produces topics which
are too granular (e.g., relative to the underlying granularity of the subtopics on WIKI and BILLS). We test all values in
{10, 20, 50, 100, 200, 500}. We choose this parameter by maximizing the validation performance of the L1-regularized
predictor which uses H features; this is identical to how we choose hyperparameters for HYPOTHESAES. We use default
values of all other hyperparameters, which is standard in prior work (e.g., Pham et al. (2024)). After running BERTOPIC,
we label topics using the prompt Figure 8.

NLPARAM (Zhong et al., 2024). We run NLPARAM using the publicly available implementation14. We set the number of
candidate labels per bottleneck layer neuron to 3 (the same as our method), and we use the same text embeddings as our
method (OpenAI’s text-3-embedding-small). Zhong et al. (2024) release two different prompts, one for “simple” hypotheses
and one for “complex” hypotheses; following their work, we use the “simple” prompt for our 3 synthetic tasks and the
“complex” prompt for our 3 real-world tasks. For all other hyperparameters, we use default values.

HYPOGENIC (Zhou et al., 2024). We run HYPOGENIC using the publicly available implementation15. We use the
default parameters as defined in examples/generation.py. Following the format in their example tasks, we write custom
prompts in a consistent format describing each our of tasks. The method uses the same LLM for hypothesis generation and
hypothesis scoring, and we run all experiments using GPT-4o-mini (the default model in their code repository, and also the
model that we use for scoring hypotheses in HYPOTHESAES).

E. Qualitative Evaluation
To confirm that our hypotheses pass a “sniff test,” we recruit three computational social science researchers to perform a
qualitative evaluation. These researchers are not authors on our study. We collect ratings for two attributes, following Lam
et al. (2024): (1) helpfulness and (2) interpretability. We explain these to the raters as follows:

1. Helpful: Does this hypothesis help you understand what predicts the target variable? If you were studying this dataset,
is this a hypothesis you would want to and could explore further? Rate 1 if yes, 0 if no or only a little.

2. Interpretable: When you read the hypothesis, is it clear what it means? Can you easily and unambiguously apply it to
new examples? Rate 1 if yes, 0 if no or it would often be subjective.

We collect 3 annotations for each of the significant hypotheses outputted by any method on the HEADLINES and CONGRESS

13https://github.com/MaartenGr/BERTopic
14https://github.com/ruiqi-zhong/nlparam
15https://github.com/ChicagoHAI/hypothesis-generation
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datasets. (We removed the YELP dataset to reduce annotator load.) Hypotheses are shown to annotators in random order,
i.e., they were not grouped by method. We aggregate labels by taking the majority label.

F. Proofs
Proof of Proposition 3.1. Set pab := Pr[Ẑ = a, Z = b] and yab := E[Y |Ẑ = a, Z = b] for a, b ∈ {0, 1}. Then

E[Y |Ẑ = 1] =
y11p11 + y10p10

p11 + p10
(8)

E[Y |Z = 1] =
y11p11 + y01p01

p11 + p01
. (9)

Therefore,

E[Y |Ẑ = 1]− E[Y |Z = 1] =
y11p11 + y10p10

p11 + p10
− y11p11 + y01p01

p11 + p01
(10)

= y11

(
p11

p11 + p10
− p11

p11 + p01

)
+

y10p10
p11 + p10

− y01p01
p11 + p01

(11)

= y11

(
p01

p11 + p01
− p10

p11 + p10

)
+

y10p10
p11 + p10

− y01p01
p11 + p01

(12)

Since y10 ≤ 1 and y01 ≥ 0, (12) is bounded from above by

y11

(
p01

p11 + p01
− p10

p11 + p10

)
+

p10
p11 + p10

. (13)

If p01

p11+p01
− p10

p11+p10
≥ 0, (13) is bounded from above by(

p01
p11 + p01

− p10
p11 + p10

)
+

p10
p11 + p10

=
p01

p11 + p01
, (14)

since y11 ≤ 1. Otherwise, (13) is bounded from above by

p10
p11 + p10

. (15)

Also note that (12) is bounded from below by

y11

(
p11

p11 + p10
− p11

p11 + p01

)
− p01

p11 + p10
= y11

(
p01

p11 + p01
− p10

p11 + p10

)
− p01

p11 + p10
. (16)

If p01

p11+p01
− p10

p11+p10
≤ 0, (16) is bounded from below by(

p01
p11 + p01

− p10
p11 + p10

)
− p01

p11 + p10
= − p10

p11 + p10
, (17)

since y11 ≤ 1. Otherwise, (16) is bounded from below by

− p01
p11 + p01

. (18)

Therefore,

|E[Y |Ẑ = 1]− E[Y |Z = 1]| ≤ max

{
p10

p11 + p10
,

p01
p11 + p01

}
. (19)

Analogously, we can bound |E[Y |Ẑ = 0]− E[Y |Z = 0]| by

max

{
p10

p00 + p10
,

p01
p00 + p01

}
. (20)
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Notice that

p10
p00 + p10

=
p10

p11 + p10
· p11 + p10
p00 + p10

(21)

=
p10

p11 + p10
· Pr[Ẑ = 1]

Pr[Z = 0]
(22)

Similarly,

p01
p00 + p01

=
p01

p11 + p01
· p11 + p01
p00 + p01

(23)

=
p01

p11 + p01
· Pr[Z = 1]

Pr[Ẑ = 0]
(24)

Set p := min{Pr[Ẑ = 0],Pr[Z = 0]}. Then Pr[Ẑ = 0],Pr[Z = 0] ≥ p and Pr[Ẑ = 1],Pr[Z = 1] ≤ 1− p

Pr[Ẑ = 1]

Pr[Z = 0]
,
Pr[Z = 1]

Pr[Ẑ = 0]
≤ 1− p

p
. (25)

It follows that ∣∣∣S(Ẑ)− S(Z)
∣∣∣ = ∣∣∣(E[Y |Ẑ = 1]− E[Y |Ẑ = 0])− (E[Y |Z = 1]− E[Y |Z = 0])

∣∣∣ (26)

is at most (
1 +

1− p

p

)
max

{
p10

p11 + p10
,

p01
p11 + p01

}
=

1

p
max

{
p10

p11 + p10
,

p01
p11 + p01

}
. (27)

The result follows by noting that p := min{Pr[Ẑ = 0],Pr[Z = 0]} and p10

p11+p10
, p01

p11+p01
= 1− recall, 1− precision.

G. Prompts
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You are a machine learning researcher who has trained a neural network on a text dataset. You are trying to understand what text
features cause a specific neuron in the neural network to fire.

You are given two sets of SAMPLES: POSITIVE SAMPLES that strongly activate the neuron, and NEGATIVE SAMPLES
from the same distribution that do not activate the neuron. Your goal is to identify a feature that is present in the positive
samples but absent in the negative samples.
Example features could be:
- “uses multiple adjectives to describe colors”
- “describes a patient experiencing seizures or epilepsy”
- “contains multiple single-digit numbers”

POSITIVE SAMPLES:
—————-
{positive samples}
—————-

NEGATIVE SAMPLES:
—————-
{negative samples}
—————-

Rules about the feature you identify:
- The feature should be objective, focusing on concrete attributes rather than abstract concepts.
- The feature should be present in the positive samples and absent in the negative samples. Do not output a generic feature which
also appears in negative samples.
- The feature should be as specific as possible, while still applying to all of the positive samples. For example, if all of the
positive samples mention Golden or Labrador retrievers, then the feature should be “mentions retriever dogs”, not “mentions
dogs” or “mentions Golden retrievers”.

Do not output anything else. Your response should be formatted exactly as shown in the examples above. Please suggest exactly
one description, starting with “-” and surrounded by quotes “”. Your response is:
- “

Figure 5. The prompt we use to interpret SAE neurons. The positive samples are texts that strongly activate the neuron, while the negative
samples are texts that weakly activate the neuron. The “example features” section can be edited to produce features in a different format.
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Is text a and text b similar in meaning? Respond with yes, related, or no.

Here are a few examples.

Example 1:
text a: has a topic of protecting the environment
text b: has a topic of environmental protection and sustainability
output: yes

Example 2:
text a: has a language of German
text b: has a language of Deutsch
output: yes

Example 3:
text a: has a topic of the relation between political figures
text b: has a topic of international diplomacy
output: related

Example 4:
text a: has a topic of the sports
text b: has a topic of sports team recruiting new members
output: related

Example 5:
text a: has a named language of Korean
text b: uses archaic and poetic diction
output: no

Example 6:
text a: has a named language of Korean
text b: has a named language of Japanese
output: no

Example 7:
text a: describes an important 20th century historical event
text b: describes a 20th century European politician
output: no

Target:
text a: {text a}
text b: {text b}
output:

Figure 6. The prompt we use to evaluate surface similarity between the inferred hypotheses and reference topics. The prompt is lightly
edited from Zhong et al. (2024). The few-shot examples demonstrate three levels of similarity: equivalent meaning (yes), related concepts
(related), and unrelated concepts (no).
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Check whether the TEXT satisfies a PROPERTY. Respond with Yes or No with an explanation that discusses the evidence from
the TEXT (at most a sentence). When uncertain, output No.

Example 1:
PROPERTY: “mentions a natural scene.”
TEXT: “I love the way the sun sets in the evening.”
Output: Yes. “Sun sets” are clearly natural scenes.

Example 2:
PROPERTY: “writes in a 1st person perspective.”
TEXT: “Jacob is smart.”
Output: No. This text is written in a 3rd person perspective.

Example 3:
PROPERTY: “is better than group B.”
TEXT: “I also need to buy a chair.”
Output: No. It is unclear what the PROPERTY means (e.g., what does group B mean?) and doesn’t seem related to the text.

Example 4:
PROPERTY: “mentions that the breakfast is good on the airline.”
TEXT: “The airline staff was really nice! Enjoyable flight.”
Output: No. Although the text appreciates the flight experience, it DOES NOT mention about the breakfast.

Example 5:
PROPERTY: “appreciates the writing style of the author.”
TEXT: “The paper absolutely sucks because its underlying logic is wrong. However, the presentation of the paper is clear and
the use of language is really impressive.”
Output: Yes. Although the text dislikes the paper, it says “the presentation of the paper is clear”, so it DOES like the writing style.

Example 6:
PROPERTY: “has a formal style; specifically, the language in the text is relatively formal, complex and academic. For example,
’represent whom and which”’
TEXT: “investigates formation of nominalization”
Output: Yes. “formation” and “nominalization” are abstract and complex nouns.

Example 7:
PROPERTY: “refers to historical dates; specifically, there are references to years or specific dates in the text. For example,
’Obama was born on August 4, 1961.”’
TEXT: “A member of the Democratic Party, he was the first African-American president of the United States.”
Output: No. The text does not mention date.

Now complete the following example - Respond with Yes or No with an explanation that discusses the evidence
from the TEXT. When uncertain, output No.

PROPERTY: {hypothesis}
TEXT: {text}
Output:

Figure 7. The prompt we use to compute hypothesis annotations with GPT-4o-mini to evaluate hypothesis quality. The prompt is lightly
edited from Zhong et al. (2024).
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You are a machine learning researcher analyzing clusters from a topic model. You need to identify the key distinguishing
features of documents in a specific topic cluster.
Example features could be:
- “uses multiple adjectives to describe colors”
- “describes a patient experiencing seizures or epilepsy”
- “contains multiple single-digit numbers”

These are the top keywords describing the topic: {topic keywords}.

You will also see a sample of documents belonging to this topic and a random sample of documents from other top-
ics from the same dataset.

TOPIC DOCUMENTS (a sample of documents belonging to this topic):
—————-
{topic documents}
—————-

RANDOM DOCUMENTS (a sample of documents from other topics):
—————-
{random documents}
—————-

Your goal is to create a short, specific label that captures what makes the topic documents different from the con-
trasting documents.

The label should be:
1. As specific as possible, while still applying to all topic documents
2. Focused on concrete features rather than abstract concepts
3. Based on characteristics present in the topic documents but not in the contrasting documents

Do not output anything else. Your response should be a single topic label starting with “-” and surrounded by quotes “”. Your
response is:
- “

Figure 8. The prompt we use to generate interpretable topic labels for BERTOPIC. The LLM is prompted with the keywords that
distinguish the topic from others, and also with two sets of documents: 10 documents belonging to the target topic, and a random sample
of 10 documents from other topics. This labeling approach is inspired by Grootendorst (2024), but we designed the prompt ourselves
(intending it to be similar, where possible, to our neuron interpretation prompt).
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