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ABSTRACT

LLM-driven multi-agent collaboration (MAC) systems have demonstrated impres-
sive capabilities in automatic software development at the function level. How-
ever, their heavy reliance on human design limits their adaptability to the diverse
demands of real-world software development. To address this limitation, we in-
troduce EvoMAC, a novel self-evolving paradigm for MAC networks. Inspired
by traditional neural network training, EvoMAC obtains text-based environmen-
tal feedback by verifying the MAC network’s output against a target proxy and
leverages a novel textual backpropagation to update the network. To extend cod-
ing capabilities beyond function-level tasks to more challenging software-level
development, we further propose rSDE-Bench, a requirement-oriented software de-
velopment benchmark, which features complex and diverse software requirements
along with automatic evaluation of requirement correctness. Our experiments
show that: i) The automatic requirement-aware evaluation in rSDE-Bench closely
aligns with human evaluations, validating its reliability as a software-level cod-
ing benchmark. ii) EvoMAC outperforms previous SOTA methods on both the
software-level rSDE-Bench and the function-level HumanEval benchmarks, re-
flecting its superior coding capabilities. The benchmark can be downloaded at
https://yuzhu-cai.github.io/rSDE-Bench/.

1 INTRODUCTION

Automatic software development focuses on generating code from natural language requirements.
Code is a universal problem-solving tool, and this automation presents significant potential to
provide substantial benefits across all areas of our lives Li et al. (2022a). Recently, the industry
has introduced several large language model (LLM)-driven coding assistants, including Microsoft’s
Copilot Microsoft (2023), Amazon’s CodeWhisperer Amazon (2022), and Google’s Codey Google
(2023). These coding assistants significantly advance human efficiency and yield considerable
commercial benefits. Despite the initial success of LLMs in assisting with line-level coding, they
struggle to tackle more complex coding tasks. This limitation stems from the restricted reasoning
abilities of single LLMs and their lack of capacity for long-context understanding Wang et al. (2024a);
Li et al. (2024a); Wang et al. (2024b).

To handle function-level coding tasks, numerous multiple language agent collaboration (MAC)
systems have been proposed Li et al. (2023); Hong et al. (2023); Chan et al. (2024); Islam et al.
(2024); Yang et al. (2024b); Li et al. (2022b); Osika (2023). These MAC systems function as LLM-
driven agentic workflow. They follow human-designed standardized operating procedures to divide
the complex coding tasks into simpler subtasks within the workflow, allowing each agent to conquer
specific subtasks. These MAC systems significantly advance coding capabilities from line-level to
function-level tasks. However, current MAC systems rely on heuristic designs. These human-crafted
static systems have two inherent limitations: i) their performance is confined to human initialization.
Given the diversity of real-world coding tasks, human design cannot fully address the specific needs
of each task; and ii) they lack the flexibility to adapt to new tasks. This rigidity necessitates that
researchers and developers manually decompose tasks and create prompts. The complexity of this
process inhibits effective human optimization for adapting to new challenges.
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To address these limitations, we present EvoMAC, a novel self-evolving paradigm for MAC networks.
EvoMAC’s key feature is its ability to iteratively adapt both agents and their connections during
test time for each task. Inspired from the standard neural network training, the core idea of self-
evolution is to obtain text-based environmental feedback by verifying the MAC network’s generation
against a target proxy, then leverage a novel textual back-propagation to update the MAC network.
Following this general paradigm, we specify EvoMAC for software development, which comprises
three essential components: i) an adaptable MAC network-based coding team that generates code
through feed-forward; ii) a specifically designed testing team that creates unit test cases serving as
the target proxy and verifies the generated code in the compiler to produce objective feedback; and
iii) an updating team that uses the textual back-propagation algorithm to update the coding team. By
cycling these three components, the coding team can iteratively evolve and generate codes that are
better aligned with the unit test cases, eventually fulfilling more requirements of the coding task.

Our self-evolving MAC network has the potential to further advance coding capabilities from function-
level to more complex software-level tasks. As it can iteratively address lengthier task requirements
and cater to realistic software development demands. However, existing benchmarks typically focus
on specific individual functions Chen et al. (2021); Austin et al. (2021); Yang et al. (2024a); Khan
et al. (2023) or bug-fixing Jimenez et al. (2023), leaving a significant gap in providing comprehensive
requirements for software development. This gap makes it difficult to fully assess the potential of our
self-evolving MAC network.

To support the development of software-level coding capabilities, we propose rSDE-Bench, a novel
requirement-oriented software development benchmark. It is the first benchmark that features both
complex and diverse software requirements, as well as the automatic evaluation of requirement
correctness. rSDE-Bench involves 53 coding tasks with 616 requirements, covering two typical
software types, Website, and Game, and two requirement difficulty levels, Basic and Advanced. Each
coding task consists of two components: i) multiple requirements that clearly outline measurable
software functionalities, item by item, and ii) paired black-box test cases that automatically verify
the correctness of each requirement. rSDE-Bench can achieve automatic evaluation with these
synchronized pairs of requirements and test cases. The rSDE-Bench introduces new software-level
challenges, including lengthy requirement analysis and long-context coding, which are essential in
real-world software development but are absent in existing benchmarks.

To validate the effectiveness of our proposed EvoMAC and rSDE-Bench, we conduct three key
evaluations. First, we compare our automatic evaluation in rSDE-Bench with human evaluation,
achieving a coherence score of 99.22%, demonstrating its reliability. Second, we compare EvoMAC
against five multi-agent and three single-agent baselines. EvoMAC significantly outperforms previous
SOTAs by 26.48%, 34.78%, and 6.10% on Website Basic, Game Basic, and HumanEval, respectively,
underscoring its effectiveness. Third, we evaluate EvoMAC with varying evolving times and two
different driving LLMs. The results indicate that EvoMAC consistently improves with more evolving
times and shows convincing enhancements regardless of the driving LLM used, further demonstrating
the effectiveness of our self-evolving design.

To sum up, our contributions are:

• We propose EvoMAC, a novel self-evolving MAC network, and apply it to software development.
EvoMAC can iteratively adapt both agents and their connections during test time for each task.

• We propose rSDE-Bench, a novel requirement-oriented software development benchmark. It is
the first benchmark that features both complex and diverse software requirements, as well as the
automatic evaluation of requirement correctness.

• We conduct comprehensive experiments and validate that: automatic evaluation in rSDE-Bench is
highly aligned with human evaluation; EvoMAC outperforms previous SOTAs, and self-evolving
promises continuous improvement with evolving times.

2 RELATED WORKS

LLM-based multi-agent collaboration. LLM-driven multi-agent collaboration (MAC) systems Xu
et al. (2023); Hua et al. (2023); Ziems et al. (2024); Wu et al. (2023); Hong et al. (2023); Chan et al.
(2024); Mandi et al. (2024a) enable multiple agents to share information and collaboratively complete
the overall task. These MAC systems function as agentic workflows. They have demonstrated
enhanced problem-solving capabilities in various domains, such as mathematics Islam et al. (2024),
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software development Qian et al. (2023); Hong et al. (2023), embodied task Mandi et al. (2024b)
and social simulation Ziems et al. (2024); Pang et al. (2024); Li et al. (2024b). However, these
systems Wu et al. (2023); Chen et al. (2023) heavily rely on manually designed workflows, which
lack generalizability and the labor-intensive nature of manual design poses significant limitations. To
address this issue, we propose a novel self-evolving paradigm, which allows agents to update and
improve through external feedback, enabling dynamic adaptation and more advanced performance
across varied tasks.

Software development benchmarks. Software development benchmarks aim to evaluate models in
the task of generating code from natural language descriptions Zheng et al. (2023). These benchmarks
typically include task definitions and evaluation criteria. Existing benchmarks can be categorized
into three types: i) function completion (HumanEval Chen et al. (2021), MBPP Austin et al. (2021),
EvalPlus Liu et al. (2023), xCodeEval Khan et al. (2023)); ii) bug repair (SWE-bench Jimenez et al.
(2023)); and iii) software generation (SRDD Qian et al. (2023), SoftwareDev Hong et al. (2023)).
Function completion and bug repair benchmarks are confined to function-level task definitions,
missing the diverse realistic software requirements. Software generation benchmarks often depend
on expensive human evaluations or indirect similarity-based measurements, unable to automatically
and accurately verify the requirement correctness. To address these limitations, we introduce rSDE-
Bench, the first benchmark contains both diverse software requirements and automatic evaluation
of requirement correctness. It can support the development of more realistic software-level coding
capabilities.

3 EVOMAC: SELF-EVOLVING MULTI-AGENT COLLABORATION NETWORK

This section presents EvoMAC, a novel self-evolving multi-agent collaboration network and its
application to software development. The key feature of EvoMAC is its ability to iteratively adapt
both agents and their connections during test-time for each task, mimicking the back-propagation
process, a core algorithm in neural network training. We first formulate a general self-evolving
paradigm in Sec. 3.1 and then describe its application to software development in Sec. 3.2.

3.1 A GENERAL SELF-EVOLVING PARADIGM VIA TEXTUAL BACKPROPAGATION

Multi-agent collaboration network. A multi-agent collaboration (MAC) network is a computational
graph representing agentic workflows, where multiple agents empowered by LLMs interact as
interconnected nodes to coordinate and share information for complex task-solving. The intuition
behind to divide the complex task into more specific and manageable subtasks for each agent,
allowing the overall task to be gradually conquered through the agentic workflow. Mathematically, we
represent a MAC network with N autonomous agents as a directed acyclic graph A = (V, E), where
V = {vi}Ni=1 is the set of N nodes, and E = {ei,j}i,j∈[1,...,N ],i̸=j is the set of directed edges with no
circles. The i-th node vi represents the i-th autonomous agent with the prompt pi, which specifies
its subtask. The edge ei,j represents the task dependency between the i-th agent and the j-th agent,
indicating that the j-th agent’s subtask should be executed after the i-th agent’s subtask in the agentic
workflow. The overall graph topology specifies the agentic workflow. Analogy to traditional neural
networks, agents function similarly to neurons, with agent prompts serving as neurons’ weights and
the agentic workflow as the layers and connections.

The feed-forward pass of MAC network is the execution of the agentic workflow. In this process,
each agent is given two inputs: the initial task requirement and the output from the previous agent.
Using these, each agent produces an output that fulfills its specific subtask. Eventually, the last
agent’s generation constitutes the final output, integrating all completed subtasks. Note that the initial
task requirement is input to each agent as context, providing supplementary details to aid in the
implementation of each subtask.

Recently, various MAC networks have been designed using human expertise to assign fixed agent
prompts and workflows Hong et al. (2023); Chan et al. (2024), resembling untrained neural networks.
However, these designs solely rely on human priors and lack adaptability, causing limited performance
improvement over a single agent. To overcome this, inspired by neural network training, we propose
a self-evolving paradigm for multi-agent collaboration networks, enabling both agents and their
connections to dynamically evolve during test-time for each given task.

Optimization problem. Here we consider a general generation task. During test-time, given a task,
the MAC network performs a feed-forward pass to generate the final output without knowing its
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Figure 1: The general self-evolving paradigm.

quality. The key to evolution during test-time is to set up a target proxy for the MAC network to
guide its improvements in the generated output. Here we consider this target proxy as the conditions
for task completion, such as unit tests in coding, and we can produce such a target proxy by another
group of autonomous agents based on the same task description. Then, the quality of each generated
output can be verified according to the target proxy. This approach relies on two key assumptions:
(i) generating a target proxy is significantly simpler than completing the original generation task,
and (ii) the generated output can be correctly verified against the target proxy through an objective
environment. These assumptions are practical in many applications. For example, in code generation,
producing unit tests, the expected input-output pairs, is much easier than generating the entire code;
meanwhile, a code compiler naturally acts as the objective environment to check the correctness of
the generated code against the unit test, providing objective and informative feedback.

Mathematically, let X be the textual description of a task. Given the MAC network Ag , the generated
output is G = Φ(X,Ag), where Φ(·, ·) is the general feed-forward operator that executes the
agentic workflow, processing the input text through the MAC network. Similarly, the target proxy is
T = Φ(X,At), where At is another MAC network designed for producing the target proxy. Note
that we aim to evolve and optimize Ag , while keep At predefined and fixed. The optimization of our
self-evolution is formulated as,

A∗
g = min

Ag

⟨Φ(X,Ag),T⟩E , subject to: T = Φ(X,At) , (1)

where ⟨·, ·⟩E is an objective environment executor that receives the generated output and the target
proxy as inputs and outputs a text-based environmental feedback. Akin to the loss function in
traditional neural network training, which quantifies the difference between the generated output and
the ground-truth, the objective in (1) evaluates whether the generated output meets the conditions
of the task completion using the environment, subsequently producing execution reports as the
text-based environmental feedback. Here the minimization operation min is defined to reduce the
failures during execution. With the guidance of the target proxy and the objective feedback given by
the environment, the MAC network can improve its success rate of task completion during test time.

Note that, another straightforward way to enable the MAC network’s evolution is through the self-
critique strategy Zhou et al. (2024); Valmeekam et al. (2023); Xu et al. (2024); Asai et al. (2023),
which employs a critique agent to assess the generated output directly. This approach has two
inherent limitations: i) the critique may be subjective and biased, and ii) the critique agent can have
hallucinations, causing inconsistencies and errors. These limitations can cause the MAC network
to become entrenched in its own preferences or evolve in the wrong direction, especially iterating
multiple times; see our experimental validations in Tab. 2. In comparison, our approach leverages an
environment executor to provide objective feedback, preventing bias and hallucinations.

While we use the analogy between our self-evolution process and neural network training for
motivating, they are significantly different in three key aspects: (i) our self-evolution occurs at test
time without a dedicated training phase; (ii) it evolves for each specific task individually rather than
over a batch of samples; and (iii) the environmental feedback are usually texts, not be numerical
values, which cannot be optimized by the standard backpropagation. This motivates us to propose
our textual backpropagation.

Solution based on textual backpropagation. The self-evolution solution iteratively updates the
MAC network using a textual backpropagation algorithm, guided by the environmental feedback. The
core idea is to analyze the influence of each agent in the MAC network Ag to the final environmental
feedback and use these analyses to update the agent prompts and the agentic workflow in Ag. This
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Figure 2: EvoMAC takes task requirements as input and iteratively updates the coding team to
generate code that better fulfills the requirements.

is achieved by two collaborative agents, each responsible for one of the two key steps: (i) textual
gradient analysis and (ii) network update. The overall algorithm can refer to Alg. 1 in the appendix.

First, the gradient agent takes the environmental feedback as the input and outputs textual gradients
that describe the impact of each agent in the MAC network. Let A(k)

g and L(k) be the MAC
network and the environment feedback at the k-th iteration. The textual gradient is then ∇L(k) =

G(A(k)
g ,L(k)), where G(·, ·) is the gradient analysis operator managed by the gradient agent; see its

prompt in Appendix. The textual gradient details three-fold information for each agent inside A(k)
g :

1) whether this agent’s subtask is fulfilled; 2) whether this agent introduces errors; and 3) whether
any subtask is missed in the current MAC network.

Second, based on the textual gradients, the updating agent iterates the MAC network as A(k+1)
g =

U(A(k)
g ,∇L(k)), where U(·, ·) is the updating operator managed by the updating agent. This operator

guides the updates from three-folds: 1) removing the agents whose subtasks have been completed; 2)
revising the erroneous agent’s prompts by adding potential solutions provided in the gradient analysis;
and 3) adding new agents for missing subtasks and restructuring the workflows based on the subtask
dependencies noted in the gradient analysis; see the prompt details in Appendix. These adjustments
address existing issues and fulfill unmet requirements in the current generation of the MAC network,
promising improvements in the updated version.

Note that, the key of the textual backpropagation is the prompt designs for both gradient analysis
and network updates. The design must i) thoroughly evaluate the subtask of each agent in the MAC
network according to the objective environment feedback and determine necessary adjustments to
the MAC network to address existing issues, fulfilling the unmet requirements; and ii) maintain
coherence, ensuring that issues identified by the gradient agent can be effectively resolved by the
updating agent’s modifications to the MAC network.

3.2 SELF-EVOLUTION FOR SOFTWARE DEVELOPMENT

In this section, we apply the self-evolving paradigm to the task of software development. The
overall architecture of the proposed self-evolving multi-agent collaboration network for software
development is illustrated in Fig. 1. Given a coding task, the coding team, corresponding to the MAC
network Ag, generates all the codes through its forward-pass; the testing team, associated with the
MAC network At, is responsible for creating the target proxy; that is, unit tests of the coding task; and
the objective environment tool is realized through the compiler. The identified bugs during execution
form the textual environmental feedback. The updating team, consisting of two collaborative agents,
manages the textual backpropagation. By continuously cycling through feed-forward, feedback
collection, and textual backpropagation processes, the coding team is iteratively refined to align more
closely with the test cases.

Since unit test generation is much easier than the original logical code generation, the testing team
usually can produce high-quality test cases, which are closely aligned with the task requirements.
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Figure 3: Comparison between instruction-oriented and requirement-oriented evaluations. rSDE-
Bench accurately reflects requirement fulfillment with the proposed accuracy score of 2/13, while
the indrection evaluation misjudges with high scores (0.89), failing to detect missing functionality.

Then, improving alignment with the unit tests through MAC network updates ensures better adherence
to the actual task requirements.

Coding team for feed-forward. In the feed-forward process, the coding team synthesizes code
according to the given coding task. To handle the extensive software requirements, the coding team
is implemented as a MAC network. It divides the comprehensive requirements into a sequence of
smaller, more specific function implementation subtasks, and progressively conquers them through
the agentic workflow. Unlike existing MAC systems that heuristically decompose coding tasks and
define the agentic workflow, we initialize the MAC network using a novel self-organizing approach.
A coding organizer agent automatically and flexibly decomposes the task requirements into subtasks
and assembles the coding agent team accordingly. The number of coding agents is dynamic, adjusting
in response to the task requirements. Note that, the quality of the generated code is unknown during
the forward pass, which necessitates the self-evolving paradigm to iteratively refine the generation.

Testing team and compiler for feedback collection. To verify whether the generated code meets
the requirements of the coding task, we employ unit tests as the target proxy. These test cases consist
of input-output pairs tailored to specific requirements. For example, a test case for a keyboard control
requirement would detail the type of control as the input and describe the expected behavior as the
output. To create flexible and comprehensive unit tests, we set up the testing team as a MAC network
and also initialize it in a self-organized way. A testing organizer agent automatically decomposes our
specified key testing criteria into subtasks and accordingly forms the testing agent team .

Once the test cases and generated code are ready, they are executed in the compiler, which functions
as the environmental tool, producing execution logs. These logs clearly point out the gap between the
generated code and the test cases. It shows satisfied testing requirements, existing function errors, and
unmet testing requirements. This feedback information can be used to verify whether each agent’s
subtask is accomplished and guide the MAC network update.

Updating team for textual back-propagation. The updating team consists of two collaborative
agents: the gradient agent and the updating agent, adjusting the MAC network based on the execution
logs, including the agent prompts and workflows. This process consists of two steps. First, the
gradient agent summarizes the textual gradient by identifying accomplished subtasks for satisfied
requirements, appending new subtasks for unmet requirements, and analyzing errors to detail their
originating agents and revising suggestions. Second, the updating agent modifies the coding agent
team by removing agents that have completed their subtasks, adding new agents for the new subtasks,
and revising agent prompts to address issues identified in the previous generation. The agent workflow
is updated once the agent team is revised, based on the dependencies among the subtasks.

4 RSDE-BENCH: REQUIREMENT-ORIENTED SOFTWARE DEVELOPMENT
ENGINEERING BENCHMARK

This section introduces rSDE-Bench, a requirement-oriented benchmark designed to assess the
ability of models to handle software-level coding tasks. Each coding task involves multiple detailed
software requirements. These requirements specify each functionality and constraint of the software,
item by item, serving as measurable benchmarks for assessing the software’s effectiveness. As shown
in Fig. 3, unlike previous instruction-oriented approaches Qian et al. (2023); Hong et al. (2023) which
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rely on brief instructions as input, rSDE-Bench uses comprehensive software requirements as input,
complemented by unit test cases to automatically evaluate the correctness. This benchmark provides
software-level coding tasks and automatic evaluation, aligning more closely with real-world software
development practices.
4.1 BENCHMARK CONSTRUCTION

rSDE-Bench involves two typical real-world software types: game and website. They can reflect
different coding capacities demanded in realistic software development. Game often requires handling
dynamic interactions, real-time state changes, and user-driven operations, focusing on elements like
logic execution, initialization, and game state transitions. Website emphasizes static and dynamic
content management, user interaction through forms and buttons, and ensuring page elements are
displayed and functional.

rSDE-Bench involves diverse requirements, each paired with a test case. Specifically, rSDE-Bench
provides 53 unique coding tasks and 616 test cases. rSDE-Bench introduces two requirement
difficulty levels, including basic and advanced, to reflect the varying complexity of real-world
software development tasks. For details on the benchmark construction, software statistics, software
requirements, and test case examples, see Sec. 7 in the Appendix.

4.2 AUTOMATIC EVALUATION

rSDE-Bench supports automatic evaluation of requirement correctness. It achieves this by pairing a
specifically designed black-box test case with each requirement. The test case can directly verify
whether the generated code achieved the requirement. Its evaluation metric is the accuracy, which
quantifies the proportion of correctly passed test cases. It is similar to the pass@1 metric in
HumanEval Chen et al. (2021), which evaluates the pass ratio of correctly achieved functions against
the total functions via unit test verification. It is a fully automated evaluation process, eliminating the
need for human involvement while still providing accurate and reliable assessments.

Previous benchmarks for software code generation mainly rely on two evaluation methods. One
method is human evaluation Hong et al. (2023), which is time-consuming and not scalable for large
datasets. The other method is indirect evaluations Qian et al. (2023), which defines metrics like
consistency, completeness, and quality. Consistency measures how closely the generated software
aligns with the original requirement description by comparing the cosine similarity between the
two. Completeness is determined by detecting the presence of placeholder (such as pass or TODO),
which results in a binary value of 0 or 1. Quality is then calculated as the product of several factors:
consistency, completeness, and executability. As illustrated in Fig. 3, they could not measure the
correctness of the generated code in fulfilling requirements. In contrast, rSDE-Bench’s test cases-
based evaluation is more rigorous and precise. These test cases can accurately verify the correctness of
generated code in fulfilling the requirements. rSDE-Bench promises reliable and scalable automatic
evaluation. We have validated the significant advantages of the proposed automatic evaluation over
the previous metrics, including consistency and quality; see Fig. 4.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Baselines. To validate the effectiveness of our EvoMAC, we conducted comparisons against both
single-agent and multi-agent baselines. The single-agent baselines involve three prominent large
models: GPT-4o-Mini (gpt-4o-mini), Claude-3.5-Sonnet (claude-3-5-sonnet-20240620), and Gemini
(gemini-1.5-flash). For multi-agent baselines, we included five state-of-the-art (SOTA) methods:
MetaGPT Hong et al. (2023), Autogen Wu et al. (2023), Mapcoder Islam et al. (2024), Agent-
verse Chen et al. (2023), and ChatDev Qian et al. (2023). To ensure a fair comparison, all multi-agent
baselines, including our EvoMAC, are powered by the efficient and powerful GPT-4o-Mini model.
Additionally, to demonstrate the adaptability and robustness of our EvoMAC, we developed two
EvoMAC variants using GPT-4o-Mini and Claude-3.5-Sonnet.

Datasets. Our experiments cover both the proposed rSDE-Bench and the standard coding benchmark
HumanEval Chen et al. (2021). HumanEval comprises 164 Python function completion problems,
where the task is to generate code from a single function description.
5.2 EFFECTIVENESS OF RSDE-BENCH’S EVALUATION AND EVOMAC
rSDE-Bench’s automatic evaluation metric (accuracy) is highly aligned with human evaluation.
Our primary goal is to validate the effectiveness of the proposed automatic evaluation in rSDE-Bench
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Figure 4: Performance of four methods in terms of four evaluation metrics, including human
evaluation, our automatic evaluation (accuracy), consistency, and quality. WB/GB and WA/GA
represent Web/Game Basic and Web/Game Advanced respectively. Our accuracy metric is highly
aligned with human evaluation across four dataset settings.

Table 1: Comparison of EvoMAC with five multi-agent and three single-agent SOTA baselines, all
powered by GPT-4o-Mini. Red values represent the percentage improvement of EvoMAC, shade in
pink, over the single-agent baselines, shade in grey.

rSDE-Bench HumanEval
(%)Website(%) Game(%)Method Model

Basic Advanced Basic Advanced Pass@1
Gemini-1.5-Flash 29.79±1.00 11.61±2.34 21.74±6.39 6.45±6.97 73.17
Claude-3.5-Sonnet 58.90±1.48 37.11±1.06 44.20±5.41 18.29±13.26 89.02Single-Agent

GPT-4o-Mini 62.90±2.52 44.40±4.21 42.76±15.50 30.10±11.87 88.41
MetaGPT 15.41±0.00 0.00±0.00 16.67±2.71 0.00±0.00 88.41
Autogen 25.68±4.14 5.40±3.34 17.39±1.78 0.00±0.00 85.36

MapCoder 34.70±1.59 14.57±0.66 29.71±6.72 7.52±6.10 90.85
Agentverse 15.41±0.00 0.00±0.00 37.67±8.20 16.13±4.55 90.85Multi-Agent

ChatDev 62.67±0.28 43.45±0.77 53.63±5.70 32.26±4.55 70.73
89.38±1.01 65.05±1.56 77.54±2.04 51.60±4.54 94.51EvoMAC +26.48 +20.65 +34.78 +21.50 +6.10

by comparing it with two existing evaluation metrics: consistency and quality, both from SRDD Qian
et al. (2023). For a fair comparison, our golden standard is human evaluation, conducted by two
expert code engineers who manually verify the fulfillment of requirements by interacting with the
developed software. This process is tedious, taking around four hours per expert to evaluate the entire
benchmark. The effectiveness of an evaluation metric depends on how closely it aligns with human
evaluation.

Fig. 4 presents the performance of four methods in terms of four evaluation metrics, including human
evaluation, our automatic evaluation, consistency, and quality. We see that: i) our automatic evaluation
is highly aligned with human evaluation across two software types (Website and Game), four methods,
(GPT-4o-Mini, MetaGPT, ChatDev, and our EvoMAC), and two requirement difficulties (Basic and
Advanced). The correlation coefficient between human evaluation and our accuracy metric is 0.9922,
demonstrating the effectiveness of the proposed automatic evaluation in rSDE-Bench; ii) Consistency
and quality metrics differ significantly from human evaluation, with correlation coefficients of 0.2583
and 0.3041, respectively. This discrepancy occurs because consistency in SRDD measures similarity,
and quality in SRDD focuses on executability, which does not guarantee that all requirements
are met. This highlights the need for rSDE-Bench, as the SRDD benchmark does not support
requirement-oriented software development.

EvoMAC outperforms previous SOTAs on both software-level and function-level coding bench-
marks: rSDE-Bench and HumanEval. Tab. 1 compares EvoMAC with five multi-agent and
three single-agent SOTA baselines, all powered by GPT-4o-Mini for a fair comparison. We see
that EvoMAC significantly outperforms previous SOTAs across all datasets. EvoMAC outperforms
single-agent methods by 26.48% on the rSDE-Bench Website Basic and 34.78% on the rSDE-Bench
Game Basic, as well as surpassing existing multi-agent methods by over 20%. This highlights the
effectiveness of multi-agent collaboration and the power of EvoMAC.

5.3 EFFECTIVENESS OF EVOLVING

Fig. 6 shows the accuracy of EvoMAC over multiple evolving iterations on the rSDE-Bench and
HumanEval. Each figure presents two curves: one for EvoMAC powered by GPT-4o-Mini (red) and
the other by Claude-3.5 (blue). We have the following findings:
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(a) Website (b) Game (c) HumanEval
Figure 6: Effect of EvoMAC performance across evolving times empowered by GPT-4o-Mini
and Claude-3.5-Sonnet on Website, Game, and HumanEval datasets. The figure shows EvoMAC
continuously improves with the evolving times on both LLM drives.

Table 2: Ablation study about coding/testing team with
single/multi-agent, with/without evolving, and with/without
environment tool. Best performances are bolded.

Coding Testing Evol. Env. Website(%) Game(%)
Basic Advanced Basic Advanced

a) Single - - - 63.70 41.70 42.76 30.10
b) Multi - - - 67.47 39.27 68.10 41.93
c) Single Single ✓ ✓ 80.82 60.32 71.73 41.93
d) Multi Single ✓ ✓ 83.90 60.72 76.08 41.93
e) Single Multi ✓ ✓ 83.56 61.94 73.91 45.16
f) Multi Multi ✓ - 78.08 52.23 55.80 33.32
g) Multi Multi ✓ ✓ 90.75 67.20 77.54 51.60
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Figure 5: Failure case distribution across
evolving times on Website and Game.

EvoMAC continuously improves with the evolving times. Fig. 6 shows that as evolving iterations
increase, performance consistently improves across all five dataset settings, covering two difficulty
levels, two software types, and both requirement-oriented and function complement benchmarks.
This highlights the effectiveness, generalizability, and robustness of the self-evolving approach,
encouraging EvoMAC to evolve whenever possible.

EvoMAC indistinguishably improves with different driving LLM. From Fig. 6, we see that: i)
both EvoMAC variants continuously improve with evolving iterations, demonstrating the robustness
of the self-evolving design; ii) the two curves do not intersect, indicating that the EvoMAC variant
powered by a more powerful single model consistently outperforms the other, highlighting the
advantage of using a stronger model. Success builds on success.

Failure case analysis. Fig. 5 shows the failure case statistics across iterations for Website and Game,
showing a general decrease in errors as iterations progress. We see that: i) the most common errors
are page display issues in Website and logic errors in Game; ii) page errors are resolved more quickly,
while logic errors persist, suggesting that more isolated issues are easier to fix during the evolution
process. This results in a sharp initial performance improvement as sipler problems are addressed
early, followed by a plateau as more complex issues remain unresolved, shown in Fig. 6.

5.4 ABLATION STUDY

To assess the effectiveness of each component, Tab. 2 details an ablation study featuring seven
EvoMAC variants.

Effectiveness of objective environment feedback. Environment feedback, such as code execution
logs, is essential for software development. Variant f) omits this tool, instead using an LLM-driven
agent to critique the code. Comparing Variant g) with Variant f) shows a notable performance drop:
Website tasks decrease by 12.67% and 14.97%, and Game tasks by 21.74% and 18.28% for Basic and
Advanced levels, respectively. This underscores the importance of objective environmental feedback,
as agent-driven critiques may introduce bias and fail to guide the evolution effectively.

Effectiveness of multi-agent collaboration in coding team and testing team. Comparing Variant
g) to Variant e), we observe a performance decrease of 7.19% and 5.26% on Website Basic and
Advanced respectively, when the coding team is reduced to a single agent. Similarly, comparing
Variant g) to Variant d), there is a performance drop of 6.85% and 6.48% on Website Basic and
Advanced respectively, also when the team is reduced to a single agent. These results demonstrate
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Figure 7: EvoMAC outperforms previous multi-agent and single-agent systems across all the context
lengths across the four dataset settings on rSDE-Bench.

Figure 8: We show the generated code of single-agent, GPT-4o-Mini, and multi-agent systems,
ChatDev, and our EvoMAC (iteration =0/1) given the Website task (RecipeHub). After evolving,
EvoMAC can revise previous issues and fulfill the task requirement.

the necessary for involving multi-agent collaboration, highlighting that multi-agent setups offer more
flexible adjustments and enhanced capabilities for evolution.

Effectiveness in handling varied task token lengths. Fig. 7 shows a comparison of task token
lengths and performance across GPT-4o-Mini, ChatDev, and EvoMAC. We see that: i) EvoMAC
consistently outperforms ChatDev and GPT-4o-Mini across all context lengths, with its self-evolving
mechanism enabling the identification and correction of missed contexts and errors during iterations;
ii) EvoMAC experiences less performance degradation on the rSDE-Bench Website than on the
Game, as Website tasks are more modular and can be broken into subtasks, whereas Game tasks
require more coordinated management, making them more challenging.
5.5 CASE STUDY

Fig. 8 presents the generated code by a single agent, GPT-4o-Mini, multi-agent systems, ChatDev, and
our EvoMAC before and after evolving (iteration=0/1). We see that: i) EvoMAC after evolving can
correct issues from previous iterations and successfully fulfill the task requirements; ii) multi-agent
systems tend to better comprehend the task requirements and produce more well-structured code.
More generated software can refer to Sec. 10 in the Appendix.

6 CONCLUSION

We propose EvoMAC, a novel self-evolving paradigm for MAC networks. EvoMAC iteratively
adapts agents and their connections during the testing phase of each task. It achieves this with a novel
textual back-propagation algorithm. EvoMAC can push coding capabilities beyond function-level
tasks and into more complex, software-level development. Furthermore, we propose rSDE-Bench, a
novel requirement-oriented software development benchmark. rSDE-Bench features both complex
and diverse software requirements, as well as the automatic evaluation of requirement correctness.
Comprehensive experiments validate that the automatic requirement-aware evaluation in rSDE-Bench
aligns closely with human evaluation. EvoMAC outperforms previous SOTAs in both software-level
rSDE-Bench and function-level HumanEval benchmarks.

Future works. In the future, we plan to introduce a reward model to enhance the self-evolving
paradigm’s ability to learn from feedback and extend the rSDE-Bench to more software types.
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APPENDIX

7 BENCHMARK DETAILS

Table 3: Basic statistics for website and game do-
mains, including the amount of samples, prompt
length (mean/max), and number of test cases at
both Basic and Advanced levels.

Benchmark Software Test Case
Amount Length Basic Advanced

Website 45 1011/1553 292 247
Game 8 507/788 46 31
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Figure 9: Statistics of Game and Website tasks.

7.1 FEATURES

Challenging and diverse software requirements. rSDE-Bench features long-context software
requirements (averaging 507/1011 words for game and website tasks, respectively), unlike instruction-
oriented benchmarks Chen et al. (2021); Austin et al. (2021); Jimenez et al. (2023) that rely on
brief prompts. These detailed requirements better reflect real-world lengthy and complex software
development challenges.

Requirement-aware precise and efficient evaluation. rSDE-Bench employs detailed software
requirements and automated unit tests to precisely measure how well generated software meets
its objectives. Generated codes are evaluated based on pass rates from running specific test cases,
offering an accurate and efficient process. In contrast, instruction-oriented benchmarks rely on brief
prompts, which lack constraints and make evaluation less reliable, often requiring labor-intensive or
indirect evaluation.

7.2 CONSTRUCTION PROCESS

Step 1: Software requirement generation. Each task instance begins with the generation of
clear, measurable software requirements. Given the inherent differences across various types of
software, we adopt distinct approaches for their formulation. For game-related software, we focuses
on common real-world games, capturing detailed task requirements such as GUI layout initialization,
interaction methods, and game rules. To align more closely with actual game development practices,
we also include game state logging as part of the software requirements. Due to the complexity
of logic in game software, these requirements are manually crafted by human. In contrast, for
website-related software, we begin with a concise website name, and then leverage the large language
model (gpt-4o-mini) to enrich the requirements according to predefined patterns. This approach
ensures both efficiency and scalability in the creation of benchmarks for websites. By tailoring the
process to the distinct characteristics of each software domain, we maintain precision in requirement
formulation while addressing the unique challenges posed by each context.

Step 2: Requirement-based test cases generation.

As illustrated in Fig 10 and Fig 11, unit tests offer a precise evaluation of software completion. Each
task instance includes black-box unit test cases that correspond directly to the software requirements,
allowing for a quantitative assessment of requirement fulfillment. To further assess the model’s code
generation capabilities, we categorize test cases into two levels of difficulty—basic and advanced,
as outlined in Tab. 3. We also provide an overview of all websites and games in Tab. 4 and
Tab. 5 respectively. As shown in Fig. 9, test cases for website and game software exhibit structural
differences, reflecting the distinct nature of each software type. They enable more targeted evaluation
of code generation capabilities. Thus, similar to software requirements, the test cases are constructed
differently based on the software type. For game-related tests, we manually create test cases,
akin to the HumanEval Chen et al. (2021) benchmark, which tracks state changes in response to
specific inputs. In the game environment, we assess how game states evolve in response to GUI
interactions. For website-related tests, large language model (gpt-4o-mini) generates Selenium-
based test cases aligned with the software requirements, followed by manual corrections to resolve any
ambiguities. This structured approach ensures rigorous evaluation across diverse software domains.
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Table 4: Overview of Websites in rSDE-Bench.

Websites
CharitableGivingPlatform DailyHealthTips DailyJournalApp
EcoFriendlyLivingTips ElderCareResources EventPlanner
FitnessEquipmentRental FitnessTracker FreelancerMarketplace
GreenLivingGuide HealthConsultationPlatform MotivationalQuotesApp
MusicFestivalDirectory NoteTakingApp NutritionInformationHub
OnlineLibraryManagementSystem OnlineTherapeuticJournaling OnlineThriftStore
PeerTutoringNetwork PersonalBlog PersonalFinanceBlog
RecipeHub RemoteInternshipMarketplace RemoteJobBoard
TravelDiary VirtualBookPublishing VirtualWellnessRetreats
DigitalArtworkGallery DigitalStorytellingPlatform ExpenseTracker
FitnessChallenges GardeningForBeginners GourmetFoodSubscription
MovieRecommendationSystem MusicCollaborator OnlineCulturalExchange
OnlineCulturalFestivals OnlineVintageMarket ParentingAdviceForum
PetCareCommunity PortfolioSite SkillShare
TaskManager VolunteerMatch OnlineShoppingCenter

Table 5: Overview of Games in rSDE-Bench.

Games
Balls Tank Racing Ghostly
Mario Bomberman Sokoban Brick

Basic and advanced requirements definition. The basics reflect the fundamental and more achiev-
able requirements, such as interaction, control, and logging. The advanced reflects more complex
software functionalities, such as game logical rules, and dynamic web content management. For
the games, basic requirements involve straightforward user interactions that do not require complex
logic, such as character movement or interacting with simple GUI elements. Advanced requirements
incorporate more intricate logic, such as managing game state transitions based on user actions or
handling conditional game events. These cases focus on ensuring the correct execution of basic
actions. In contrast, advanced cases incorporate more intricate logic, such as managing game state
transitions based on user actions or handling conditional game events. These cases challenge the
model’s ability to generate code that integrates dynamic decision-making and interaction within
the game environment. For websites, basic cases focus on ensuring that the necessary page ele-
ments—such as input fields, buttons, and layouts—are present correctly. These cases assess the
completeness of the webpage’s structure. On the other hand, advanced cases evaluate more complex
functionality, such as handling user authentication, managing dynamic content, or executing specific
operations within a content management system. These cases require the model to generate code that
performs backend logic and manages user interactions at a deeper level.

8 ALGORITHM

In this section, we present the algorithm of EvoMAC in Alg. 1. For more details, please refer to
Section 3.

9 CASE STUDY

9.1 COMPLETE EVOMAC PROCESS

In this section, we show a complete process of EvoMAC on RSD-Bench. Please refer to Tab. 6.
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Task: Develop a simple Sokoban game. You must design a GUI.
Requirements:
1. The game board should be divided into grid squares.
2. Players will control the game using the arrow keys on the keyboard.
3. As the game starts, a log file named 'game.log' should be created to record the game's progress. The content of the 
game.log file should be appended with a new entry after each player action.The content of the game.log file should be 
cleared (if any) at the start of each game session.
Each log entry should follow this format:
{
"timestamp": timestamp,
"EVENT_TYPE": "MOVE_RIGHT" | "MOVE_LEFT" | "MOVE_UP" | "MOVE_DOWN" | "INVALID_MOVE",
"player_position": [x, y],
"box_positions": [[x1, y1], [x2, y2], ...],
"game_status": "ONGOING" | "COMPLETE"
}
4. The victory conditions for the game is: All boxes are pushed onto their corresponding coordinate point.
5. The initial positions of each element are required as follows:
player_position = [1, 1]
box_positions = [[3, 3], [4, 2]]
goal_positions = [[5, 5], [6, 3]]
([3, 3] is the initial position of the first box whose target position is [5, 5]. [4, 2] is the initial position of 
the second box whose target position is [6, 3].)
wall_positions = [[0, 4], [1, 4], [2, 4],[3, 4],[4, 4]]
(the first numnber in each pair is the x-coordinate and the second number is the y-coordinate)

check_Excutablity check_log check_move_right check_move_left check_move_box
check_move_wall check_seqbox check_end check_wrong_end

Software description

Evaluation functions

Figure 10: Test cases of Game in rSDE-Bench.

# Requirement Document for DailyHealthTips Web Application

## 1. Objective
Develop a web application named 'DailyHealthTips' that provides users with daily health tips, allowing them to receive 
advice and information about maintaining a healthy lifestyle, using Python as the development language. Note that the 
website should start from the login page.

## 2. Language
The required development language for the DailyHealthTips web application is Python.

## 3. Page Design

### Page 1: Login Page
- **Page Title**: User Login
- **Overview**: This page allows users to log in to their accounts.
- **Elements**:

- **Username Field**: 
- **ID**: `username_field`

- **Password Field**: 
- **ID**: `password_field`

- **Login Button**: 
- **ID**: `login_button`

…………

test_login_page_elements  test_login_page_functionality  test_daily_tips_page_elements  
test_daily_tips_page_functionality  test_tips_archive_page_elements  test_tips_archive_page_functionality

Software description

Evaluation functions

Figure 11: Test cases of Website in rSDE-Bench.

9.2 UNIT TEST CASE

In this section, we show more unit test cases written by coder on RSD-Bench, please refer to Tab. 13
and Tab. 16.

9.3 UPDATING PROCESS

In this section, we show additional examples of the updating process on RSD-Bench and HumanEval
dataset. Please refer to Tab. 19 and Tab. 22 respectively. For RSD-Bench, due to the code length, we
only show the texture updating process(codes are available at Sec. 9.1). We can see that the updating
agent will adjust the job of each coder dynamically according to the result of test team.

16



Published as a conference paper at ICLR 2025

Algorithm 1 Self-Evolving Paradigm

Require: X ▷ Task input
Require: A(0)

g ▷ Initialized MAC network: agent prompts and pipeline
Require: At ▷ Designed MAC network to generate target proxy
Require: G ▷ Agent-based gradient function
Require: U ▷ Agent-based update function
Require: E ▷ Environment tool to generate loss

1: Define K as the number of self-evolving iterations, Φ as MACN generation process
2: # Target Proxy
3: T = Φ(X,At)
4: # Self-Evolving Procedure
5: for k = 0, 1, . . . ,K − 1 do
6: # Forward Pass
7: G(k) = Φ(X,A(k)

g )
8: # Loss Computation
9: L(k) = ⟨G(k),T⟩E ▷ Use environment feedback as textual loss

10: # Textual Backpropagation
11: ∇L(k) = G(L(k),A(k)

g ) ▷ Summarize textual gradient
12: A(k+1)

g = U(A(k)
g ,∇L(k)) ▷ Update agent prompts and pipeline

13: end for
14: return A(K)

g ,G(K)

10 SOFTWARE PRESENTATION

In this section, we show some games and websites written by EvoMAC. Fig. 12 and Fig. 13 present
the games and websites respectively. We see that: i) EvoMAC outputs games with well-written GUI
and game rules. It can handle different kinds of GUI and game rule requirements from diverse games.
ii) EvoMAC outputs websites with beautified, user-friendly web pages and correct transition logic. It
can handle the requirements of different websites.

17
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Table 6: A complete iteration process of EvoMAC on RSD-Bench

Notation Meaning Example Real example
X Textual description of the

task to be completed.
A coding task such as: "Im-
plement a code that sim-
ulates keyboard input pro-
cessing via Python."

See Tab. 7

Ag MAC network representing
the team responsible for
generating the code.

The coding team consists
of coding agents completing
subtasks in sequence.

See Tab. 8

G = Φ(X,Ag) Generated output produced
by the coding team as a
result of the feed-forward
pass.

The generated
code: ‘...def pro-
cess_input(keyboard_input):
...‘

See Tab. 9

At MAC network representing
the team responsible for
generating the target proxy
(unit tests).

The testing team generates
unit tests for the task.

See Tab. 10

T = Φ(X,At) Target proxy (unit tests)
generated by the testing
team based on the task de-
scription.

Unit tests like: ‘...def
test_press_input(): assert
process_input(’Enter’) ==
’Processed Enter’‘

See Tab. 11

< G,T >E Environmental feedback
comparing the generated
output G with the target
proxy T using an objective
environment (e.g., compiler
or test results).

The environment executes
the generated code against
the unit tests, providing
feedback like: ‘Failure:
test_press_input‘

The execution
outcome of
the unit test
from the
terminal. If
the execution
is successful,
the outcome is
’The software
run success-
fully without
errors.’

min < G,T >E The optimization objective
aiming to minimize the dif-
ference between the gen-
erated output and the tar-
get proxy using the environ-
mental feedback.

Based on feedback, the sys-
tem iteratively refines the
coding team to generate
code that better meets the
task.

See Tab. 12
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Table 7: Textual description of the task to be completed.

Task: Design a Single-Player Tank Battle Game
Requirements:
1. The interface should be divided into a 20x20 grid, though grid lines are not necessary. Each tank
occupies one grid space, while obstacles may occupy multiple grid spaces. The background should be
black, obstacles should be brown, enemy tanks should be silver, and the player’s tank should be yellow.
2. The player can control the tank’s movement using the arrow keys on the keyboard, allowing for
movement one grid space at a time. The ’enter’ key is used to fire bullets.
3. In the game, there are two enemies fixed at a certain position on the game interface, constantly firing
bullets in four directions: up, down, left, and right. Two enemies and players cannot be initialized in the
same row.
4. Both the player and the enemies have their own health points, which are initialized to 200. When hit
by a bullet, the player’s health decreases by 10 and the enemy’s health decreases by 100. When health
points drop to zero, the corresponding tank is destroyed. But the log still records information about the
destroyed tank, with health points of 0.
5. Destroying an enemy tank earns the player 200 points. The game ends when the player’s tank is
destroyed or all enemy tanks are destroyed, at which point the player’s score will be displayed on the
screen.
6. As the game start, a new log file named ’game.log’ should be created to record the game’s progress.
The first log entry should capture the initial state of the game. Each time a new event occurs to the
player, a new log entry should be written in real-time. The logs should follow the format below.
The EVENT_TYPE can only be one of the following: "INIT", "MOVE_LEFT", "MOVE_RIGHT",
"MOVE_UP", "MOVE_DOWN", "FIRE" or "INJURED". The game_state should capture the current
state of the game. In this setup, the position coordinates are defined with the top-left grid as [0, 0], where
the x-coordinate increases by one unit for each grid space moved to the right, and the y-coordinate
increases by one unit for each grid space moved downward. The player is initialized at position [0,0].

{
"timestamp": timestamp,
"EVENT_TYPE": "INIT" | "MOVE_LEFT" | "MOVE_RIGHT" | "MOVE_UP"
| "MOVE_DOWN" | "FIRE" | "INJURED",
"game_state": {

"player": {
"position": [xp, yp],
"health": health_player,
"score": score

},
"enemies": [

{
"position": [xe1, ye1],
"health": health_enemy1

},
{

"position": [xe2, ye2],
"health": health_enemy2

}
],
"obstacle_position": [(xo1, yo1), ..., (xon, yon)]

},
}
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Table 8: MAC network representing the team responsible for generating the code.

{
"composition": {

"Programmer 1": "Implement bullet firing logic that decreases
health points for both the player and enemies when hit. This
includes creating a function to handle bullet movement and
collision detection, updating health points accordingly, and
logging the events in the game.log file.",
"Programmer 2": "Implement health management to check for
health points dropping to zero and handle tank destruction.
This includes creating a function to check health status
after each hit, updating the game state, and logging the
destruction event in the game.log file.",
"Programmer 3": "Implement scoring logic to update the player's
score when an enemy tank is destroyed and display the final
score when the game ends. This includes creating a function
to manage scoring and game-over conditions, and logging the
final score in the game.log file."

},
"workflow": {

"Programmer 1": [],
"Programmer 2": [

"Programmer 1"
],
"Programmer 3": [

"Programmer 2"
]

}
}

20
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Table 9: Generated output produced by the coding team as a result of the feed-forward pass.
Due to the limit of page length, we only show partial of the codes.

'''
This is the main file for the Single-Player Tank Battle Game.
It initializes the game, sets up the GUI, and manages the game
loop, including player movement, enemy behavior, and logging
events.
'''
import pygame
import json
import time
# Constants
GRID_SIZE = 20
CELL_SIZE = 30
WINDOW_SIZE = GRID_SIZE * CELL_SIZE
PLAYER_COLOR = (255, 255, 0) # Yellow
ENEMY_COLOR = (192, 192, 192) # Silver
OBSTACLE_COLOR = (139, 69, 19) # Brown
BACKGROUND_COLOR = (0, 0, 0) # Black
FPS = 60
# Game state
player_position = [0, 0]
player_health = 200
player_score = 0
enemies = [

{"position": [5, 5], "health": 200},
{"position": [10, 10], "health": 200}

]
obstacles = [(3, 3), (7, 7), (12, 12)]
# Log file
log_file = open('game.log', 'w')
initial_state = {

"timestamp": time.time(),
"EVENT_TYPE": "INIT",
"game_state": {

"player": {
"position": player_position,
"health": player_health,
"score": player_score

},
"enemies": enemies,
"obstacle_position": obstacles

}
}
log_file.write(json.dumps(initial_state) + '\n')
# Initialize Pygame
pygame.init()
screen = pygame.display.set_mode((WINDOW_SIZE, WINDOW_SIZE))
pygame.display.set_caption("Tank Battle Game")
clock = pygame.time.Clock()
class Bullet:

'''
This class represents a bullet fired by the player.
'''
def __init__(self, position, direction):

self.position = position
self.direction = direction

def move(self):
if self.direction == 'UP':

self.position[1] -= 1
elif self.direction == 'DOWN':

self.position[1] += 1
elif self.direction == 'LEFT':

self.position[0] -= 1
elif self.direction == 'RIGHT':

self.position[0] += 121
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Table 10: MAC network representing the team responsible for generating the target proxy (unit
tests).

{
"composition": {

"Programmer 1": "Carefully test the logging mechanism
according to the task requirements. Ensure that logs
happen immediately after an action is taken, recording
the most recent state. Verify the logging order, ensuring
basic operations are recorded first, followed by subsequent
events. Check that the data format, keys, and values are
accurate, paying attention to the nested data types and
carefully checking each element.",
"Programmer 2": "Test the logging mechanism for special
triggered conditions, such as when the player's health drops
to zero or when an enemy tank is destroyed. Ensure that these
events are logged correctly and that the game state reflects
the changes accurately.",
"Programmer 3": "Test the value initialization required by
the task to ensure they are correctly achieved. Pay attention
to the coordinates of the player and enemies, ensuring they
are initialized in the correct positions and that no two tanks
occupy the same row.",
"Programmer 4": "Test the function inputs and the global
variables imported in each function. Ensure that the input
values and global variables used in the functions are valid
and involved when the function is called.",
"Programmer 5": "Test that each event in the task is
implemented correctly and that the logic triggered matches
the conditions described in the task. This includes movement,
firing bullets, and health reduction for both the player
and enemy tanks."

},
"workflow": {

"Programmer 1": [],
"Programmer 2": [

"Programmer 1"
],
"Programmer 3": [

"Programmer 1",
"Programmer 2"

],
"Programmer 4": [

"Programmer 1",
"Programmer 2",
"Programmer 3"

],
"Programmer 5": [

"Programmer 1",
"Programmer 2",
"Programmer 3",
"Programmer 4"

]
}

}
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Table 11: Target proxy (unit tests) generated by the testing team based on the task description.
Due to the limit of page length, we only show one test case written by one of the five test coders.

import unittest
import json
import time
from main import player_position, player_health, player_score,
enemies, log_file, log_event, fire_bullet, check_health
class TestTankBattleGame(unittest.TestCase):

def setUp(self):
global player_position, player_health, player_score, enemies
player_position = [0, 0]
player_health = 200
player_score = 0
enemies = [

{"position": [5, 5], "health": 200},
{"position": [10, 10], "health": 200}

]
log_file = open('game.log', 'w')

def tearDown(self):
log_file.close()

def test_move_left(self):
global player_position
player_position[0] = 1 # Move to the right first
log_event("MOVE_LEFT")
player_position[0] -= 1
self.assertEqual(player_position, [0, 0])

def test_move_right(self):
global player_position
log_event("MOVE_RIGHT")
player_position[0] += 1
self.assertEqual(player_position, [1, 0])

def test_move_up(self):
global player_position
player_position[1] = 1 # Move down first
log_event("MOVE_UP")
player_position[1] -= 1
self.assertEqual(player_position, [0, 0])

def test_move_down(self):
global player_position
log_event("MOVE_DOWN")
player_position[1] += 1
self.assertEqual(player_position, [0, 1])

def test_fire_bullet_hit_enemy(self):
global player_score
initial_health = enemies[0]["health"]
fire_bullet()
self.assertEqual(enemies[0]["health"], initial_health - 100)
self.assertEqual(player_score, 200)

def test_fire_bullet_miss_enemy(self):
global player_position
player_position = [0, 0]
fire_bullet()
self.assertEqual(enemies[0]["health"], 200)

def test_player_injury(self):
global player_health
player_health -= 10
log_event("INJURED")
check_health()
self.assertEqual(player_health, 190)

def test_enemy_destruction(self):
global enemies
enemies[0]["health"] = 0
check_health()
self.assertEqual(enemies[0]["health"], 0)

if __name__ == '__main__':
unittest.main() 23
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Table 12: The optimization objective aiming to minimize the difference between the generated
output and the target proxy using the environmental feedback. According to the unit test
results, Updating agent add more notes for the sub-task for Programmer 2 and Programmer 3.
To see a complete updating process, please refer to Sec. 9.3

{
"composition": {

"Programmer 1": "Implement bullet firing logic that decreases
health points for both the player and enemies when hit. This
includes creating a function to handle bullet movement and
collision detection, updating health points accordingly, and
logging the events in the game.log file.",
"Programmer 2": "Implement health management to check for
health points dropping to zero and handle tank destruction.
This includes creating a function to check health status after
each hit, updating the game state, and logging the destruction
event in the game.log file. Additionally, ensure the game loop
terminates properly when the player's tank is destroyed.",
"Programmer 3": "Implement scoring logic to update the player's
score when an enemy tank is destroyed and display the final
score when the game ends. This includes creating a function to
manage scoring and game-over conditions, and logging the final
score in the game.log file. Ensure the final score is
displayed correctly when the game ends."

},
"workflow": {

"Programmer 1": [],
"Programmer 2": [

"Programmer 1"
],
"Programmer 3": [

"Programmer 2"
]

}
}

Table 13: Unit test case: Game

Example 1 Game Ghostly
Requirement(partial) 3. If the ghost controlled by the player eats a

superpellet (the big pellets), it gains the ability
to eat other ghosts.

Subtask given by Test Organizer(partial) "Programmer 5": "Test that each event in the
task is implemented and that the logic triggered
matches the conditions in the task description."

Generated test case(partial) please see Tab. 14
Evaluation test case(partial) please see Tab. 15
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Table 14: The partial generated test case for Game Ghostly.

def test_eat_other_ghost(self):
main.superpellet_active = True # Activate superpellet
main.move_ghost("up") # Move to [1, 0]
# more move_ghost function call omitted here
with open('game.log', 'r') as log_file:

logs = log_file.readlines()
last_log = json.loads(logs[-1])
self.assertEqual(last_log["event_type"], "eat_other_ghost")
self.assertEqual(last_log["ghost_position"], [6, 5])
self.assertNotIn([0, 5], main.other_ghost_positions)

Table 15: The partial evaluation test case for Game Ghostly.

def check_eat_other(self): # Check if Character can eat others
with superpellet

try:
print("==============Test eat other=============")
process = self.start_game()
time.sleep(0.1)
pg.press('right',presses=1,interval=0)
time.sleep(0.1)
# more press omitted here
process.terminate()
print("terminated")
# Read the log
logs = self.read_log()
print(logs)
cnt=0
for log in logs:

if log["event_type"]=="eat_other_ghost":
cnt+=1

if cnt==2:
print("Character can eat other with superpellet\n\n")
return 1

print("Character can eat other with superpellet\n\n")
return 0

except:
print("eat_other error")
return 0

Table 16: Unit test case: Website

Example 2 Website DailyHealthTips
Requirement(partial) please see Fig. 11
Subtask given by Test Organizer(partial) "Programmer 2": "Test whether the first page

of the website is the login page and whether it
can log in correctly based on the example data
provided in the Task."

Generated test case(partial) please see Tab. 17
Evaluation test case(partial) please see Tab. 18
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Table 17: The partial generated test case for Website DailyHealthTips.

'''
Test whether the first page of the website is the login page and
whether it can log in correctly based on the example data
provided in the Task.
'''
import unittest
from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.common.keys import Keys
import time
class TestDailyHealthTipsLogin(unittest.TestCase):

def setUp(self):
self.driver = webdriver.Chrome()
self.driver.get("http://localhost:5000")

def test_login_page(self):
driver = self.driver
# Check if the current page is the login page
self.assertIn("User Login", driver.title)
print("Login page title is correct.")
# Locate username and password fields
username_field = driver.find_element(By.ID, "username_field")
password_field = driver.find_element(By.ID, "password_field")
login_button = driver.find_element(By.ID, "login_button")
# Input example data
username_field.send_keys("john_doe")
password_field.send_keys("securepassword")
login_button.click()
# Wait for the page to load
time.sleep(2)
# Check if redirected to Daily Health Tips page
self.assertIn("Daily Health Tips", driver.title)
print("Successfully logged in and redirected to
Daily Health Tips page.")

def tearDown(self):
self.driver.quit()

if __name__ == "__main__":
unittest.main()
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Table 18: The partial evaluation test case for Website DailyHealthTips.

class TestCase(unittest.TestCase):
def setUp(self):

"""Set up the Selenium WebDriver before each test."""
self.driver = webdriver.Chrome()
self.driver.get("http://localhost:5000")

def tearDown(self):
"""Tear down the WebDriver after each test."""
self.driver.quit()

def login(self):
self.driver.delete_all_cookies()
username = "john_doe"
password = "securepassword"
# Performing login
self.driver.get("http://localhost:5000")
self.driver.find_element(By.ID, "username_field")
.send_keys(username)
self.driver.find_element(By.ID, "password_field")
.send_keys(password)
self.driver.find_element(By.ID, "login_button").click()

# ===== Login Page Tests =====
def test_login_page_elements(self):

# Go back to the login page and check elements
self.assertTrue(self.driver.find_element
(By.ID, 'username_field').is_displayed())
self.assertTrue(self.driver.find_element
(By.ID, 'password_field').is_displayed())
self.assertTrue(self.driver.find_element
(By.ID, 'login_button').is_displayed())

def test_login_page_functionality(self):
# Assume user login is verified by the presence
of daily tips page elements
self.assertIn("User Login", self.driver.title)
username = "john_doe"
password = "securepassword"
self.driver.find_element(By.ID, 'username_field')
.send_keys(username)
self.driver.find_element(By.ID, 'password_field')
.send_keys(password)
self.driver.find_element(By.ID, 'login_button').click()

# Check if we are redirected to the daily tips page
self.assertIn("Daily Health Tips", self.driver.title)

# more test case omitted

Table 19: Updating process on RSD-Bench

RSD-Bench Game Tank Example
Requirement(partial) please see Tab. 7
Initial Code Organizer(iteration 0) please see Tab. 8
Updating agent(iteration 1) please see Tab. 12
Updating agent(iteration 2) please see Tab. 20
Updating agent(iteration 3) please see Tab. 21
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Table 20: Updating process on RSD-Bench Game Tank, iteration 2

{
"composition": {

"Programmer 1": "Fix the health management logic to ensure
that when the player's health drops to zero, the destruction
event is logged correctly, and the game loop terminates
properly. This includes modifying the `check_health` function
to accurately log destruction events for both the player and
enemies.",
"Programmer 2": "Implement the game-over conditions to ensure
that the game ends when the player's tank is destroyed or all
enemy tanks are destroyed. This includes creating a function
to manage the game-over state and logging the final score
in the game.log file."

},
"workflow": {

"Programmer 1": [],
"Programmer 2": [

"Programmer 1"
]

}
}

Table 21: Updating process on RSD-Bench Game Tank, iteration 3

{
"composition": {

"Programmer 1": "Implement constant firing behavior for enemy
tanks in four directions. This includes creating a mechanism
for enemies to fire bullets at the player and logging the
corresponding events.",
"Programmer 2": "Implement the display of the player's score
at the end of the game when the game is over. This includes
modifying the game-over logic to ensure the final score is
logged and displayed correctly.",
"Programmer 3": "Fix the logging mechanism to ensure that
the log file remains open during gameplay and logs events
in real-time without closing prematurely. This includes
reviewing the log_event function and ensuring it is called
correctly throughout the game loop."

},
"workflow": {

"Programmer 1": [],
"Programmer 2": [

"Programmer 1"
],
"Programmer 3": [

"Programmer 1",
"Programmer 2"

]
}

}
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Table 22: Updating process on HumanEval

HumanEval Example
Requirement Write a function that takes a message, and en-

codes in such a way that it swaps case of all
letters, replaces all vowels in the message with
the letter that appears 2 places ahead of that
vowel in the english alphabet. Assume only
letters.

Initial Code Organizer(iteration 0) "Programmer 1": "Identify and implement the
logic to swap the case of all letters in the mes-
sage.", "Programmer 2": "Implement the logic
to replace all vowels with the letter that appears
2 places ahead in the English alphabet."

Generated test case(iteration 0) please see Tab. 23
Main code(iteration 0) please see Tab. 24
Updating agent(iteration 1) "Programmer 1": AssertionError: en-

code(’test’) != ’TGST’. The actual output is:
’TgST’., "Programmer 2": AssertionError:
encode(’This is a message’) != ’tHKS KS C
MGSSCGG’. The actual output is: ’tHkS kS c
MgSScGg’.

Final code(iteration 1) please see Tab. 25

Table 23: Updating process on HumanEval, Generated test case. iteration 0

'''
Write a simple test case to verify the logic of the encode function.
'''
import unittest
from encode_function import encode
class TestEncodeFunction(unittest.TestCase):

def test_example_case_1(self):
self.assertEqual(encode('test'), 'TGST')

def test_example_case_2(self):
self.assertEqual(encode('This is a message'),
'tHKS KS C MGSSCGG')

if __name__ == '__main__':
unittest.main()
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Table 24: Updating process on HumanEval, Main code, iteration 0

'''
def encode(message):

vowels = 'aeiouAEIOU'
encoded_message = []
for char in message:

if char.isalpha():
# Swap case
if char in vowels:

# Replace vowel with the letter 2 places ahead
if char.islower():

new_char = chr(((ord(char) - ord('a') + 2) % 26)
+ ord('a'))

else:
new_char = chr(((ord(char) - ord('A') + 2) % 26)
+ ord('A'))

encoded_message.append(new_char)
else:

# Just swap case for consonants
encoded_message.append(char.swapcase())

else:
# If it's not a letter, we can just append it as is
encoded_message.append(char)

return ''.join(encoded_message)

Table 25: Updating process on HumanEval, Final code, iteration 1

'''
def encode(message):

vowels = 'aeiouAEIOU'
encoded_message = []
for char in message:

if char.isalpha():
# Swap case
if char in vowels:

# Replace vowel with the letter 2 places ahead
and swap case
if char.islower():

new_char = chr(((ord(char) - ord('a') + 2) % 26)
+ ord('a')).upper()

else:
new_char = chr(((ord(char) - ord('A') + 2) % 26)
+ ord('A')).lower()

encoded_message.append(new_char)
else:

# Just swap case for consonants
encoded_message.append(char.swapcase())

else:
# Preserve spaces
encoded_message.append(char)

return ''.join(encoded_message)
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(a) Balls (b) Bomberman

(c) Mario (d) Tank

(e) Brick (f) Ghostly
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(g) Racing (h) Sokoban

Figure 12: Games generated by EvoMAC.

(a) CharitableGivingPlatform (b) GardeningForBeginners

(c) PersonalBlog
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(d) GourmetFoodSubscription (e) OnlineTherapeuticJournaling

(f) MusicFestivalDirectory

Figure 13: Websites generated by EvoMAC.
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