
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ANIMALGS: 4D ANIMAL RECONSTRUCTION FROM
MONOCULAR VIDEO WITH 3D GAUSSIAN SPLATTING
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Figure 1: Given a monocular video of an animal (top), AnimalGS produces a high-fidelity, consistent
4D model (bottom), enabling free-viewpoint rendering across both time and viewing angles. Center:
canonical 3D Gaussians colored by skinning weights.

ABSTRACT

Reconstructing 4D animals from monocular videos is challenging due to large
inter-species variation, complex articulations, and the lack of reliable templates. We
introduce AnimalGS, a test-time optimization framework built on a 3D Gaussian
Splatting representation for high-fidelity 4D reconstructions from single videos.
Grounded in the insight that robust reconstruction emerges from pose-guided
optimization rather than strict shape priors, AnimalGS treats priors as coarse initial-
izations and integrates joint-aware and symmetry-aware designs to progressively
disentangle motion and appearance. This leads to empirically strong generalization
across diverse species and robustness to mismatching with shape priors. Extensive
experiments demonstrate the superior performance of our approach 1 in geometry,
motion, and temporal consistency across a wide variety of animal species.

1 INTRODUCTION

Animals in the natural world display a stunning diversity of shapes and behaviors. Accurately
reconstructing their 3D shape and motion from visual data is crucial for various applications ranging
from wildlife monitoring, animal conservation and ethology research, to immersive media content
creation. Despite the wide accessibility of monocular video, the task of creating realistic 4D animal
models from monocular video presents a significant challenge in computer vision. This is primarily

1Our code and results are to be published upon paper acceptance.
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due to the inherent complexity of animal morphology and behaviors, as well as the fact that their
appearance and motion are only partly observable from a monocular video.

The task of animal reconstruction presents unique challenges compared to 3D human reconstruction.
Human models, such as SMPL (Loper et al., 2023; Pavlakos et al., 2019), benefit from well-studied
anatomical structures and abundant 3D motion capture datasets. In contrast, animals of diverse species,
ranging from camels, elephants to birds, exhibit extreme shape and motion variations, yet very little
animal motion capture benchmarks are available. The pioneer SMAL model (Zuffi et al., 2017) is a
parametric SMPL-like animal model learned from a limited collection of toy figurines; it captures
a rather limited category of species and lacks realistic details of shape and motion. The dilemma
of both scarcely labeled, partially observable animal data, and extraordinarily diverse shape &
motion variations across animal species, forces a trade-off where, category-specific methods (Badger
et al., 2020; Wang et al., 2021; Wu et al., 2023; Rueegg et al., 2022; Rüegg et al., 2023) achieve
higher reconstruction quality by training on annotated dataset but struggle with generalization, while
category-agnostic approaches (Li et al., 2024; Aygun & Mac Aodha, 2024; Jakab et al., 2024) improve
coverage at the cost of reconstruction fidelity. It motivates us to consider an alternative pathway of
learning-based test-time optimization that does not require training from a labeled dataset, except for
having a prior model to facilitate our initial shape reconstruction.

Extending to 4D reconstruction from monocular videos reveals a fundamental tension between
representation flexibility and computational efficiency. Mesh-based methods (Yang et al., 2021a;b;
Sabathier et al., 2024) are efficient but topologically constrained, while neural implicit methods (Yang
et al., 2022; 2023a) offer flexibility at prohibitive computational costs. Recent 3D Gaussian Splatting
approaches (Kerbl et al., 2023; Lei et al., 2024) provide a middle ground but still rely on parametric
templates. Diffusion-driven methods (Ren et al., 2024a; Jiang et al., 2025) achieve impressive
synthesis but sacrifice input fidelity. Existing methods either depend on rigid templates that limit
generalization or generative priors that compromise reconstruction accuracy. We argue this trade-off
stems from treating shape priors as strict constraints rather than flexible initializations.

Inspired by the above observations, we present AnimalGS, a pose-guided test-time optimization
framework built on 3D Gaussian splatting. Our key insight is that robust 4D animal reconstruction is
not dependent on highly accurate shape priors, which is contrary to common assumptions. Specifically,
AnimalGS treats the animal shape prior as a coarse initialization and employs a hierarchical two-stage
strategy: first, articulated motion is refined using joint-aware anchors together with a symmetry-
aware temporal encoding that exploits bilateral cues to stabilize poses; second, non-rigid effects are
captured via pose-guided deformation conditioned on global articulation context. This progressive
disentanglement of motion, geometry, and appearance enables temporally coherent reconstructions
across diverse species and behaviors.

In summary, our approach features the following key contributions:

• A novel test-time optimization framework is proposed, enabling 4D reconstruction of shapes
and behaviors of a wide variety of animals from single monocular videos. This is achieved
without access to well-annotated training dataset, or additional input requirement such as
multi-view generative priors and category-specific shape templates.

• Our framework consists of two stages: a pose refinement stage followed by a pose-guided
deformation stage (Figure 2). By introducing joint-aware anchors and symmetry-aware
encoding, it progressively disentangles motion and appearance, enabling robust optimization
even under inaccurate initialization.

• Extensive experiments demonstrate state-of-the-art performance across diverse animal
species and behaviors. AnimalGS achieves 16.5% higher PSNR than prior work on APT-v2
(Table 1) and uniquely maintains quality on short sequences where existing methods fail.

2 RELATED WORK

3D Animal Reconstruction. Reconstructing 3D animals is more challenging than reconstructing
humans due to interspecific variation, complex articulations, and limited 3D data. Parametric models
such as SMAL (Zuffi et al., 2017) provides the first skinned multi-animal template from toy figurines,
following by various extensions and refinement (Zuffi et al., 2018; 2019; Rueegg et al., 2022; Rüegg
et al., 2023). CSM-based methods (Kulkarni et al., 2019; 2020) predict dense image-to-surface

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

mappings but remain tied to predefined templates. Template-free methods (Yao et al., 2022; 2023;
Liu et al., 2023a) discover parts and skeletons from sparse images through optimizing primitive
part representation. Recent learning-based approaches scale to Internet data: UMR (Li et al., 2020),
MagicPony (Wu et al., 2023), and Farm3D (Jakab et al., 2024) learn category-specific models,
whereas FAUNA (Li et al., 2024) and SAOR (Aygun & Mac Aodha, 2024) aim for category-agnostic
reconstruction. The evolution in 3D animal priors has grounded a natural basis for 4D reconstruction,
yet they are often treated as fixed constraints, and are severely limited in generalizing to unseen
animal species. Instead, shape prior is engaged in our approach as merely coarse initialization, which
has been empirically demonstrated to notably contribute to flexible and faithful 4D recovery across
species.

Dynamic Animal Reconstruction Extending static 3D models to capture temporal dynamics
from monocular videos remains a central challenge in animal reconstruction. Deformation-based
approaches (Yang et al., 2021a;b; Wu et al., 2022) represent objects by deforming an initial sphere
mesh with fixed face connectivity, which struggle to recover fine surface details due to the limitations
of template reliance. Yang et al. (2022; 2023a) adopt NeRF-based representations for greater
topological flexibility but suffer from prohibitive computational costs and lack explicit surface
geometry. Hybrid explicit approaches (Sabathier et al., 2024; Lei et al., 2024) have recently emerged,
among which GART (Lei et al., 2024) is highlighted for leveraging BITE initialization (Rüegg et al.,
2023) and combining it with 3D Gaussian Splatting (Kerbl et al., 2023), allowing for more flexible
shape representation. In spite of substantial progress, existing methods remain constrained by relying
on fixed mesh topologies or category-specific templates, and typically fail to provide a systematic
framework for jointly refining pose and shape under severe prior mismatches. In contrast, our method
employs a progressive, pose-guided optimization strategy that allows the coarse prior to evolve during
reconstruction, enabling robust adaptation to diverse animal species.

Gaussian Splatting for Dynamic Scenes 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023)
revolutionizes novel view synthesis by providing an explicit, flexible representation that achieves
real-time performance with high fidelity. For dynamics, time-augmented 3DGS (e.g., 4DGS, Grid4D,
Hybrid 3D–4D) encodes temporality in Gaussians but scales poorly with sequence length (Wu et al.,
2024; Jiawei et al., 2024; Oh et al., 2025). Deformation-based variants keep a canonical 3DGS
and learn warps (Deformable3DGS, SC-GS; spline extensions) for compact memory and smooth
motion (Yang et al., 2024; Huang et al., 2024; Song et al., 2025). We adopt the deformation paradigm
and drive warps with pose cues to improve temporal coherence for articulated animals.

Video-to-4D Generation A parallel line of work leverages generative priors for video-to-4D
synthesis. Zero-1-to-3 (Liu et al., 2023b) pioneered this direction by leveraging diffusion models
to hallucinate novel views from a single image. SV4D (Xie et al., b) and SV4D 2.0 (Yao et al.,
2025) extend this concept to videos, enforcing multi-frame and multi-view consistency. However,
these methods struggle with long video sequences, often losing geometric detail and requiring fixed-
length inputs. Other methods that directly generate 4D models, such as Splat4D (Yin et al., 2025),
L4GM (Ren et al., 2024a), and GVF-Diffusion (Jiang et al., 2025) usually demand large model
ensembles and high memory usage. They will also produce results with significant inconsistencies in
both appearance and shape compared to the input video. In contrast, we pursue reconstruction-only
supervision from the input video, avoiding generative mismatch while retaining faithfulness.

3 OUR APPROACH

Our goal is to recover time-varying 4D representations of animals from a monocular video sequence
{It}Tt=1 using a canonical-deformation formulation. A canonical 3D Gaussian Splatting model
Gcan undergoes hierarchical transformation: first through articulated pose refinement (Gt

pose), then
pose-guided non-rigid deformation (Gt

deform). The following sections detail initialization (Sec. 3.1),
pose refinement (Sec. 3.2), deformation modeling (Sec. 3.3), and self-supervised optimization (Sec.
3.4), with the complete pipeline illustrated in Figure 2 with a cow video as an example.
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Figure 2: AnimalGS pipeline overview. From a monocular video input, an initial animal representa-
tion is constructed with the Fauna prior (Sec. 3.1), as 3DGS initialization, i.e. a canonical 3D Gaussian
set Gcan. This is then followed by two stages. The Pose Refinement stage integrates learnable joint
anchors and time step encoded by a symmetry indicator to estimate articulated transformations,
yielding intermediate representations Gt

pose (Sec. 3.2). The Pose-Guided Deformation stage then
predicts non-rigid displacements to obtain the final time-specific representation Gt

deform (Sec. 3.3).
Right: The resulting 4D representation can be rendered from arbitrary viewpoints and time steps.

3.1 INITIALIZATION FROM PRIOR

We initialize our canonical model using outputs from Fauna (Li et al., 2024), which provides a coarse
category-agnostic estimate of animal shape and pose from a single image. Given an input frame
It, Fauna predicts (V t,W t, Ct, P t) = F (It), where V t ∈ RNv×3 are mesh vertices in rest pose,
W t ∈ RNv×J are skinning weights, Ct ∈ R4×4 is the camera pose, and P t ∈ RJ×4×4 are joint
transformations. Since vertices and skinning weights vary across frames, we use only the first-frame
outputs (V 1,W 1) for initialization and omit superscripts for clarity. Note that Fauna also predicts
per-frame deformed meshes, but we discard them and retain only the coarse rest-pose shape for
canonical initialization, as subsequent deformations are explicitly modeled within our framework.
Inspired by Jiang et al. (2022); Lei et al. (2024), we further embed W into a voxel grid to enable
trilinear interpolation for dynamically created Gaussians during adaptive density control.

Following Kerbl et al. (2023), we represent canonical 3D Gaussian as Gcan = {x,q, s,α, c}, where
each Gaussian is parameterized by its center x, orientation quaternion q, scale s, opacity α, and
view-dependent spherical harmonic coefficients c. We initialize the Gaussian centers x from the
rest-pose mesh vertices V , while other attributes are randomly initialized.

3.2 POSE REFINEMENT

Initial per-frame poses P t predicted by the prior model are often unreliable due to limited views
and articulation ambiguity in real-world videos. Our pose refinement module improves robustness
by estimating per-joint transformations for linear blend skinning (LBS), mapping the canonical
representation Gcan to posed states Gt

pose.

Instead of relying directly on noisy joint detections, we introduce learnable joint anchors that provide
a stable articulation-aware representation. To incorporate bilateral symmetry, we design a symmetry-
aware temporal encoding:

emt = emb(t ·m)⊕m, m ∈ {−1, 1}, (1)

where m is a symmetry indicator distinguishing original (m=1) from flipped (m=−1) views, and ⊕
denotes vector concatenation. This encoding ensures flipped frames are treated as mirror-symmetric
counterparts rather than independent temporal observations, enabling consistent use of symmetry
cues (see Sec. 3.4 for details).

Anchors combined with emt are processed by a self-attention block to produce joint-specific temporal
features FJ

t ∈ RJ×K . These features are then projected to per-joint transformations P t
linear ∈
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RJ×7 (quaternion rotation and translation) and also forwarded to the subsequent deformation stage,
providing a temporal and joint-aware context. As illustrated in Figure 2, applying LBS with P t

linear
updates Gaussian centers x and orientations q, yielding the posed Gaussian Gt

pose = {x′,q′, s,α, c}.

3.3 POSE-GUIDED DEFORMATION

While LBS-based pose refinement captures articulated motion, real animals exhibit complex non-rigid
effects that cannot be modeled by skeletal transformations alone. Our pose-guided deformation
module addresses this by predicting pose-conditioned, spatially varying offsets (dt

x,d
t
q,d

t
s) to refine

the Gaussian representation beyond articulation.

The key observation is that non-rigid deformations are tightly coupled with articulated pose, e.g.
muscle bulging or skin motion varies with joint configuration. To capture this dependency, we adopt a
cross-attention mechanism that conditions local Gaussian deformations on global joint-aware context.
As shown in Figure 2, queries are constructed from Gaussian attributes—centers x′ (with positional
encoding), posed orientations q′ and scales s—while the joint-aware features Ft

J from the pose
refinement module serve as keys and values. Using quaternion multiplication ⊗, the final deformed
representation is Gt

deform =
{
x′ + dt

x, q
′ ⊗ dt

q, s+ dt
s, α, c

}
. We deform only the geometric

parameters while preserving appearance (α, c), ensuring consistent texture and color across time.

3.4 OPTIMIZATION

We optimize AnimalGS through test-time optimization on each input video. The overall objective is:

Ltotal = Lpose + Ldeform + Lsmooth, (2)

where Lpose corresponds to the pose refinement stage, Ldeform to the pose-guided deformation stage,
and Lsmooth is a regularization term. We use a differentiable Gaussian rasterizer (Kerbl et al., 2023)
to render RGB images Î , silhouettes Ŝ, and normal maps N̂ from G with camera parameters C.
Supervision combines photometric and silhouette objectives:

Lrgb(·) = (1− λssim) L1(·) + λssimLssim(·), Lsil(·) = Lbce(·) + Ldice(·). (3)

with λSSIM = 0.2 in all experiments. All terms follow standard definitions.

Pose Refinement Loss The pose refinement stage uses silhouette-only supervision to isolate
articulated motion from appearance, preventing texture artifacts from corrupting pose estimates while
ensuring robust geometric alignment. Non-pose parameters are detached during rendering to block
appearance-driven gradients, so that the posed Gaussian is represented as Gt

pose = {x′,q′, detach(s+
dt
s,α, c)}, where adding the scale offset dt

s can stabilizes downstream optimization without affecting
pose gradients. The loss combines silhouette supervision with optional prior regularization:

Lt
pose = λpose · Lsil(Ŝ

t
pose, S

t
SAM) + λprior(t) · ∥P̂t

linear −Pt∥2, (4)

where Ŝt
SAM are masks from Grounded-SAM (Ren et al., 2024b), λpose = 0.2, and λprior(t) =

1[t≤4000] provides early guidance.

Pose-Guided Deformation Loss Unlike pose refinement, which focuses only on articulated align-
ment, the deformation stage jointly optimizes all Gaussian parameters—including appearance—to
capture fine-grained details beyond skeletal motion. Given the deformed representation Gt

deform, we
supervise both silhouettes and RGB renderings:

Lt
deform = Lrgb(Î

t
deform, I

t) + Lsil(Ŝ
t
deform, S

t
SAM), (5)

where Ŝt
deform and Îtdeform denote the rendered silhouette and RGB image from Gt

deform, and It is the
input frame. This stage ensures accurate geometry while recovering realistic textures and capturing
non-rigid deformations.

Smoothness Regularization To improve geometric stability, we regularize surface normals under
random views of the deformed 3D Gaussians Gt

deform. For each rotated view θ, we render a silhouette

5
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Figure 3: Visual comparison with the SOTA methods of Fauna (Li et al., 2024), GART (Lei et al.,
2024), D-3DGS (Yang et al., 2024), GVFDiffusion (Jiang et al., 2025), at two randomly chosen time
steps, t and t′.

Ŝt
θ and normal map N̂ t

θ , and penalize local angular variation using a total-variation style loss with
absolute cosine similarity to avoid inward and outward facing ambiguities.

Lsmooth = λsmooth

∑
d∈{x,y}

∑
i,j w

d
i,j

(
1− |N̂ t

θ(i, j)·N̂ t
θ(i+ δd, j + δ′d)|

)∑
i,j Ŝ

t
θ(i, j) · Ŝt

θ(i+ δd, j + δ′d) + ϵ
, (6)

We use unit offsets (δx, δ
′
x) = (0, 1) and (δy, δ

′
y) = (1, 0), and λsmooth(t) = 1[7000<t<14000] only

activates at mid-training to avoid over-smoothing. This encourages view-invariant normal smoothness,
reducing noise and flickering in novel-view renderings.
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Table 1: Input-view quality on three datasets. Best in bold, second best underlined.

DAVIS Online APTv2

Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Fauna (Li et al., 2024) 18.281 0.761 0.280 16.669 0.774 0.279 19.561 0.760 0.267
D-3DGS (Yang et al., 2024) 23.569 0.924 0.109 22.726 0.913 0.116 19.922 0.861 0.167
GART (Lei et al., 2024) 19.486 0.810 0.201 21.006 0.841 0.181 18.564 0.807 0.168
GART (w/ tto) (Lei et al., 2024) 21.347 0.859 0.171 23.128 0.883 0.158 19.167 0.834 0.150
GVFDiffusion (Jiang et al., 2025) 16.419 0.836 0.174 16.835 0.857 0.167 14.820 0.778 0.256
Ours 25.720 0.911 0.087 25.464 0.912 0.089 23.843 0.860 0.140

Table 2: Novel-view quality on three datasets. Best in bold, second best underlined. A dash indicates
metric not reported by the method.

DAVIS Online APTv2

Method KID-16V↓ FVD-F↓ FVD-Diag↓ KID-16V↓ FVD-F↓ FVD-Diag↓ KID-16V↓ FVD-F↓ FVD-Diag↓

Fauna (Li et al., 2024) 0.279 — — 0.334 — — 0.247 — —
D-3DGS (Yang et al., 2024) 0.211 1176.787 1042.756 0.213 1162.396 1265.113 0.326 1245.334 1182.464
GART (Lei et al., 2024) 0.216 1750.899 1675.388 0.233 1470.950 1547.561 0.230 1355.4969 992.195
GART (w/ tto) (Lei et al., 2024) 0.208 1680.705 1579.871 0.238 1473.927 1364.587 0.228 1134.661 948.274
GVFDiffusion (Jiang et al., 2025) 0.145 1872.192 1270.189 0.179 1673.419 1387.732 0.274 1715.471 1575.461
Ours 0.144 897.713 810.408 0.156 1003.253 1162.509 0.166 992.239 887.060

Bilateral Symmetry Augmentation Naively treating flipped frames as independent samples
discards their inherent geometric relationship. Meanwhile, imperfect camera calibration prevents
strict symmetry enforcement, leading to ambiguity and conflicting supervision. To leverage symmetry
without introducing noise, we build on the symmetry-aware encoding in Eq. 1 and construct four
augmented samples for each frame It under two geometric interpretations:

Vorig = {(It, Ct, P t), (Itflip, C
t
sym, P

t
flip)} (m = 1), (7)

Vflip = {(Itflip, C
t
flip, P

t
flip), (I

t, Ct
flip,sym, P

t)} (m = −1), (8)
with symmetric cameras Csym = MC computed via sagittal plane reflection.

This augmentation enriches supervision by exposing the model to both original and mirrored in-
terpretations, while the symmetry indicator ensures consistent temporal encoding and suppresses
calibration inconsistencies. As a result, bilateral symmetry is enforced effectively, leading to more
stable geometry and motion reconstruction.

Stabilization Strategies. We employ a pose blending with annealing scheme to enable stable refine-
ment. The predicted pose P̂t

linear is blended with the prior pose to produce the final transformation:

Pt
linear = w(t) ·Pt + (1− w(t)) · P̂t

linear, (9)
where w(t) anneals from 1 to 0 over 7K iterations. This allows gradual refinement from the ini-
tialization while enabling joint optimization of all modules from the start, preventing overfitting to
inaccurate priors. In addition, we adopt the annealing smooth training mechanism (Yang et al., 2024),
which injects decaying Gaussian noise into the temporal coordinate t during early iterations. This
improves temporal smoothness under pose inaccuracies without incurring extra overhead.

4 EXPERIMENT

4.1 DATASET

We collect 87 videos from three sources: online collection (11 videos), DAVIS (Perazzi et al., 2016) (8
videos), and APTv2 (Yang et al., 2023b) (68 videos). For APTv2, all videos contain 15 frames, except
for two, which were manually composed by concatenating similar clips. We design a semi-automatic
preprocessing pipeline: first, we extract animal masks using Grounded-SAM (Ren et al., 2024b) with
category text prompts and compute smoothed bounding boxes, then estimate animal and camera
parameters for both original and horizontally flipped sequences using Fauna (Li et al., 2024). Finally,
we select temporally stable frames via DBSCAN clustering (Ester et al., 1996) on camera trajectories
and sample every fifth frame for testing, resulting in a 4:1 train/test split.

7
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Table 3: Ablation study on our online collections.
Best in bold, second best underlined.

Input View Novel View

Variant PSNR↑ SSIM↑ LPIPS↓ KID-V↓ FVD-F↓ FVD-Diag↓

random Init 25.052 0.905 0.105 0.216 1061.154 1219.191
w/o Deform 24.394 0.896 0.098 0.176 1051.321 1305.3614
w/o Joint Anchors 25.462 0.912 0.088 0.163 965.899 1130.662
w/o Symmetry Encoding 25.244 0.909 0.096 0.156 959.335 1154.033
w/o Lspin 25.426 0.911 0.089 0.170 969.896 1217.878
full 25.464 0.912 0.089 0.162 1003.253 1162.509 Figure 4: User study preference scores

across four perceptual dimensions.

Figure 5: Novel-view synthesis under ablations, showing degraded reconstructions without certain
components, while the full model remains stable and accurate.

4.2 IMPLEMENTATION DETAILS

We implement our method in PyTorch. Optimization is run for 20K iterations on DAVIS and online
videos, and 10K on APTv2. Each iteration trains on Vorig or Vflip group. The symmetric augmentation
only guide the final pose-guided deformation stage. All Gaussian parameters follow the learning rate
schedule of 3DGS, and other modules are optimized with a single Adam (Kingma & Ba, 2015) with
an exponentially decaying learning rate from 8× 10−4 to 1.6× 10−4. Rendering speed scales with
the number of optimized Gaussians; on the online collection, we achieve an average of 109.9 FPS,
and on DAVIS, 110.7 FPS, measured on a single NVIDIA A6000 GPU at resolution 512× 512.

4.3 RESULTS AND COMPARISONS

Baselines We compare to 4 state-of-the-art methods representing different reconstruction paradigms:
(1) Fauna (Li et al., 2024): Learning-based single-image 3D reconstruction, also serving as our
initialization prior; (2) GART (Lei et al., 2024): Test-time optimization using SMPL/SMAL priors
for articulated 3D reconstruction from monocular video. We report both GART (optimized on
training frames only) and GART (w/ tto), where the model is further refined on test frames, following
their original evaluation protocol; (3) D-3DGS (Yang et al., 2024): Dynamic 3DGS with learnable
deformation fields; (4) GVFDiffusion (Jiang et al., 2025): 4D reconstruction using pretrained 3D
diffusion models (Trellis (Xiang et al., 2025)). For fair comparison, we enhance GART and D-3DGS
with flip augmentation, treating flipped frames as new timestamps to avoid shape aliasing.

Input-view reconstruction Table 1 reports the input-view reconstruction results on DAVIS, Online,
and APTv2, evaluated on test-set frames. Our method achieves the best PSNR and LPIPS across all
three datasets, significantly outperforming prior works. Although D-3DGS obtains slightly higher
SSIM, our method remains highly competitive while consistently providing superior perceptual
quality. These results indicate that our approach faithfully reconstructs the observed views with both
high fidelity and realism.

Novel-view reconstruction Table 2 reports novel-view quality. For Fauna, we only report KID-16V
since it is single-image based. We follow Xie et al. (a) and adopt FVD-F (temporal coherence at a
fixed view) and FVD-Diag (spatio-temporal consistency). Since FVD-V requires equal frame/view

8
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counts and biases results on long videos, we instead introduce KID-V (See Figure 7), which uniformly
samples novel views and computes Kernel Inception Distance (Bińkowski et al., 2018). KID-V is
unbiased and stable even with few images, making it well-suited to our limited-view-per-time setting.
KID-V is measured on novel views from the test set, while FVD-V and FVD-Diag computed over the
entire generated video. As shown in Table 2, our method achieves state-of-the-art performance across
most metrics, with consistently strong results on all datasets. Our method remains top-ranked overall.

Qualitative Comparison Figure 3 shows reconstructions across four species. Fauna (Li et al., 2024)
produces only coarse shapes with approximate color. GART (Lei et al., 2024) and D-3DGS (Yang
et al., 2024) capture body motion but fail on limbs—notably missing the stork’s legs entirely.
GVFDiffusion (Jiang et al., 2025) struggles with short sequences, producing distorted artifacts on
APTv2 clips and hallucinating extra legs on the stork despite reasonable cow reconstruction. In
contrast, our method achieves faithful, temporally consistent results across all species, preserving
fine details in both input and novel views.

Ablation Study Table 3 quantifies each component’s contribution. Since no ground-truth novel
views exist, current metrics are only approximate: FVD favors temporal smoothness, while KID
and FVD cannot capture shape integrity or motion naturalness. This explains the gap between
numerical scores and the visual quality in Figure 5, where our full model yields superior geometry
despite comparable metrics. Qualitative results further reveal characteristic failure modes: missing
joint anchors or random initialization lead to severe shape errors, removing symmetry encoding
or deformation degrades pose and motion, and omitting Lsmooth introduces surface artifacts. These
observations validate the necessity of our complete framework, while highlighting the need for
perceptually aligned metrics in future evaluation.

User study Since existing quantitative metrics may not fully capture the perceptual quality of novel-
view synthesis, we conducted a user study with 56 participants evaluating 15 videos sampled from
our three datasets. Participants were asked to rank 4 methods (Ours, GART, D-3DGS, GVFDiffusion)
along 4 perceptual dimensions: temporal stability, motion naturalness, appearance fidelity, and shape
integrity. Rankings were converted to scores (4=best, 1=worst) and averaged. As shown in Figure 4,
our method consistently achieves the highest preference scores across all dimensions, indicating
superior perceptual quality compared to all baselines. See A.3 for detailed protocols.

4.4 DISCUSSION AND LIMITATION.

Our results highlight that treating animal priors as coarse initialization, rather than strict constraints,
enables robust 4D reconstruction across species. Unlike recent diffusion-based approaches that
prioritize plausibility over fidelity and degrade with limited frames, our optimization-based framework
emphasizes realistic reconstruction that remains closely aligned with the input video even with severe
prior mismatches. This suggests a broader lesson for articulated non-human reconstruction: balancing
prior knowledge with optimization flexibility is key to realism and generalization. Nevertheless, our
approach still struggles under limited viewpoints, inaccurate camera priors, or strong occlusions, and
subtle head motions remain challenging as silhouettes provide insufficient 3D cues. Future work
could incorporate stronger geometric supervision (e.g., depth, keypoints) or learned deformation
priors to address these limitations.

5 CONCLUSION

We presented AnimalGS, a test-time optimization framework for 4D animal reconstruction from
monocular video. Our key insight that robust reconstruction arises from pose-guided optimization
rather than accurate shape priors enables generalization without multi-view supervision or category-
specific templates. By introducing joint-aware anchors and symmetry-aware encoding, our method
disentangles motion from appearance and remains robust to prior mismatches. Extensive experiments
across diverse species demonstrate clear improvements over state-of-the-art baselines in both recon-
struction quality and temporal consistency, validated through quantitative metrics and user studies.
While developed for animals, these principles may extend to other non-rigid objects, suggesting
hybrid approaches that couple optimization precision with stronger geometric cues and multi-view
synthesis.
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS

In the process of preparing this paper submission, Large Language Models (LLMs) were used only
as a writing-assist tool. Specifically, they were used to polish the text for better clarity and fluency, as
well as to correct minor grammatical errors. The LLMs didn’t contribute to the research ideation,
methodology, or substantive writing of the paper. The authors take full responsibility for all the
submitted contents.

A.2 EFFECT OF INITIALIZATION STRATEGIES

Figure 6 compares different initialization strategies for our 3D Gaussian representation. With prior-
based initialization, the canonical space already provides a coarse but structured shape, leading to
stable canonical 3DGS and skinning weights. In contrast, random initialization starts from an unstruc-
tured point cloud that produces unstable intermediate results in the canonical stage. Nevertheless,
optimization can still converge to a configuration compatible with the skinning weights, although the
process is less stable and less reliable than with prior guidance.

A.3 EVALUATION PROTOCOL OF USER STUDY

We conducted a user study with 56 participants, evaluating reconstruction results of animal videos
sampled from our three datasets. Among them, 8 participants had prior experience in 3D modeling,
while the remaining participants had no such experience. Each participant was asked to rank four
reconstruction methods (Ours, GART, D-3DGS, GVFDiffusion) across four perceptual dimensions.

A total of 56 participants evaluated the reconstructed animal videos using a comprehensive rating
system. Four methods were ranked from best to worst across four evaluation dimensions: Q1: 3D
Temporal Stability (consistency of reconstructed shape and texture over time), Q2: Animal Motion
Naturalness (realism of reconstructed movements), Q3: Appearance Fidelity (visual realism including
identity consistency and appearance quality), and Q4: Shape Integrity (correctness and completeness
of 3D geometry including structural soundness, completeness, and proportional accuracy). Each
participant assessed four different methods based on one 4D GIF visualization for questions Q1 and
Q2, evaluating the complete reconstructed animal, and 3D visualizations rendered at three distinct
temporal moments for questions Q3 and Q4. All evaluation criteria (Q1-Q4) were presented with
detailed explanations and examples to ensure consistent and informed participant assessments.

45 participants completed all evaluation questions; the remaining participants provided partial
responses. To ensure fair analysis, weighted scores were calculated for each question based on the
actual number of votes received. The evaluation process converted participant rankings into numerical
scores (ranging from 4 for best performance to 1 for worst), which were then averaged to determine
final ratings.

Figure 6: Effect of different initialization strategies.
Figure 7: Illus-
tration of KID-V
metric.
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