
Stackelberg Games with Side Information

Anonymous Author(s)
Affiliation
Address
email

Abstract

We study an online learning setting in which a leader interacts with a sequence1

of followers over the course of T rounds. At each round, the leader commits to a2

mixed strategy over actions, after which the follower best-responds. Such settings3

are referred to in the literature as Stackelberg games. Stackelberg games have4

received much interest from the community, in part due to their applicability to real-5

world security settings such as wildlife preservation and airport security. However6

despite this recent interest, current models of Stackelberg games fail to take into7

consideration the fact that the players’ optimal strategies often depend on external8

factors such as weather patterns, airport traffic, etc. We address this gap by allowing9

for player payoffs to depend on an external context, in addition to the actions taken10

by each player. We formalize this setting as a repeated Stackelberg game with side11

information and show that under this setting, it is impossible to achieve sublinear12

regret if both the sequence of contexts and the sequence of followers is chosen13

adversarially. Motivated by this impossibility result, we consider two natural14

relaxations: (1) stochastically chosen contexts with adversarially chosen followers15

and (2) stochastically chosen followers with adversarially chosen contexts. In both16

of these settings, we provide simple algorithms which obtain no-regret guarantees.17

1 Introduction18

A Stackelberg game [22, 7] is a strategic interaction between two utility-maximizing players in which19

one player (the leader) is able to commit to a strategy before the other player (the follower) takes an20

action. While Stackelberg’s original formulation was used to model economic competition between21

firms, Stackelberg games have been used to study a wide range of topics ranging from incentives22

in algorithmic decision-making [12] to radio spectrum utilization [23]. Perhaps the most successful23

application of Stackelberg games to solve real-world problems is in the domain of security, where24

the analysis of Stackelberg security games has led to new methods in domains such as passenger25

screening at airports [6], wildlife protection efforts in conservation areas [8], the deployment of26

US Federal Air Marshals on board commercial flights [15], and patrol boat schedules for the US27

Coast Guard [1]. However in many real-world (security) settings, the payoffs of the players often28

depend on additional contextual information which is not captured by the Stackelberg (security) game29

framework. For example, in airport security the severity of an attack depends on factors such as the30

arrival and departure city of a flight, the number of passengers on board, and the amount of valuable31

cargo on the aircraft. Additionally, there may be information in the time leading up to the attack32

attempt which may help the security service determine the type of attack which is coming [14]. In33

wildlife protection settings, factors such as the weather or time of year may make certain species of34

wildlife easier or harder to defend from poaching, and information such as the location of tire tracks35

may provide context about which animals are being targeted.36

In order to capture this additional information that the leader may have at their disposal, we formalize37

such settings as Stackelberg games with side information. Specifically, we consider a setting in which38
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a leader interacts with a sequence of followers in an online setting. At each time-step, the leader gets39

to see payoff-relevant information about the current round in the form of a context. After observing the40

context, the leader commits to a mixed strategy, and the follower best-responds in order to maximize41

their utility. While we show that it is impossible for the leader to achieve good performance (measured42

through regret) whenever the sequence of followers and side information are chosen by an adversary,43

we show that effective learning is possible whenever the power of the adversary is restricted.44

2 Setting and background45

Notation We use [N ] := {1, . . . , N} to denote the set of natural numbers up to and including46

N ∈ N and cl(P) to denote the closure of the set P . x[a] denotes the a-th component of vector x, and47

∆(A) denotes the probability simplex over the set A. Finally, while we present our results for general48

Stackelberg games with side information, our results are readily applicable to the special case of49

Stackelberg security games with side information. See Appendix A for a discussion on related work.50

We consider a repeated Stackelberg game between a leader and a sequence of followers. At each51

time-step t ∈ [T ], the leader moves first by playing some mixed strategy xt over a set of (finite) leader52

actions Al, i.e., xt ∈ ∆(Al). Having observed the leader’s mixed strategy, the follower best-responds53

by playing some action af ∈ Af , where Af is the (finite) set of follower actions. We assume that54

each follower is one of K follower types {α1, . . . , αK}. Each follower type αi is characterized by55

a payoff matrix Mαi
∈ R|Al|×|Af |, i.e. given a leader action al and follower action af , a follower56

of type αi would receive utility Mαi
[al, af ]. We assume that followers are perfectly rational and57

pick their action in order to maximize their utility in expectation over the randomness in the leader’s58

mixed strategy, i.e., follower ft’s best-response to leader mixed strategy xt is59

bft(xt) ∈ arg max
af∈Af

∑
al∈Al

x[al] ·Mft [al, af ].

We assume that the set of all possible follower types is known to the leader, but that the follower’s60

type at round t is not known to the leader until after round t is over.61

At each time t ∈ [T ], nature selects a context z ∈ Z ⊆ Rd and reveals it to the leader. In line with
the literature on linear contextual bandits, we assume that there is an (unknown) linear mapping
from contexts and joint actions to expected leader utility ul : Z × Al × Af → R, given by
ul(z, al, af ) = ⟨z,θ(al, af )⟩ for some θ(al, af ) = θ(al,af ) ∈ Rd that is known to the leader. We
assume that ul(z, al, af ) ∈ [−1, 1] for all z ∈ Z , al ∈ Al, and af ∈ Af . We use the shorthand

ul(z,x, bf (z)) =
∑

al∈Al

x[al] · ul(z, al, bf (z))

to denote the leader’s expected utility of playing mixed strategy x under context z against follower62

f . Given context zt ∈ Z , the leader plays mixed strategy xt and the follower best-responds63

by playing bft(xt). After each round, the leader receives noisy utility ul,t(zt, al,t, bft(xt)) =64

ul(zt, al,t, bft(xt)) + εt, where al,t ∼ xt and εt ∈ R is zero-mean sub-Gaussian random noise with65

variance η2, and observes the follower type ft. We measure the leader’s performance via the notion66

of contextual Stackelberg regret.67

Definition 2.1 (Contextual Stackleberg Regret, I). Given a sequence of followers f1, . . . , fT and a68

sequence of contexts z1, . . . , zT , the leader’s contextual Stackelberg regret is69

R(T ) :=

T∑
t=1

ul(zt, π
∗(zt), bft(π

∗(zt)))− ul(zt,xt, bft(xt)),

where π∗ : Z → ∆(Al) is the optimal policy, given knowledge of f1, . . . , fT and θ(af , al) for all70

af ∈ Af and al ∈ Al.71

If an algorithm achieves regret R(T ) = o(T ) (i.e. regret grows sublinearly with T ), we say that it is72

a no-regret algorithm.73

3 Online learning contextual Stackelberg games74

In Section 3.1, we show that it is impossible for the leader to obtain sublinear regret when both75

the sequence of followers and contexts are chosen adversarially. Motivated by this observation,76
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we consider two relaxations of this setting: one in which the sequence of followers are chosen77

stochastically (Section 3.2), and one in which the contexts are chosen stochastically (Section 3.3).78

3.1 Impossibility result79

We proceed via a reduction to the online linear thresholding problem, for which it is known that no80

algorithm can obtain no regret. In particular, we show that if there exists a no-regret algorithm for the81

contextual Stackelberg game problem, then it could be used to construct a no-regret algorithm for the82

online linear thresholding problem, which is a contradiction.83

Online linear thresholding problem The online linear thresholding problem is as follows: At84

t = 0, an adversary chooses a cutoff s ∈ [0, 1] and a sequence of points ω1, . . . , ωT ∈ [0, 1], possibly85

using knowledge of the learner’s algorithm. A point ωt is assigned label yt = 1 if ωt > s. Otherwise86

the label is yt = −1. For t = 1, . . . , T , the learner receives the point ωt ∈ [0, 1] and makes a guess87

ŷt ∈ {−1, 1}. We allow the learner to randomize by playing a mixed strategy xt at time t, where88

xt := [P(ŷt = 1) P(ŷt = 0)]⊤. Note that the learner’s optimal policy is π∗
OLT(wt) = [1 0]⊤ if wt > s89

and π∗
OLT(wt) = [0 1]⊤ if wt ≤ s, which achieves perfect classification on any point w ∈ R. We90

make use of the following well-known impossibility result (see e.g. [9]).91

Lemma 3.1. Any algorithm suffers regret ROLT(T ) = Ω(T ) in the online linear thresholding problem92

(where the expectation is taken over the algorithm’s internal randomness) when (s, {wt}Tt=1) are93

chosen by an adversary.94

We are now ready to state our impossibility result for learning in contextual Stackelberg games with95

adversarially-chosen contexts and followers.96

Theorem 3.2. If an adversary can choose both the sequence of contexts z1, . . . , zT and the sequence97

of followers f1, . . . , fT , no algorithm can achieve better than Ω(T ) contextual Stackelberg regret in98

expectation over the internal randomness of the algorithm.99

Proof Sketch. See Appendix B for the full proof. At a high level, the reduction to online linear100

thresholding proceeds by creating an instance of the contextual Stackelberg game problem such101

that the sequence of contexts z1, . . . , zT (roughly) correspond to the sequence of points ω1, . . . , ωT102

encountered, and the sequence of follower types f1, . . . , fT correspond to the sequence of labels103

y1, . . . , yT . We then show that a no-regret algorithm in the online thresholding problem can be104

obtained by running an algorithm which minimizes contextual Stackelberg regret on the constructed105

contextual Stackelberg game instance. However this is a contradiction, since by Lemma 3.1 the106

online thresholding problem is not online learnable by any algorithm.107

3.2 Stochastic follower types108

In this setting we allow the sequence of contexts to be chosen by an adversary, but we restrict the109

sequence of followers to be drawn i.i.d. from some (unknown) distribution over follower types F .110

We allow the adversary to have knowledge of F , but not the realized draws f1, . . . , fT , when picking111

the sequence of contexts. Under this relaxation, our measure of algorithm performance is expected112

contextual Stackelberg regret, where the expectation is now also taken over the randomness in the113

follower type distribution.114

Definition 3.3 (Contextual Stackleberg Regret, II). Given a population of followers F and a sequence115

of contexts z1, . . . , zT , the leader’s expected contextual Stackelberg regret is116

E[R(T )] := Ef1,...fT∼F

[
T∑

t=1

ul(zt, π
∗(zt), bft(π

∗(zt)))− ul(zt,xt, bft(xt))

]
where π∗ : Z → ∆(Al) is the optimal policy given knowledge of F and θ(af , al),117

∀af ∈ Af , al ∈ Al.118

As we show in Appendix C, a relatively simple closed-form characterization of the leader’s optimal119

policy exists if the distribution F is known. When F is unknown, we show that the leader can obtain120

Õ(
√
T ) regret by estimating the distribution over follower types in an online fashion, and acting121

optimally w.r.t. their estimate.122

3



ALGORITHM 1: Learning in contextual Stackelberg games with stochastic follower types.

Set P̂1(f = αi) =
1
K

, ∀i ∈ [K]
for t = 1, . . . , T do

Observe context zt, commit to mixed strategy
xt = πt(zt) = argmaxx∈E

∑K
i=1 P̂t(f = αi)ul(zt,x, bαi(x)).

Receive utility ul(zt, al,t, bft(xt)), where al,t ∼ xt, and observe follower type ft.
Set P̂t+1(f = αi) =

1
t

∑t
s=1 1{fs = αi}.

end

ALGORITHM 2: Learning in contextual Stackelberg games with stochastic contexts.

Consider Π := {π(ω)}ω∈Ω

Let q1[π
(ω)] := 1, p1[π

(ω)] := 1
|Π| for all π(ω) ∈ Π

for t = 1, . . . , T do
Sample πt ∼ pt, al,t ∼ πt(zt).
Receive utility ul,t(zt, al,t, bft(πt(zt))) and observe follower type ft.
For each policy π(ω) ∈ Π, compute ℓt[π

(ω)] := −ul(zt, π
(ω)(zt), bft(π

(ω)(zt))).

Set qt+1[π
(ω)] = exp

(
−η

∑t
s=1 ℓs[π

(ω)]
)

, pt+1[π
(ω)] = qt+1[π

(ω)]/
∑

π(ω′)∈Π
qt+1[π

(ω′)].

end

Theorem 3.4. Algorithm 1 obtains expected contextual Stackelberg regret E[R(T )] ≤123

O(
√
K2T log(T )), where the set E is defined as in Lemma C.3 and the expectation is taken over124

both the follower population and the randomness in the leader’s mixed strategies as in Definition 3.3.125

Proof Sketch. See Appendix C for the full proof. At a high level, our results in this section rely on126

showing that the leader can learn an accurate estimate of F sufficiently quickly, and generalizing127

some of the results and ideas from Balcan et al. [4] to incorporate side information. (See Appendix A128

for more details on how our work is related to theirs.)129

3.3 Stochastic contexts130

We now consider a setting in which the sequence of contexts are drawn i.i.d. from some unknown131

distribution P and the sequence of followers is chosen by an adversary with knowledge of the leader’s132

algorithm and of P (but not z1, . . . , zT ). As was the case in the previous section, we update our defi-133

nition of contextual Stackelberg regret in order to reflect the additional stochasticity under this setting.134

Definition 3.5 (Contextual Stackleberg Regret, III). Given a sequence of followers f1, . . . , fT and a135

distribution over contexts P , the leader’s expected contextual Stackelberg regret is136

E[R(T )] := Ez1,...zT∼P

[
T∑

t=1

ul(zt, π
∗(zt), bft(π

∗(zt)))− ul(zt,xt, bft(xt))

]
where π∗ : Z → ∆(Al) is the optimal-in-hindsight policy.137

Our key insight in this section is that when the sequence of contexts is generated stochastically, it suf-138

fices to consider only a finite number of policies in order to find one which is optimal. Therefore, the139

leader can play an off-the-shelf online learning algorithm (e.g. Hedge) over this finite set of policies140

to achieve sublinear regret. This intuition is formalized in Algorithm 2 and the following theorem.141

Theorem 3.6. Algorithm 2 obtains expected contextual Stackelberg regret E[R(T )] ≤142

O(
√
TK log(T )) when η =

√
log |Π|

T , where Ω := {ω : ω ∈ ∆K , T · ω[i] ∈ N,∀i ∈ [K]}143

and the expectation is taken over both the distribution over contexts and the randomness in the144

leader’s mixed strategies as in Definition 3.5.145

Proof Sketch. See Appendix D for the full proof. The first part of the analysis leverages the geometry146

of the leader’s optimal policy to show that it suffices to consider a discrete set of policies. The second147

part of the analysis follows the standard analysis of Hedge.148
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A Related work211

See [21, 16, 2] for an overview of the literature on applications of Stackelberg security games. From212

a technical point of view, our results are most related to two lines of work: learning in Stackelberg213

games, and dealing with various forms of additional information in repeated game settings.214

Learning in Stackelberg games Conitzer and Sandholm [7] were the first to provide algorithms215

for recovering the leader’s optimal mixed strategy in Stackelberg games, when the follower’s payoff216

matrix is known to the leader. Letchford et al. [17] was the first to consider learning the leader’s217

optimal mixed strategy in the repeated Stackelberg game setting against a perfectly rational follower.218

Peng et al. [18] study the same setting, providing improved rates and formally showing that the219

problem is NP-Hard. Importantly, both of these papers impose a “minimum volume constraint” on220

the leader’s mixed strategy space with respect to each of the follower’s pure strategies, meaning they221

only consider a subset of all possible Stackelberg games. Learning algorithms to recover the leader’s222

optimal mixed strategy have also been studied in Stackelberg security games [4, 5, 20]. In particular,223

our work builds off of several results established for (non-contextual) Stackelberg games in Balcan224

et al. [4]. More recent work on learning in Stackelberg games considers the effects of non-myopic225

followers [11] and calibration [10].226

Additional information in repeated games Sessa et al. [19] study a repeated game setting in227

which the players receive additional information (or context) at each round, much like in our setting.228

However, their focus is on repeated normal-form games, which require different tools and techniques229

to solve than the Stackelberg game setting we consider. Other work has also considered repeated230

games which change over time in different ways. In particular, [13] study a meta-learning setting231

in which the game being played changes after a fixed number of rounds, and [24, 3] study learning232

dynamics in time-varying game settings.233

B Appendix for Section 3.1: Impossibility result234

Theorem B.1. If an adversary can choose both the sequence of contexts z1, . . . , zT and the sequence235

of followers f1, . . . , fT , no algorithm can achieve better than Ω(T ) contextual Stackelberg regret in236

expectation over the internal randomness of the algorithm.237

Proof. Let ALG denote any algorithm which achieves o(T ) contextual Stackelberg regret under238

adversarially-chosen contexts and follower types. Note that at every time-step, ALG takes as input a239

context zt and produces a mixed strategy xt. We reduce to the problem of online linear thresholding.240

Consider the following family of contextual Stackelberg game instances with two follower types241

α1 and α2: Al = Af = {a1, a2}, Z = [0, 1] × {1}, and bα1(x) = a1 and bα2(x) = a2 for all242

x ∈ ∆(Al). Furthermore, suppose that θ(al, af )[j] = 0 for all al, af and j ≤ m, and θ(al, af )[m+243

1] = 1{al = af} for all al, af . Since each follower type’s best-response does not depend on the244

mixed strategy played by the leader, we use the shorthand bft := bft(x).245

The reduction proceeds as follows: given input wt ∈ Rm, we give the context zt := [wt, 1]
⊤ as246

input to ALG and receive mixed strategy xt ∈ R2. We sample al,t according to xt and let ŷt = 1247

if al,t = a1 and ŷt = 2 if al,t = a2. We receive utility 1{ŷt = yt} and feedback yt from the248

environment. We then set ft = α1 if yt = 1 and ft = α2 if yt = −1, which determines the utility249

ul(zt, al,t, bft(zt)) received by ALG. Finally, we give the follower type ft as input to ALG. Since ALG250

is a no-regret learning algorithm for the contextual Stackelberg game setting, by Definition 2.1 we251

know that252

R(T ) =

T∑
t=1

∑
al∈Al

π∗(zt)[al]ul(zt, al, bft(zt))−
∑

al∈Al

xt[al]ul(zt, al, bft(xt)) = o(T ).
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Next, we show that this implies that ROLT(T ) = o(T ), where253

ROLT(T ) := T −
T∑

t=1

P(ŷt = yt)

=

T∑
t=1

π∗
OLT(wt)[it]− P(ŷt = yt)

=

T∑
t=1

π∗
OLT(wt)[it]− xt[it],

where xt = [P(ŷt = 1) P(ŷt = 0)]⊤ is the mixed strategy played by the learner at time t and it = 1254

if wt > s and it = 2 otherwise.255

R(T ) :=

T∑
t=1

∑
al∈Al

π∗(zt)[al]ul(zt, al, bft(zt))−
∑

al∈Al

xt[al]ul(zt, al, bft(xt))

=

T∑
t=1

∑
al∈Al

π∗(zt)[al]⟨zt,θ(al, bft(π∗(zt)))⟩ −
∑

al∈Al

xt[al]⟨zt,θ(al, bft(xt))⟩

=

T∑
t=1

∑
al∈Al

π∗(zt)[al] · θ(al, bft(π∗(zt)))[m+ 1]−
∑

al∈Al

xt[al] · θ(al, bft(xt))[m+ 1]

=

T∑
t=1

∑
al∈Al

π∗(zt)[al] · 1{al = bft(π
∗(zt))} −

∑
al∈Al

xt[al] · 1{al = bft(xt)}

=

T∑
t=1

∑
al∈Al

π∗(zt)[al] · 1{al = bft} −
∑

al∈Al

xt[al] · 1{al = bft}

=

T∑
t=1

π∗(zt)[bft ]− xt[bft ] =

T∑
t=1

P(π∗(zt) = ayt)− P(πt(zt) = ayt)

=

T∑
t=1

P(π∗(zt) = ayt
)− P(ŷt(wt) = yt) = T −

T∑
t=1

P(ŷt = yt)

where the first equality is due to the definition of leader utility, the second follows because256

θ(al, af )[j] = 0 for all j ≤ m, the third is from the fact that θ(al, af )[m + 1] = 1{al = af}257

for all al, af , the fourth equality holds because the follower best-responses do not depend on the258

leader’s mixed strategy, and the last equality follows from the fact that the following policy achieves259

perfect performance in the contextual Stackelberg game setting:260

π∗(zt) =

{
al,1 if wt > s

al,2 if wt ≤ s.

261

C Appendix for Section 3.2: Stochastic follower types262

Observe that for any context z, π∗(z) takes the following closed form:263

π∗(z) = arg max
x∈∆(A)

Ef∼F

[ ∑
al∈Al

x[al] · ⟨z,θ(al, bf (x))⟩

]

= arg max
x∈∆(A)

K∑
i=1

P(f = αi)
∑

al∈Al

x[al] · ⟨z,θ(al, bαi(x))⟩

8



The solution to the above optimization may be obtained by first solving264

xaf,1,...,af,K
(z) = arg max

x∈∆(A)

K∑
i=1

P(f = αi)
∑

al∈Al

x[al] · ⟨z,θ(al, af,i)⟩

s.t. bα1
(x) = af,1, bα2

(x) = af,2, . . . , bαK
(x) = af,K

(1)

for all |Af |K possible combinations of af,1, . . . , af,K ∈ Af and then setting265

π∗(z) = arg max
af,1∈Af ,...,af,K∈Af

xaf,1,...,af,K
(z). (2)

Borrowing notation from Balcan et al. [4], we introduce the notion of a best-response region.266

Definition C.1 (Follower Best-Response Region). For every follower type αi : i ∈ [K] and follower267

action af ∈ Af , let P(αi, af ) denote the set of all leader mixed strategies such that a follower of268

type αi best-responds by playing action af , i.e.,269

P(αi, af ) = {x ∈ ∆(Al) : bαi(x) = af}.

As in Balcan et al. [4], P(αi, af ) is a (possibly empty) convex and bounded, but not necessarily270

closed, polytope for all i ∈ [K] and af ∈ Af .271

Definition C.2 (Best-Response Region). For a given best-response function σ : {α1, . . . , αK} → Af ,272

let Pσ denote the set of all valid leader mixed strategies such that for all i ∈ [K], a follower of type273

αi plays action σ(αi). In other words, Pσ = ∩i∈[K]P(αi, σ(αi)).274

Note that there are at most |Af |K different best-response functions (and hence, best-response regions).275

As in Balcan et al. [4], we consider the set of (approximate) extreme points E of all best-response276

regions. Formally, for a given δ > 0, E is the set of leader mixed strategies such that for all σ and277

any x ∈ ∆(Al) that is an extreme point of cl(Pσ), x ∈ E if x ∈ Pσ , otherwise there is some x′ ∈ E278

such that x′ ∈ Pσ and ∥x′ − x∥1 ≤ δ. The following lemma is a generalization of Lemma 4.3 in279

Balcan et al. [4] to the contextual Stackelberg game setting, and its proof uses similar techniques280

from convex analysis.281

Lemma C.3. Let π∗ : Z → ∆(Al) be defined as in Equation (2) and E be defined as above. For any282

distribution over followers F and contexts z1, . . . , zT , there exists a policy πE : Z → E such that283

Ef1,...fT∼F

[
T∑

t=1

ul(zt, π
E(zt), bft(π

E(zt)))

]
≥ Ef1,...fT∼F

[
T∑

t=1

ul(zt, π
∗(zt), bft(π

∗(zt)))

]
−2δT.

Proof. Observe that fixing af,1, . . . , af,K as in Optimization (1) fixes a mapping σ and thus a best-284

response region Pσ. Since each Pσ is a convex polytope, the optimal solution of Optimization (1)285

will be an extreme point of the induced best-response region. Therefore for any z ∈ Z , π∗(z) will286

be an extreme point of Pσ for some σ, although Ef∼F [ul(z, π
∗(z), bf (π

∗(z)))] may not necessarily287

be attained due to follower tie-breaking rules. Overloading notation, let Pπ∗(zt) denote the best-288

response region corresponding to π∗(zt), i.e., π∗(zt) ∈ Pπ∗(zt). Since for a given context z ∈ Z the289

leader’s utility is a linear function of x over the convex polytope Pπ∗(z), there exists a point xt(zt) ∈290

cl(Pπ∗(zt)) such that Ef∼F [ul(zt,xt(zt), bf (π
∗(zt)))] ≥ Ef∼F [ul(zt, π

∗(zt), bf (π
∗(zt)))]. Let291

x′
t(zt) denote the corresponding point in E such that ∥x′

t(zt) − xt(zt)∥1 ≤ δ. Since ul ∈ [−1, 1]292

and is linear in x for a fixed context and follower best-response,293

Eft∼F [ul(zt,x
′
t(zt), bft(x

′
t(zt)))] = Eft∼F [ul(zt,x

′
t(zt), bft(π

∗(zt)))]

≥ Eft∼F [ul(zt,xt(zt), bft(π
∗(zt)))]− 2δ

≥ Eft∼F [ul(zt, π
∗(zt), bft(π

∗(zt)))]− 2δ

Summing over T , we obtain the desired result for the policy πE(z) = x′
t(z).294

Lemma C.3 implies that the leader pays at most a cost of 2δT by restricting himself to policies which295

map to mixed strategies in E . For small enough choice of δ (e.g., δ = O( 1√
T
)), this additional regret296

is negligible.297

In order to prove performance guarantees for Algorithm 1 (where F is unknown), we make use of the298

following lemma:299
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Lemma C.4. If

π(P)(z) := argmax
x∈E

K∑
i=1

P(f = αi)ul(z,x, bαi
(x))

and

π(P′)(z) := argmax
x∈E

K∑
i=1

P′(f = αi)ul(z,x, bαi(x)),

then300

K∑
i=1

P(f = αi)ul(z, π
(P′)(z), bαi

(π(z))) ≥
K∑
i=1

P′(f = αi)ul(z, π
(P)(z), bαi

(π(P)(z)))−∥P−P′∥1.

Proof. By the definition of π(z)(P
′),301

K∑
i=1

P′(f = αi)ul(z, π
(P)(z), bαi(π

(P)(z))) ≤
K∑
i=1

P′(f = αi)ul(z, π
(P′)(z), bαi(π

(P′)(z)))

Adding and subtracting P(f = αi)ul(z, π
(P′)(z), bαi

(π(P′)(z))), we see that302

K∑
i=1

P′(f = αi)ul(z, π
(P)(z), bαi

(π(P)(z))) ≤
K∑
i=1

P(f = αi)ul(z, π
(P′)(z), bαi

(π(P′)(z)))

+

K∑
i=1

(P′(f = αi)− P(f = αi))ul(z, π
(P′)(z), bαi

(π(P′)(z)))

≤
K∑
i=1

P(f = αi)ul(z, π
(P′)(z), bαi

(π(P′)(z)))

+

K∑
i=1

|(P′(f = αi)− P(f = αi))ul(z, π
(P′)(z), bαi

(π(z)))|

≤
K∑
i=1

P(f = αi)ul(z, π
(P′)(z), bαi

(π(P′)(z)))

+

K∑
i=1

|(P′(f = αi)− P(f = αi))|

=

K∑
i=1

P(f = αi)ul(z, π
(P′)(z), bαi

(π(P′)(z))) + ∥P− P′∥1

where the third inequality uses the fact that |ul(z, π
(P′)(z), bαi

(π(P′)(z)))| ≤ 1. Rearranging terms303

obtains the desired result.304

Theorem C.5. Algorithm 1 obtains expected contextual Stackelberg regret305

E[R(T )] ≤ O(
√

K2T log(T )),

where the expectation is taken over both the follower population and the randomness in the leader’s306

mixed strategies as in Definition 3.3.307

Proof. By Lemma C.3,308

E[R(T )] ≤ Ef1,...,fT∼F

[
T∑

t=1

ul(zt, π
E(zt), bft(π

E(zt)))− ul(zt, πt(zt), bft(πt(zt)))

]
+ 2

√
T

=

T∑
t=1

K∑
i=1

P(f = αi)(ul(zt, π
E(zt), bαi

(πE(zt)))− ul(zt, πt(zt), bαi
(πt(zt)))) + 2

√
T
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for δ ≤ T−1/2, since P(ft = αi) = P(f = αi) for all t ∈ [T ]. Since Lemma C.4 applies for any309

realization of P′ = P̂t and π(P′) = πt, it also holds in expectation over f1, . . . , fT ∼ F . Applying310

this result, we obtain311

E[R(T )] ≤ Ef1,...,fT∼F

[
T∑

t=1

K∑
i=1

(P(f = αi)− P̂t(f = αi))ul(zt, π
E(zt), bαi(π

E(zt))) + ∥P− P̂t∥1

]
+ 2

√
T

≤ Ef1,...,fT∼F

[
T∑

t=1

K∑
i=1

|(P(f = αi)− P̂t(f = αi))| · |ul(zt, π
E(zt), bαi

(πE(zt)))|+ ∥P− P̂t∥1

]
+ 2

√
T

≤ Ef1,...,fT∼F

[
T∑

t=1

K∑
i=1

|(P(f = αi)− P̂t(f = αi))|+ ∥P− P̂t∥1

]
+ 2

√
T

= 2Ef1,...,fT∼F

[
T∑

t=1

∥P− P̂t∥1

]
+ 2

√
T = 2

T∑
t=1

Ef1,...,ft−1∼F

[
∥P− P̂t∥1

]
+ 2

√
T

Next, we upper-bound Ef1,...,ft−1∼F

[
∥P− P̂t∥1

]
via Hoeffding’s inequality. For t = 1, a trivial312

upper-bound on ∥P− P̂1∥1 is K. For t ≥ 2, note that ∥P− P̂t∥1 may be rewritten as313

∥P− P̂t∥1 :=

K∑
i=1

|P̂t(f = αi)− P(f = αi)|

=

K∑
i=1

|P̂t(f = αi)− E[1{f = αi}]|

=

K∑
i=1

1

t− 1

∣∣∣∣∣
t−1∑
s=1

1{fs = αi} − E[
t−1∑
s=1

1{fs = αi}]

∣∣∣∣∣ .
By Hoeffding’s inequality,314

1

t− 1

∣∣∣∣∣
t−1∑
s=1

1{fs = αi} − E[
t−1∑
s=1

1{fs = αi}]

∣∣∣∣∣ ≥
√

log(2/β)

2(t− 1)

with probability at least 1− β. Therefore,315

Ef1,...,ft−1∼F

∣∣∣P̂t{f = αi} − P{f = αi}]
∣∣∣ ≤ (1− β) ·

√
log(2/β)

t− 1
+ β · 1

≤

√
log(2/β)

2(t− 1)
+ β

for any β ∈ (0, 1). Setting β = T−1, we see that316

Ef1,...,ft−1∼F

[
∥P− P̂t∥1

]
≤

√
K2 log(2T )

2(t− 1)
+

K

T
.

Plugging this expression into our upper-bound on E[R(T )], we obtain317

E[R(T )] ≤ 2
√
T +K + 1 +

T∑
t=2

√
K2 log(2T )

2(t− 1)

≤ 2
√
T +K + 1 +

√
K2 log(2T )

T∑
t=2

√
t− 1−

√
t− 2

≤ 2
√
T +K + 1 +

√
K2T log(2T ).

318
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D Appendix for Section 3.3: Stochastic contexts319

Corollary D.1 (Optimal Policy). The optimal-in-hindsight policy takes the following closed form:320

π∗(z) = arg max
x∈∆(Al)

∑
al∈Al

x[al] · ⟨z,
K∑
i=1

θ(al, bαi
(x)) · 1

T

T∑
t=1

1{ft = αi}⟩

Proof.

π∗(z) := arg max
x∈∆(Al)

T∑
t=1

∑
al∈Al

x[al] · ⟨z,θ(al, bft(x))⟩

= arg max
x∈∆(Al)

∑
al∈Al

x[al] · ⟨z,
T∑

t=1

θ(al, bft(x))⟩

= arg max
x∈∆(Al)

∑
al∈Al

x[al] · ⟨z,
K∑
i=1

θ(al, bαi
(x)) · 1

T

T∑
t=1

1{ft = αi}⟩

321

Theorem D.2. Algorithm 2 obtains expected contextual Stackelberg regret E[R(T )] ≤322

O(
√
TK log(T )), where Ω := {ω : ω ∈ ∆K , T · ω[i] ∈ N,∀i ∈ [K]} and the expectation323

is taken over both the distribution over contexts and the randomness in the leader’s mixed strategies324

as in Definition 3.5.325

Given Corollary D.1, the proof follows from the standard potential-based analysis of Hedge.326

Proof. Let Φt :=
∑

π(ω)∈Π qt[π
(ω)]. Observe that327

Φt+1 =
∑

π(ω)∈Π

qt[π
(ω)] · exp(−η · ℓt[π(ω)]) ·

∑
π(ω′)∈Π qt[π

(ω′)]∑
π(ω′)∈Π qt[π(ω′)]

= Φt ·
∑

π(ω)∈Π

pt[π
(ω)] · exp(−η · ℓt[π(ω)])

≤ Φt ·
∑

π(ω)∈Π

pt[π
(ω)] · (1− η · ℓt[π(ω)] + η2 · ℓt[π(ω)]2)

where the inequality follows from the fact that e−x ≤ 1− x+ x2, for |x| ≤ 1. Distributing terms,328

we see that329

Φt+1 ≤ Φt · (1− η
∑

π(ω)∈Π

pt[π
(ω)] · ℓt[π(ω)] + η2

∑
π(ω)∈Π

pt[π
(ω)] · ℓt[π(ω)]2)

≤ Φt · exp(−η · ⟨pt, ℓt⟩+ η2 · ⟨pt, ℓ
2
t ⟩),

where the second inequality follows from the fact that 1+ x ≤ ex, and ℓ2t ∈ R|Π| is defined such that330

ℓ2t [π] := ℓt[π]
2. Since ΦT ≥ qT (π) = exp(−η ·

∑T
t=1 ℓt[π]) for any π ∈ Π, we know that331

exp(−η ·
T∑

t=1

ℓt[π
∗]) ≤ |Π| · exp(−η ·

T∑
t=1

⟨pt, ℓt⟩+ η2 ·
T∑

t=1

⟨pt, ℓ
2
t ⟩).

Taking the log on both sides, rearranging terms, and using the fact that losses are bounded between332

−1 and 1, we get333
T∑

t=1

⟨pt, ℓt⟩ −
T∑

t=1

ℓt(π
∗) ≤ log |Π|

η
+ ηT,

which is less than 2
√
T log |Π| if η =

√
log |Π|

T . The final result is obtained by observing that334

|Π| ≤ TK for T ≥ 2.335
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