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Abstract
The ability of an architecture to realize permutations is quite fundamental. For example, Large Language
Models need to be able to correctly copy (and perhaps rearrange) parts of the input prompt into the output.
Classical universal approximation theorems guarantee the existence of parameter configurations that solve
this task but offer no insights into whether gradient-based algorithms can find them. In this paper, we address
this gap by focusing on two-layer fully connected feed-forward neural networks and the task of learning
permutations on nonzero binary inputs. We show that in the infinite width Neural Tangent Kernel (NTK)
regime, an ensemble of such networks independently trained with gradient descent on only the k standard
basis vectors out of 2k−1 possible inputs successfully learns any fixed permutation of length k with arbitrarily
high probability. By analyzing the exact training dynamics, we prove that the network’s output converges
to a Gaussian process whose mean captures the ground truth permutation via sign-based features. We then
demonstrate how averaging these runs (an “ensemble” method) and applying a simple rounding step yields
an arbitrarily accurate prediction on any possible input unseen during training. Notably, the number of
models needed to achieve exact learning with high probability (which we refer to as ensemble complexity)
exhibits a linearithmic dependence on the input size k for a single test input and a quadratic dependence when
considering all test inputs simultaneously.

1. Introduction

Neural networks have long been known as universal function approximators: a two-layer feed-forward
neural network with sufficient width can approximate any continuous function on a compact domain [6, 10].
However, these classical theorems only guarantee the existence of a suitable parameter configuration; they do
not explain whether a standard training procedure (e.g., gradient-based training) can efficiently discover such
parameters. While universal approximation highlights the expressive power of neural networks, it does not
directly address how trained networks generalize beyond the specific data they observe.

In contrast, the literature on domain generalization provides general learning guarantees from a Probably
Approximately Correct (PAC) learning perspective. Given training and testing distributions, one can bound
the expected test loss of any hypothesis that minimizes the empirical training risk. This bound typically
depends on the discrepancy between the training and testing distributions, the training sample size, and the
complexity of the hypothesis class [4, 14]. However, such bounds do not account for training dynamics,
making them quite pessimistic, especially when a single hypothesis that fails to perform well on the testing
data is a minimizer of the training loss, even if a standard training procedure would never find it.

Our work complements these approaches in a more specialized setting. We focus on exact learning using
the training dynamics of a simple two-layer network in the infinite-width Neural Tangent Kernel (NTK)
regime. We show that an ensemble of such models can learn with arbitrarily high probability a global
transformation, in our case, a permutation function, from a logarithmically small training set.
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Contributions. We use the NTK framework to analyze the problem of learning permutations, a task many
models need to perform as a subroutine, yet it is unknown if it can be performed exactly with high probability.
We list our contributions below:

• We show that when the inputs are nonzero, normalized, and binary,1 a two-layer fully connected
feed-forward network in the infinite width limit trained on the standard basis using gradient descent
(or gradient flow) converges to a Gaussian Process whose mean captures the ground truth permutation
via sign-based features. More precisely, each entry in the predicted mean is non-positive exactly when
(and only when) the corresponding ground-truth value is zero.

• We show that this can be achieved with logarithmic training size by picking the training set to consist
of the k standard basis vectors (out of the 2k − 1 vectors in the domain), where k is the input length.

• We can achieve zero error on any input unseen during training, with high probability, by averaging the
output of O(k log k) independently trained models and applying a post-processing rounding step. To
guarantee zero error simultaneously for all inputs, the same procedure requires averaging the output of
O(k2) independently trained models.

2. Literature Review

The NTK framework [12] is a popular framework designed to provide insights into the continuous-time
gradient descent (gradient flow) dynamics of fully connected feed-forward neural networks with widths
tending to infinity. The initial results have been extended to discrete gradient descent [13] as well as
generalized to more architecture families like RNNs and Transformers [22, 23]. While the general NTK
theory has been extensively studied, very few works use the framework to study the performance of neural
architectures on specific tasks. Notably, the framework has been used to attempt to explain the “double
descent” phenomenon [15] observed in deep architectures [1, 19]. It has also been used to study the behavior
of Residual Networks [25] and Physics-Informed Neural Networks [20]. To the best of our knowledge,
the closest work to ours is [5], where the authors use results from the general NTK theory to prove that
Transformers can provably generalize out-of-distribution on template matching tasks. Furthermore, they
show that feed-forward neural networks fail to generalize to unseen symbols for any template task, including
copying, a special case of a permutation learning setting. In our paper, we show that feed-forward neural
networks can indeed learn to copy without error with high probability. At first, this might seem to contradict
[5]. However, the key difference between our work and the work in [5] lies in the problem setting. The
setting in [5] poses no restrictions on the input, whereas we require binary-encoded input. Therefore, the
model has access to all symbols during training. In particular, we specifically choose the training set, i.e., the
standard basis, so that each symbol appears in every position. The restrictions above are what enable exact
permutation learning.

Lastly, various studies highlight the expressive power of neural networks through simulation results. For
instance, Siegelmann and Sontag [18] demonstrates the Turing completeness of recurrent neural networks
(RNNs), while Hertrich and Skutella [9] introduces specific RNN constructions capable of solving the shortest
paths problem and approximating solutions to the knapsack problem. Moreover, other simulation studies on
Transformers have established their Turing completeness [16, 21] and showcased constructive solutions for
linear algebra, graph-related problems [2, 7, 24], and parallel computation [3]. However, the results in these
works are existential, and none consider the dynamics of the training procedure.

1. Our results can be extended to different vocabularies by considering, for example, one-hot encodings of the alphabet symbols.
The key assumption is that all symbols are individually “seen” by the model during training.
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3. Notation and Preliminaries

Throughout the text, we use boldface to denote vectors. We reserve the notation e1, e2, . . . for the standard

basis vectors. We use 1 to denote the vector of all ones. For a vector x ∈ Rn we denote by ∥x∥ :=
√∑n

i=1 x
2
i

the Euclidean norm of x. We denote the n × n identity matrix by In. For n ∈ N := {1, 2, . . . } let
Hn = {x ∈ Rn : xi = 0 or xi = 1 ∀ i = 1, 2, . . . , n} denote the n-dimensional Hamming cube (the set of
all n-dimensional binary vectors). We use the notation [n] to refer to the set {1, 2, . . . , n}.

Model and NTK Results. Here we provide a brief overview of the necessary theory used to derive our
results. We refer the reader to [8] for a comprehensive treatment of the NTK theory. We work with two-layer,
ReLU-activated fully connected feed-forward neural networks with the same input and output dimension and
no bias. Concretely, the architecture is defined as the function F : Rk → Rk with F (x) = W 2ReLU(W 1x)
where W 1 ∈ Rnh×k, W2 ∈ Rnh×k, and nh ∈ N is the hidden dimension. The weights are initialized
according to the NTK parametrization as W 1

ij =
σω√
k
ω1
ij and W 2

ij =
σω√
nh

ω2
ij where ω1

ij and ω2
ij are trainable

parameters initialized i.i.d. from a standard Gaussian distribution. When nh → ∞, the empirical NTK kernel
given by ∇{W 1,W 2}F (x)⊤∇{W 1,W 2}F (x′) converges to the deterministic limit:

Θ(x,x′) =

(
x⊤x′

2πk
(π − θ) +

∥x∥ · ∥x′∥
2πk

((π − θ) cos θ + sin θ)

)
Ik ∈ Rk×k (1)

and the NNGP kernel is given by

K(x,x′) =

(
∥x∥ · ∥x′∥

2πk
((π − θ) cos θ + sin θ)

)
Ik ∈ Rk×k (2)

where θ = arccos
(
x⊤x′/∥x∥·∥x′∥

)
. For a set of vectors X , we will use the notation Θ(X , ·), Θ(·,X ) and

Θ(X ,X ) to refer to the limit NTK calculated when the the set {F (x) : x ∈ X} is vectorized (the outputs are
stacked vertically), and similarly for the NNGP kernel. Our learnability results rely on the following theorem
by [13], adapted to our architecture:

Theorem 1 (Theorem 2.2 from Lee et al. 13) Let X and Y be the training dataset (training inputs and
ground truth labels, respectively). Assume that Θ := Θ(X ,X ) is positive definite. Suppose the network is
trained with gradient descent (with a small enough step size) or gradient flow to minimize the empirical MSE
loss.2 Then, for every x̂ ∈ Rk with ∥x̂∥ ≤ 1, as nh → ∞, the output at training time t, Ft(x̂), converges in
distribution to a Gaussian with mean and variance given by3

µ(x̂) = Θ(x̂,X )Θ−1Y (3)

Σ(x̂) = K(x̂, x̂) + Θ(x̂,X )Θ−1K(X ,X )Θ−1Θ(X , x̂)− (Θ(x̂,X )Θ−1K(X , x̂) + h.c) (4)

where Y in Equation (3) denotes the vectorization of all vectors y ∈ Y .

4. Summary of results

In this section, we first formalize the task and then proceed with a summary of our key results. Suppose
k ∈ N and let K = {x/∥x∥ : x ∈ Hk \ {0}}.4 Let P ∗ ∈ {0, 1}k×k be any fixed permutation matrix.

2. The empirical MSE loss is defined as L(D) = (2|D|)−1 ∑
(x,y)∈D ∥ft(x)− y∥2.

3. Here “h.c.” is an abbreviation for the Hermitian conjugate.
4. We chose to exclude the zero vector because it unnecessarily complicates the calculations.
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We are interested in the generalization behavior of shallow neural networks when trained on the set of
standard basis vectors for the task of learning P ∗. Concretely, the training dataset consists of training inputs
X = {e1, . . . , ek} and their corresponding ground-truth labels Y = {P ∗e1, . . . , P

∗ek}.

4.1. Main results

Here we present and discuss our two main results: Theorem 2 and Theorem 3. The former is proved in
Appendix B and the latter in Appendix C.

Theorem 2 (The mean, at the limit, carries useful information) For any test point x̂ ∈ K with nx̂ non-
zero entries, the mean of the limiting distribution of Theorem 1 when the training dataset consists of the
standard basis vectors carries sign-based information about the ground-truth permutation. Namely, there
exist µ0 ≡ µ0(nx̂) ≤ 0 and µ1 ≡ µ1(nx̂) > 0 that depend on nx̂, such that for each i ∈ [k], µ(x̂)i = µ0 if
(P ∗x̂)i = 0 and µ(x̂)i = µ1 otherwise (in which case (P ∗x̂)i = 1/√nx̂).

Theorem 2 establishes that the NTK regime generates a distribution of models whose mean encapsulates
the information required to solve the permutation problem. Thus, by averaging the network’s output over
enough independent runs on the same input x̂, we can approximate the actual mean µ(x̂). This gives rise to a
natural inference strategy: repeat the training procedure enough times, average the outputs of the network on
input x̂ and then round each coordinate to 0 or 1/

√
nx̂ depending on whether the result of the averaging is

positive or not. This averaging procedure identifies the target permutation P ∗ using a logarithmic training
sample size (only k out of the 2k − 1 total possible inputs are needed) provided enough independent trials
are averaged. We define ensemble complexity as the number of independent trials needed to obtain any
desired level of post-rounding. By analyzing the asymptotic orders of the mean and variance of the limiting
distribution, we can prove the following theorem:

Theorem 3 (Ensemble complexity of permutation learning) Let δ ∈ (0, 1) and let x̂ ∈ K be a test input.
Under the assumptions of Theorem 2, when averaging over O(k log (k/δ)) independent trials and rounding
the average using the aforementioned rounding strategy, x̂ is correctly permuted (post-rounding) according
to P ∗ with probability 1− δ.

Theorem 3 gives an upper on the ensemble complexity for a single input. An application of the union
bound shows that the conclusion of Theorem 3 holds simultaneously for all test inputs when averaging
over O(k2) models. Combining the last remark with Theorem 2 shows that two-layer feed-forward neural
networks can learn exactly with high probability any fixed permutation on binary inputs of size k with
logarithmic training size and quadratic ensemble complexity. In the next section, we provide experiments
that demonstrate our theoretical results.

5. Experiments

We present two experiments that empirically demonstrate our theoretical results. We train a two-layer fully
connected feed-forward network with a hidden layer of width 50,000 only using standard basis vectors.5 Our
goal is to learn some random permutation on normalized binary inputs of length k. For testing, we evaluate
the performance on 1000 random vectors with nx̂ = 2 nonzero entries. To match the assumptions of our
theoretical analysis, we initialize the weights exactly as given in Section 3.

5. For the source code for these experiments, refer to the supplementary material.
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Figure 1: Experiment 1 (left) presents the required number of models (ensemble size) to achieve 90% accuracy
as a function of input size k, compared to the theoretical bound from Equation (20) with the appropriate δ.
Experiment 2 (right) presents accuracy as a function of ensemble size for different input sizes k.

1. Number of models to achieve 90% accuracy. Our first experiment examines how many independently
trained models need to be averaged to achieve a testing accuracy of 90% as a function of the input length k.

2. Accuracy vs ensemble size. Our second experiment fixes k ∈ {5, 10, 15, 20, 25, 30} and examines how
the post-rounding accuracy varies as the ensemble size increases.

In Figure 1, the left plot presents the results of Experiment 1 compared to the theoretical ensemble
complexity bound (expanded in Equation (20)) for the appropriate choice of δ to guarantee 90% accuracy for
all test inputs simultaneously. We observe that the empirical ensemble size remains below the theoretical
bound, and both curves follow a similar pattern as a function of k. For Experiment 2, the results on the
right plot of Figure 1 illustrate the convergence to perfect accuracy as a function of the ensemble size for
different input sizes k. As shown, larger input sizes require more models to achieve perfect accuracy, but
with a sufficient number of models, all instances eventually reach perfect accuracy.

6. Conclusion and Future Work

We have demonstrated that, within the NTK framework, an ensemble of O(k2) simple two-layer fully
connected feed-forward neural networks can learn any fixed permutation on binary inputs of size k with
arbitrarily high probability from a training set of logarithmic size, namely, the standard basis vectors. In terms
of future work, it would be interesting to extend our approach to a broader class of functions beyond just
permutations and to a wider range of architectures like CNNs, RNNs, or Transformers. Finally, an exciting
next step is developing a more general PAC-like framework for exact learning guarantees, specifically under
the NTK regime. This would utilize the infinite-width limit and standard gradient-based training dynamics to
give conditions under which neural architectures can learn global transformations with provable exactness.
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Appendix A. Useful Results

In this section, we state and prove some results from linear algebra and probability theory that were used
to derive our main results. For two matrices A1 ∈ Rn1×m1 , A2 ∈ Rn2×m2 , we denote by A1 ⊗ A2 ∈
Rn1n2×m1m2 their Kronecker product. We remark that A1 ⊗A2 is positive definite whenever A1 and A2 are
positive definite. The following two results are used to derive the required NTK kernels:

Theorem 4 (Sherman and Morrison 17) Suppose A ∈ Rn×n is an invertible matrix and u,v ∈ Rn. Then
A+ uv⊤ is invertible if and only if 1 + v⊤A−1u ̸= 0. In this case,

(A+ uv⊤)−1 = A−1 − A−1uv⊤A−1

1 + v⊤A−1u

Lemma 5 Suppose A ∈ Rn×n, a = [a1, . . . , an]
⊤ ∈ Rn and y ∈ Rn2

is given by

y =


Ae1
Ae2

...
Aen


Then (a⊤ ⊗ In)y = Aa.

Proof Both the right-hand side and left-hand side are vectors of size n. We shall show that for each
i = 1, 2, . . . , n, the i-th entry of the left-hand side is equal to the i-th entry of the right-hand side. The i-th
entry of Aa is simply given by

(Aa)i =
n∑

j=1

Aijaj

Now let C = a⊤ ⊗ In ∈ Rn×n2
. We can easily observe that C has the following block structure:

C =
[
a1In a2In . . . anIn

]
The i-th row of C is therefore given by

Ci =
[
a1ei

⊤ a2ei
⊤ . . . anei

⊤] ∈ R1×n2

Thus, the i-th entry of the left-hand side is given by

Ciy =

n∑
j=1

ajei
⊤Aej =

n∑
j=1

Aijaj = (Aa)i

since ei
⊤Aej = Aij . This concludes the proof.

The last result is a concentration bound for sums of Gaussian random variables, used to derive our
ensemble complexity bounds:
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Lemma 6 Let X1, X2, . . . , Xn be independent Gaussian random variables with mean µ and variance σ2

and let Xn =
∑n

i=1Xi. Then for all t > 0, we have:

P
{
|Xn − µ| ≥ t

}
≤ 2 exp

(
− nt2

2σ2

)
Proof We will use the Chernoff technique. Let λ > 0. We have Xn − µ ∼ N

(
0, σ

2

n

)
and so by symmetry

and Markov’s inequality we get:

P
{
|Xn − µ| ≥ t

}
= 2P

{
Xn − µ ≥ t

}
= 2P

{
eλ(Xn−µ) ≥ eλt

}
≤ e−λt · E

[
eλ(Xn−µ)

]
(5)

The expectation on the right-hand side is equal to the moment-generating function of a normal distribution
with mean 0 and variance σ2/n and so it is equal to exp

(
σ2λ2

2n

)
. Now let

ϕ(λ) = exp

(
σ2λ2

2n
− λt

)
be the right-hand side of Equation (5). Minimizing ϕ(λ) with respect to λ we find that the minimum occurs
at λ∗ = nt

σ2 and plugging this back into Equation (5) gives the required bound.

Appendix B. Proof of Theorem 2

In this section, we provide the proof of Theorem 2 by analytically calculating the mean and variance as given
by Theorem 1. Let x̂ ∈ K be a test point. According to Theorem 1, the output of the network at training
time t, Ft(x̂), in the infinite width limit converges to a multivariate Gaussian with mean and variance given
by Equation (3) and Equation (4), respectively, provided that the matrix Θ(X ,X ) is positive definite. To
calculate µ(x̂), we first need to derive Θ(x̂,X ) and Θ(X ,X ) according to Equation (1), which we refer to
as the test and train NTK kernels, respectively. We divide the computation into sections and also provide an
illustrative numerical example.

B.1. Train NTK

In this section, we derive the train NTK kernel Θ := Θ(X ,X ). Recall that the train inputs are simply the
standard basis vectors e1, . . . , en and so we have

Θ := Θ(X ,X ) =
(
(d− c)Ik + c11⊤

)
⊗ Ik ∈ Rk2×k2 (6)

where

d =
1

k
and c =

1

2πk
(7)

We can observe that since d > c > 0, Θ is positive definite. Indeed, since 11⊤ (the matrix of all ones) is
positive semidefinite, (d− c)Ik + c11⊤ is (strictly) positive definite and so the Kronecker product with Ik is
also positive definite (see Section 3). In that case, a direct application of Theorem 4 shows that

Θ−1 =

(
1

d− c
Ik −

c

(d− c)(d− c+ ck)
11⊤

)
⊗ Ik (8)

Notice that the fact that the training set is an orthonormal set of vectors (the standard basis) the train NTK
has a convenient structure, namely each block Θ(ei, ej) is diagonal. This fact is captured in the Kronecker
product structure of Equation (6).
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B.2. Test NTK

In this section, we calculate the test NTK Θ(x̂,X ) for an arbitrary test input x̂ ∈ K. Again, by Equation (1),
we find that

Θ(x̂,X ) = f⊤ ⊗ Ik ∈ Rk×k2 (9)

where for each i = 1, 2, . . . , k:

fi =
cos θ̂i(π − θ̂i) + sin θ̂i

2kπ
+ x̂i

π − θ̂i
2kπ

(10)

and
θ̂i = arccos (x̂i) (11)

Notice that since each x̂i is equal to either 0 or 1/
√
nx̂ where nx̂ is the number of nonzero entries of x̂, the

resulting θ̂i takes two values θ̂0 and θ̂1 (corresponding to x̂i = 0 and x̂i = 1/
√
nx̂) and subsequently each fi

also takes two values f0 and f1. Substituting we get:

θ̂0 =
π

2
and θ̂1 = arccos

(
1

√
nx̂

)
(12)

The corresponding f0 and f1 are derived by substituting θ̂0 and θ̂1 from Equation (12) to Equation (10).

Numerical example. Let us consider a concrete numerical example. Take k = 5 and P ∗ = I the identity
permutation. Consider the test inputs vector x̂ = (1/

√
2, 1/

√
2, 0, 0, 0)⊤. Calculating the values of f0 and f1

for x̂ we find
f0 ≈ 0.0318 and f1 ≈ 0.1285 (13)

Then

Θ(x̂, ei) ≈

{
0.1285 if i = 1, 2

0.0318 if i = 3, 4, 5

These numbers act as a measure of similarity between the test input and each element of the training set. In
our example, the test input has nonzero entries in its first two coordinates, and hence the values of Θ(x̂, e1)
and Θ(x̂, e2) are higher, reflecting a stronger “match” of the test input x̂ with the training vectors e1 and e2.

B.3. Computing µ(x̂)

Having calculated the required NTK kernels we are now ready to calculate the mean of the output distribution
µ(x̂) for a test input x̂ ∈ K. Since Θ is positive definite we can now calculate the mean of the limiting
Gaussian. Recall that we have

µ(x̂) = Θ(x̂,X )Θ−1Y

where

Y =


P ∗e1
P ∗e2

...
P ∗ek


From Equation (9) and Equation (8) we get

Θ(x̂,X )Θ−1 = f⊤
(

1

d− c
Ik −

c

(d− c)(d− c+ ck)
11⊤

)
⊗ Ik (14)
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and from Theorem 5 we get

µ(x̂) = P ∗
(

1

d− c
Ik −

c

(d− c)(d− c+ ck)
11⊤

)
f (15)

There is an interesting pattern arising from Equation (15): since fi only takes two values depending
on whether x̂i is nonzero, µ(x̂) also takes only two values. Remarkably, the multiplication by P ∗ in
Equation (15) corresponds exactly to the ground truth permutation we want our model to learn.

Numerical example. Coming back to our numerical example of the previous section, we can compute the
mean exactly by calculating Θ−1f , which gives

µ(x̂) ≈ (0.5606, 0.5606,−0.0146,−0.0146,−0.0146)⊤

Intuitively, multiplying f with the inverse of the train NTK matrix reweights the similarity scores to correct
for correlations between the training set.6 Finally, multiplying by P ∗ (in this case the identity) permutes the
reweighted similarities according to the ground truth permutation. Notice that the mean is negative for entries
where the ground truth is zero and positive otherwise. Below, we show that this is not a coincidence.

Interpreting the mean. Substituting everything into Equation (15) we find that

µ(x̂)i =
y2 −

√
y2 − 1y − 2π(y − 1) + 2y sec−1(y)− 1

(2π − 1)(k + 2π − 1)
(16)

if (P ∗x̂)i = 0 and

µ(x̂)i = −

(√
y2 − 1− y

) (
y2 − k

)
(2π − 1)(k + 2π − 1)y

+
π
(
k − y2 + 2

√
y2 − 1− 1

)
(2π − 1)(k + 2π − 1)y

+
2
(
k − y2 + 2π − 1

)
csc−1(y)−

√
y2 − 1 + 2π2

(2π − 1)(k + 2π − 1)y
(17)

if (P ∗x̂)i > 0, where y =
√
nx̂. Using a symbolic calculation system (Mathematica Inc. [11]) we can

establish that for all possible values of y (i.e y =
√
m for m = 1, 2, . . . , k), µ(x̂)i ≤ 0 if and only if

(P ∗x̂)i = 0. This concludes the proof of Theorem 2. Furthermore, the expressions for µ0(x̂) and µ1(x̂) are
given by Equation (16) and Equation (17), respectively.

Appendix C. Proof of Theorem 3

The conclusion of Theorem 2 suggests a simple rounding algorithm in practice: for each coordinate, if the
output of the network is greater than zero round to 1, otherwise round to 0. As discussed in Section 4, this
motivates a practical implementation where the network is trained enough times, its outputs are averaged
over all runs, and subsequently rounded accordingly. In the following sections, we provide the proof of
Theorem 3. First, we use the concentration inequality of Theorem 6 to derive an estimate of the number of
independent runs needed to achieve any desired level of post-rounding accuracy in terms of k, µ(x̂) and σ(x̂).
Subsequently, we compute the asymptotic orders of µ(x̂) and σ(x̂) to arrive at the conclusion of Theorem 3.

6. This is similar to how multiplication by (X⊤X)−1 in linear regression accounts for the correlation between observations.

12



C.1. Rounding procedure

In this section, we analyze the practical rounding strategy in more detail. Specifically, we try to quantify how
many runs are enough. Certainly, as the number of runs tends to infinity we can guarantee that an average
over all of them will yield perfect classification. However, this statement is not very useful from a practical
standpoint as it doesn’t show the dependence on the size of the input k.

Ensuring perfect accuracy Let x̂ be a test input and ŷ = P ∗x̂ be the corresponding ground truth output.
Suppose we take an average of N models. Let F j(x̂) be the output of the j-th model. The F j(x̂)’s
are independent samples from a multivariate normal distribution with mean µ(x̂) and variance Σ(x̂), as
given by Theorem 1. The i-th coordinates of the network’s output, F j(x̂)i, are therefore independent
samples from a normal distribution with mean µi := µ(x̂)i and variance σ2

i = ei
⊤Σ(x̂)e = Σ(x̂)ii. Let

G(x̂) = 1
N

∑N
j=1 F

j(x̂) be the average over all N model outputs. Given that µi ≤ 0 whenever ŷi = 0
and µi > 0 whenever ŷi > 0 we can see that the rounding procedure will yield a correct result for the i-th
coordinate if |G(x̂)i − µi| < |µi|/2. An application of the union bound and Theorem 6 shows that

P {|G(x̂)i − µi| ≥ |µi|/2 for all i ∈ {1, 2, . . . , k}} ≤ 2k max
i=1,2,...,k

exp

(
−Nµ2

i

8σ2
i

)
(18)

Setting the right-hand side of Equation (18) to be at most δ ∈ (0, 1) and noting that σi = σ2(x̂)7 for all
i ∈ [k] and each µi can take the two values µ0(x̂) and µ1(x̂) we get that our rounding procedure produces
the correct output for a test input x̂ ∈ K with probability at least 1− δ whenever the number of models N
satisfies

N ≥ 8σ2(x̂) ·max

{
1

µ0(x̂)2
,

1

µ1(x̂)2

}
ln

(
2k

δ

)
(19)

Similarly to how sample complexity is defined, we use the term ensemble complexity to refer to the number
of independent models we need to average to produce a correct output post-rounding. Equation (19) gives an
ensemble complexity bound for any specific test input x̂. Since the domain is finite we can turn this into a
uniform bound by taking

N ≥ 8 max
x̂∈K

{
σ2(x̂) ·max

{
1

µ0(x̂)2
,

1

µ1(x̂)2

}}
ln

(
2k

δ

)
(20)

C.2. Asymptotic behavior of µ(x̂) and σ2(x̂)

To conclude the proof of Theorem 3 and derive an asymptotic bound on the ensemble complexity of the
permutation learning problem we need to analyze the asymptotic behavior of µ(x̂) and σ2(x̂). The asymptotic
orders are given in the following technical lemma:

Lemma 7 Let x̂ ∈ K be a test input with nx̂ nonzero entries and let µ0(x̂), µ1(x̂) and σ2(x̂) be as above.
Then, σ2(x̂) ∈ O (1/k) and, depending on the relationship between nx̂ and k we have

|µ0(x̂)| ∈


Θ(1/k) if nx̂ is const.
Θ
(√

nx̂/k
)

if nx̂ is non-const.
and sublinear in k

Θ
(
1/
√
k
)

if nx̂ = ck, c ∈ (0, 1]

and |µ1(x̂)| ∈



Θ(1) if nx̂ is const.
Θ
(
1/
√
nx̂

)
if nx̂ is non-const.
and sublinear in k

Θ
(
1/
√
k
)

if nx̂ = ck, c ∈ (0, 1)

Θ (1/k) if nx̂ = k

7. The proof is in Appendix D.
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The proof of Lemma 7 is further deferred to Appendix D. In light of these asymptotic results, the uniform
bound of Equation (20) behaves like O(k log k). Indeed, this follows directly from the fact that the maximum
of the reciprocals of the means occurs for µ0(x̂) when nx̂ is constant which yields a bound of order O(k2).
This simple observation is enough to conclude the proof of Theorem 3.

Appendix D. Proof of Lemma 7

In this section, we analyze the mean and variance of the predictions under the limit NTK, expressing them as
functions of the test vector x̂. Specifically, we characterize their dependence on the vector length k and the
number of nonzero elements nx̂. We establish that the variance of the predictions scales as O (1/k) while
the mean coordinates exhibit two different behaviors: they scale with Θ(

√
nx̂/k) when P ∗x̂ = 0 and Θ(1/k)

when P ∗x̂ > 0. We begin by calculating the variance: a direct substitution on the formula for the variance
Σ(x̂) of Equation (4) we find that the variance for a test input x̂ ∈ K is given by

Σ(x̂) =

(
d

2
+ f⊤AMAf − 2f⊤Ag

)
Ik (21)

where

M =

(
d

2
− c

)
Ik + c11⊤ (22) A =

1

d− c
Ik −

c

(d− c)(d− c+ ck)
11⊤ (23)

and for each i = 1, 2, . . . , k:

gi =
cos θ̂i(π − θ̂i) + sin θ̂i

2kπ
(24)

The scalars c and d, the vector f , and the angles θ̂i are as defined in Equation (7), Equation (10) and
Equation (11), respectively. This shows that the output coordinates are independent Gaussian random
variables with the same covariance. Notice that whenever the test input is part of the training set, the variance
is zero. This is expected and consistent with the NTK theory, which guarantees exact learning on the training
set. In what follows we will use the notation σ2(x̂) := (d/2 + f⊤AMAf − 2f⊤Ag) ∈ R≥0. With that, we
are now ready to compute the asymptotic orders of the relevant quantities.

Preliminary quantities. We begin by rewriting several useful expressions from Appendix B and adding
other relevant expressions to complement them. Recall that:

d =
1

k
and c =

1

2πk

We further introduce
d′ =

d

2
=

1

2k
and c′ = c =

1

2πk
Additionally, we rewrite Equation (12) in an alternative form:

θ̂i =

{
arccos

(
1√
nx̂

)
if x̂i ̸= 0

π
2 otherwise

From this, we directly obtain the cosine and sine of θ̂i:

cos θ̂i =

{
1√
nx̂

if x̂i ̸= 0

0 otherwise
sin θ̂i =

{√
1− 1

nx̂
if x̂i ̸= 0

1 otherwise
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Using these quantities, we rewrite Equation (24) as:

gi =

{
1

2πk
√
nx̂

(
π − arccos (1/√nx̂) +

√
nx̂ − 1

)
if x̂i ̸= 0

1
2πk otherwise

and Equation (10) as

fi =

gi +
π−arccos(1/√nx̂)

2πk
√
nx̂

if x̂i ̸= 0,

gi otherwise

D.1. Computing the variance Σ(x̂)

We begin by recalling the expression for the variance (substituting d′ and c′):8

Σ(x̂) =
(
d′ + f⊤AMAf − 2f⊤Ag

)
Ik

where
M =

(
d′ − c′

)
Ik + c′11⊤ and A =

1

d− c
Ik −

c

(d− c)(d− c+ ck)
11⊤

We aim to show that the variance is bounded by O (1/k). To facilitate this, we rewrite Σ(x̂) by expanding
the matrix multiplication:

Σ(x̂) = d′Ik + f⊤ (AMAf − 2A(f − z)) Ik

= d′Ik + f⊤ (AMAf − 2Af) Ik + 2f⊤AzIk

where we define z = f − g for notational simplicity. It is straightforward to observe that the first term, d′Ik,
is bounded by O (1/k). Thus, we focus our attention on the remaining two terms. For the second term, we
begin by showing that AMA− 2A has a maximum eigenvalue of O(1), and therefore:

f⊤(AMA− 2A)f ∈ O (1/k)

We begin by expressing AMA in a more manageable form. A direct computation reveals:

AMA = uIk − v11⊤

where

u =
d′ − c′

(d− c)2
and v =

1

k

(
d′ − c′ + kc′

(d− c+ kc)2
− d′ − c′

(d− c)2

)
Subtracting 2A from this expression gives:

AMA− 2A = (u− 2a) Ik + (v + 2b)11⊤

where
a =

d− c

(d− c)2
and b =

c

(d− c+ ck) (d− c)

8. Even though in this case d′ = d/2 and c′ = c we deliberately introduce the new variables to avoid carrying the 1/2 factor.
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This matrix has two unique eigenvalues: u− 2a (with multiplicity k − 1) and u− 2a+ (v + 2b)k. We will
show that the largest eigenvalue is O(1). To this end, we evaluate these two quantities, starting with u− 2a:

u− 2a =
d′ − c′ − 2(d− c)

(d− c)2

= −2π(3π − 1)k

(2π − 1)2

which is negative. For the second eigenvalue, we find:

u− 2a+ (v + 2b)k = −2π(3π − 1)k

(2π − 1)2
+

2πk (π + k − 1)

(2π + k − 1)2
− 2πk(π − 1)

(2π − 1)2
+

4πk

(2π − 1) (2π + k − 1)

=

(
4π

2π + k − 1
+

π + k − 1

(2π + k − 1)2

)
k

which is positive and clearly O(1). With this result, we can bound the multiplication by the norms of its
components. Since λmax(AMA−2A) ∈ O(1) and ∥f∥2 ∈ O (1/k) (since each fi ∈ O (1/k)), we conclude:

f⊤(AMA− 2A)f ∈ O (1/k)

We now turn to the third term, 2f⊤Az. Expressing z component-wise we have:

zi =


π−arccos(1/√nx̂)

2πk
√
nx̂

if x̂i ̸= 0

0 otherwise

We then decompose the product f⊤Az as:

f⊤Az = af⊤z− b(f⊤1)(1⊤z) (25)

where
a =

1

d− c
and b =

2πk

(2π − 1)(2π + k − 1)

The first term af⊤z can be expressed as:

af⊤z =
1

(2π − 1)(2πk)2

(
2π − 2 arccos (1/√nx̂)−

√
nx̂ − 1

)
(π − 2 arccos (1/√nx̂))

which is positive and O (1/k). For the second term b(f⊤1)(1⊤z), we start by expressing the individual
quantities f⊤1 and 1⊤z:

f⊤1 =

√
nx̂

πk
(π − arccos (1/√nx̂)) +

√
nx̂

√
nx̂ − 1

2πk
+

k − nx̂

2πk

and

1⊤z =

√
nx̂

2πk
(π − arccos (1/√nx̂))

16



Therefore, the entire term can be expressed as:

b(f⊤1)(1⊤z) =
1

2πk(2π − 1)(2π − 1 + k)

(
2n (π − arccos (1/√nx̂))

2

+ nx̂

√
nx̂ − 1 (π − arccos (1/√nx̂))

+ (k − nx̂)
√
nx̂ (π − arccos (1/√nx̂))

)
which is positive and O (1/k), therefore, the subtraction of Equation (25) (which is equal to f⊤Az) is
O (1/k). Combining the bounds on all three terms, we conclude that:

Σ(x̂) ∈ O (1/k) Ik

completing the proof of the first part of Lemma 7.

D.2. Computing the mean µ(x̂)

We first recall the expression for the mean:

µ(x̂) = P ∗
(

1

d− c
Ik −

c

(d− c)(d− c+ ck)
11⊤

)
f

which we decompose into two terms:

µ(x̂) =
P ∗f

d− c
− c11⊤f

(d− c)(d− c+ ck)
(26)

The second term simplifies since 1 is the vector of all ones, effectively absorbing the permutation P ∗. For the
first term in Equation (26), we obtain:

(P ∗
j )

⊤f

d− c
=

 1
2π−1

(
π−arccos(1/√nx̂)√

nx̂
+
√

1− 1√
nx̂

)
if x̂j ̸= 0

1
2π−1 otherwise

The second term is a constant vector with coefficient:

c11⊤f

(d− c)(d− c+ ck)
=

1

(2π − 1)(2π − 1 + k)

(
nx̂ (π − arccos (1/√nx̂))

2
√
nx̂

+ nx̂

√
1− 1

nx̂
+ k − nx̂

)
We now evaluate each case of the mean separately.
Case 1: For µ0(x̂), that is, when P ∗x̂ = 0, we have:

µ0(x̂) =
1

2π − 1

(
1− k − nx̂

2π + k − 1
− 2πknx̂

(2π + k − 1)
(
πk

√
nx̂

) (π − arccos (1/√nx̂))

)

− 1

2π − 1

(
2πknx̂

(2π + k − 1) (2πk)

√
1− 1

√
nx̂

)
(27)

17



The absolute value of this expression behaves like Θ
(√

nx̂/k
)
, and setting nx̂ to different regimes yields the

bounds established in Lemma 7, namely:

|µ0(x̂)| ∈


Θ(1/k) if nx̂ is constant
Θ
(√

nx̂/k
)

if nx̂ is non-constant
and sublinear in k

Θ
(
1/
√
k
)

if nx̂ = ck for c ∈ (0, 1]

Case 2: For µ1(x̂), that is, when P ∗x̂ > 0, we have:

µ1(x̂) =
2π − 1

2π + k − 1

(
2

(2π − 1)
√
nx̂

(π − arccos (1/√nx̂)) +
1

(2π − 1)

√
1− 1

√
nx̂

)

+
k − nx̂

2π + k − 1

(
2

(2π − 1)
√
nx̂

(π − arccos (1/√nx̂)) +
1

(2π − 1)

√
1− 1

√
nx̂

− 1

(2π − 1)

)
(28)

When setting nx̂ = k, we note that the second term becomes zero and the first term becomes Θ(1/k).
Alternatively, the first term in Equation (28) is Θ(1/k) and the second term is Θ

(
1/
√
nx̂

)
, implying

µ1(x̂) ∈ Θ
(
1/
√
nx̂

)
. Setting nx̂ to different regimes yields the bounds established in Lemma 7, namely:

|µ1(x̂)| ∈


Θ
(
1/
√
nx̂

)
if nx̂ is non-constant
and sublinear in k,

Θ
(
1/
√
k
)

if nx̂ = ck for c ∈ (0, 1)

Θ (1/k) if nx̂ = k

This concludes the proof of the second part of Lemma 7
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