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Abstract

Meaningful uncertainty quantification in computer vision requires reasoning about
semantic information—say, the hair color of the person in a photo or the location of
a car on the street. To this end, recent breakthroughs in generative modeling allow
us to represent semantic information in disentangled latent spaces, but providing
uncertainties on the semantic latent variables has remained challenging. In this
work, we provide principled uncertainty intervals that are guaranteed to contain the
true semantic factors for any underlying generative model. The method does the
following: (1) it uses quantile regression to output a heuristic uncertainty interval
for each element in the latent space (2) calibrates these uncertainties such that
they contain the true value of the latent for a new, unseen input. The endpoints of
these calibrated intervals can then be propagated through the generator to produce
interpretable uncertainty visualizations for each semantic factor. This technique
reliably communicates semantically meaningful, principled, and instance-adaptive
uncertainty in inverse problems like image super-resolution and image completion.
Code and demos can be found on our project page.

1 Introduction

When making decisions with visual data, such as automated vehicle navigation with blurry images,
uncertainty quantification is critical. The relevant uncertainty pertains to a low-dimensional set
of semantic properties, such as the locations of objects. However, there is a wide class of image-
valued estimation problems—from super-resolution to inpainting—for which there does not currently
exist a method of producing semantically meaningful uncertainties. As an example, imagine doing
uncertainty quantification for medical image reconstruction from, say, a fast but undersampled MRI
scan. In such a setting, pixelwise intervals [16, 40, 5] are not very useful. We need uncertainty on the
underlying semantics—e.g., whether there is a tumor, and if so, of what size and shape.

We make progress on this problem by bringing techniques from quantile regression and distribution-
free uncertainty quantification together with a disentangled latent space learned by a generative
adversarial network (GAN). We call the coordinates of this latent space semantic factors, as each
controls one meaningful aspect of the image, like age or hair color. We do not require these semantic
factors to be statistically independent. Our method takes a corrupted image input and predicts each
semantic factor along with an uncertainty interval that is guaranteed to contain the true semantic
factor. When the model is unsure, the intervals are large, and vice-versa. By propagating these
intervals through the GAN coordinate-wise, we can visualize uncertainty directly in image-space
without resorting to per-pixel intervals—see Figure 1. The result of our procedure is a rich form of
uncertainty quantification directly on the estimates of semantic properties of the image.
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Figure 1: Uncertainty intervals over semantic factors produced by our method. We express the
intervals in a disentangled latent space that allows us to factorize the uncertainty into meaningful
components.

More concretely, we receive input images X and then predict an uncertainty interval for each of D
semantic factors Zd, d = 1, ..., D, which are the elements of a disentangled latent space. The method
involves training an encoder (a neural network that takes images as input and produces outputs in the
latent space of the GAN) on (X,Z) pairs to give us three different outputs:

1. The point prediction, f(X). This is the encoder’s best guess at the semantic factors Z.

2. The estimated lower conditional quantile, qα
2
(X). The encoder believes that qα

2
(X) is a

lower bound on the value of Z given X .

3. The estimated upper conditional quantile, q1−α
2
(X). The encoder believes that q1−α

2
(X)

is an upper bound on the value of Z given X .

Once the above encoder is trained, as described in Section 2.2, we use it to form an uncertainty
interval for each semantic factor. However, for the dth element of the latent code, the naive interval
(qα

2
(X)d, q1−α

2
(X)d) is not guaranteed to contain the ground truth value in finite samples. We

propose to perform a calibration procedure to fix this problem, yielding the sets

T (X)d =
[
qcalα

2
(X)d, q

cal
1−α

2
(X)d

]
, (1)

where qcal is a calibrated version of q constructed using the tools in Section 2.3. Once we have done
so, the intervals will contain α fraction of the true latent codes with high probability. In other words,
for any user-chosen levels α and δ, we can output intervals that with probability 1− δ satisfy

E
[
1

D

∣∣∣{d : Zd ∈ T (X)d
}∣∣∣] ≥ 1− α, (2)

for a new test point (X,Z), regardless of the distribution of the data, the encoder used, and the
number of data points used in the calibration procedure. This guarantee, described more carefully
in Definition 2.1, says that the intervals cover 1 − α fraction of the semantic factors unless our
calibration data is not representative of our test data (which only happens with a probability δ which
goes to 0 as the number of calibration data points grows). We visualize each of the d ∈ {1, ..., D}
intervals in latent space by propagating the dth lower and upper endpoints through the generator with
all other entries in the latent fixed to the point prediction (see Section 2.3 for a formal explanation).

1.1 Central Contribution

To our knowledge, this is the first algorithm for uncertainty intervals on a learned semantic represen-
tation with formal statistical guarantees. By propagating these intervals through the generator, we are
able to visualize uncertainty in an intuitive new way that directly encodes semantic meaning. This is
an important step towards interpretable uncertainties in general image-valued estimation problems.
However, the reader should note that our technique requires access to a disentangled latent space,
such as that of a StyleGAN, and provides no guarantees about the degree of disentanglement.
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2 Method

2.1 Notation and goal

Our data consist of pairs (X,Z)—the corrupted image X in X = [0, 1]H×W , and the latent code
Z ∈ Z , where Z = RD. As mentioned in the introduction, we think of Z as a disentangled
representation with d semantic factors—i.e.factors of variation corresponding to interpretable features
in an image, such as hair color and expression. For simplicity, assume each of the d dimensions
controls a single semantic factor; in practice, we ignore those that do not.

In our sampling model, X is generated from Z by composing two functions. The first function is a
fixed generator G : Z → Y , where Y = [0, 1]H×W , which takes the latent vector Z and produces
the ground truth image Y ∈ Y (for ease of notation, we assume X and Y have the same shape).
The second function is a corruption model, F : Y → X , which degrades the ground truth image
Y to produce the corrupted image X , for example by randomly masking out part of the image. To
summarize our data-generating process, we have

Y = G(Z) and X = F (Y ); (3)

Goal #1. Our first goal is to train an encoder E to recover Z from X—in other words, to invert
the mapping F ◦G—with a heuristic notion of uncertainty. The encoder’s point prediction will be
a function f : X → Z . The uncertainty will be parameterized by two functions, q1−α

2
: X → Z

and qα
2
: X → Z , denoting our estimates of the 1 − α

2 and α
2 conditional quantiles, respectively.

These conditional quantiles are potentially bad estimates; they do not natively possess the statistical
guarantee we desire.

Goal #2. Having trained the encoder and the conditional quantile estimates, we will output uncertainty
intervals in the disentangled latent space. Each dimension will get its own interval, which has the
form in (2). Ultimately, our uncertainty intervals will come with a statistical risk control guarantee,
like in (2), that is distribution-free—i.e., valid irrespective of the model or data distribution. The risk
function controlled is the false negative rate in the latent space. In other words, we bound the fraction
of semantic factors not covered by their calibrated intervals above by α (say, α = 10%).
Definition 2.1 (Risk-Controlling Prediction Set (RCPS)). A set-valued function T : X → 2Z is an
(α, δ) risk-controlling prediction set if

P
(
E
[
L(T (X), Z)

]
> α

)
≤ δ, (4)

where

L(T (X), Y ) = 1−

∣∣∣{d : Zd ∈ T (X)d
}∣∣∣

HW
. (5)

The reader should note here that the function T depends on the calibration data. The outer probability
in (4) is over the randomness in this calibration procedure; the inner expectation is over the new test
point, (X,Y ). The reader should note that in our setting, because we can generate infinite data from
the GAN, it is always possible to take δ arbitrarily close to 0, effectively making T nonrandom. In
the two following subsections, we address each of our goals separately.

2.2 Goal #1: Training the encoder for quantile regression

Our job in this subsection is to learn the three functions f , qα
2

, and q1−α
2

. We do so by training a
neural network with three different loss functions, one for each of three linear heads on top of the
same feature extractor—see Figure 2 for the training protocol.

Loss function for point prediction. We supervise the point prediction with three loss functions. The
first is an L1 loss directly in the latent space, and encourages f(X) to be close to Z.

L1

(
f(x), z

)
=

∣∣∣∣f(x)− z
∣∣∣∣
1

(6)

The second loss term imposes a domain specific prior on the generated image G(f(X)). For our
experiments on faces, we use an identity loss which encourages G(f(X)) to contain attributes that
have the same “identity” — or semantic content — as Y . We calculate the identity loss using a
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Figure 2: Our training pipeline, visualized above, shows our training process for the prediction f̂ ,
lower quantile qα

2
and the upper quantile q1−α

2
.

pretrained embedding function, ID : Y → Rd′
for some d′, which projects Y to an embedding space

where images with different identities land far away from one another. Finally, we calculate our loss
using cosine similarity,

LID

(
x, y

)
=

⟨ID(x), ID(y)⟩
||ID(x)|| · ||ID(y)||

, (7)

The third is a perceptual loss on the generated image G(f(X)) that imposes similarity between
G(f(X)) and X in the embedding space of a large pretrained image classification model. We impose
perceptual similarity by computing the LPIPS loss [50] which has been shown to preserve image
quality [17]. The perceptual loss is calculated using a pretrained feature extractor in a similar manner
to Eq 7. Following standard practice, the feature extractor used in this case is a VGG network,
pretrained on Imagenet.

Finally, we combine the loss functions to form the loss function for the prediction f ,
Lpred

(
f(x), z

)
= L1

(
f(x), z

)
+ c1LID

(
G(f(x)), G(z)

)
+ c2LLPIPS

(
G(f(x)), G(z)

)
, (8)

where c1 and c2 are hyper-parameters whose values are chosen based on a held out set.

Loss function for quantile regression. Quantile regression [30, 13, 32, 27, 28, 29, 31] is a statistical
method for estimating the conditional quantiles of a distribution. The key idea of quantile regression
is to supervise the regressor using a quantile loss,

Lβ
q (qβ(x), z) =

(
z − qβ(x)

)
β1 {z > qβ(x)}+

(
qβ(x)− z

)
(1− β)1 {z ≤ qβ(x)} . (9)

The minimizer of the quantile risk is the true β conditional quantile of Z|X . We supervise our
conditional quantile estimates qα

2
and q1−α

2
with two separate instances of the quantile loss, L

α
2
q and

L1−α
2

q respectively.

This concludes our explanation of the model training procedure, summarized in Algorithm 1. Experi-
mental details, such as the particular model architecture we use, are available in Section 3.

Algorithm 1 Quantile GAN encoder training
Input: training dataset D, risk level α, number of epochs E, fixed generator G
Output: trained functions f, qα

2
, and q1−α

2
.

f, qα
2
, and q1−α

2
← random model initialization

for e = 1 to E do
loss← 0
for (Xtrain, Ztrain) in D do
L1← Lpred

(
f(Xtrain

)
, Ztrain)

L2← L
α
2
q

(
qα

2
(Xtrain

)
, Ztrain)

L3← L1−α
2

q

(
q1−α

2
(Xtrain

)
, Ztrain)

loss += L1 + L2 + L3
end for
loss.backward()

end for
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2.3 Goal #2: Calibration

Having trained the model, we now calibrate it to achieve the statistical guarantee in Definition 2.1
using a set of calibration data

{
(Xi, Zi)

}n

i=1
generated from the model and the upper-confidence

bound procedure from [8]. The output of the procedure will be the function T from (2); specifically,
we will learn the calibrated conditional quantiles qcalα

2
and qcal1−α

2
.

Our procedure will calibrate the conditional quantiles by rescaling their size multiplicatively. We will
ultimately choose a multiplicative factor λ̂ that gives us the desired guarantee. Towards that end, we
index a family of uncertainty intervals scaled by a free parameter λ for each semantic factor,

Tλ(X)d =

[
f(X)d − λ

(
f(X)d − qα

2
(X)d

)
+
, f(X)d + λ

(
q1−α

2
(X)d − f(X)d

)
+

]
. (10)

When λ grows, the interval Tλ(X)d also grows, and thus, the loss function L(Tλ(X), Y ) shrinks.
Therefore, by taking λ large enough, we can always ensure the loss is zero. The challenge ahead is to
pick λ̂ to be the smallest value such that Tλ̂ is an RCPS as in (4).

The algorithm for selecting λ̂ involves forming an upper confidence bound (UCB) for the risk,
then picking the smallest value of λ such that the upper confidence bound falls below α. We give
Hoeffding’s UCB below, although we use the stronger Hoeffding-Bentkus bound from [8] in practice:

R̂+(λ) =
1

n

n∑
i=1

L (Tλ(Xi), Yi) +

√
1

2n
log

1

δ
. (11)

Note that in our setting, we can always generate enough samples to drive the last term to 0 for any
δ; however, if we only had a finite sample from some population, this would not be the case. We
can then select λ̂ by scanning from large to small values, λ̂ = min

{
λ : R̂+(λ′) ≤ α, ∀α′ ≥ α

}
, or

running binary search.

Proposition 2.2 (Tλ̂ is an RCPS [8]). With λ̂ selected as above, Tλ̂ satisfies Definition 2.1.

For the proof of this fact, along with a discussion the tighter confidence bounds used in our experi-
ments and extensions to the underlying theory, see [8] and [3].

Having proven that Tλ̂ is an RCPS, we can simply set T (X) = Tλ̂(X) in (2); in other words, we set
qcalα

2
(X)d = f(X)d− λ̂

(
f(X)d−qα

2
(X)d

)
+

and qcal1−α
2
(X)d = f(X)d+ λ̂

(
q1−α

2
(X)d−f(X)d

)
+

.

Visualizing uncertainty intervals in image space

We briefly describe our method for visualizing latent-space uncertainty intervals. In order to see the
effect of a single semantic factor, we set it to either the lower or upper quantile and hold the other
factors fixed to the point prediction. More specifically, for a particular dimension d ∈ {1, ..., D},
define the following vector:

Ẑd
k =

(
f(X)1, ..., f(X)d−1, qcalk (X)d, f(X)d+1, ..., f(X)D

)
. (12)

We visualize the lower and upper quantiles in image space as G(Ẑd
α
2
) and G(Ẑd

1−α
2
) respectively.

Since each semantic factor corresponds to an attribute, visualizing the lower and upper quantiles
per-factor gives interpretable meaning to the latent-space intervals. For example, in Figure 1, the
images of the child smiling give a range of possible expressions the model believes are consistent
with the underlying image.

3 Experiments

3.1 Dataset descriptions

FFHQ We use the StyleGAN framework pretrained using the Flickr-Faces-HQ (FFHQ) dataset [25].
FFHQ is a publicly available dataset consisting of 70,000 high-quality images at 1024 × 1024
resolution. The data used to train the quantile encoder and for the experiments in this section is
sampled from the generator pretrained on FFHQ.
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CelebA-HQ We use the CelebA-HQ dataset [23] to demonstrate the effectiveness of our approach
on real world data. The dataset contains 30,000 high-quality images of celebrity faces. Since the real
dataset is used only for evaluation, we use images from standard test split.

CLEVR. In order to have a controlled setup where we can easily identify disentangled factors of
variation, we generate synthetic images of objects based on the CLEVR dataset [22]. This dataset
provides a programmatic way of generating synthetic data by explicitly varying specific semantic
factors. We create a synthetic dataset by varying {color, shape} and fixing the other factors such as
lighting, material and camera jitter.
3.2 Experimental setup

Model architectures In all our experiments, we use the StyleGAN2 [24] framework for the generator
architecture G. For the experiments involving faces, we use the pretrained model available from
the official repository. For the CLEVR-2D experiments, we train a simpler variant of StyleGAN2
generator from scratch. For the quantile regression, we use a standard architecture: the encoder
network consists of a ResNet-50 backbone [19] with the final layer branching into the point prediction
and conditional quantiles. The branching module is a standard combination of convolution and
activation blocks followed by a fully connected layer of the expected output dimension; we call these
the heads of the model. Specific details of the model architecture are provided in the supplementary
material.

Model training We start by pretraining the generative model or acquiring an off-the-shelf pretrained
generative model for the task at hand. In generative models such as StyleGAN, the style space that
offers fine grained control over image attributes, is very high dimensional. From this high dimensional
space, we extract only the disentangled dimensions following previous work on style space analysis
[42]. In order to better focus the encoder’s capacity only on the disentangled dimensions, we mask
out the irrelevant dimensions for applying the quantile loss. However, the pointwise loss in (6) is
applied to the full style vector to ensure that the pointwise prediction is able to match the true latents
accurately, while the quantile heads focus on learning variablity only in the disentangled dimensions.

During the encoder training 2.2, the generative model G is held frozen and only the parameters
of the encoder E are updated. The point prediction and conditional quantile heads are trained
jointly with the Ranger optimizer [42] and a flat learning rate of 0.001 for all our experiments. The
hyperparameter weights (Eq 8) are set to c1 = c2 = 10.0.

For the image super-resolution training, we augment the input dataset by using different levels of
downsampled inputs, i.e., we take the raw input and apply a random downsampling factor from
{1, 4, 8, 16, 32} and resize it to the original dimensions. For the image inpainting task, we vary the
difficulty by choosing a random threshold to create the mask – lower thresholds implies fewer pixels
are masked and vice-versa. The mask is concatenated to the image resulting in a C + 1-channel
input to the encoder, where C is the number of image channels. The detailed description of the mask
generation procedure can be found in the supplementary material.

Calibration and Evaluation For both the synthetic object experiments with CLEVR and face
experiments with FFHQ, we train the quantile encoder on data points sampled from the latent space
of the pretrained generative model. This ensures that we have access to the true latents that resulted in
each image. We generate 100k samples per model and generate a random 80-10-10 split for training,
calibration and validation.

3.3 Findings

In the following experiments, we explore different properties of our intervals. The problem types
include image super-resolution and image inpainting. The risk level α and the user-specified error
threshold δ are fixed to 0.1, unless specified otherwise.

3.3.1 Producing semantic uncertainties

Goal. We qualitatively verify that the proposed approach outlined in Section 2 produces visually
meaningful uncertainties.

Description. We train a quantile encoder with Algorithm 1. Then we generate n = 5000 images by
sampling latents and propagating them through the encoder-generator combination. We use these n
images as calibration data for the procedure in 2.3. Finally, we randomly sample a new test point, pass
it through the calibrated encoder, and form the uncertainty intervals in image space as in Section 2.3.
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Figure 3: Semantically meaningful uncertainty intervals produced by our method on example
images sampled from the generator trained on the FFHQ dataset (left) and CLEVR dataset (right).
The corrupt image is provided as input to the encoder which outputs a pointwise prediction and
quantile predictions for each style dimension. We plot the calibrated and uncalibrated intervals as
well as their visualizations in image-space. [Best viewed in color, zoom in for detail.]

Results. The results are illustrated in Figure 3 on images sampled from the generator trained on
FFHQ (left) and CLEVR (right). In case of the FFHQ image, the person is wearing glasses in the
lower quantile image and not in the upper; hence, the model is not certain that the person is wearing
glasses. The model also expresses some uncertainty about the amount of gray versus brown hair. This
outcome was predictable from the input image, where the fact that the person is wearing glasses is
not obvious, and there is some hair color ambiguity. The results on the CLEVR dataset are analogous.
The lower and upper quantile images yield similar colors, which is predictable from the blurry input.
The model predicts that both a cylinder and sphere would be consistent with this blurry input. The
calibrated quantiles cover the ground truth color value, while the uncalibrated ones do not.

3.3.2 Experiments with real data

smile

input

ground truth

prediction

factor calibrated endpoints
lower upper

hair

glasses

smile

factor effect of calibration
before after

hair

glasses

Figure 4: Uncertainty intervals for real data We demonstrate the outputs of our approach for a real
image sampled from the CelebA-HQ faces dataset. [Left] The input is corrupted by downsampling the
true image by a factor of 32. Though the prediction does not match the ground truth, the uncertainty
captured by the quantiles remains meaningful. [Right] For the same input, we show the effect of our
calibration procedure by visualizing the edges of the quantile intervals before and after calibration.
Observe that in some cases, such as smile and glasses, there are clear visible changes due to the
calibration approach. In other cases such as hair, the changes are not visually explicit. More such
examples can be found in the supplementary material. [Best viewed in color. Zoom in for detail]
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Goal. We calibrate our encoder with a combination of fake data sampled from the pretrained
StyleGAN model and real data sampled from the CelebA-HQ face dataset for the image resolution
task. The objective is to test to what extent we can extract meaningful uncertainty intervals for real
data without explicitly training with them.

Description The difficulty with calibrating using real data is that the targets i.e the true style vectors
that generated the real images are not available to us. To circumvent that difficulty, we back-project
the real images into the latent space of the GAN using existing approaches to GAN inversion [24, 1].
Even though the mapping from the GAN latent space to the output is not one-one, the back-projection
optimization procedure is able to visually match the appearance of the real images convincingly. This
procedure provides us with the estimated "true" style vectors for each image in the real calibration set.
We combine this with the generated data and perform the RCPS calibration procedure as described in
Section 2.3. Note that, our encoder was only trained on generated data i.e. the same model as used in
Section 3.3.1, we use the real data only for the calibration procedure.

Qualitative results The predicted quantiles and the effect of the calibration procedure for a real test
image drawn from the CelebA-HQ dataset is visualized in Figure 4. The pointwise prediction of
the encoder does not match the identity of the true image due to the high level of input corruption.
However, using our approach, we are able to visualize the predicted uncertainty intervals in a
meaningful manner. The visual effect of our calibration procedure is demonstrated on the right.
Notice that some attributes such as smile and glasses have a visible change but others do not. The
change is due to the fact that the calibration procedure adjusts the intervals in such a way to satisfy
the required coverage guarantee.

3.3.3 Exploratory results with purposeful corruptions

corrupted 
input

pointwise 
prediction

lower 
quantile

upper 
quantile

corrupted 
input

pointwise 
prediction

lower 
quantile

upper 
quantile

Figure 5: Visualizing adaptivity [Left] A random mask is applied to the same input image in each
row. When there is no mask (1st row), the lower and upper quantiles are extremely close to the
pointwise prediction. As we increase the regions that are being masked, the intervals predicted by the
quantile encoder expand, as indicated by the variability on the lower and upper quantile predictions.
[Right] We show the results of the encoder on two sets of images. The corruption intensity is varied
across each set, the input image in the top row is not corrupted while the input in the bottom row is
under-sampled by 16x. In both case, we can observe that the most diverse prediction is in the bottom
row where the input is corrupted the most. [Best viewed in color. Zoom in for detail]

Goal. We probe our procedure to see if it will have the expected qualitative behavior.

Description of experiment. We sampled images from the held out set of the FFHQ pretrained GAN
and applied purposeful corruptions to check if the resulting quantile estimates had semantic meaning.
Both image resolution and image masking were used as corruption models. We qualitatively analyze
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the results by visualizing the predictions. We include a quantitative measurement of variability
estimated using image based metrics in the supplementary material.

Qualitative results. Figure 5 shows the results of this experiment for Image inpainting (left) and
super-resolution (right). In the inpainting case, when nothing is masked, the quantiles are roughly
identical. When the eyes are masked, the quantiles indicate the model does not know if the person
was wearing glasses. When the mouth is masked, the model expresses uncertainty as to whether the
woman is showing her teeth in the smile. Finally, when almost everything is masked, the quantile
images are very different, representing individuals with entirely different identities. Similar behavior
can be observed in the super-resolution case. The results are shown for two separate inputs; in both
cases, the input in the top row is uncorrupted while in the bottom row, it is undersampled by 16x.
The model is able to predict almost perfectly in the absence of corruption. The quantile predictions
are extremely close as well. In the presence of corruption, both the pointwise prediction is off (as
expected) and the quantile edges display much higher variability including in attributes such as hair
shape, glasses, facial hair and perceived gender. The results from both these experiments point to an
expected qualitative behavior of our proposed approach: the model exhibits more uncertainty with
increased information loss at the input.

4 Interval sizes as a function of problem difficulty

Goal. We seek to construct intervals that adapt to the uncertainty of the input, i.e., result in lower
values for easier inputs and higher values for harder inputs. In this experiment we verify quantitatively
how informative our intervals are as a function of increasing input corruption.
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Figure 6: Adapting to varying corruption levels: Distribution of set-sizes for different input
corruption levels for super-resolution on FFHQ and CLEVR.

Description of experiment. To simulate varying levels of corruption for image super-resolution,
we create the difficulty levels {easy,medium,hard} that correspond to {1x, 8x, 32x} downsampled
versions. All downsampled versions are resized to the same dimensions before presenting to the
encoder. The results are computed on a set of 2000 images sampled from the validation split of the
CelebA-HQ dataset. In order to obtain the set size for each input, we scale the quantile width using
the threshold obtained after the RCPS calibration procedure.

Results. Figure 6 shows the set sizes for the super-resolution corruption model as a function of
problem difficulty on two datasets, FFHQ and CLEVR. As expected, the set sizes increase with
increasing problem difficulty indicating increasing uncertainty as corruption level increases.

5 Related Work
GANs for Inverse problems. The remarkable image generation properties of recent approaches
such as BigGAN [11] and StyleGAN [24] has led to the increasing use of these models to solve
inverse problems relating to image restoration such as image super-resolution and completion. All
prior methods that use GANs for inverse problems such as the ones that use the pretrained generative
model as an image prior [46, 9, 38, 36] or the ones that train an encoder model to project the input
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into the generator’s latent space [51, 42, 45, 41] focus on the accuracy of the point estimate but not
on the uncertainty level of the input.

GANs for Interpretability. Despite providing no guarantees of image likelihood, unlike others such
as Normalized Flow [26] or Score-based models [52], GANs have been used to develop interpretable
approaches to image generation. The widespread use of GANs as opposed to other generative models
in the interpretability is done due to the availability of an disentangled latent space [18, 49], which is
a property we utilize in our work.

Quantile Regression. Quantile regression was first proposed in [30]. Since then, many papers have
used the technique, applying it to machine learning [21, 37, 39], medical research [7], and more.
Most relevant to us is conformalized quantile regression [43], which gives quantile regression a
marginal coverage guarantee using conformal prediction. Our work instead uses risk-controlling
prediction sets, a different distribution-free uncertainty quantification technique.

Conformal prediction and distribution-free uncertainty quantification. At the core of our
proposed method is the distribution-free, marginal risk-control technique studied in [8] and [3].
These ideas have their roots in the distribution-free marginal guarantees of conformal prediction,
proposed in [48]. Conformal prediction is a flexible method for forming prediction sets that satisfy
a marginal coverage guarantee, under no assumptions besides the exchangeability of the test point
with the calibration data [48, 47, 34, 35, 33, 2]. Conformal prediction has been studied in computer
vision [20, 12, 6, 44, 4], natural language [14], drug discovery [15], criminal justice [10], and more.

We are not aware of work applying the notions of conformal prediction and quantile regression to the
latent space in generative models.

6 Conclusion
Experiments indicate that with an appropriately disentangled model, latent space uncertainty intervals
express a useful semantic notion of uncertainty previously unavailable in computer vision. Limitations
of our method include that the calibration data must be reflective of the data distribution, and that
we assume access to a disentangled latent space. We see our work as part of a larger tapestry of
results in generative models, and our technique will remain applicable as progress gets made on
disentanglement and backprojection. Furthermore, by introducing a notion of statistical rigor to GAN
based approaches, our work creates a path for application of such models to safety critical settings.

7 Ethics
The ethics of generative modeling itself has been called into question given recent events, e.g., the
development of deep fakes. Nonetheless, we believe the downstream consequences of this work will
likely be positive. The techniques herein do not change the predictions of a generative model; they
simply provide a calibrated notion of its uncertainty in a relevant semantic space. Thus, the standard
criticism of generative modeling—that it will enable widespread deep fakes—is not applicable.
Furthermore, we expect having a statistically valid and semantically rich notion of uncertainty will
provide a sobering reliability assessment of these models, perhaps mitigating the chance of harmful
failures. Finally, although we use face datasets due to their ubiquity in this literature, we have
attempted to ethically treat topics like gender and race where they arise.
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1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] We explicitly state the assumptions

in Section 6
(c) Did you discuss any potential negative societal impacts of your work? [Yes] Explicitly

address this in Section 7
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes] Explicitly address this in Section 7
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] The proposition
is stated in Section 2.3. We also state the assumptions in Section 6. For more details,
we redirect the reader to previous work where we derive the framework from. ( [8]
and [3])

(b) Did you include complete proofs of all theoretical results? [No] The proposition is
stated in Section 2.3. For complete proofs, we redirect the reader to previous work
where we derive the framework from. ( [8] and [3])

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] Training details
are provided in Section 3. More complete details about the model architecture are
provided in the supplementary material. The datasets we use are publicly available, we
include references to that in Section 3. The code will be released in the near future.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running exper-
iments multiple times)? [No] While we expect there to be some randomness, the
behavior of the encoder is consistent across different runs.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [No]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [No] We cite the dataset creators who have

included their respective licenses along with the dataset. We ensure that we follow the
terms of the license i.e. use the data for research use only.

(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [No] Since we use a dataset that comes with a reseach license, we
defer such concerns to the dataset creators.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [No] Since we use a dataset that comes with a reseach
license, we defer such concerns to the dataset creators.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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