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ABSTRACT

Large vision-language-action (VLA) models such as PaLM-E, SayCan, and RT-2
enable robots to follow natural language instructions, but their billions of param-
eters make them impractical for high-frequency real-time control. At the other
extreme, compact sequence models such as Decision Transformers are efficient
but not language-enabled, relying on trajectory prompts and failing to general-
ize across diverse tasks. We propose TeNet (Text-to-Network), a framework that
bridges this gap by instantiating lightweight, task-specific policies directly from
natural language descriptions. TeNet conditions a hypernetwork on LLM-derived
text embeddings to generate executable policies that run on resource-constrained
robots. To enhance generalization, we introduce grounding strategies that align
language with behavior, ensuring that instructions capture both linguistic con-
tent and action semantics. Experiments on state-based Mujoco and Meta-World
benchmarks show that TeNet achieves robust performance in multi-task and meta-
learning settings while producing policies that are orders of magnitude smaller.
These results position language-enabled hypernetworks as a promising paradigm
for compact, language-conditioned control in state-based simulation, complemen-
tary to large-scale VLAs that tackle vision-based robotics at massive scale.

1 INTRODUCTION

Recent breakthroughs in large language models (LLMs) such as GPT (Brown et al., 2020) and
LLaMA (Touvron et al., 2023) have demonstrated remarkable generalization across diverse tasks
and domains. In robotics, vision-language-action (VLA) models such as PaLM-E (Driess et al.,
2023), SayCan (Brohan et al., 2023), RT-2 (Zitkovich et al., 2023), OpenVLA (Kim et al., 2025), and
OCTO (Team et al., 2024) extend this paradigm, conditioning robot behavior on natural language
and visual inputs. These systems point toward an exciting future where robots can flexibly follow
human instructions.

Yet, their practicality is limited. State-of-the-art VLAs often contain billions of parameters, mak-
ing inference too slow for high-frequency control loops and exceeding the hardware constraints of
mobile robots. On the other end of the spectrum, compact models such as Decision Transformers
(DT) (Chen et al., 2021) and Prompt-DT (Xu et al., 2022) are lightweight and efficient, but not in-
herently language-enabled. They rely on trajectory prompts rather than natural instructions, require
demonstrations even for unseen tasks, and degrade sharply as the number of tasks increases. This
trade-off leaves a gap between large but impractical VLAs and compact but non-language-grounded
sequence models. In this work, we deliberately restrict ourselves to low-dimensional, state-based
benchmarks so as to isolate the contribution of language-conditioned policy instantiation, and we do
not address perception or vision.

Several works have attempted to bridge this gap by using LLMs in indirect ways. Code-
as-Policies (Liang et al., 2023) translates instructions into robot API calls, while Code-as-
Rewards (Venuto et al., 2024) leverages vision-language models to automatically translate task
descriptions into reward signals for reinforcement learning. These approaches creatively connect
language and control, but they depend on predefined interfaces or exact simulators, making them
difficult to deploy in real-world robotics.

In contrast, we ask whether language itself can serve as the direct conditioning signal for policy
instantiation. Rather than running a large model inside the control loop, we use it once – at policy
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instantiation –through a hypernetwork (Ha et al., 2016). Our framework, TeNet (Text-to-Network),
conditions a hypernetwork on LLM-derived text embeddings to generate compact task-specific poli-
cies that can run onboard resource-constrained robots. This enables direct text-conditioned policy
instantiation at inference time, without requiring trajectory prompts or demonstration replay.

While direct text-to-policy generation demonstrates that compact policies can indeed be synthesized
from language alone, we find that effectiveness improves significantly when language is grounded in
behavior. To achieve this, we align text and trajectory embeddings using two strategies: direct em-
bedding alignment (MSE) and contrastive objectives. This grounding ensures that task descriptions
capture not only linguistic content but also behavioral semantics, enriching language representa-
tions with trajectory structure. As a result, TeNet achieves stronger generalization across tasks and
improved performance in multi-task and meta-learning settings.

Our goal is not to surpass large VLAs – which target vision-based benchmarks at massive scale – but
to open a complementary direction: language-enabled hypernetworks for compact policy synthesis
in state-based simulation. We restrict ourselves to trajectory-based domains (Mujoco and Meta-
World) as a necessary first step, systematically testing whether compact policies generated from
text and grounded in trajectories can provide robust multi-task performance. TeNet is therefore
complementary to VLAs rather than a competitor: it focuses on efficient policy instantiation in
state-based domains, not on solving end-to-end vision-language control. TeNet introduces the first
framework that uses natural language only once—as a conditioning signal for a hypernetwork that
generates a compact, fully executable policy. After instantiation, the resulting controller operates
independently of any language model, receiving only states and running at high frequency.

In summary, our contributions are:

• Text-to-Network Policy Generation. We introduce TeNet, a framework that conditions a
hypernetwork on LLM text embeddings to synthesize compact, task-specific robot policies.
Language is used only once—as a conditioning signal for the hypernetwork to generate all
policy parameters. The resulting controller is a standalone ∼40K-parameter network that
receives only states at inference and runs at high frequency without any language model or
multimodal processing.

• Grounding Language in Behavior. We adopt standard alignment strategies to map text
and trajectory embeddings – including direct embedding alignment and contrastive ob-
jectives – which enrich language representations with behavioral semantics and improve
generalization in multi-task and meta-learning. These grounding mechanisms are standard
tools and serve as auxiliary components: they enhance robustness but are not the core nov-
elty of TeNet, which lies in text-conditioned policy instantiation.

• Empirical Insights into a New Paradigm. We provide an extensive study across Mu-
joco and Meta-World benchmarks, highlighting both the promise and the limitations
of language-enabled hypernetworks, and offering guidance for future extensions toward
vision-grounded robotics.

2 RELATED WORK

LLMs in Robotics. Large language models (LLMs) have recently been integrated into robotics
systems to enable natural language instruction following and high-level planning. Early efforts such
as SayCan (Brohan et al., 2023) and PaLM-E (Driess et al., 2023) use pretrained LLMs to ground
natural language into action primitives executed by low-level controllers. These approaches leverage
LLMs’ world knowledge but remain limited to symbolic or goal-level guidance.

Other works connect language and control indirectly. Code-as-Policies (Liang et al., 2023) translates
instructions into robot API calls, Code-as-Rewards (Venuto et al., 2024) converts descriptions into
reward signals, and SayTap (Tang et al., 2023) maps commands into foot contact patterns. These
methods creatively bridge instruction and control, but depend on predefined APIs or accurate simula-
tors, limiting real-world use. More recently, vision-language-action models such as RT-2 (Zitkovich
et al., 2023), OpenVLA (Kim et al., 2025), and OCTO (Team et al., 2024) extend LLMs with visual
grounding, but their scale and computational demands hinder deployment on resource-constrained
robots.
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In addition, recent work explores aligning language with behavior through contrastive representa-
tion learning. For example, CLASP (Rana et al., 2023) learns joint language–state–action embed-
dings and explicitly models the many-to-many correspondence between textual descriptions and
demonstrations using distributional encoders. However, CLASP focuses on representation pretrain-
ing rather than generating executable policies. In TeNet, contrastive alignment plays a different and
more limited role: we adopt standard contrastive objectives purely as an auxiliary mechanism to
stabilize language-conditioned hypernetwork training, and we do not claim novelty at the level of
the contrastive loss.

Compact Sequence Models for Policy Learning. In contrast to large LLM- or VLM-based sys-
tems, another line of research explores compact sequence models as policies for reinforcement learn-
ing. The Decision Transformer (DT) (Chen et al., 2021) recasts offline RL as a conditional sequence
modeling problem, generating actions autoregressively given states and return-to-go. While effec-
tive in single-task settings, DT does not inherently support multi-task generalization, since it lacks
a mechanism to distinguish tasks.

Several extensions introduce task-conditioning via trajectory prompts. Prompt-DT (Xu et al., 2022)
improves adaptability by conditioning policies on a demonstration from the target task, and Meta-
DT (Wang et al., 2024) extends this approach in a meta-learning setting. Although these methods
improve transfer, they still require access to trajectory prompts at test time, which limits their prac-
ticality in real-world deployments where demonstrations are costly or unavailable. Diffusion-based
models have also been explored for multi-task reinforcement learning in state-based domains, such
as MTDiff (RL) (He et al., 2023) and MetaDiffuser (RL) (Ni et al., 2023), which condition on
prompt trajectories or task-specific contexts to generalize across tasks. More recently, LPDT (Yang
& Xu, 2024) aims to reduce data inefficiency by initializing Prompt-DT with a pre-trained language
model and adding prompt regularization, but it still depends on trajectory prompts and yields mixed
results across domains. DPDT (Zheng et al., 2024) tackles gradient conflicts in multi-task training
by decomposing prompts into cross-task and task-specific components with test-time adaptation, yet
it remains non–language-enabled and, without released code, its reproducibility is limited.

In parallel, modern visuomotor diffusion policies such as Diffusion Policy (Chi et al., 2025) use
diffusion architectures to generate actions directly from images and have demonstrated strong real-
world capabilities. These approaches differ fundamentally from the state-based RL methods dis-
cussed above. We focus on DT-based baselines to maintain architectural symmetry across all meth-
ods and because our experiments operate in low-dimensional state-based domains. Extending TeNet
with diffusion-based trajectory encoders or diffusion-generated policy parameters is a promising
direction for future work.

Overall, compact sequence models demonstrate that lightweight architectures can be applied to
multi-task RL, but their reliance on trajectory prompts and lack of direct language grounding con-
strain their scalability as instruction-following agents.

Hypernetworks and Meta-Learning. Hypernetworks (Ha et al., 2016) generate the weights of
another network and have been explored as a mechanism for rapid specialization in reinforcement
learning. By conditioning on task-specific signals, a shared hypernetwork can instantiate new poli-
cies without retraining from scratch, making them attractive for meta-learning settings (Beck et al.,
2023).

Recent works differ in their choice of conditioning signal:

• Task-embedding based. HyperZero (Rezaei-Shoshtari et al., 2023) enables zero-shot pol-
icy generation from structured task embeddings, while HyPoGen (Ren et al.) biases the
generated weights for robust fine-tuning under distribution shift. A common alternative in
multi-task RL is to condition policies on simple task identifiers such as one-hot vectors or
learned task embeddings. While lightweight, these identifiers offer no semantic structure
and cannot generalize to unseen tasks or continuous task families. Moreover, task IDs run
counter to the goal of language-enabled policy generation, as they replace rich natural-
language descriptions with opaque symbolic labels.

• Trajectory-based. Latent Weight Diffusion (Hegde et al., 2024) combines a diffusion model
with a hypernetwork decoder to generate closed-loop policies from demonstrations. A re-
lated approach is Make-an-Agent (Liang et al., 2024), which conditions a diffusion model
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on trajectory embeddings to synthesize policy weights. Unlike TeNet, these methods re-
quire demonstration trajectories at test time and therefore produce trajectory-conditioned
policies rather than language-instantiated ones.

• Archive-based. Latent Policy Diffusion (LPD) (Hegde et al., 2023) distills a large QD-RL
archive into a single diffusion model over policies, conditioned on behavior measures or
short language labels. Unlike our work, which uses rich task descriptions as the primary
conditioning signal, LPD relies on precomputed archives and uses text only as auxiliary
behavior tags.

• Morphology-based. HyperDistill (Xiong et al., 2024) conditions a hypernetwork on robot
morphology for embodiment transfer.

• Image-based. HUPA (Gklezakos et al., 2022) generates task-specific policies directly from
image observations.

• Language-based (outside robotics). In NLP, hypernetworks have been used to generate
adapter or LoRA weights directly from task descriptions or instructions, e.g., Hypter (Ye &
Ren, 2021), HyperFormer (Mahabadi et al., 2021), HyperLoRA (Lv et al., 2024), and Text-
to-LoRA (T2L) (Charakorn et al., 2025). These methods focus on adapting large language
models, not synthesizing control policies.

These efforts show the versatility of hypernetworks for conditioning across modalities. However,
existing works either rely on structured task descriptors, demonstrations, or morphology signals, or
they use language only to adapt large models in NLP or vision. None directly combine LLM-based
text encoders with hypernetworks to synthesize compact, task-specific robot control policies.

Summary. Prior work has explored LLM/VLM-based instruction following, compact transformer-
and diffusion-based policies, and hypernetworks conditioned on tasks, trajectories, or morphology.
Yet, no existing approach combines natural language grounding with hypernetwork-based policy
synthesis. To our knowledge, our framework is the first to directly generate compact robot policies
from language by aligning task descriptions with demonstrations and instantiating policies via a
shared hypernetwork.

3 PROBLEM STATEMENT

Language-Augmented MDP (LA-MDP). We model a single task as a Language-Augmented MDP

M̃ = (S,A, P,R, µ,H,L), (1)

which extends a standard MDP by including a language descriptor. The first six elements
(S,A, P,R, µ,H) are the standard MDP components: S is the state space, A the action space,
P (s′ | s, a) the transition dynamics, R(s, a) the reward function, µ the initial state distribution, and
H the horizon. The additional component L ∈ ∆(L) is a language descriptor, i.e., a probability
distribution over natural-language strings in the space L. Each task is associated with its own de-
scriptor distribution L, which generates natural-language paraphrases (e.g., “move forward” vs. “go
straight”) of the same underlying dynamics P and reward function R. Thus, the LA-MDP can be
viewed as a standard MDP augmented with a generative source of equivalent task descriptions. A
policy π(a | s) induces a trajectory distribution in M̃, and its performance is

J(π) = E

[
H−1∑
t=0

R(st, at)

]
, (2)

with the task-optimal policy π∗ = argmaxπ∈Π J(π).

Multi-task LA-MDP. We consider a distribution over tasks, where each task τ ∈ T is an LA-MDP

M̃τ = (Sτ ,A, Pτ , Rτ , µτ , H,Lτ ). (3)

Tasks may differ in Sτ , Pτ , Rτ , µτ and Lτ , while sharing the action space A. The multi-
task objective is to learn a single policy that maximizes expected return across tasks: π∗ =
argmaxπ∈Π Eτ∼p(T )

[
Jτ (π)

]
.
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Offline setting. No online interaction is permitted. The learner receives a static dataset collected
from training tasks Ttrain, each modeled as an LA-MDP

Dtrain =
{
(Xτ ,Dτ )

∣∣ τ ∈ Ttrain
}
, (4)

where Xτ = {ξ(k)τ }Kk=1 is a set of expert trajectories ξ
(k)
τ = (s0, a0, r0, . . . , sH), and Dτ =

{d(m)
τ }Mm=1 are i.i.d. descriptions sampled from the language descriptor, d(m)

τ ∼ Lτ .

Multi-task learning. The learner is trained on demonstrations from a set of tasks Ttrain. The ob-
jective is to learn a single model that approximates π∗

τ for all τ ∈ Ttrain, exploiting shared structure
across tasks instead of training disjoint policies.

Meta-learning. The learner is trained on a collection of tasks Ttrain with the objective of generalizing
to previously unseen tasks τ ∈ Ttest. The challenge is to acquire transferable structure from Ttrain
that enables rapid policy instantiation for new tasks without further environment interaction.

Few-shot adaptation (baselines). A common meta-RL strategy is to provide a small number of
expert trajectories from the unseen task as adaptation data (few-shot setting). Prompt Decision
Transformers (Prompt-DT) implement this by using short expert rollouts (prompt trajectories) as
test-time task identifiers.

Language-based instantiation (ours). In contrast, we do not rely on prompt trajectories; instead
we leverage natural-language descriptions sampled from Lτ to instantiate policies for τ ∈ Ttest,
requiring the learner to ground language into behavior.

4 METHOD

4.1 OVERVIEW

Our framework, TeNet (Text-to-Network), synthesizes compact, task-specific robot policies di-
rectly from natural language descriptions by conditioning a hypernetwork on language embeddings.
At training time (Figure 1, top), the model receives task descriptions and expert demonstrations.
Task descriptions are first encoded into text embeddings. Expert demonstrations supervise the pol-
icy through an imitation loss. In the grounded variant, we additionally introduce a trajectory encoder,
and align its embeddings with the text embeddings (i.e., language grounding), thereby enriching the
language representation with behavioral semantics. At inference time (Figure 1, bottom), a new task
description is passed through the text encoder, projected to the appropriate embedding space, and
fed into the hypernetwork to generate a policy that can be executed without further demonstrations.

We present two variants of our approach: Direct TeNet, which conditions the hypernetwork solely
on text embeddings, and Grounded TeNet, which aligns text embeddings with trajectory embed-
dings during training to capture behavioral semantics and improve generalization.

4.2 DIRECT TENET

In the Direct TeNet variant, policies are instantiated directly from task descriptions without trajectory
grounding. Given a description d ∈ L, the text encoder ftext produces an embedding zd = ftext(d) ∈
Rdz . A projection network g maps zd into the conditioning space of the hypernetwork: z̃d = g(zd).
The hypernetwork h then generates the parameters θπ of a task-specific policy network πθπ

θπ = h(z̃d), πθπ (a | s). (5)

Training relies on expert demonstrations ξτ = {(st, at)}Ht=0 from task τ . The policy is supervised
by behavior cloning (imitation learning)

LBC = −E(s,a)∼ξτ

[
log πθπ (a | s)

]
. (6)

Thus, Direct TeNet provides a simple mechanism for mapping language directly into executable
policies through the hypernetwork.
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Figure 1: Training (top) and inference (bottom) of the proposed framework. During training, tra-
jectories and task descriptions are encoded, projected, and aligned through a language grounding
module, with a hypernetwork generating task-specific policies optimized by imitation and ground-
ing losses. At inference, only the task description conditions the hypernetwork to instantiate a policy
that maps states to actions.

4.3 GROUNDED TENET

Direct TeNet instantiates policies solely from projected text embeddings (Section 4.2). To better
capture behavioral semantics, Grounded TeNet augments training with additional grounding objec-
tives that align text and trajectory embeddings. We emphasize that grounding is not the primary
conceptual contribution of TeNet: it is an auxiliary mechanism that stabilizes and enriches the text
embeddings, while the core novelty lies in generating executable policy parameters directly from
natural language.

Given an expert trajectory ξ = {(st, at, rt, st+1)}Ht=0, the trajectory encoder ftraj produces an em-
bedding zξ = ftraj(ξ). Both zξ and the projected text embedding z̃d are mapped into a shared space,
and a grounding loss Lground is applied. We explore two variants:

Direct alignment (MSE). A simple strategy is to directly minimize the squared distance between
projected text and trajectory embeddings

Lalign = E(d,ξ)

[
∥z̃d − zξ∥22

]
. (7)

This objective enforces absolute closeness of paired embeddings in the shared space.

Contrastive alignment. Let sim(·, ·) denote cosine similarity and β > 0 a temperature parameter.
For each update, we consider a finite candidate set of trajectory embeddings Cξ and a finite candidate
set of text embeddings Cd that provide negatives for the contrastive normalization.

(i) Text–trajectory contrastive (symmetric). For paired (z̃d, zξ), we align text to trajectory and tra-
jectory to text with a symmetric InfoNCE

Ltext-traj =
1
2 E(d,ξ)

[
− log

exp
(
sim(z̃d, zξ)/β

)∑
ξ′∈Cξ

exp
(
sim(z̃d, zξ′)/β

) − log
exp

(
sim(z̃d, zξ)/β

)∑
d′∈Cd

exp
(
sim(z̃d′ , zξ)/β

)].
(8)

(ii) Text–text contrastive. Task descriptions can be structurally similar (e.g., differing only in goal
parameters), which may collapse text embeddings. To encourage description-level discrimination,
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we add

Ltext-text = Ed

[
− log

exp
(
sim(z̃d, z̃d)/β

)∑
d′∈Cd

exp
(
sim(z̃d, z̃d′)/β

)]. (9)

The final contrastive objective is Lcontrastive = Ltext-traj + Ltext-text.

Summary. The total training loss combines imitation learning with grounding: L = LBC +
λg Lground, where Lground may include Lalign or Lcontrastive, and λg balances their contribution. At
inference time, no trajectories are required – the policy is instantiated from text alone. Grounding is
used only during training to shape the representation.

5 EXPERIMENTS

We conduct an extensive empirical study to evaluate TeNet and to provide insights into the de-
sign and behavior of language-enabled hypernetworks. Our experiments are performed on Mujoco
control benchmarks (HalfCheetah-Vel, HalfCheetah-Dir, Ant-Dir) and Meta-World manipulation
benchmarks (ML1 Pick-Place, MT10, MT50), covering both multi-task and meta-learning settings.

Beyond reporting standard performance, our goal is to systematically answer a series of questions
about when and why TeNet is effective, how grounding influences policy quality, and how design
choices such as hypernetwork structure, fine-tuning strategies, and task scaling affect performance.
This section is therefore organized around these questions, with results interleaved with analysis.

5.1 EXPERIMENTAL SETUP

Benchmarks. We evaluate on Mujoco locomotion (HalfCheetah-Dir, HalfCheetah-Vel, Ant-Dir)
and Meta-World manipulation (ML1 Pick-Place, MT10, MT50), spanning multi-task and meta-
learning regimes. Full task definitions, state/action spaces, and splits are in App. A.

Models. We compare DT (Chen et al., 2021), Prompt-DT (Xu et al., 2022), and three TeNet
variants: TeNet (direct, no grounding), TeNet-MSE (MSE grounding), and TeNet-Contrast
(contrastive grounding). Implementation details, Prompt-DT size variants, and the Prompt-
DT+Hypernetwork modification are in App. B.3.

Metrics & protocol. We report episodic return on Mujoco and success rate on Meta-World, plus
controller size and control frequency for deployability. Metrics and definitions are in App. B.4.
Results are averaged over 3 seeds; each task is evaluated with 50 rollouts (App. B.2).

Defaults. Unless stated otherwise: the text encoder is Llama-3 8B (frozen), the trajectory encoder
is Prompt-DT (used only for grounded variants), and TeNet uses a small MLP hypernetwork to
instantiate a ∼40K-parameter policy. Training is strictly offline. Architectural and optimization
details are in App. B.1–B.2; system setup is in App. B.5.

5.2 RESULTS

Figure 2 summarizes performance across all six benchmarks, with a shared legend shown on top.

Several general trends are clear. First, DT is consistently the weakest model across all domains,
confirming that a compact sequence model without explicit task signals is not suitable for multi-task
or meta-learning. Both Prompt-DT and TeNet address this limitation by providing task signals, but
they do so in fundamentally different ways: Prompt-DT relies on short expert rollouts (prompt tra-
jectories) as identifiers, while TeNet derives task signals directly from natural language descriptions.
This text-based conditioning avoids the need for demonstrations at test time, making TeNet more
scalable and practical within our state-based multi-task benchmarks, as it removes the requirement
for task-specific trajectory prompts.

Second, when comparing TeNet variants (more specifically TeNet-Contrast) against Prompt-DT,
we observe consistent advantages. TeNet-Contrast outperforms Prompt-DT in HalfCheetah-Dir and

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

DT Prompt-DT TeNet TeNet-Contrast TeNet-MSE

0 1000 2000 3000 4000 5000
Training Iteration

0

100

200

300

400

500

Ep
iso

de
 R

et
ur

n

Ant-Dir

0 1000 2000 3000 4000 5000
Training Iteration

250

200

150

100

50

Ep
iso

de
 R

et
ur

n

HalfCheetah-Vel

0 1000 2000 3000 4000 5000
Training Iteration

500

0

500

1000

Ep
iso

de
 R

et
ur

n

HalfCheetah-Dir

0 1000 2000 3000 4000 5000
Training Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

MT50

0 1000 2000 3000 4000 5000
Training Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

MT10

0 2000 4000 6000 8000 10000
Training Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

ML1

Figure 2: Performance across Mujoco (HalfCheetah-Dir, HalfCheetah-Vel, Ant-Dir) and Meta-
World (ML1 Pick-Place, MT10, MT50). Each subplot reports mean and standard deviation over
three seeds. A shared legend is shown at the top.

Ant-Dir, matches it in HalfCheetah-Vel, and is slightly worse in ML1 Pick-Place (which we analyze
further in Section 5.7). Most strikingly, in MT10 and MT50 TeNet-Contrast hugely outperforms
Prompt-DT. This large gap prompted us to investigate why Prompt-DT struggles so severely in
multi-task benchmarks and to identify which design choices in TeNet are responsible for its robust
performance. We return to this question in later subsections, where we dissect the role of task
diversity, grounding, and hypernetwork conditioning.

5.3 CAN WE DIRECTLY BUILD POLICIES FROM LANGUAGE, OR DO WE NEED GROUNDING?

The results in Figure 2 reveal a mixed picture. Direct TeNet already provides a substantial im-
provement over DT across all benchmarks, confirming that natural language is an effective source
of task signals. However, its relative performance compared to Prompt-DT depends critically on
the setting. On meta-learning benchmarks (HalfCheetah-Vel, Ant-Dir, ML1 Pick-Place), Direct
TeNet falls behind Prompt-DT, suggesting that text encodings, while informative, do not general-
ize to unseen tasks as effectively as trajectory prompts. In contrast, on multi-task benchmarks
(MT10, MT50), Direct TeNet consistently outperforms Prompt-DT. These results indicate that di-
rect language-to-policy instantiation is viable and scales well in diverse multi-task regimes, but that
additional grounding is required for robust generalization in meta-learning settings where the agent
must extrapolate to unseen tasks.

5.4 HOW SHOULD WE GROUND LANGUAGE IN BEHAVIOR?

The results in Figure 2 show that grounded TeNet, regardless of the chosen strategy, consistently
outperforms Direct TeNet on the meta-learning benchmarks (HalfCheetah-Vel, Ant-Dir, ML1 Pick-
Place). This confirms that additional grounding is necessary for robust generalization to unseen
tasks.

Among the grounding methods, contrastive alignment generally performs better than direct align-
ment (MSE). The reason is that MSE enforces absolute closeness between paired text and trajec-
tory embeddings, but provides no mechanism to separate embeddings from different tasks. As a
result, embeddings from similar descriptions may collapse, limiting discriminability. In contrast,
contrastive objectives simultaneously pull together matching text–trajectory pairs and push apart
non-matching pairs, yielding a representation space that is both semantically aligned and better sep-
arated across tasks. This improved structure in the shared embedding space translates into stronger
policy generalization.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 250 500 750 1000 1250 1500
Number of Tasks

0.7

0.8

0.9

1.0

Su
cc

es
s R

at
e

ML1
TeNet-Contrast

Figure 3: TeNet-Contrast perfor-
mance on ML1 Pick-Place with
varying numbers of tasks.

Table 1: Success rate on MT10 and MT50, along with con-
troller size and control frequency. Prompt-DT-S is the default
configuration.

Model Success Rate Ctrl
Size

Ctrl
Freq.MT10 MT50

Prompt-DT-S 0.73 0.61 1M 557 Hz
Prompt-DT-M 0.79 0.65 6M 331 Hz
Prompt-DT-L 0.74 0.58 39M 190 Hz
Prompt-DT-HN 0.99 0.97 5M 462 Hz
TeNet 0.99 0.98 40K 9300 Hz

5.5 WHY DOES PROMPT-DT STRUGGLE IN MT10 AND MT50?

The Meta-World multi-task benchmarks (MT10 and MT50) contain tasks that are far more distinct
than those in Mujoco (e.g., pick-place versus drawer-open, compared to velocity or direction vari-
ations). This task diversity poses a major challenge for Prompt-DT. Furthermore, as the number of
tasks increases, the success rate of Prompt-DT drops (from 0.73 on MT10 to 0.61 on MT50; see
Figure 2). To better understand this gap, we conduct two follow-up experiments.

First, we ask whether the failure is simply due to insufficient model capacity. If trajectory prompts
are expressive enough, then increasing the size of Prompt-DT (from small to medium to large)
should yield meaningful improvements. Table 1 shows that this is not the case: larger Prompt-DT
models achieve only marginal gains, indicating that the issue lies deeper than model capacity.

Second, we test whether the limitation arises from the lack of task-specific parameterization. In this
variant, Prompt-DT-HN serves as a trajectory-conditioned hypernetwork baseline, where the prompt
trajectory is encoded and used to generate policy weights via a shared hypernetwork. To this end, we
add a hypernetwork on top of Prompt-DT to generate policy parameters conditioned on task signals.
Table 1 indicates that this modification yields a substantial boost in success rates on both MT10 and
MT50. The comparison demonstrates that explicitly generating task-specific parameters is crucial
when dealing with distinct multi-task benchmarks. TeNet naturally benefits from this principle while
also being language-enabled, removing the reliance on demonstration prompts.

5.6 HOW FAST ARE TENET POLICIES?

Beyond task success, deployability depends critically on the efficiency of the policy: controllers
must be compact enough to fit on resource-constrained robots, and fast enough to support high-
frequency control loops. Table 1 reports both the number of parameters (controller size) and the
control frequency that the method can sustain. For details on the computation of these two metrics,
refer to App. B.4.

The results highlight a stark contrast. Prompt-DT variants range from 1M to 39M parameters, with
control frequencies between 190 Hz and 600 Hz. Adding a hypernetwork further increases model
size to 5M parameters, while improving task success, but the resulting policies remain limited to the
sub-kHz regime. In contrast, TeNet policies contain only 40K parameters and sustain control rates
of over 9 kHz, more than an order of magnitude faster than all Prompt-DT baselines.

These results demonstrate that TeNet not only matches or exceeds success rates but also provides
lightweight and high-frequency controllers, making it well-suited for deployment on real robots
where hardware constraints and responsiveness are critical.

5.7 DOES SCALING THE NUMBER OF TRAINING TASKS IMPROVE TENET’S
GENERALIZATION?

In Section 5.2 we noted that TeNet-Contrast slightly underperforms Prompt-DT on ML1 Pick-Place.
To investigate further, we study how scaling the number of training tasks affects generalization.
Specifically, we vary the number of ML1 tasks available during training (50, 100, 200, 400, 800,
1600), while always holding out 10% of tasks for testing. The results are shown in Figure 3.

9
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Performance improves steadily from a success rate of 0.80 with 50 tasks to 0.99 with 1600 tasks.
This indicates that scaling the diversity of training tasks substantially enhances TeNet’s ability to
generalize. One possible factor is that as the number of training tasks grows, the domain gap between
train and test tasks decreases, making generalization easier. In any case, reaching a success rate of
99% with 1600 training tasks shows that TeNet can fully solve ML1 Pick-Place when provided with
sufficient data. These results highlight both the promise and the data demands of language-enabled
hypernetworks: like foundation models in other domains, TeNet benefits strongly from scale, even
if it is data hungry.

5.8 SUMMARY OF EMPIRICAL INSIGHTS

Across benchmarks, we find that: (i) direct text-to-policy instantiation is viable, but grounding im-
proves generalization; (ii) contrastive alignment provides stronger task discrimination than direct
MSE alignment; (iii) hypernetworks enable task-specific parameterization that is critical for diverse
multi-task benchmarks; (iv) TeNet policies are highly compact and sustain control frequencies above
9 kHz, far exceeding Prompt-DT baselines; and (v) scaling the number of training tasks substantially
improves generalization, albeit at the cost of more data. Together, these findings establish TeNet
as a compact and language-enabled alternative to trajectory-prompted models. We also compare
LLaMA (Touvron et al., 2023) and BERT Devlin et al. (2019) text encoders under increasing para-
phrasing complexity (App. C.5) and find that while both perform similarly on simple descriptions,
LLaMA is substantially more robust to medium and hard paraphrases, leading to more stable policy
instantiation.

In addition, we conduct ablation studies (App. C) to disentangle the contribution of individual com-
ponents. These include isolating the role of the text–text contrastive term, assessing the effect of
conditioning strategies during training, comparing frozen versus fine-tuned text encoders, and test-
ing robustness to multiple natural-language descriptions of the same task. Together, these analyses
reinforce the empirical claims of the main paper and clarify when TeNet is most effective.

6 DISCUSSION

Our results provide evidence that compact, language-enabled hypernetworks can close much of the
gap between lightweight sequence models and large VLAs within state-based, offline imitation set-
tings. TeNet policies achieve strong performance while being orders of magnitude smaller and faster.
However, the framework relies on high-quality task descriptions and currently focuses on imitation
learning in simulation. These choices limit applicability to real robots and leave open the question
of reinforcement fine-tuning and multimodal (vision + language) grounding. Deploying TeNet on
real robots introduces additional challenges, including variability and noise in real-world trajectories
(e.g., partial or inconsistent demonstrations) and the domain shift between simulation and physical
dynamics. While the contrastive grounding objective is naturally robust to moderate noise, practical
deployment will likely require collecting short expert demonstrations, handling visual perception,
and potentially fine-tuning the instantiated policy with reinforcement learning. Addressing these
limitations is an important direction for future work.

7 CONCLUSION

We presented TeNet, a text-to-network framework that instantiates compact, task-specific policies
directly from natural language descriptions. By combining LLM embeddings, trajectory ground-
ing, and hypernetwork-based parameter generation, TeNet produces lightweight controllers that
generalize across tasks without requiring test-time demonstrations. Experiments on Mujoco and
Meta-World benchmarks show that TeNet outperforms Prompt-DT in multi-task learning, achieves
competitive meta-learning performance, and sustains control frequencies above 9 kHz. These find-
ings establish language-enabled hypernetworks as a promising paradigm for scalable and deployable
robot learning.
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LLM USAGE

We used large language models (LLMs) solely for writing assistance, including polishing, proof-
reading, and minor sentence rewriting for clarity. LLMs were not involved in research ideation,
experiment design, analysis, or any other substantive scientific contributions.

A BENCHMARKS

In Section 5, we briefly summarized the benchmarks to highlight the scope of our empirical study.
Here we provide full specifications of all environments, including task definitions, state and action
spaces, and train/test splits. Our evaluation covers two widely used families of continuous-control
benchmarks: (i) Mujoco control tasks (Todorov et al., 2012), which probe multi-task learning and
meta-learning in locomotion domains with goals such as direction or velocity, and (ii) Meta-World
manipulation tasks (Yu et al., 2020), which test multi-skill generalization and large-scale multi-
task policy synthesis in robotic manipulation. Together, these benchmarks span simple multi-task
settings, meta-learning that requires generalization to unseen task specifications, and diverse manip-
ulation skills, providing a comprehensive testbed for language-to-policy instantiation.

A.1 MUJOCO CONTROL TASKS

We use three standard continuous-control benchmarks from the Mujoco physics engine (Todorov
et al., 2012), following prior work in multi-task and meta-reinforcement learning (Xu et al., 2022).
These tasks test whether policies instantiated from language can generalize across locomotion goals
such as direction or velocity.

HalfCheetah-Dir. This benchmark consists of two tasks: moving the half-cheetah agent either
forward or backward. The state space has 20 dimensions (joint positions and velocities), and the
action space has 6 dimensions (torque controls). Since there are only two tasks, the benchmark is
treated as a multi-task setting: both tasks are included in training and evaluation.

HalfCheetah-Vel. In this benchmark, tasks are defined by target forward velocities sampled uni-
formly from the interval [0, 3]. Each task specifies a different target velocity, and the reward en-
courages the agent to match this velocity. Following standard splits, we use 45 training tasks and
5 held-out test tasks. This benchmark is therefore a meta-learning setting, requiring the model to
generalize to unseen velocity targets. The state and action spaces are the same as in HalfCheetah-Dir
(20D states, 6D actions).
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Figure 4: Representative Meta-World tasks used in our experiments, shown as sequences of frames
(one task per row). From top to bottom: Coffee Push, Plate Slide Back Side, Push Wall, and Window
Close. These examples illustrate the diversity of skills present in Meta-World.

Ant-Dir. This benchmark defines tasks by target locomotion directions sampled uniformly on the
unit circle. Each task specifies a desired heading angle, and the reward encourages the ant agent
to move in that direction. We use 45 training tasks and 5 held-out test tasks. The ant has a 27-
dimensional state space (positions, velocities, contacts) and an 8-dimensional action space (joint
torques). Like HalfCheetah-Vel, this is a meta-learning benchmark, since the agent must generalize
to unseen movement directions at test time.

A.2 META-WORLD MANIPULATION TASKS

We evaluate on the Meta-World benchmark suite (Yu et al., 2020), a standard collection of robotic
manipulation tasks based on a simulated Sawyer robot arm. All Meta-World environments share
a 39-dimensional state space (robot joint positions, object poses, etc.) and a 4-dimensional action
space (3D end-effector displacements plus the gripper control). These tasks test both fine-grained
skill variation and large-scale multi-task learning (See Figure 4).

ML1 Pick-Place. The ML1 benchmark focuses on variations of a single skill: picking up an
object and placing it at a specified goal location. We adopt the pick-place environment, where
tasks differ in the object–goal configuration. By default, we use 100 distinct tasks, with 90 used
for training and 10 held out for testing. In scaling experiments, we vary the number of tasks to
{50, 200, 400, 800, 1600} while always holding out 10% for testing. This benchmark is a meta-
learning setting, requiring generalization to novel goal configurations.

MT10. The MT10 benchmark consists of 10 distinct manipulation skills, such as pick-place, push,
drawer-open, and shelf-place. For each skill, 50 goal configurations are randomly sampled and fixed,
resulting in a total of 500 training tasks. Since all tasks are included in training, this is a multi-task
benchmark, and evaluation is performed on the same set of tasks.

MT50. The MT50 benchmark extends MT10 to 50 distinct manipulation skills, again with 50
random goal configurations per skill. This yields a total of 2,500 training tasks, covering a broad
range of manipulation behaviors including object placement, pushing, pulling, opening/closing, and
container manipulation. As in MT10, this is a multi-task benchmark: training and evaluation cover
the same 50 skills and their associated goal distributions.

A.3 SUMMARY OF TASK PROPERTIES

Table 2 summarizes the key properties of all benchmarks used in our experiments, including the
dimensionality of state and action spaces, the number of tasks and splits, and whether the setting is
multi-task or meta-learning.
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Benchmark State Dim. Action Dim. #Tasks (Train / Test) Setting
HalfCheetah-Dir 20 6 2 (2 / 0) Multi-task
HalfCheetah-Vel 20 6 50 (45 / 5) Meta-learning
Ant-Dir 27 8 50 (45 / 5) Meta-learning
ML1 Pick-Place 39 4 100 (90 / 10)† Meta-learning
MT10 39 4 500 (500 / 0) Multi-task
MT50 39 4 2500 (2500 / 0) Multi-task

Table 2: Summary of benchmark properties. All Meta-World environments share a 39D state space
and 4D action space. †In scaling experiments, the number of ML1 tasks is varied between 50 and
1600 while always holding out 10% for testing.

A.4 EXAMPLE TASK INSTRUCTIONS

To make the language inputs concrete, we provide representative natural-language instructions used
by TeNet across all benchmarks:

• HalfCheetah-Vel: “Move forward with target velocity 2.0 m/s.”

• Ant-Dir: “Walk in the direction of 125 degrees.”

• ML1 Pick-Place: “Pick up the block and place it at position (−0.1, 0.2, 0.1).”

• Meta-World MT (examples):
– “Open the sliding door.”
– “Pull the drawer open.”
– “Close the drawer.”
– “Press the top-down button.”
– “Insert the peg into the side hole.”
– “Push the block to the right side.”

These examples illustrate the range of language instructions used throughout the experiments and
help contextualize TeNet’s text-conditioned policy instantiation.

B IMPLEMENTATION DETAILS

In Section 5, we provided only a high-level overview of the experimental setup to remain within the
page limit. Here, we include the complete implementation details of our framework, covering the
architecture of each component, the training procedure, and the system configuration. This appendix
is intended to support reproducibility and to clarify design choices that are only briefly mentioned
in the main paper.

B.1 MODEL ARCHITECTURE

Our framework consists of a text encoder, a trajectory encoder (for grounded variants), a projection
network, a hypernetwork, and a policy network. Below we describe each component in detail.

Text encoder. We use the pretrained LLaMA-3 8B model (Touvron et al., 2023) to encode natural
language task descriptions. The text encoder is invoked only once per task at policy instantiation; its
output conditions the hypernetwork, and it is never used inside the control loop. Consequently, the
encoder size has no effect on control frequency or runtime performance. Unless otherwise stated,
the encoder is kept frozen during training to preserve general-purpose language representations. In
ablation studies (Appendix C), we also evaluate LoRA-based fine-tuning of the text encoder, but find
that it reduces performance in low-data regimes. Smaller encoders such as BERT Devlin et al. (2019)
can also be used without affecting runtime performance; however, as shown in Appendix C.5, larger
encoders offer greater robustness to paraphrastic variation in natural-language task descriptions.
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Trajectory encoder. For grounded variants of TeNet, we employ a Prompt Decision Transformer
(Prompt-DT) (Xu et al., 2022) as the trajectory encoder. Given an expert demonstration, the encoder
produces a trajectory embedding that captures behavioral semantics of the task. We removed the
action prediction head and use the final hidden representation as an embedding. In addition, we
set the embedding dimension to 256 (instead of the default 128) so that it matches the projected
text embeddings. This trajectory embedding is then used both for alignment with text embeddings
and, in the Grounded-Flow variant, as an additional conditioning input to the hypernetwork. For
direct TeNet, this component is omitted. The trajectory encoder is trained jointly with the rest of the
TeNet architecture: it receives gradients from the imitation loss and, for grounded variants, from the
grounding objectives. There is no separate pretraining stage; the encoder is optimized end-to-end
together with the projection head and hypernetwork.

Projection network. The text embedding is passed through a two-layer MLP with ReLU activa-
tion to be projected into a conditioning space of dimension 256. This projection ensures that both
modalities are comparable and suitable for conditioning the hypernetwork. We denote this module
as g(·) in the main text.

Hypernetwork. The hypernetwork h(·) is a two-hidden-layer MLP with 128 units per layer and
ReLU activations. Its output is a multi-head vector that parameterizes the weights of each layer of
the downstream policy network. For example, one head produces the weight matrix for the first
policy layer, another produces the bias vector, and so on. This design ensures modular generation of
policy parameters while keeping the hypernetwork compact.

Policy network. The instantiated policy πθπ is a two-hidden-layer MLP with 128 units per
layer and ReLU activations. The input is the state vector of the environment (encoded as a 128-
dimensional vector using a linear transformation), and the output is an action distribution over the
continuous control space. For Mujoco tasks, the action dimension is 6 (HalfCheetah) or 8 (Ant),
while for Meta-World tasks it is 4. This network contains only ∼ 40K parameters, making it
lightweight and suitable for high-frequency control.

B.2 TRAINING SETUP

All experiments are conducted in the offline setting: models are trained exclusively from expert
demonstrations without additional environment interaction. We summarize the training procedure
here; formal definitions of the loss functions are provided in Section 4.

Loss functions. All models are trained with a behavior cloning objective on expert trajectories.
Grounded variants additionally use the alignment objectives introduced in Section 4, namely mean-
squared alignment, contrastive alignment, and the text–text contrastive term (for TeNet-Contrast).
The overall loss is a weighted sum of imitation and grounding terms, with λg controlling the relative
contribution of grounding.

Grounded-Flow mechanism. We study a dual-path variant (Grounded-Flow) in which, during
training, we run two forward passes through the shared hypernetwork – one conditioned on text
embeddings and one on trajectory embeddings — apply imitation losses to both, and backpropagate
their (weighted) sum. At inference, only the text-conditioned path is retained. Figure 6 shows that
removing this dual-path supervision reduces performance on ML1 Pick-Place.

Optimization. Following the setup of Prompt-DT (Xu et al., 2022), we use the AdamW optimizer
with a learning rate of 1×10−4 and weight decay of 1×10−4. A linear warm-up schedule is applied
for the first 10k steps, implemented with a LambdaLR scheduler in PyTorch:

ηt = min
{

t+1
10000 , 1

}
η0,

where ηt is the effective learning rate at step t and η0 the base rate. Gradient norms are clipped at
0.25 using torch.nn.utils.clip grad norm . Batch sizes are set per benchmark: 32 for
Mujoco, 32 for ML1, 10 for MT10, and 50 for MT50. Training runs for 5k iterations on Mujoco,
MT10 and MT50, and 10k iterations on ML1. Unless otherwise noted, the text encoder is frozen and
only the projection head, hypernetwork, and policy are updated. At inference time, the text encoder
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is not executed: the policy parameters are generated once from the encoded description, and action
selection depends solely on the low-dimensional state input.

Task descriptions. By default, we use a single natural-language description per task during train-
ing and evaluation. In Appendix C, we show that TeNet is insensitive to the number of descriptions:
adding multiple paraphrases per task does not significantly affect performance.

Evaluation protocol. All reported results are averaged over three independent runs with different
random seeds. For each task, we evaluate over 50 rollouts and report the mean and standard deviation
across tasks and seeds. In multi-task benchmarks (HalfCheetah-Dir, MT10, and MT50), evaluation
is performed on the training tasks, whereas in meta-learning benchmarks (HalfCheetah-Vel, Ant-Dir,
and ML1 Pick-Place), evaluation is performed on the held-out test tasks.

B.3 MODELS COMPARED

We evaluate TeNet against established compact sequence models and several of its own variants.
Below we summarize all models considered.

Decision Transformer (DT). The Decision Transformer (Chen et al., 2021) is a representative
compact sequence model that formulates reinforcement learning as conditional sequence modeling.
We re-implement DT following the original paper, using the same hidden dimension and number of
layers, and apply it to the offline multi-task datasets. Since DT does not include task-conditioning,
it serves as a lower-bound baseline.

Prompt Decision Transformer (Prompt-DT). Prompt-DT (Xu et al., 2022) extends DT to the
few-shot setting by conditioning policies on short expert rollouts (prompt trajectories) at test time.
We adopt the default architecture and optimization setup from the original paper, ensuring a fair
comparison to our method. Prompt-DT is included both as a trajectory encoder within TeNet and as
a standalone baseline. Unlike TeNet, it requires access to demonstration prompts at inference.

Prompt-DT size variants. To test whether limited capacity explains Prompt-DT’s performance
gap, we implemented three model sizes: small (default), medium, and large. The presets are as
follows:

• Small (default): 3 layers, embedding dimension 128, 1 head (head dimension 128), inner
dimension 512, ReLU activation, dropout 0.1.

• Medium: 6 layers, embedding dimension 256, 4 heads (head dimension 64), inner dimen-
sion 1024, ReLU activation, dropout 0.1.

• Large: 12 layers, embedding dimension 512, 8 heads (head dimension 64), inner dimen-
sion 2048, ReLU activation, dropout 0.1.

These follow the scaling rules of transformer architectures. As shown in Table 1, increasing size
yields only marginal gains, indicating that lack of capacity is not the main bottleneck.

Prompt-DT with hypernetwork (Prompt-DT-HN). To test whether task-specific parameteriza-
tion improves performance, we modify Prompt-DT by removing its action prediction head and re-
placing it with a hypernetwork. The hypernetwork generates the parameters of the downstream
policy conditioned on task signals. This variant achieves a substantial boost on MT10 and MT50
(Table 1), demonstrating the importance of task-specific parameterization. Prompt-DT-HN acts as
a trajectory-conditioned hypernetwork baseline: the Prompt-DT trajectory encoder produces a task
embedding, which conditions a hypernetwork that generates the full policy parameters.

TeNet. Our text-to-network model instantiates policies directly from natural-language task de-
scriptions, without any grounding objectives (Section 4.2). It demonstrates the viability of language-
based policy generation even in the absence of trajectory alignment.
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TeNet-MSE. A grounded variant of TeNet that employs direct mean-squared-error alignment be-
tween text and trajectory embeddings (Section 4.3). This variant tests whether simple embedding
closeness is sufficient for grounding.

TeNet-Contrast. Our strongest grounded variant, which uses contrastive alignment objectives to
align text and trajectory embeddings while preserving task discriminability (Section 4.3). This vari-
ant consistently provides the best generalization performance across benchmarks.

Additional variants. In ablation studies, we also evaluate further modifications of TeNet, such as
alternative grounding strategies, text encoder fine-tuning, and Grounded-Flow conditioning. These
results are reported in Appendix C.

B.4 METRICS

We report both task-level performance metrics and system-level efficiency metrics.

Episodic return (Mujoco). For Mujoco benchmarks, performance is measured by the average
episodic return over evaluation rollouts. Returns are reported in the raw reward scale of the environ-
ment (no normalization).

Success rate (Meta-World). For Meta-World benchmarks, performance is measured by the suc-
cess rate, defined as the fraction of evaluation rollouts in which the environment signals task com-
pletion (e.g., object placed at target, drawer fully opened).

Controller size. To assess deployability, we report the number of parameters of the controller used
at inference time. For DT and Prompt-DT, this equals the full model size, since the transformer is
executed online at every step. For TeNet, the hypernetwork and encoders are used only once at
policy instantiation; at inference, only the generated policy network is executed. Thus, the reported
controller size for TeNet corresponds to the instantiated policy parameters (∼40K), reflecting the
actual runtime footprint.

Control frequency. We also report the everage action generation rate (Hz) sustained by each
model on a single NVIDIA GPU. For DT and Prompt-DT, this reflects the inference speed of the
entire transformer model, which typically operates in the sub-kHz regime. In contrast, TeNet ex-
ecutes only the compact instantiated policy at inference, while the hypernetwork and encoders are
used once at instantiation time. As a result, TeNet policies sustain control rates above 9 kHz, more
than an order of magnitude faster than DT-based baselines.

Control frequency in Table 1 was measured by timing repeated calls to the policy inside the evalua-
tion loop. Specifically, we warmed up the model with 50 calls and then measured the average latency
over 500 calls at step 20 of an evaluation episode, using time.perf counter() and explicit
CUDA synchronization. This benchmark excludes environment stepping and I/O, and therefore
reflects policy-only inference speed.

B.5 SYSTEM SETUP

All experiments were run on a workstation equipped with an AMD Ryzen Threadripper PRO
5975WX CPU (32 cores, 64 threads), 128 GB of RAM, and a single NVIDIA RTX A6000 GPU
(48 GB memory). Training a single TeNet model typically required between 6–12 hours depending
on the benchmark (shorter for Mujoco, longer for Meta-World MT50). Control frequency measure-
ments (Table 1) were obtained on the same hardware.

We use PyTorch together with HuggingFace Transformers for the text encoder and PEFT for LoRA-
based fine-tuning. Meta-World and Mujoco environments are taken from their official open-source
implementations. Random seeds are fixed across runs for reproducibility. All reported results are
averaged over three seeds as described in Appendix B.2. The complete source code will be released
publicly after the reviewing process is completed.
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Figure 5: Ablation on the text–text con-
trastive term. Performance on ML1 Pick-Place
with and without the text-text contrastive term.
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Figure 6: Ablation on Grounded-Flow. Per-
formance on ML1 Pick-Place with and without
Grounded-Flow.

C ABLATION STUDIES

To better understand the design choices underlying TeNet, we conducted a series of ablation studies.
These experiments isolate the contribution of different components and training strategies, allowing
us to assess their individual impact on generalization and performance. Specifically, we examine
(i) the contribution of the text–text component of the contrastive objective (toggling this term while
keeping the text–trajectory term active), (ii) the effect of Grounded-Flow, where trajectory embed-
dings additionally condition the hypernetwork, (iii) the influence of fine-tuning the pretrained text
encoder compared to keeping it frozen, and (iv) the robustness of TeNet to multiple natural-language
descriptions of the same task. Together, these studies provide a deeper understanding of when and
why TeNet is effective, and they reinforce the empirical claims presented in the main paper.

C.1 EFFECT OF THE TEXT–TEXT CONTRASTIVE TERM

We ablate the contribution of the text–text component of the contrastive objective in TeNet-Contrast,
comparing the full model against a variant we denote as TeNet-Contrast (w/o text–text). This ab-
lation is conducted on ML1 Pick-Place, where descriptions differ only in the target coordinates,
e.g., ‘‘Pick the object and place it at (tx, ty, tz).’’ Such descriptions
are lexically very similar, which makes the corresponding text embeddings prone to collapse into
overlapping clusters. As shown in Figure 5, removing the text–text term reduces success rates, in-
dicating that it plays a critical role in maintaining discriminability among task descriptions. The
justification is that the text–text contrastive term explicitly pushes apart embeddings from different
tasks, preventing collapse and ensuring that policies conditioned on these embeddings generalize
more effectively.

C.2 EFFECT OF GROUNDED-FLOW

We study the effect of Grounded-Flow, where trajectory embeddings are used not only for alignment
but also to condition the hypernetwork alongside text embeddings during training. This design al-
lows gradients from the imitation loss to propagate through both pathways, so that policy parameters
are shaped jointly by text and trajectory signals. At inference, however, only text embeddings are
available, and the policy is instantiated exactly as in the standard model.

Figure 6 shows that removing Grounded-Flow reduces performance on ML1 Pick-Place. Although
trajectories are still used for alignment in this ablation, they no longer contribute direct conditioning
during training. The likely explanation is that Grounded-Flow acts as an auxiliary channel that
strengthens the training signal: trajectory embeddings encode rich task dynamics, and conditioning
the hypernetwork on them forces the parameter space to better capture the correspondence between
text and behavior. As a result, when only text is available at inference, the model is more effective
at instantiating the correct policy.
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Figure 7: Ablation on fine-tuning the text en-
coder. Performance on ML1 Pick-Place with a
frozen encoder versus LoRA fine-tuning.

Table 3: Effect of multiple task descriptions.
Success rates of TeNet-Contrast on MT10 and
MT50 when varying the number of task descrip-
tions per task. Minor variations are due to ran-
dom seed effects.

Success Rate
# Task Descriptions Avg.

1 2 5 10

MT10 0.99 0.98 0.98 0.98 0.98
MT50 0.98 0.99 0.98 0.98 0.98

C.3 EFFECT OF FINE-TUNING

By default, TeNet freezes the parameters of the pretrained text encoder and only trains the projection,
hypernetwork, and policy components. In this ablation, we instead apply LoRA (Hu et al., 2021) to
fine-tune the text encoder and evaluate the effect on ML1 Pick-Place.

Figure 7 shows that LoRA fine-tuning leads to substantially worse performance compared to the
frozen encoder. The likely reason is data scarcity: ML1 contains only 100 tasks in total (90 for
training), and the corresponding descriptions are highly similar, differing mainly in goal coordinates.
Under such conditions, LoRA fine-tuning tends to overfit to the limited training descriptions, reduc-
ing the ability of the encoder to generalize to unseen tasks. In contrast, keeping the encoder frozen
preserves its broader linguistic representations, resulting in stronger downstream performance.

We note, however, that these results may not be fully conclusive: we have not systematically studied
different LoRA parameter configurations. Reducing the number of additional learnable parameters
may mitigate overfitting and yield different outcomes, which we leave for future investigation.

C.4 EFFECT OF MULTIPLE TASK DESCRIPTIONS

A key strength of TeNet is that it conditions policies on natural language rather than fixed task iden-
tifiers. This enables flexible interaction: users can provide different descriptions of the same task,
and the model can still instantiate the correct policy. By contrast, prior approaches that rely on task
IDs cannot accommodate such variability. In practice, large language encoders (e.g., LLaMA) map
paraphrases with the same intent to nearby embeddings, allowing TeNet to treat multiple descrip-
tions consistently. For example, the Meta-World pick-place-v3 task can be described in many
different but equivalent ways:

"Pick up the object and place it at the target."
"Lift the item and move it to the goal."
"Carry the object to the designated location."
"Transport the item to the target spot."
"Grab the object and set it at the goal."

By default, we use a single task description per task during training and inference. In this ablation,
we vary the number of task descriptions (1, 2, 5, 10) generated via a language model and evaluate
TeNet-Contrast on MT10 and MT50. Table 3 reports the results. The set of paraphrases used in this
ablation spans a broad range of lexical and syntactic variation, including multi-clause descriptions,
narrative-style prompts, and additional contextual modifiers. Despite this diversity, Table 3 shows
that TeNet remains stable across 1, 2, 5, or 10 paraphrases per task, indicating that its text encoder
produces consistent embeddings for semantically equivalent instructions.

The results confirm that TeNet is insensitive to the number of task descriptions: success rates remain
essentially unchanged whether a task is described once or with several paraphrases. Minor numerical
differences are due to randomness across training seeds, not to the number of descriptions. This
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insensitivity is expected, since modern LLM encoders produce similar embeddings for descriptions
that express the same intent. Thus, TeNet can naturally support flexible human interaction without
requiring carefully standardized task identifiers.

C.5 ENCODER CHOICE AND PARAPHRASING ROBUSTNESS

We compare TeNet using LLaMA (Touvron et al., 2023) and BERT Devlin et al. (2019) on MT10 un-
der increasing levels of paraphrastic complexity. For each task, we generate 10 Level 0 descriptions
(“Easy”) using a language model, and train all models on these 10 canonical paraphrases. At evalu-
ation time, we provide 10 Level 1 paraphrases (“Medium”) and 10 Level 2 paraphrases (“Hard”) per
task, allowing us to test the robustness of the text encoder under more complex linguistic variation.
This ablation isolates how reliably the hypernetwork instantiation process behaves when the same
task is described using increasingly unconstrained natural language.

Paraphrasing Levels. We show one representative example for each difficulty level:

• Level 0 (Easy). Short, canonical phrasing with minimal syntactic variation. Example:
”Reach the target position.”

• Level 1 (Medium). Longer descriptions containing additional clauses or modifiers. Exam-
ple: ”Bring the end effector all the way to the target location without interacting with any
objects.”

• Level 2 (Hard). Narrative-style phrasing with redundant wording or mild distractors. Ex-
ample: ”Your goal is simply to drive the end effector toward the marked target point and
stop exactly when you arrive at that location.”

The text encoder is invoked only once per task at policy instantiation. Therefore, robustness in
this experiment reflects the encoder’s ability to map semantically equivalent but lexically different
descriptions to consistent embeddings.

Results.

Table 4: Success rates on MT10 when training on 10 Easy paraphrases and evaluating on 10 Medium
or 10 Hard paraphrases.

Encoder Level 0 Level 1 Level 2
LLaMA 0.99 0.95 0.89
BERT 0.99 0.89 0.82

Both encoders achieve identical performance on Level 0 descriptions, showing that TeNet can re-
liably instantiate policies from simple instructions. However, as linguistic complexity increases,
LLaMA proves substantially more robust: under Level 2 narrative-style paraphrases, LLaMA re-
tains high performance while BERT suffers a significant drop. This indicates that richer language
models create more stable embedding spaces for semantically equivalent instructions.

Figure 8 illustrates the same trend across training iterations. When trained on Easy paraphrases,
LLaMA maintains stable and high success even when evaluated on harder paraphrases, whereas
BERT shows clear degradation as linguistic complexity increases.

Overall, these results justify our choice of LLaMA as the default text encoder. Although the en-
coder is used only once per task and does not affect control frequency, its ability to produce stable
embeddings under paraphrastic variation significantly improves TeNet’s robustness to real-world
instruction variability.
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Figure 8: Training curves comparing TeNet with LLaMA and BERT text encoders. Models are
trained on 10 Easy paraphrases and evaluated on Easy, Medium, and Hard paraphrasing levels.
LLaMA maintains higher stability, especially under medium and hard paraphrastic variation.
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Figure 9: Achieved forward velocity as a function of instructed target velocity in HalfCheetah-Vel.
Points show mean achieved speed over 50 rollouts for each instruction. TeNet-Contrast closely
follows the target velocities on the held-out meta-test tasks and saturates near the environment’s
practical speed limit for an out-of-range instruction at 3.5m/s.

C.6 VELOCITY-FOLLOWING BEHAVIOR IN HALFCHEETAH-VEL

The HalfCheetah-Vel benchmark is designed to evaluate velocity-tracking behavior. At each step,
the reward is given by

r = − |vcurrent − vtarget| , (10)
so that the episodic return directly reflects how accurately the policy matches the commanded for-
ward speed. This formulation is standard and used throughout prior work on this benchmark Xu
et al. (2022).

The task distribution is constructed by defining target forward velocities on a fixed grid ranging from
0.075m/s to 3.0m/s, with uniform increments of 0.075m/s. From this grid, a subset of velocities is
used for training, and a disjoint subset is reserved as held-out evaluation tasks. In our experiments,
the unseen meta-test velocities are

0.225, 0.6, 1.2, 1.8, 2.025 m/s,

which are drawn from this grid but never seen during training.

To make TeNet’s instruction-following behavior more explicit, we instantiate policies from natural-
language commands of the form

“Move forward with target velocity X m/s.”

for each of the unseen evaluation velocities X ∈ {0.225, 0.6, 1.2, 1.8, 2.025}. In addition, we probe
extrapolation beyond the benchmark’s range by evaluating an out-of-distribution instruction with
X = 3.5m/s.

For each instruction, we execute the instantiated policy for 50 rollouts and measure the average for-
ward velocity. The achieved velocities are computed as the average forward speed over the last 20
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steps of each rollout. Figure 9 plots the achieved velocity as a function of the instructed target veloc-
ity for both TeNet-Contrast and Prompt-DT. Across all unseen evaluation velocities, TeNet-Contrast
closely tracks the commanded speeds, indicating smooth generalization over the continuous fam-
ily of velocity-tracking tasks. For the extrapolated instruction at 3.5m/s, both TeNet-Contrast and
Prompt-DT saturate near the upper end of the HalfCheetah dynamics (around ∼ 3m/s), reflecting
the practical locomotion limit of the environment rather than a failure of instruction following.

C.7 DISCUSSION

These ablations clarify the role of each design choice in TeNet. The text–text contrastive term proves
important in benchmarks such as ML1, where task descriptions differ only minimally, by preventing
embedding collapse and preserving task discriminability. Grounded-Flow further improves training
by allowing trajectory-conditioned gradients to shape the hypernetwork, leading to stronger poli-
cies even though inference remains text-only. In contrast, fine-tuning the text encoder with LoRA
harms performance in the low-data regime of ML1, highlighting that frozen language encoders pro-
vide more robust generalization when only limited descriptions are available. Finally, the multiple-
description study confirms that TeNet is insensitive to paraphrasing and description multiplicity,
underscoring the practical advantage of language-based conditioning over task identifiers.
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