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Abstract

The evaluation of Large Language Models (LLMs) often focuses on linguistic1

tasks, yet such assessments may not fully capture the models’ general reasoning2

capabilities. We explore the hypothesis that LLMs, such as GPT-3.5 and GPT-4,3

possess broader cognitive functions, particularly in non-linguistic domains. Our4

approach extends beyond standard linguistic benchmarks by incorporating games5

like Tic-Tac-Toe, Connect Four, and Battleship, encoded via ASCII, to assess strate-6

gic thinking and decision-making. To evaluate the models’ ability to generalize7

beyond their training data, we introduce two additional games. The first game,8

LEGO Connect Language (LCL), tests the models’ capacity to understand spatial9

logic and follow assembly instructions. The second game, the game of shapes,10

challenges the models to identify shapes represented by 1s within a matrix of zeros,11

further testing their spatial reasoning skills. This "show, don’t tell" strategy uses12

games to potentially reveal cognitive capabilities rather than simply querying the13

models. Our results indicate that despite their proficiency on standard benchmarks14

and temperature settings, GPT-3.5 and GPT-4’s abilities to play and reason about15

fully observable games without pre-training is mediocre. Both models fail to16

anticipate losing moves in Tic-Tac-Toe and Connect Four, and they are unable to17

play Battleship correctly. While GPT-4 shows some success in the game of shapes,18

both models struggle with the assembly tasks presented in the LCL game. These19

results suggest that while LLMs like the GPT models can emulate conversational20

proficiency and basic rule comprehension, their performance in strategic gameplay21

and spatial reasoning tasks is limited in cognitive flexibility and generalization.22

Importantly, this reveals a blind spot in current LLM benchmarks that we highlight23

with our gameplay benchmark suite ChildPlay (GitHub Repository). Our findings24

provide a cautionary tale about claims of emergent intelligence and reasoning25

capabilities of LLMs that are roughly the size of GPT-3.5 and GPT-4.26

1 Introduction27

Typically, LLMs are transformer-based models that process input text and generate output text in a28

coherent and contextually appropriate manner. They utilize the self-attention mechanism to weigh29

the importance of different words in a sentence relative to each other [33, 6]. Input text is tokenized,30

converted into vectors using embeddings, and processed through transformer layers that calculate31

attention scores to dictate focus on relevant tokens [33, 6, 12]. The model then selects the next token32

based on learned distributions, iteratively generating an arbitrarily long sequence of text [33, 6, 12].33

With their enormous parameter counts, from Alpaca with 7 billion parameters [29], to LLaMA with34

65 billion [31] or even PaLM and its 540 billion parameters [11], these neural networks have learned35

to model complex linguistic abstractions, capturing patterns in syntax, semantics, pragmatics, and36

even elements of style and tone [6, 7, 21].37
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Benchmarks for evaluating Large Language Models (LLMs) have been designed to assess compre-38

hension, generation, and adaptability across a wide range of language tasks. Datasets like SQuAD,39

GLUE, BIG-bench, and the lm-evaluation-harness offer various test types, including multiple-choice40

questions, reading comprehension exercises, and dialogue completion tasks. These benchmarks41

deploy metrics such as response correctness, language generation fluency, and the ability to maintain42

contextually relevant dialogue [22, 34, 2, 26]. Other benchmarks like SuperGLUE, ANLI, Truth-43

fulQA, and HellaSwag have been developed to evaluate different aspects of LLM performance, such44

as natural language understanding, commonsense reasoning, and factual knowledge about diverse45

topics [35, 20, 18, 37].46

Recent studies have explored alternative approaches to evaluate LLMs’ reasoning abilities in non-47

linguistic modalities. Liga and Pasetto modeled the game Tic-Tac-Toe using ASCII characters, pitting48

LLMs against the minimax algorithm to observe emergent features, which, according to the authors,49

might be akin to consciousness. The minimax algorithm is widely considered the optimal algorithm50

for playing tic-tac-toe, as it guarantees a win or draw against a perfect opponent [27, 1]. While LLMs51

performed well in some instances, they generally failed to win against the minimax algorithm, often52

resulting in a draw [17]. Topsakal and Harper [30] used Tic-Tac-Toe encoded with list and illustration53

prompts in their study. They found that while GPT-4 secured the most wins, it did not always win,54

indicating that GPT models cannot play Tic-Tac-Toe optimally. This contradiction raises the question:55

can we truly say the model knows how to play Tic-Tac-Toe if it can explain optimal strategies (see56

Appendix A.3) but does not consistently win? Or is its performance merely the result of probabilistic57

outcomes?58

Some critical studies have highlighted the need for caution in interpreting LLMs’ capabilities through59

benchmarking. Lappin et al. assessed their strengths and weaknesses, finding that they excel at60

many language tasks but struggle with deeper reasoning, world knowledge integration, and context61

understanding beyond local co-occurrences [16]. And Zečević et al. argued that LLMs may discuss62

causality but lack true causal reasoning based on interventions and counterfactuals [38].63

Bender et al. argue that the lack of transparency and potential risks associated with these large,64

opaque models raise concerns about their trustworthiness and accountability [3]. While the criticism65

of Bender et al. focuses on the social dimension of the problem of interpretability and trustworthiness,66

recent work by Schaeffer et al. critics emergent capabilities and the perceived intelligence of LLMs.67

They suggest that some claimed "emergent abilities" of LLMs may be an artifact of the choice68

of evaluation metric, rather than fundamental changes in model behavior [23]. Their analyses69

demonstrate how the use of nonlinear or discontinuous evaluation metrics can create the illusion of70

emergent abilities, even when the underlying model performance changes smoothly and predictably71

with scale.72

This critique of the evaluation metrics used in assessing LLMs invites a deeper exploration of general73

intelligence - specifically how it can be reliably measured and observed in AI through rigorous74

and realistic tests that extend beyond linguistic prowess to include broader cognitive functions. If75

we must define general intelligence (GI), one is to use the "g factor," which refers to the ability to76

reason, plan, solve problems, think abstractly, and learn quickly across a wide range of domains77

[24, 4, 36, 9, 8]. GI then involves higher-order cognitive processes that go beyond specific skills or78

knowledge domains [14, 15].79

A critical issue that arises in analysing the reasoning capabilities of large and opaque models like the80

GPT series, is training-test set cross-contamination, which becomes increasingly problematic for the81

most advanced models [6]. The massive training datasets used, comprising extensive portions of the82

internet, are often untraceable and completely anonymous to researchers outside the initial developer83

groups, to some extent even to the developers themselves, making replication studies impossible84

[6, 13]. The exact amount and identity of data used to train models like GPT-3.5 or GPT-4 has not85

been publicly disclosed, posing a risk of rendering current benchmarking efforts meaningless due to86

cross-contamination.87

Researchers have attempted to counter the contamination problem using N-Gram Overlap as a metric88

for detection, by eliminating or withholding results for tests where answers were present in the89

training data [6]. However, this method has been criticized. Blodgett et al. point out, for example,90

that such heuristic approaches to mitigating biases in NLP systems can be problematic and may not91

fully address the underlying challenges [5]. The method is also limited in that it fails to consider92

the context in which N-Grams appear and may discount synonymous or analogous text worded93
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differently. Additionally, the decision to use a 200-character window around detected N-Grams is94

arbitrary and may not accurately reflect the influence of surrounding text on model learning.95

In this work we introduce ChildPlay, a suite of non-language-based games like Tic-Tac-Toe, Connect-96

Four, Battleship, LEGO Connect Language, and the game of Shapes, to assess reasoning, strategic97

capabilities, symbolic reasoning, and pattern recognition abilities of large language models (LLMs)98

beyond traditional linguistic modalities. Games provide structured environments with clear success99

criteria, making them suitable for evaluating strategic thinking, planning, and long-term decision-100

making of LLMs [25, 17, 30]. Their dynamic and adversarial nature resembles real-world scenarios,101

assessing generalized intelligence and reasoning beyond the training domain [25, 17, 30]. We encode102

these games using ASCII representations to minimize dataset contamination issues prevalent in103

contemporary LLM benchmarks [6, 17].104

2 Experiments105

Specific tasks in the BIG-bench benchmark [2], among others, are categorized as either zero-shot,106

one-shot, or multi-shot [6]. Our tasks fit the zero-shot category, as models are given only a brief107

explanation at inference time with no examples for playing beyond the explained formalism. To108

demonstrate the reasoning capabilities of LLMs beyond their training data, we focus on a modality not109

explicitly trained for: spatial reasoning about ASCII sequences. An agent capable of true abstraction110

should be able to encode and interpret these sequences if the rules are explained or known.111

For this purpose, we developed several tasks, including LEGO assembly, ASCII games of Tic-Tac-112

Toe, Connect-Four, and Battleship, as well as identifying simple geometrical shapes represented as 1s113

in 15-sided grids of 0s. The same models were deployed over all experiments, namely gpt-3.5-turbo-114

1106, and gpt-4-1106-preview, which in this paper are referred to as GPT-3.5 and GPT-4, respectively.115

Every experiment was tested across different temperature settings (t) per model, namely t=0, t=0.5,116

t=1, and t=1.5. When asked about their understanding of the tasks, GPT-3.5 and GPT-4 were able to117

generate board states and explain the queried games, including their rules and optimal play. Thus, we118

consider the tests valid: if the models are truly capable of reasoning, they should be able to play these119

games optimally given that they "know" and are capable of explaining what playing optimally means120

(see Appendix A.3). Experiments ran over night, at minimum taking a couple of minutes and at most121

taking a few hours.122

Lego Connect Language (LCL) We invented a formal language we call LEGO Connect Language123

(LCL). More specifically, we propose LCL2 as a language to instruct assembly in 2D on the x and y124

axis (this can easily be generalised to LCL3 - instructions along the x, y, and z axis). The models125

were given instructions and their output was fed through a visualizer script to generate the images126

contained in this work. Only 2x4 pieces were allowed. A piece P (see Fig 1) is then defined as a127

tuple P = (l, w, (x, y), c, h). A construction, M , is then a valid construction in LCL2 if no pieces128

are overlapping and all pieces are connected to other pieces. Namely, a Lego piece is connected129

through interlocking pegs, not by merely touching sides. And secondly, two Lego pieces overlap130

when they share the same y-coordinate and any part of their length has the same x-coordinate.131

(a) A valid humanoid
construct in LCL2.

(b) A standard
LEGO piece in
LCL2.

Figure 1: Introducing LCL2.

Game 1: Validity Testing In this experiment, we evaluate the ability of different models to validate132

the correctness of a given Lego construct. The constructs are generated to be either valid or invalid.133

A construct is considered valid if there is no horizontal overlap between pieces, and pieces must134

connect via overlapping pegs such that the whole assembly is connected (no floating pieces). The135
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models, namely GPT-4 and GPT-3.5, are then tasked with predicting the validity of each construct.136

The evaluation metric for this experiment was the proportion of correct validations, measured across137

different temperature settings.138

Game 2: Construct Generation In this experiment, the models attempt to generate valid LCL139

constructs. Each construct description consists of a list of tuples, where each tuple specifies the140

coordinates and color of a Lego piece. The models generated these constructs based on prompts and141

the validity of the constructs was automatically evaluated. The metric for this experiment was the142

proportion of valid constructs generated, measured across different temperature settings.143

We automatically produced 800 images for the validity test, half valid and half invalid ones. Then144

each model was queried to produce 100 images at each temperature setting, which we then checked145

for validity. We believe our use of LCL is related to the tests found in Bubeck et al. [7], where146

JavaScript or LaTeX was used to prompt GPT-4 to produce images. However, while the images in147

Bubeck et al. [7] included common examples such as letters, a car, a truck, a cat, a dog, a person,148

a pig, a house, and a unicorn, all of which are likely represented in the training data in JavaScript149

or LaTeX, LCL challenges the model to step outside of its learned data distributions by remaining150

abstract.151

Three Board Games: Tic-tac-toe, Connect-four, and Battleship In the case of the three board152

games, each new board state was accompanied by the introductory game explanation sent through the153

OpenAI API in a zero-context testing environment. The models were provided with the current board154

state and an opponent making moves at random, with the LLM always playing as the first player,155

which is advantageous in all three games. Context beyond the initial instruction and the current156

board state was deemed irrelevant since these games are fully observable, meaning every board state157

contains all the necessary information to play optimally. The input to the game was simply two158

scalars for the row-column pair or just a scalar for the column number in the case of connect-four.159

For the battleship game, ships (’S’) were randomly initialized, always horizontally, with varying sizes160

spanning between 2 and 5 cells. When there is a hit by either player, the position is marked with an161

’X’ on both players’ boards. If the guess was a miss, an ’O’ is placed on the position instead.162

(a) Tic-tac-toe board. (b) Connect-four board. (c) Battleship board.

Figure 2: Initial board states as presented to the LLM (the ship positions in the Battleship board are
randomised with every initialisation, including ship length).

The Game of Shapes In the case of the game of shapes, preliminary work involved probing the163

models to determine what geometric shapes they consider basic by prompting them multiple times.164

The first three shapes consistently mentioned were square, circle, and triangle (not necessarily in that165

order). The game then consists of finding a basic geometric shape "hidden" behind 1s within a matrix166

of 0s in a multiple-choice fashion. Four shapes were used as options: the circle, the rectangle, the167

triangle, and the cross, but only the latter three were ever shown to the model (cf. Fig. 3).168
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(a) The square. (b) The triangle. (c) The cross.

Figure 3: Matrices containing shapes used in the game of Shapes.

3 Results169

As previously stated, Tic-Tac-Toe as a benchmark has been tackled before [17, 30]. Since it is quite170

popular, we decided to replicate it before creating new games. But this time using an ASCII171

encoding instead of a list of moves such that we can gauge spatial reasoning through symbolic172

reasoning. For comparison with the model’s performance, Fig. 4 presents the Tic-Tac-Toe match173

results of the minimax algorithm against the same random player the models played against. This174

outcome creates a baseline for optimal play against a random player.175

176

Figure 4: Minimax vs random player.

Tic-tac-toe, Connect-four, and Battleship To check for a win, we determine if the player177

has successfully connected the winning number of pieces in a row on the board, which could be178

horizontally, vertically, or diagonally. To detect missed and blocking moves, we simulate all potential179

moves for the player by checking if placing a piece in any column leads to a win. If such a move180

is found, and the player does not execute it on their turn, it is recorded as a missed win, if such a181

move is found for the opponent and the player does not block it, we register it as missed blocking182

move. We define incorrect moves to mean a move that was illegal, such as playing a position that has183

already been played. This results in an immediate loss.184

Fig. 5 encompasses comparative results from playing Connect-Four, Tic-Tac-Toe, and Battleship.185

Each subfigure, 5a, 5b, and 14, respectively, outlines the number of games won by the models.186

Unfortunately, the models were incapable of following the rules for the Battleship game, that is,187

regardless of temperature, the models lose the large majority of games, with GPT-4 not winning a188

single game due to incorrect moves (cf. Fig. 16). GPT-3.5 wins around 10% of the matches at low189

temperatures, but none at higher temperatures, we refer to Fig. 14 in the Appendix A.1.3 instead.190

It is notable that both GPT-3.5 and GPT-4 exhibit their poorest performance in both Connect-Four191

and Tic-Tac-Toe at a temperature setting of 0, indicative of deterministic play that reflects the models’192

learned strategies (Appendix A.1). The Random Player’s normal distribution across columns (Fig.193

12) suggests a lower likelihood of countering GPT’s central strategies, in both games, but particularly194

at Tic-Tac-Toe where GPT-3.5 commits more errors than GPT-4, significantly impacting outcomes195

due to incorrect moves (Fig. 5b). These errors generally increase with temperature, probably due196

to enhanced choice randomness (Fig. 10). This explains the lack of direct model losses from final197

defeating moves since losses often result from illegal moves.198
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Average game moves, missed wins, and blocks in both Tic-Tac-Toe and Connect-Four are further199

illustrated in Figs. 6a and 6b, highlighting a decrease in these metrics as temperature rises, suggesting200

that higher settings potentially broaden the explored moves within the models’ strategies. Conclu-201

sively, neither model plays the games optimally, as evidenced by the considerable number of missed202

wins and blocks. Both subfigures demonstrate that, as temperature increases, the number of missed203

wins and blocks decreases. This might suggest that higher temperature settings potentially increase204

the explored moves in the models’ learned strategy, in case there is any. We can conclude the same as205

before, namely that neither model can play Tic-Tac-Toe optimally given the number of missed wins206

and missed blocks.207

(a) Connect-Four. (b) Tic-Tac-Toe.

Figure 5: Incorrect Moves, Wins, and Losses Per Player in the Three Board Games.

The number of moves of GPT-3.5 and GPT-4 per game can be thought of as a measurement of stability208

in gameplay, not just against the random player, but in general, given that a longer game entails that209

the model is not losing to illegal moves or to its oponnent. It increases linearly with temperature,210

inversely correlated with performance measured by the decrease in missed wins and blocks. Tic-211

Tac-Toe shows a linear improvement, whereas Connect-Four experiences an exponential boost in212

performance from temperature 0 to 0.5, followed by a linear decline. The random player consistently213

performs better against GPT-3.5 in Tic-Tac-Toe but loses more frequently in Connect-Four. Both214

models struggle with blocking or seizing winning moves from the random player. An analysis of the215

move heatmaps (cf. Appendix A.1) explains why winning Connect-Four against a random player216

appears straightforward. As the model consistently places pieces in the same column, the probability217

of the random player losing increases with the board size. However, even under these challenging218

conditions, the random player still secures wins in at least 20% of the games played against GPT-4.219

(a) Tic-tac-toe: Missed Wins and blocks. (b) Connect-Four: Missed Wins and blocks.

Figure 6: Average Moves, missed wins, and missed blocks for Tic-tac-toe and Connect-Four.
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Shapes In the game of Shapes, a correct detection happens when the player’s selected shape220

corresponds with the shape shown on the board. Players have four choices: "circle," "triangle,"221

"square," and "cross". Notably, a circle is never actually displayed to the model, and the positions of222

these choices are not randomized to test if the model displays any inherent bias for the question order.223

This does not affect the outcome, since the game does not change across different sessions as it is224

designed to operate within a single question-response framework.225

In the shape detection tests, GPT-3.5’s performance was approximately equivalent to random chance226

when identifying triangles and crosses, yet it completely failed to recognize squares. In contrast,227

GPT-4 performed remarkably well, successfully identifying shapes with an accuracy of 80% or higher,228

particularly proficient at recognizing triangles1.229

(a) Results for the Shapes game, as played by GPT-
3.5.

(b) Results for the Shapes game, as played by GPT-4.

Figure 7: Experiment results for the Shapes game, comparing GPT-3.5 and GPT-4.

LCL In the game of LCL, both models systematically failed to respect the two rules, namely230

that Lego pieces must be connected through interlocking pegs, not by merely touching sides, and231

secondly, that no Lego pieces may overlap, which occurs when they share the same y-coordinate and232

any part of their length has the same x-coordinate. For example, Figs. 8, 8a, and 8b show valid LCL233

assemblies, while Figs. 8c and 8d show invalid LCL structures. Figs. 8a and 8b show valid LCL234

assemblies, while subfigs. 8e and 8g show invalid output from GPT-3.5 generated at temperature 0.235

While Fig.8f shows a valid output from GPT-4 at temperature 1.5. Other images (Figs. 8i, 8j, 8k, and236

8l) are of invalid output2.237

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 8: Structures automatically generated for the LCL validity test and structures generated by
GPT-3.5 and GPT-4 for the construction generation test.3

1At higher temperatures, some of GPT-4’s responses were discarded by our parser when the model generated
invalid Unicode output, and thus were not included in the final evaluation. This discrepancy is evident in Fig. 7b,
for instance, where the sum of correct and incorrect choices does not total 25 at temperatures 1 and 1.5.

2Fig. 8i = GPT-4 at temperature 0, Fig. 8j = GPT-4 at temperature 0.5, Fig. 8k = GPT-4 at temperature 1, and
Fig. 8l = GPT-4 at temperature 1.5.
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Figure 9: LCL results after 100 runs with 50/50 valid/invalid examples for the validity test and 100
experiments per temperature per model for the construction modality using 3 pieces.

Fig. 9 shows a roughly linear increase in the proportion of correct answers during the validity test as238

a function of temperature. However, only GPT-4 produced a small minority of valid LCL constructs239

(namely 0.04 of a total of 400 = 16), while GPT-3.5 did not manage to produce a single valid LCL240

construct.241

4 Discussion242

In Tic-Tac-Toe, both models underperform relative to the minimax algorithm baseline, while showing243

mixed performance at Connect-Four. GPT-4 performs unexpectedly well at the Shapes game, but244

GPT-3.5 does very poorly. Also unexpectedly, both models fail to assemble or detect valid Lego245

structures in the LCL game. In Battleship, the models’ failure to follow game rules, especially at246

higher temperature settings, indicates a significant limitation in their ability to understand and apply247

structured game rules. The linear increase in the number of moves with temperature suggests that248

higher temperatures lead to greater exploration of possible moves, but do not improve strategic249

performance. The increase in missed wins and blocks with temperature further supports this, as250

greater randomness in decision-making does not enhance the models’ strategic play.251

Overall, these results show that while GPT-3.5 and GPT-4 can play simple games to some extent, they252

struggle with more complex tasks and do not consistently apply optimal strategies. The performance253

gap between the models and the minimax algorithm highlights the limitations of current language254

models in tasks requiring precise strategic reasoning and the failure to play Battleship and LCL255

demonstrates a failure in rule adherence.256

The primary aim of contemporary benchmarks for LLMs has been to assess these models through257

adaptations of Turing’s test [32], evaluating their capability to process and respond to language inputs258

comparably to humans. However, defining the language problem solely in these terms may overlook259

deeper complexities. While the transformer architecture in deep neural networks has enabled models260

smaller than GPT-4 to exhibit what Wilhelm von Humboldt described as the "infinite use of finite261

means" [19] or their ability to generate a potentially unlimited number of contextually relevant262

sentences [28] (an idea popularised by Chomsky [10]), this does not necessarily imply that these263

models have mastered a form of reasoning. Rather, they may simply be engaging in an advanced264

form of pattern imitation.265

4.1 Limitations and Future Work266

Our proposed benchmark, ChildPlay, primarily uses binary (win/loss) outcomes for games, which267

can be considered discontinuous metrics. Mathematically, these are expressed as:268

Metric(x) =
{
1 if win
0 if loss

3Images in Fig. 8 were not directly produced by the GPT models. Instead, the formal descriptions of these
images were generated by the models and subsequently passed to a script for rendering available in the GitHub
Repository.
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This formulation may exaggerate perceived capabilities by registering a full loss even if the model’s269

failure was marginal. We try to avoid this simplistic classification by registering, for example, the270

choice of moves on the board games (see Appendix A.1) as well as the count of missed blocks271

and missed wins (cf. Fig. 6). In contrast, tasks involving shape recognition or LCL could utilize272

more continuous metrics, providing a smoother performance gradient and potentially more accurate273

reflections of a model’s reasoning abilities.274

Using discontinuous metrics in strategic games could manifest as sharp transitions in model evalua-275

tion:276

Performance(N) = δ(outcomeN − threshold)
where δ is the Dirac delta function, accentuating a sudden jump in perceived ability when the model277

first succeeds. Nonlinear metrics in the shape game or LCL tasks may not exhibit such abrupt278

transitions but could still misrepresent gradual improvements:279

Performance(N) ≈ exp(−αNβ)

where α > 0 and β < 0 dictate the rate of improvement. This expression reflects smoother but280

potentially misleadingly slow progress.281

Based on the perspective from Schaeffer et al. [23], one could argue that the games proposed in282

ChildPlay may not entirely reflect true generalization or emergent abilities. If these benchmarks are283

akin to nonlinear or discontinuous metrics, they might exaggerate the weaknesses or strengths of284

LLMs in strategic games. For instance, a sharp failure in a game like Tic-Tac-Toe might not mean the285

model lacks strategic reasoning universally but that it fails under the specific discontinuous conditions286

of the game setup, or of temperature. Such an assessment could lead to the erroneous conclusion that287

LLMs are generally poor at strategic decision-making when, in fact, they might only be unsuited to288

the specific scenarios or metrics used in ChildPlay.289

Conversely, unlike continuous metrics that might smooth over deficiencies and give a misleading290

picture of gradual improvement, the use of clear, structured games as benchmarks could provide a291

direct assessment of an LLM’s cognitive and strategic abilities regardless of metric continuity. That292

is, given that the model has not been overfitted on the game.293

5 Conclusions294

Non-language-based tasks are important as they challenge models to demonstrate generalization295

across different information encodings or forms of input, and, most importantly, to actually delve296

into out-of-training-distribution topologies. Testing LLMs like GPT-4 (according to OpenAI, the297

current contender to AGI [7]) beyond the text they were primarily trained on via our "show, don’t298

tell" strategy, we demonstrate that it is still mediocre at best at very simple reasoning tasks that are299

outside of its training data. The models fail to play optimally at very simple games, such as tic-tac-toe,300

battleship, and connect-four. We also experimented with LEGO assembly, finding the LLMs still301

performing poorly. Mixed results were found at the task of interpreting geometric shapes from binary302

grids. These tasks are then designed to test reasoning without relying on language skills, such that303

the model cannot get by through parroting - it must be capable of playing the game. In the context of304

BIG-bench, our tasks would fit in the "non-language" category. Currently, this category shows 16305

active tasks, including some explicit ASCII recognition tasks, chess, and Sudoku, however, to the306

best of our knowledge, no task like ours [2]. Hence, we believe that ChildPlay is a useful addition to307

the suite of current established LLM benchmarks.308

In general, this work is relevant in that developing games allows us to critically examine claims309

regarding a models’ ability to perform reasoning and problem solving regardless of the persistent310

problem of data contamination. In other words, we explore what the model knows by making it311

play games instead of asking it how to play them. Our results suggest that current LLMs show312

disappointing performance in terms of problem solving capabilities and reveal important aspects to313

be considered for future improvements.314
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A Appendix / supplemental material435

A.1 Move Mapping436

A.1.1 Tic-Tac-Toe437

(a) temperature = 0. (b) temperature = 0.5.

(c) temperature = 1. (d) temperature = 1.5.

Figure 10: Heatmap of model GPT-3.5’s moves for the tic-tac-toe game.

(a) temperature = 0. (b) temperature = 0.5.

(c) temperature = 1. (d) temperature = 1.5.

Figure 11: Heatmap of model GPT-4’s moves for the tic-tac-toe game.

A.1.2 Connect-Four438

(a) temperature = 0. (b) temperature = 0.5.

(c) temperature = 1. (d) temperature = 1.5.

Figure 12: Heatmap of model GPT-3.5’s moves for the connect-four game.
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(a) temperature = 0. (b) temperature = 0.5.

(c) temperature = 1. (d) temperature = 1.5.

Figure 13: Heatmap of model GPT-4’s moves for the connect-four game.

A.1.3 Battleship439

Figure 14: Battleship.

(a) temperature = 0. (b) temperature = 0.5.

(c) temperature = 1. (d) temperature = 1.5.

Figure 15: Heatmap of model GPT-3.5’s moves for the battleship game.
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(a) temperature = 0. (b) temperature = 0.5.

(c) temperature = 1. (d) temperature = 1.5.

Figure 16: Heatmap of model GPT-4’s moves for the battleship game.

A.2 Shapes440

(a) temperature =
0.

(b) temperature =
0.5.

(c) temperature =
1.

(d) temperature =
1.5.

Figure 17: Heatmap of model GPT-3.5’s moves for the shapes game.

(a) temperature =
0.

(b) temperature =
0.5.

(c) temperature =
1.

(d) temperature =
1.5.

Figure 18: Heatmap of model GPT-4’s moves for the shapes game.
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A.3 Prompting GPT About Optimal Play441

Game Explanation
Tic-Tac-Toe Tic-Tac-Toe is a two-player game played on a 3x3 grid. Each player takes turns marking a square

with their symbol (X or O), aiming to get three of their symbols in a row, column, or diagonal.
To play optimally, prioritize securing the center square and blocking opponent’s winning moves.

Battleship Battleship is a two-player game where players hide ships on a grid and take turns guessing their
opponent’s ship locations. The goal is to sink all of the opponent’s ships. To play optimally, start
by targeting areas with higher probabilities of containing a ship and strategically target adjacent
squares after a hit to maximize efficiency.

Connect Four Connect Four is a two-player game played on a 6x7 grid. Players drop colored discs into columns,
aiming to connect four of their own discs in a row, column, or diagonal. To play optimally,
prioritize creating your own winning formations while blocking opponent’s potential winning
moves.

Table 1: Optimal strategies for playing different games according to GPT-3.5.

Game Explanation
Tic-Tac-Toe Play your first X in a corner to maximize opportunities. If the opponent plays in the center, play

the opposite corner. Block your opponent’s potential winning moves and always look to create a
line of three.

Battleship Randomize ship placements and start by targeting the center of the grid. Use a checkerboard
pattern for efficient searching. Once a ship is hit, focus on the surrounding squares to determine
its orientation and sink it.

Connect Four Start in the center column to maximize opportunities in all directions. Build threats vertically,
horizontally, and diagonally, and block the opponent’s forming lines. Create multiple threats to
force the opponent into a defensive position.

Table 2: Optimal strategies for playing different games according to GPT-4.
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NeurIPS Paper Checklist442

1. Claims443

Question: Do the main claims made in the abstract and introduction accurately reflect the444

paper’s contributions and scope?445

Answer: [Yes]446

Justification: Yes, see sections 2 and 3, where we explore the delineated experiments and447

the ensuing results.448

Guidelines:449

• The answer NA means that the abstract and introduction do not include the claims450

made in the paper.451

• The abstract and/or introduction should clearly state the claims made, including the452

contributions made in the paper and important assumptions and limitations. A No or453

NA answer to this question will not be perceived well by the reviewers.454

• The claims made should match theoretical and experimental results, and reflect how455

much the results can be expected to generalize to other settings.456

• It is fine to include aspirational goals as motivation as long as it is clear that these goals457

are not attained by the paper.458

2. Limitations459

Question: Does the paper discuss the limitations of the work performed by the authors?460

Answer: [Yes]461

Justification: See section 4, where we dive into some of the limitations of this work.462

Guidelines:463

• The answer NA means that the paper has no limitation while the answer No means that464

the paper has limitations, but those are not discussed in the paper.465

• The authors are encouraged to create a separate "Limitations" section in their paper.466

• The paper should point out any strong assumptions and how robust the results are to467

violations of these assumptions (e.g., independence assumptions, noiseless settings,468

model well-specification, asymptotic approximations only holding locally). The authors469

should reflect on how these assumptions might be violated in practice and what the470

implications would be.471

• The authors should reflect on the scope of the claims made, e.g., if the approach was472

only tested on a few datasets or with a few runs. In general, empirical results often473

depend on implicit assumptions, which should be articulated.474

• The authors should reflect on the factors that influence the performance of the approach.475

For example, a facial recognition algorithm may perform poorly when image resolution476

is low or images are taken in low lighting. Or a speech-to-text system might not be477

used reliably to provide closed captions for online lectures because it fails to handle478

technical jargon.479

• The authors should discuss the computational efficiency of the proposed algorithms480

and how they scale with dataset size.481

• If applicable, the authors should discuss possible limitations of their approach to482

address problems of privacy and fairness.483

• While the authors might fear that complete honesty about limitations might be used by484

reviewers as grounds for rejection, a worse outcome might be that reviewers discover485

limitations that aren’t acknowledged in the paper. The authors should use their best486

judgment and recognize that individual actions in favor of transparency play an impor-487

tant role in developing norms that preserve the integrity of the community. Reviewers488

will be specifically instructed to not penalize honesty concerning limitations.489

3. Theory Assumptions and Proofs490

Question: For each theoretical result, does the paper provide the full set of assumptions and491

a complete (and correct) proof?492

Answer: [NA]493
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Justification: We do not produce any theoretical results, rather we have made a benchmark494

and produce the experiments using said benchmark.495

Guidelines:496

• The answer NA means that the paper does not include theoretical results.497

• All the theorems, formulas, and proofs in the paper should be numbered and cross-498

referenced.499

• All assumptions should be clearly stated or referenced in the statement of any theorems.500

• The proofs can either appear in the main paper or the supplemental material, but if501

they appear in the supplemental material, the authors are encouraged to provide a short502

proof sketch to provide intuition.503

• Inversely, any informal proof provided in the core of the paper should be complemented504

by formal proofs provided in appendix or supplemental material.505

• Theorems and Lemmas that the proof relies upon should be properly referenced.506

4. Experimental Result Reproducibility507

Question: Does the paper fully disclose all the information needed to reproduce the main ex-508

perimental results of the paper to the extent that it affects the main claims and/or conclusions509

of the paper (regardless of whether the code and data are provided or not)?510

Answer: [Yes]511

Justification: See section 2.512

Guidelines:513

• The answer NA means that the paper does not include experiments.514

• If the paper includes experiments, a No answer to this question will not be perceived515

well by the reviewers: Making the paper reproducible is important, regardless of516

whether the code and data are provided or not.517

• If the contribution is a dataset and/or model, the authors should describe the steps taken518

to make their results reproducible or verifiable.519

• Depending on the contribution, reproducibility can be accomplished in various ways.520

For example, if the contribution is a novel architecture, describing the architecture fully521

might suffice, or if the contribution is a specific model and empirical evaluation, it may522

be necessary to either make it possible for others to replicate the model with the same523

dataset, or provide access to the model. In general. releasing code and data is often524

one good way to accomplish this, but reproducibility can also be provided via detailed525

instructions for how to replicate the results, access to a hosted model (e.g., in the case526

of a large language model), releasing of a model checkpoint, or other means that are527

appropriate to the research performed.528

• While NeurIPS does not require releasing code, the conference does require all submis-529

sions to provide some reasonable avenue for reproducibility, which may depend on the530

nature of the contribution. For example531

(a) If the contribution is primarily a new algorithm, the paper should make it clear how532

to reproduce that algorithm.533

(b) If the contribution is primarily a new model architecture, the paper should describe534

the architecture clearly and fully.535

(c) If the contribution is a new model (e.g., a large language model), then there should536

either be a way to access this model for reproducing the results or a way to reproduce537

the model (e.g., with an open-source dataset or instructions for how to construct538

the dataset).539

(d) We recognize that reproducibility may be tricky in some cases, in which case540

authors are welcome to describe the particular way they provide for reproducibility.541

In the case of closed-source models, it may be that access to the model is limited in542

some way (e.g., to registered users), but it should be possible for other researchers543

to have some path to reproducing or verifying the results.544

5. Open access to data and code545

Question: Does the paper provide open access to the data and code, with sufficient instruc-546

tions to faithfully reproduce the main experimental results, as described in supplemental547

material?548
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Answer: [Yes]549

Justification: We provide open access to our data and experiments through (GitHub Reposi-550

tory).551

Guidelines:552

• The answer NA means that paper does not include experiments requiring code.553

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/554

public/guides/CodeSubmissionPolicy) for more details.555

• While we encourage the release of code and data, we understand that this might not be556

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not557

including code, unless this is central to the contribution (e.g., for a new open-source558

benchmark).559

• The instructions should contain the exact command and environment needed to run to560

reproduce the results. See the NeurIPS code and data submission guidelines (https:561

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.562

• The authors should provide instructions on data access and preparation, including how563

to access the raw data, preprocessed data, intermediate data, and generated data, etc.564

• The authors should provide scripts to reproduce all experimental results for the new565

proposed method and baselines. If only a subset of experiments are reproducible, they566

should state which ones are omitted from the script and why.567

• At submission time, to preserve anonymity, the authors should release anonymized568

versions (if applicable).569

• Providing as much information as possible in supplemental material (appended to the570

paper) is recommended, but including URLs to data and code is permitted.571

6. Experimental Setting/Details572

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-573

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the574

results?575

Answer: [Yes]576

Justification: We explicitly mention the temperature used in every plot and section 2.577

Guidelines:578

• The answer NA means that the paper does not include experiments.579

• The experimental setting should be presented in the core of the paper to a level of detail580

that is necessary to appreciate the results and make sense of them.581

• The full details can be provided either with the code, in appendix, or as supplemental582

material.583

7. Experiment Statistical Significance584

Question: Does the paper report error bars suitably and correctly defined or other appropriate585

information about the statistical significance of the experiments?586

Answer: [No]587

Justification: We have to rerun some of the experiments to recalculate these.588

Guidelines:589

• The answer NA means that the paper does not include experiments.590

• The authors should answer "Yes" if the results are accompanied by error bars, confi-591

dence intervals, or statistical significance tests, at least for the experiments that support592

the main claims of the paper.593

• The factors of variability that the error bars are capturing should be clearly stated (for594

example, train/test split, initialization, random drawing of some parameter, or overall595

run with given experimental conditions).596

• The method for calculating the error bars should be explained (closed form formula,597

call to a library function, bootstrap, etc.)598

• The assumptions made should be given (e.g., Normally distributed errors).599
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• It should be clear whether the error bar is the standard deviation or the standard error600

of the mean.601

• It is OK to report 1-sigma error bars, but one should state it. The authors should602

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis603

of Normality of errors is not verified.604

• For asymmetric distributions, the authors should be careful not to show in tables or605

figures symmetric error bars that would yield results that are out of range (e.g. negative606

error rates).607

• If error bars are reported in tables or plots, The authors should explain in the text how608

they were calculated and reference the corresponding figures or tables in the text.609

8. Experiments Compute Resources610

Question: For each experiment, does the paper provide sufficient information on the com-611

puter resources (type of compute workers, memory, time of execution) needed to reproduce612

the experiments?613

Answer: [Yes]614

Justification: See section 2. We mention compute time, but all experiments are dependent615

on OpenAI’s API.616

Guidelines:617

• The answer NA means that the paper does not include experiments.618

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,619

or cloud provider, including relevant memory and storage.620

• The paper should provide the amount of compute required for each of the individual621

experimental runs as well as estimate the total compute.622

• The paper should disclose whether the full research project required more compute623

than the experiments reported in the paper (e.g., preliminary or failed experiments that624

didn’t make it into the paper).625

9. Code Of Ethics626

Question: Does the research conducted in the paper conform, in every respect, with the627

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?628

Answer: [Yes]629

Justification:630

Guidelines:631

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.632

• If the authors answer No, they should explain the special circumstances that require a633

deviation from the Code of Ethics.634

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-635

eration due to laws or regulations in their jurisdiction).636

10. Broader Impacts637

Question: Does the paper discuss both potential positive societal impacts and negative638

societal impacts of the work performed?639

Answer:[Yes]640

Justification: See sections 4 and 5 where we go over the implications of our results in the641

context of LLM interpretation.642

Guidelines:643

• The answer NA means that there is no societal impact of the work performed.644

• If the authors answer NA or No, they should explain why their work has no societal645

impact or why the paper does not address societal impact.646

• Examples of negative societal impacts include potential malicious or unintended uses647

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations648

(e.g., deployment of technologies that could make decisions that unfairly impact specific649

groups), privacy considerations, and security considerations.650
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• The conference expects that many papers will be foundational research and not tied651

to particular applications, let alone deployments. However, if there is a direct path to652

any negative applications, the authors should point it out. For example, it is legitimate653

to point out that an improvement in the quality of generative models could be used to654

generate deepfakes for disinformation. On the other hand, it is not needed to point out655

that a generic algorithm for optimizing neural networks could enable people to train656

models that generate Deepfakes faster.657

• The authors should consider possible harms that could arise when the technology is658

being used as intended and functioning correctly, harms that could arise when the659

technology is being used as intended but gives incorrect results, and harms following660

from (intentional or unintentional) misuse of the technology.661

• If there are negative societal impacts, the authors could also discuss possible mitigation662

strategies (e.g., gated release of models, providing defenses in addition to attacks,663

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from664

feedback over time, improving the efficiency and accessibility of ML).665

11. Safeguards666

Question: Does the paper describe safeguards that have been put in place for responsible667

release of data or models that have a high risk for misuse (e.g., pretrained language models,668

image generators, or scraped datasets)?669

Answer: [NA]670

Justification: There is no production of models or data that would pose risk.671

Guidelines:672

• The answer NA means that the paper poses no such risks.673

• Released models that have a high risk for misuse or dual-use should be released with674

necessary safeguards to allow for controlled use of the model, for example by requiring675

that users adhere to usage guidelines or restrictions to access the model or implementing676

safety filters.677

• Datasets that have been scraped from the Internet could pose safety risks. The authors678

should describe how they avoided releasing unsafe images.679

• We recognize that providing effective safeguards is challenging, and many papers do680

not require this, but we encourage authors to take this into account and make a best681

faith effort.682

12. Licenses for existing assets683

Question: Are the creators or original owners of assets (e.g., code, data, models), used in684

the paper, properly credited and are the license and terms of use explicitly mentioned and685

properly respected?686

Answer: [Yes]687

Justification: Authors are credited and the license is made available in GitHub Repository.688

Guidelines:689

• The answer NA means that the paper does not use existing assets.690

• The authors should cite the original paper that produced the code package or dataset.691

• The authors should state which version of the asset is used and, if possible, include a692

URL.693

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.694

• For scraped data from a particular source (e.g., website), the copyright and terms of695

service of that source should be provided.696

• If assets are released, the license, copyright information, and terms of use in the697

package should be provided. For popular datasets, paperswithcode.com/datasets698

has curated licenses for some datasets. Their licensing guide can help determine the699

license of a dataset.700

• For existing datasets that are re-packaged, both the original license and the license of701

the derived asset (if it has changed) should be provided.702
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• If this information is not available online, the authors are encouraged to reach out to703

the asset’s creators.704

13. New Assets705

Question: Are new assets introduced in the paper well documented and is the documentation706

provided alongside the assets?707

Answer: [Yes]708

Justification: See section 2.709

Guidelines:710

• The answer NA means that the paper does not release new assets.711

• Researchers should communicate the details of the dataset/code/model as part of their712

submissions via structured templates. This includes details about training, license,713

limitations, etc.714

• The paper should discuss whether and how consent was obtained from people whose715

asset is used.716

• At submission time, remember to anonymize your assets (if applicable). You can either717

create an anonymized URL or include an anonymized zip file.718

14. Crowdsourcing and Research with Human Subjects719

Question: For crowdsourcing experiments and research with human subjects, does the paper720

include the full text of instructions given to participants and screenshots, if applicable, as721

well as details about compensation (if any)?722

Answer: [NA]723

Justification: We do not involve people directly in our experiments.724

Guidelines:725

• The answer NA means that the paper does not involve crowdsourcing nor research with726

human subjects.727

• Including this information in the supplemental material is fine, but if the main contribu-728

tion of the paper involves human subjects, then as much detail as possible should be729

included in the main paper.730

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,731

or other labor should be paid at least the minimum wage in the country of the data732

collector.733

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human734

Subjects735

Question: Does the paper describe potential risks incurred by study participants, whether736

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)737

approvals (or an equivalent approval/review based on the requirements of your country or738

institution) were obtained?739

Answer: [NA]740

Justification: The paper does not involve crowdsourcing nor research with human subjects.741

Guidelines:742

• The answer NA means that the paper does not involve crowdsourcing nor research with743

human subjects.744

• Depending on the country in which research is conducted, IRB approval (or equivalent)745

may be required for any human subjects research. If you obtained IRB approval, you746

should clearly state this in the paper.747

• We recognize that the procedures for this may vary significantly between institutions748

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the749

guidelines for their institution.750

• For initial submissions, do not include any information that would break anonymity (if751

applicable), such as the institution conducting the review.752
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