Gaussian Weight Sampling for Scalable, Efficient and Stable
Mixed-Precision QAT

Anonymous ACL submission

Abstract

The resources required for training transformer
models increase as the model size grows, lead-
ing to the proposal and implementation of
hardware-friendly computation methods such
as FP8 and OCP MX. These methods introduce
the mixed-precision problem, which has an ex-
ponentially large search space and negatively
impacts training stability during extensive train-
ing over 200B tokens.

Based on our observation that FP mixed pre-
cision training shares the same issues of con-
ventional mixed-precision Quantization-Aware
Training (QAT), including the oscillation prob-
lem of Straight-Through Estimator (STE)-
based QAT, we propose Gaussian weight sam-
pling. The proposed method, or GaussWS, ad-
dresses the problem on mixed-precision by ex-
tending Pseudo Quantization Training (PQT)
with an FP-friendly noise distribution and a
GPU-friendly noise generation method.

We demonstrate that Gaussian weight sam-
pling is scalable, i.e., supports low-precision
FP down to MXFP4, both analytically and em-
pirically. The proposed method is efficient, in-
curring a low computational overhead as low
as 0.47% on the A100 GPU in terms of Llama2
training tokens per second, and requiring 2
bytes per parameter in GPU memory.

We demonstrate that the proposed method is
stable, closely following or even surpassing
pre-training performance of BF16 baseline with
the OPT2-124M model on the OpenWebText
dataset, the Llama2-134M model on the C4
dataset (up to 300B tokens) and the Llama2-1B
model on the C4 dataset (up to 100B tokens).

1 Introduction

The training cost of Large Language Model (LLM)
has increased as the model size has grown over
time. For Grattafiori et al. (2024), the training re-
quires 16K H100 and at least 11.2MW for total

3
»

v
W = w+ R - max(|w|) - 2!

R~ |N(0,1)/2] R =1U(-0.5,0.5)
| bitop | | FP op |
.‘.|III|III| T T | e

(a) Overview of proposed method. The figure on the left
illustrates the loss landscape in real numbers with FP approxi-
mation. The dot in the middle of the rectangle represents a pa-
rameter instance and the rectangles represent sampling range
with the corresponding noise distribution on the right. The
figure on the right depicts computation graph of the proposed
method, where solid arrows indicate the forward pass, and dot-
ted arrows indicate the backward pass. The proposed method
determines the optimal bitwidth b through training. We pro-
pose an FP-friendly noise distribution and a GPU-friendly
noise generation method.

114

3.4 3.15 7
3.10 1y
3.31 ™
10 N N\j\m‘,\ 3.05 A
7 4 SAwfa_ 951
> M 2.901
S I EX : . 2.85 : : : :
N, 0 20 30 40 50 00 250 3
Ta 7
NS
I
% 6 - —— AdamW, LR=6e-4
+GaussWSall]
5 —— AdamW, LR=6e-5
-=- +GaussWS[od]
—— +GaussWS[all]
44 +DiffQ[od]
—— +DiffQ[all]
34
T T T T T T T
0 50 100 150 200 250 300

tokens (B)

(b) Result of pre-training the OPT2-124M model on the Open-
WebText dataset. [part] indicates that the corresponding
method is applied to “part” layers of the transformer mod-
ule. [od] is used as shorthand for [out,down]. Both PQT
methods mitigate training instability of baseline AdamW (pur-
ple). GaussWS[od] (dashed green) yields the best result with
learning rate 6 x 107>, GaussWS (green and olive) outper-
forms the corresponding DiffQ (orange and red) throughout
the training process.

Figure 1: Summary of Gaussian weight sampling.

TDP of the GPUs. Studies have been conducted to
reduce training cost. PEFT, e.g., Hu et al. (2021),
Dettmers et al. (2023) and Loeschcke et al. (2024),
reduce the size of training parameters. Ren et al.

(2021) and Rajbhandari et al. (2021) offload GPU
memory into CPU memory. Peng et al. (2023)
reduces required throughput of collective commu-
nication. Zhang et al. (2024) and Zhu et al. (2024)
introduce optimizer with less internal state which
results in less GPU memory required.

Especially, hardware-friendly low precision data
types such as FP8 (Micikevicius et al., 2022) and
OCP MX (Rouhani et al., 2023) have been pro-
posed. However, low-precision (e.g., FP8 based)
training faces two critical problems. First, it suf-
fers from training instability due to quantization-
induced oscillations like traditional STE-based
QAT. Second, the problem of mapping parts of the
model to specific bit precision is of an exponential
complexity. For example, mapping n operations
to either FP8 or BF16 results in O(2") cases that
requires extensive training with over 200B tokens
to validate training stability. This makes manual
search methods inefficient and suboptimal, thereby
often resorting to suboptimal designs, e.g., all BF16
training.

Pseudo Quantization Training (PQT), e.g., Dé-
fossez et al. (2022) and Park et al. (2022), can solve
the problem. PQT employs Pseudo Quantization
Noise (PQN), which generalizes actual quantiza-
tion noise during the training process. PQT is fully
differentiable without approximation like that of
STE. However, existing PQT methods are neither
FP-friendly nor GPU-friendly, leading to numerical
instablility and computational overhead. Specifi-
cally, as shown in Figure 1a, the limited dynamic
range of U(—0.5,0.5) degrades the effect of PQN
when cast into low-precision FP, while requiring
unnecessary precision for representation and FP
operations for generation.

In this paper, we extend PQT to be FP- and GPU-
friendly, thereby ensuring scalability to low preci-
sion operators with minimal overhead. Specifically,
we propose an FP-friendly noise distribution and
a GPU-friendly noise generation method. The pro-
posed Gaussian weight sampling is scalable down
to MXFP4, incurs an overhead as low as 0.47%
in terms of training throughput on A100, and re-
quires only 2 bytes per parameter in terms of GPU
memory. The latter can be compensated using a
parameter-efficient optimizer, such as Adam-mini
(Zhang et al., 2024).

We demonstrate that the proposed method en-
ables stable pre-training that closely follows, or
even outperforms, the BF16 counterpart for the
OPT2-124M and the Llama2-{134M, 1B} models

T, m) [Timo, My = Tem, mo)|
1 2 0 1 2 3

| 0.125
[/ 0.26 -0.91 -0.38 -0.53

105861 -0.41 0.50 .
2 .-0.44 -0.35/0.46

kR -1.67 -0.86/0:49 -0.120 |

+0.100

- 0.075

r 0.050

r0.025

~-0.000

Figure 2: Forward-backward error when following
vector-wise quantization. Used internal datatype of
INT4 with block size of 2 for simplicity. Note that
visualized values are fake-quantized. T{ps sy is ran-
domly sampled from N (0, 1).

up to 300B tokens.
To sum up, our contributions are as follows:

* We show that FP-based mixed-precision train-
ing shares the same problems of STE-based
QAT, namely an exponential search space and
challenges with training stability.

* We extend the existing solution, differentiable
mixed precision QAT, i.e., PQT, to be FP-
and GPU-friendly, making it scalable down to
MXFP4 with minimal overhead.

* We demonstrate that the proposed method en-
ables stable PQT that closely follows, or even
outperforms, the baseline BF16 pre-training.

2 Preliminaries and Problems

2.1 Oscillation issue in low-precision training

Reducing bit precision for training is one of the
most effective methods to reduce the training
cost of large language model, e.g., Peng et al.
(2023), Fishman et al. (2024), Wang et al. (2025),
DeepSeek-Al et al. (2024), Rouhani et al. (2023).
Specifically, the bottom row of Figure 2 visualizes
how OCP MX works in a simple example. Con-
sider T{ Mg) T Mg, M)- The matrix multiplica-
tion is realized via vector dot products (of size-2
MX blocks) which are realized by MX-based com-
pute units.

A naive appalication of low-precision training
can incur an oscillation problem which hurts train-
ing stability. Consider an MX-compliant matrix

multiplication where the quantization axis lies
along the inner dimension:

* forward Ty Ny = A,k o) Wikg,N)

T oL

: oL
* gradient oW (A(K,MQ)W(MQ7N)

K,N) —

L] 87[/ - aiL T
backprop 5% (M,K) — BT(M,NQ)W(NQvK)

where A is the input activation, W the parameter,
T the output activation and L the target loss. Sub-
script corresponds to the shape of the given matrix,
where ¢ marks the quantization axis.

Note the difference between A and W in the
forward and backward passes, i.e., A(yy, KQ) and
Wik, Ny compared to A(TK’ Mo) and Wg\,@ K)» s
demonstrated in Figure 2. This discrepancy can
lead to oscillation issues, similar to those ob-
served with STE-based QAT, resulting in subopti-
mal model training and preventing the model from
reaching the desired optimal point in the loss land-
scape. (Défossez et al., 2022) (Park et al., 2022)

2.2 Problem of existing PQT

PQT effectively addresses a problem of mixed pre-
cision QAT by directly training quantization pa-
rameter, i.e., bit precision, without the forward-
backward discrepancy introduced by the STE. This
results in a fully differentiable training process with
forward-backward consistency. However, current
PQT methods are neither FP-friendly nor GPU-
friendly.

Current PQT methods are not FP-friendly, as
they use uniform noise U(—0.5,0.5) as the basis
for PQN. This requires unnecessary precision and
disrupts forward-backward consistency with nu-
merical instability. Consequently, these methods
are limited in the range of “safe” bitwidths for PQN
and necessitate high-precision operators, such as
BF16. Refer to Section 3.3 for detail.

Current PQT methods are not GPU-friendly.
They generate random values by performing FP
operations on random integer streams produced
by Pseudo-Random Number Generator (PRNG).
This exacerbates the bottleneck on vector opera-
tor (CUDA core) during the training process. This
issue is particularly pronounced on NVIDIA’s dat-
acenter GPUs like the A100. Datacenter GPUs
have relatively lower vector operation throughput
compared to their consumer counterparts. See em-
pirical result in Figure 5.

3 Method

3.1 Overview

We aim to address the problem of PQT with low-
precision floating point hardware in mind. The
proposed Gaussian weight sampling method ex-
tends PQT to be MX-compliant (Section 3.2), re-
silient to low precision floating point operations
(Section 3.3) and computationally lightweight (Sec-
tion 3.4). We discuss the effect of training with
the proposed PQN in Section 3.5. The proposed
method is implemented in Triton (Mattson et al.,
2019) with decisions that favor predictably opti-
mal throughput and straightforward implementa-
tion (Section 3.6). Section 3.7 describes the im-
plementation details, including the method to en-
sure unbiased PQN while maintaining forward-
backward consistency, and the bitwidth parameter
implementation.

While Park et al. (2022) applied PQT to both
weights and activations, our study focuses on ap-
plying the method exclusively to weights. This
approach has the potential to decrease the volume
of collective communication, a major bottleneck
in LLM training, thereby accelerating the training
process. (Peng et al., 2023) Moreover, it offers
faster training with reduced overhead compared to
applying the method to both weights and activa-
tions.

3.2 Gaussian weight sampling

As discussed in Section 2.1, a vector-wise quanti-
zation, aligned with the inner dimension of matrix
multiplication, can cause discrepancies between
forward and backward passes, leading to the oscilla-
tion problem. The issue arises because the absolute
maximum value of the block, e.g., size-2 blocks
in Figure 2, changes when transposed. Square-
blockwise quantization can resolve this problem
and ensures transpose-commutativity. Therefore, in
Gaussian weight sampling, parameters are grouped
into square block units, as in DeepSeek-Al et al.
(2024). Note that square-blockwise quantization
is a special case of vectorwise quantization where
adjacent vectors share the same scale, making it
MX-compliant.

The formulation of Gaussian weight sampling is
as follows:

W = w+ R-broadcasty, <mbax(|w|) : 21_bt> (1)
1

where w, @, R € R™*", b, € RIm/bilx[n/bi] angd

by = 32 is the square block size following OCP
MX. w is an original parameter, w is a sampled
parameter, R represents random and b; is blockwise
bitwidth. We refer to the right-hand side of the
addition as PQN.

Note that the formula above is fully differen-
tiable. With an approximation of amagizuwb ~ 0
assuming gradient to single element out of 32 by 32
block is negligible, we can calculate the gradient

as follows:
oL OL

ow O

oL oL
e~ _1n2. .9l=be
T n mb?x(]w\) Eb; (= O R>

2

where © denotes the Hadamard product.

3.3 Choice of FP-friendly R

A uniform distribution U(—0.5,0.5) is theoreti-
cally the best fit as a basis for PQN. However,
a rounded normal distribution |N(0,1)/2] en-
hances numerical stability because of its limited
data points with limited precision, i.e., {-3,-2,-1, 0,
1, 2, 3}, allowing a less stringent constraint on the
precision of the subsequent operator, i.e., matrix
multiplication, and the range of b;.

In particular, the value of w is cast into floating
point, e.g., BF16 or FP8, to serve as the input for
the subsequent matrix multiplication. Note that
FP casting, similar to integer casting, introduces
rounding errors. However, the backward pass in
Equation 3 has no indication of whether the PQN
was rounded to zero in the forward pass of Equa-
tion 1 and the subsequent FP casting. To ensure
stable training without errors between the forward
and the backward pass, the PQN should not under-
flow, i.e.,

fPem(Wij) # fPem(wig) i, jlr, 20 (D)

where fpe m(2) denotes casting x into a floating
point representation with an e-bit exponent and an
m-bit mantissa.

Without loss of generality, assume FP8_e5m2
and scaled maximum value in range [1, 2) where
possible values are {1.0, 1.25, 1.5, 1.75}. Abso-
lute value of the addition delta should be > 0.25 to
ensure the value is updated in an unbiased man-
ner. Note that the stepsize is 0.25 = 272 =
2Ulogz [wl]=m We need to ensure that the magnitude
of every non-zero element of the PQN is greater

than or equal to it. Specifically, for each block and
viv .7 ’Ri 70>

Rij (mbax(lwb : 21"“) > gllesz fwigll=m (s
)

With 27" = ming, ;+o | R;;|, this simplifies to:
b<m+2-—-r (6)

Equation 6 sets the upper bound of the bitwidth
b, or the lower bound of the magnitude of the PQN,
to prevent underflow in a floating-point representa-
tion with an m-bit mantissa. For example, with a
BF16 operator, R = U(—0.5,0.5) represented in
4-bit requires b; < 5, while R € {-2,—-1,0,1,2}
requires a less stringent constraint of by < 9.

3.4 Efficient generation of R

A Pseudo-Random Number Generator (PRNG),
e.g., Lathrop et al. (2011) and Overton (2020),
produces a random bit stream, effectively gener-
ating random integers. Random numbers in the
real number domain are derived from these random
integers. To obtain a value from U (0, 1), random
integers are divided by their maximum possible
value. To generate a value from N (0, 1), two val-
ues from U (0, 1) are used and transformed via the
Box-Muller method. (Box and Muller, 1958)

Note that the rounded normal | N (0, 1)/2] does
not require aforementioned floating point opera-
tions. Assuming that each bit of the random bit
stream from the PRNG is independently random,
we create a random distribution that approximates
the rounded normal distribution using two base
cases:

P(A&B) = P(A)- P(B))
P(A|B) = P(A) + P(B) — P(A&B)

where A and B represent bitwise random variables,
& and | are bitwise operators, and P(X) is short-
hand for Pr(X =1).

Specifically, the distribution that we generate is:

+2) =3/4-279 ~ 1/682.7
+1) = (3/4)?-272~1/7.1
Pr(+1) — Pr(£2) ~ 0.716

T
3
—
(=}
~—
I
—
|

®)

The generated R values are represented in a sign-
mantissa format with 4 bits per element, and 8 ele-
ments are packed into a 32-bit register. Compared
to 2’s complement, the sign-mantissa format is sim-
pler to generate and reconstruct into floating point.

3.5 Effect of training with the proposed PQN

The proposed method effectively performs stochas-
tic annealing on the precision of near-zero values
of high-precision parameters.

Assume a block w, which is represented in high-
precision FP, contains small non-negative value 2°,
and resilient to PQN with b; = 6. Without loss
of generality, assume the absolute maximum value
of w is scaled to be in the interval [1, 2). With
R;; = 1, adding the PQN shifts 2% to the range
2% 427,25 4+ 274). Assuming s is small enough,
the subsequent FP rounding limits the precision of
the value to that of low-precision FP in the range
[275,27%), with a stepsize of 2775, 25 > 275
prevents underflow while 2° < 2775 risks under-
flow. In other words, the proposed method incor-
porates stochastic precision annealing, nullifying
near-zero values of high-precision FP parameters
with a probability of up to ~ 0.284.

3.6 Design decisions

Separate kernels. While baseline BF16 training
require only one kernel call for the linear layer,
we need three kernel calls: (1) generating R, (2)
unpacking I and adding scaled maximum, and (3)
the linear operation. Fusing consecutive operations
typically helps achieve maximum throughput by
reducing GPU memory communication. In our
case, however, fusing the operations does more
harm than good.

Firstly, R generation is not fused. PRNG is an
algorithm that loops based on its internal state to
generate random values iteratively. The longer a
PRNG’s internal state is reused, the more it reduces
the degree of parallelism, limiting the utilization
of parallel hardware. In other words, there exists
an optimal ratio of parallelization to achieve opti-
mal throughput. If the number of random values
R generated and used per operator (CUDA core)
does not match, additional communication is re-
quired. In practice, fusing the generation of R with
subsequent operations led to significant throughput
variations depending on the shape of w.

Secondly, we do not fuse the scaled addition
with the subsequent matrix multiplication. This
decision allows us to use the highly optimized Py-
Torch implementation of the linear operation and
straightforward implementation.

GPU memory. Calculating the gradient of in-
put activation in matrix multiplication requires 0,
while calculating the gradient of b; requires regen-

erating R. R is regenerated using the same seed
value used in the forward pass, requiring 0.5 byte
per parameter temporarily.

Although reconstructing w in the backward com-
putation would reduce GPU memory overhead, we
store w explicitly in BF16. It helps keep the imple-
mentation simple at the cost of a marginal increase
in GPU memory. Note that overhead of 2 bytes
per parameter can be offset by adopting parameter-
efficient optimizers, such as Adam-mini.

In conjunction, the design decisions described
above enable a straightforward implementation
where f(w) = w is modularized into a single Py-
Torch layer.

3.7 Implementation details

Managing seed. A seed value is required to initial-
ize the PRNG. For proper training, the value of R
in the forward pass must be identical to the value
of R in the backward pass. Additionally, to avoid
bias across the entire model, the R values for each
layer should be distinct and independent.

To achieve these properties, a multi-layer PRNG
is employed to manage seeds and their correspond-
ing random values effectively. First, a PRNG or
seed generator is created using the user-specified
seed value. Second, this seed generator is used to
produce seed values to initialize the PRNG of each
layer. Finally, the output of each layer’s PRNG
serves as the seed value for the GPU’s PRNG,
which then generates R.

The state of the final PRNG is updated every
training iteration but remains frozen during gradi-
ent accumulation to mimic the virtual batch effect.

Bitwidth. We implemented an internal bitwidth
parameter b; for each 32 by 32 square unit of pa-
rameters in the linear layers. b; is linearly scaled to
represent bitwidth b, as follows:

bt == btarget + bi : (binit - btarget) (9)

where bjnjt and byrger are hyperparameters repre-
senting the initial and target bitwidths, respectively.
b; should be initialized with 1. b; is guided towards
barger through the weight decay applied to b;.

A loss term related to b; can also be incorporated
into the training loss:

A
L/ =L+ E Z ‘bg - btarget‘ (10)

=1

where 7 is the number of b, and b} denotes bitwidth
of ¢-th block. In this scenario, an additional hyper-

3.4 1 3.05

I
3.29 N
2.90 1

]
T 2.85

3.0

—
[
L

3.00

-
o
L

2.951

©
(\
%)

©
s

loss
~

OPT2-124M

AdamW, LR=6e-4
AdamW, LR=6e-5
+GaussWS[qkv]
+GaussWS[out]
+GaussWS[up]
+GaussWS[down]
+GaussWS[od]

3 ——— i

150 200 250 300
tokens (B)

(a) Stability case study with AdamW optimizer.

] 32 § 3.05
04 |33 \ﬁ\& 3.00 4
1 v
1324 s 2.95 1
of | gy
[ERR B ¥ 2.90 4
| A M
2 87 |30 . . 2.85
ﬁ "™ | 0 20 30 40
&8 7 —— AdamW, LR=6e-4
B —— AdamW, LR=6e-5
o 61 | —-=-- +GaussWS[od]
Adam-mini, LR=6e-4
54 —— +GaussWslall]
—— Adam-mini, LR=6e-5
+GaussWS[out]
4 --- +GaussWS[od]
'S +GaussWSJall]
3 = e =
0 50 100 150 200 250 300
tokens (B)

(b) With Adam-mini optimizer.

Figure 3: Training loss curve. OPT2-124M on OpenWebText dataset.

— Adamw
+GaussWS[od]
+GaussWS[all]
Adam-mini
+GaussWS[od]
+GaussWSall]

2.925 14
2.900 M

2.875
2

Llama2-134M
average loss
maximum loss

80

250 E]

— Adamw
—— +GaussWS[od]
—— +GaussWSlall]
Adam-mini

+GaussWS[od]
—— +GaussWSlall]

3.90

—— AdamW
—— +GaussWS[od]

b

3.881

3.86

Adam-mini
+Gaussws[od] [N
Jfll — +Gausswsiall]

3.84 4
3.82
3.80 1|l
3.781

3.76 4

150 250 300 0 50 100

3.74
220

150 200 250 300 230 240 250 260 270

AdamwW
+GaussWS[od]
+GaussWSlall]
Adam-mini
+GaussWS[od]
+GaussWSlall]

Llama2-1B
average loss
maximum loss

=

4.12

Adam-mini
+GaussWS[od]
—— +GaussWSlall]

Adam-mini
+GaussWS[od]
—— +GaussWSall]

T T T T T T
40 60 80 100 0 20

tokens (B)

T T
0 20

T
40

tokens (B)

i T T T T T T T 1
25.0 275 300 325 350 375 400 425 450
tokens (B)

T T T
60 80 100

Figure 4: Training loss curve. Llama2-{134M, 1B} on C4 dataset. First column represents average loss and the
other two represent maximum loss. Each datapoint corresponds to 19.66M tokens for Llama2-134M and 6.55M
tokens for Llama2-1B. Weighted moving average is used with & = 1/16 on left column and o = 1/128 on right
column for better visualization. Third column corresponds to range that is annotated with orange arrow on the

second column.

parameter, J, is required to appropriately scale the
loss associated with the bitwidth parameter.

4 Experimental results

Transformer-based language models were trained
from scratch: the OPT2-124M model on the Open-
WebText dataset (Gokaslan and Cohen, 2019) (Sec-
tion 4.1), and the Llama2-134M and Llama2-1B
models on the C4 dataset (Raffel et al., 2023) (Sec-
tion 4.2). The overhead of the proposed method
is presented in Section 4.3. Resulting bitwidth is
presented in Section 4.4.

We use “GaussWS([part]” to represent which
part of the transformer block adopts the proposed
method. We further shorten the notation as “[part]”
in text. [od] is used as shorthand for [out,down].
Note that the OPT?2 transformer block comprises
four linear layers: gkv, out, up, and down. The

gkv and out layers, along with the self-attention
operation, constitute the attention module, while
the up and down layers form the feed-forward mod-
ule. “DiffQ[all]” represents that all linear layers
of the transformer block adopt an extension of
DiffQ, which is equivalent to GaussWS with BF16
U(—0.5,0.5) in place of | N(0,1)/2].

We used BF16 GEMM with FP32 accumulation.
While the proposed method supports low-precision
operators, the use of high-precision operator allows
for differential search over a larger range of b;, as
discussed in Section 3.3.

4.1 Pre-train OPT2-124M on OpenWebText

The OPT2-124M model is trained from scratch on
the OpenWebText dataset up to 300B tokens. We
used bipiy = 6, brarger = 0 for weight decay, and
brarger = 4 for bitwidth loss with A = 1074,

GaussWS stabilizes training with minimal
loss increase. The baseline BF16 with the AdamW
optimizer is highly sensitive to the choice of learn-
ing rate. Results in Figure 1b shows that the train-
ing with a learning rate of 6 x 10~* proceeds
smoothly whereas a learning rate of 6 x 107 di-
verges and fails to recover. Both PQT methods mit-
igate such training instability while the proposed
method incurs minimal increase in loss, especially
with [od]. The difference in performance between
GaussWS and DiffQ is attributed to the choice of R.
GaussWS consistently outperforms DiffQ, which
supports the argument presented in Section 3.3.

Stability case study. To identify the source of
training instability, we restrict the application of
the proposed method to each of the linear layers
within the transformer block.

As shown in Figure 3a, at =~30B tokens of train-
ing, [gkv], [up], and [down] begin to diverge and
fail to recover. In contrast, [out] does not diverge
and closely approximates the optimal training loss
curve of AdamW with a learning rate of 6 x 10~*
until ~200B tokens. [od], which applies the pro-
posed method to the last layers of the residual ad-
dition branches in the transformer block, reduces
divergence and yields the best results with a learn-
ing rate of 6 x 107,

These training results show that the attention
module is the source of instability at ~30B tokens
of training, while the feed-forward module is the
source of instability at ~200B tokens of training.
The latter is consistent with Fishman et al. (2024).

Adam-mini. As shown in Figure 3b, baseline
Adam-mini also stabilizes training at ~30B tokens
of training. [out] with Adam-mini do not suffer
from instability at ~200B tokens and approximates
[od] with AdamW. [od] with Adam-mini slightly
degrades in performance.

4.2 Pre-train Llama2 on C4

The Llama2-134M and Llama2-1B models are
trained from scratch on the C4 dataset up to 300B
and 100B tokens, respectively. We used bi,iy = 6,
btarget = 4.

Llama2-134M training. As shown on the first
row of Figure 4, Gaussian weight sampling im-
proves Llama2-134M pre-training, for both aver-
age and worst case. Additionally, with GaussWS,
it requires fewer tokens for Adam-mini to surpass
AdamW.

Llama2-1B training. As shown on the second
row of Figure 4, Gaussian weight sampling slightly

degrades Llama2-1B pre-training, both for average
and worst case. [od] minimizes loss degradation.

Note that in all cases shown in Figure 4, train-
ing with the proposed method closely follows the
baseline.

tps (k) 134M 360M 1B 3B
AdamW 1433 572 260 17.58
+GaussWS[od] 1429 57.0 258 7.50
+GaussWS[all] 141.3 56.3 255 4.23*
+DiffQ[all] 116.6 522 23.1 -
Adam-mini 93.9 40.6 21.1 6.18
+GaussWS[od] 91.8 393 20.6 596
+GaussWS[all] 85.7 36.3 193 544
+DiffQ[all] 82.3 343 17.8 1.91*
GMEM (GiB) 134M 360M 1B 3B
AdamW 34.00 27.83 30.69 30.66
+GaussWS[od] 34.04 28.00 31.22 3247
+GaussWSJ[all] 34.16 28.37 3242 36.59
+DiffQ[all] 34.18 28.44 32.64 37.35
Adam-mini 33.87 27.50 29.70 27.53
+GaussWS[od] 3392 27.66 30.23 29.34
+GaussWS[all] 34.03 28.03 3143 3345
+DiffQ[all] 3405 28.10 31.65 3421

Table 1: Tokens per second per GPU (top) and GPU
memory usage (bottom) during Llama?2 pre-training on
the A100 GPU. Tokens per second in thousands and
GPU memory in GiB. We used local batch size of {24,
12, 8, 3} for each case with fixed sequence length of
2048. * corresponds to low throughput due to frequent
reallocation of GPU memory. “-” represents failed case
with out-of-memory.

4.3 Overhead

Table 1 reports the throughput and GPU memory
usage during Llama?2 training.

The geometric mean of the overhead on training
throughput for Llama2-{134M, 360M, 1B} with
AdamW is 0.47%, 1.63% and 12.95% for [od], [all]
and DiffQJall], respectively, and 2.60%, 9.29% and
14.52% with Adam-mini. The proposed generation
method enables efficient generation of the basis for
PQN and reduces computational overhead.

GPU memory overhead is ~2 bytes per param-
eter to store w in BF16. The proposed method
requires less temporary memory to store 2, using
0.5 bytes per element for | N(0,1)/2] compared
to 2 bytes for U(—0.5,0.5).

Figure 5 presents the results of the unit bench-
mark for the forward pass of the proposed method.
Both the bitwise manipulation method and the Box-

Al100 3090 4090
150 2.25 2.25 2.25
100 A
125 4 2.00 80 2.00 2.00
80
@ 100] 175 4 4 604 175§ 175
e 1 > £ 2 g 607 =
o 75 i --- ours/bom +150 @ © ¥ —-=- ours/bom (150 ® © —-==- ours/bm 150 ©
o] { T @404 p T o o]
O 50 i £ O 2 9 P I o O 404 o
T —— ours 125 o —mmTo 125 1.25
25 bm_ 1100 bm._. 1100 201 1.00
o J/ —— torch o i/ — torch
“““ . : 1 0.75 ——— . T 1 0.75 R . . 1 0.75
01234 8 12 16 01234 12 16 01234 8 12 16
M=N (x 1024) M=N (x 1024) M=N (x 1024)

Figure 5: Forward pass benchmark results for the PyTorch layer implementing Equation 1 on a matrix Wy, ny.
Absolute throughput in 10° elements per second. “torch” indicates PyTorch baseline while the other two are
implemented in Triton. “bm” implements Box-Muller transform and “ours” implements the proposed generation

method described in Section 3.4.

OPT2-124M OpenWebText 200B

#bits
e o

#bits
w o ~ © o
AN

T T T T T T
63 70 77 84 91 98 105 112 119 126
layers

Figure 6: Resulting bitwidth b,. Upper and lower solid lines represent layerwise maximum and minimum while
dotted lines represent transformer-blockwise maximum and minimum. Dots and red lines indicate layerwise mean

and standard deviation.

Muller method demonstrate at least a 3x improve-
ment compared to the baseline, as they are imple-
mented in Triton and reduce global memory com-
munication. The proposed noise generation method
enhances throughput compared to the Box-Muller
method across all test cases. It is particularly effec-
tive with larger matrix and the A100 GPU. Note
that weight dimension of Llama 3.2 1B ranges from
(2k, 0.5k) to (2k, 8k) while Llama 3.1 405B ranges
from (16k, 1k) to (16k, 16k).

4.4 Bitwidth

Resulting bitwidth b; is visualized in Figure 6 and
Appendix C. Layers towards the end of the model
tend to be more sensitive and require more preci-
sion. Layers in the feed-forward module tend to
be more sensitive than those in the attention mod-
ule. For the Llama-style transformer block, the
out projection layer, or we, requires the highest
precision on average among the three layers of the
feed-forward module. The Llama2-1B model typi-
cally contains one layer with outlier per transformer
block, unlike the other two models.

b; Exponent (#range) Mantissa
3 2 (3+1) 1

6 3 (6+1) 4

12 4 (12+1) 10

Table 2: The number of exponent and mantissa bits
that is analytically safe for inference when the model
is trained using the proposed method. #range refers to
the number of exponent ranges, with +1 accounting for
the subnormal range. The number of mantissa bits is
derived from Equation 6. Refer to Section 5 for detail.

5 Discussion

Stable pre-training results with the proposed
method imply that |w;;| < 2™~ b*1 s not nec-
essary, given appropriate scaling as discussed in
Section 3.5. With b, = 6, the minimum number
of exponent ranges that satisfies the condition is
7, with 6 normal ranges, 1 subnormal range, and
an optional Inf/NaN range. Note that more expo-
nent ranges are required during training to support
updates of w that are smaller than non-zero PQN
values. We obtain Table 2 by repeating this logic.

Limitations

Proposed method is applied only on weight, leav-
ing activation and gradient same as baseline. In
particular, it is impossible to conduct differentiable
search on gradient. Extending the proposed method
to activation is left as future work.

The results are limited to pre-training the OPT2-
124M model and the Llama2-134M model up to
300B tokens, and the Llama2-1B model up to 100B
tokens. Further validation with larger models and
longer training is required.

To improve the noise distribution 12, we need to
align the results of PQT with actual or fake quanti-
zation. This is left for future work.

References

G. E. P. Box and Mervin E. Muller. 1958. A Note on the
Generation of Random Normal Deviates. The Annals
of Mathematical Statistics, 29(2):610-611.

DeepSeek-Al, Aixin Liu, Bei Feng, Bing Xue, Bingx-
uan Wang, et al. 2024. DeepSeek-V3 Technical Re-
port. arXiv.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. QLoRA: Efficient Finetun-
ing of Quantized LLMs. arXiv.

Alexandre Défossez, Yossi Adi, and Gabriel Synnaeve.
2022. Differentiable model compression via pseudo
quantization noise. Preprint, arXiv:2104.09987.

Maxim Fishman, Brian Chmiel, Ron Banner, and Daniel
Soudry. 2024. Scaling FP8 training to trillion-token
LLMs. arXiv.

Aaron Gokaslan and Vanya Cohen. 2019. Open-
webtext corpus. http://Skylion@@7.github.io/
OpenWebTextCorpus.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, and other.
2024. The llama 3 herd of models. Preprint,
arXiv:2407.21783.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, et al. 2021. LoRA: Low-
Rank Adaptation of Large Language Models. arXiv.

Andrej Karpathy. 2022. NanoGPT. https://github.
com/karpathy/nanoGPT.

Scott Lathrop, Jim Costa, William Kramer, John K
Salmon, Mark A Moraes, et al. 2011. Parallel ran-
dom numbers: As easy as 1, 2, 3. 2011 International
Conference for High Performance Computing, Net-
working, Storage and Analysis (SC), pages 1-12.

Wanchao Liang, Tianyu Liu, Less Wright, Will Con-
stable, Andrew Gu, Chien-Chin Huang, Iris Zhang,
Wei Feng, Howard Huang, Junjie Wang, Sanket
Purandare, Gokul Nadathur, and Stratos Idreos.
2024. Torchtitan: One-stop pytorch native solu-
tion for production ready llm pre-training. Preprint,
arXiv:2410.06511.

Sebastian Loeschcke, Mads Toftrup, Michael J Kasto-
ryano, Serge Belongie, and Vésteinn Snabjarnarson.
2024. LoQT: Low Rank Adapters for Quantized
Training. arXiv.

Tim Mattson, Abdullah Muzahid, Armando Solar-
Lezama, Philippe Tillet, H T Kung, and David Cox.
2019. Triton: an intermediate language and compiler
for tiled neural network computations. Proceedings
of the 3rd ACM SIGPLAN International Workshop
on Machine Learning and Programming Languages,
pages 10-19.

Paulius Micikevicius, Dusan Stosic, Neil Burgess, Mar-
ius Cornea, Pradeep Dubey, et al. 2022. FP8 Formats
for Deep Learning. arXiv.

Mark A Overton. 2020. Romu: Fast Nonlinear Pseudo-
Random Number Generators Providing High Quality.
arXiv.

Sein Park, Junhyuk So, Juncheol Shin, and Eunhyeok
Park. 2022. NIPQ: Noise Injection Pseudo Quantiza-
tion for Automated DNN Optimization. arXiv.

Houwen Peng, Kan Wu, Yixuan Wei, Guoshuai Zhao,
Yuxiang Yang, et al. 2023. FP8-LM: Training FP8
Large Language Models. arXiv.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2023. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. Preprint, arXiv:1910.10683.

Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley,
Shaden Smith, and Yuxiong He. 2021. ZeRO-
Infinity: Breaking the GPU Memory Wall for Ex-
treme Scale Deep Learning. arXiv.

Jie Ren, Samyam Rajbhandari, Reza Yazdani Am-
inabadi, Olatunji Ruwase, Shuangyan Yang, et al.
2021. ZeRO-Offload: Democratizing Billion-Scale
Model Training. arXiv.

Bita Darvish Rouhani, Ritchie Zhao, Ankit More,
Mathew Hall, Alireza Khodamoradi, et al. 2023. Mi-
croscaling Data Formats for Deep Learning. arXiv.

Ruizhe Wang, Yeyun Gong, Xiao Liu, Guoshuai Zhao,
Ziyue Yang, et al. 2025. Optimizing Large Language
Model Training Using FP4 Quantization. arXiv.

Yushun Zhang, Congliang Chen, Ziniu Li, Tian Ding,
Chenwei Wu, et al. 2024. Adam-mini: Use Fewer
Learning Rates To Gain More. arXiv.

https://doi.org/10.1214/aoms/1177706645
https://doi.org/10.1214/aoms/1177706645
https://doi.org/10.1214/aoms/1177706645
https://doi.org/10.48550/arxiv.2412.19437
https://doi.org/10.48550/arxiv.2412.19437
https://doi.org/10.48550/arxiv.2412.19437
https://arxiv.org/abs/2305.14314
https://arxiv.org/abs/2305.14314
https://arxiv.org/abs/2305.14314
https://arxiv.org/abs/2104.09987
https://arxiv.org/abs/2104.09987
https://arxiv.org/abs/2104.09987
https://arxiv.org/abs/2409.12517
https://arxiv.org/abs/2409.12517
https://arxiv.org/abs/2409.12517
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
https://arxiv.org/abs/2407.21783
https://doi.org/10.48550/arxiv.2106.09685
https://doi.org/10.48550/arxiv.2106.09685
https://doi.org/10.48550/arxiv.2106.09685
https://github.com/karpathy/nanoGPT
https://github.com/karpathy/nanoGPT
https://github.com/karpathy/nanoGPT
https://doi.org/10.1145/2063384.2063405
https://doi.org/10.1145/2063384.2063405
https://doi.org/10.1145/2063384.2063405
https://arxiv.org/abs/2410.06511
https://arxiv.org/abs/2410.06511
https://arxiv.org/abs/2410.06511
https://doi.org/10.48550/arxiv.2405.16528
https://doi.org/10.48550/arxiv.2405.16528
https://doi.org/10.48550/arxiv.2405.16528
https://doi.org/10.1145/3315508.3329973
https://doi.org/10.1145/3315508.3329973
https://doi.org/10.1145/3315508.3329973
https://doi.org/10.48550/arxiv.2209.05433
https://doi.org/10.48550/arxiv.2209.05433
https://doi.org/10.48550/arxiv.2209.05433
https://doi.org/10.48550/arxiv.2002.11331
https://doi.org/10.48550/arxiv.2002.11331
https://doi.org/10.48550/arxiv.2002.11331
https://doi.org/10.48550/arxiv.2206.00820
https://doi.org/10.48550/arxiv.2206.00820
https://doi.org/10.48550/arxiv.2206.00820
https://arxiv.org/abs/2310.18313
https://arxiv.org/abs/2310.18313
https://arxiv.org/abs/2310.18313
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://doi.org/10.48550/arxiv.2104.07857
https://doi.org/10.48550/arxiv.2104.07857
https://doi.org/10.48550/arxiv.2104.07857
https://doi.org/10.48550/arxiv.2104.07857
https://doi.org/10.48550/arxiv.2104.07857
https://doi.org/10.48550/arxiv.2101.06840
https://doi.org/10.48550/arxiv.2101.06840
https://doi.org/10.48550/arxiv.2101.06840
https://arxiv.org/abs/2310.10537
https://arxiv.org/abs/2310.10537
https://arxiv.org/abs/2310.10537
https://doi.org/10.48550/arxiv.2501.17116
https://doi.org/10.48550/arxiv.2501.17116
https://doi.org/10.48550/arxiv.2501.17116
https://doi.org/10.48550/arxiv.2406.16793
https://doi.org/10.48550/arxiv.2406.16793
https://doi.org/10.48550/arxiv.2406.16793

Maxim Zhelnin, Viktor Moskvoretskii, Egor Shvetsov,
Egor Venediktov, Mariya Krylova, et al. 2024. Gift-
sw: Gaussian noise injected fine-tuning of salient
weights for llms. Preprint, arXiv:2408.15300.

Hanqing Zhu, Zhenyu Zhang, Wenyan Cong, Xi Liu,
Sem Park, et al. 2024. APOLLO: SGD-like Memory,
AdamW-level Performance. arXiv.

A Related works

Zhelnin et al. (2024) proposed Quantization Noise
Injection (QNI) to finetune LLM in a parameter-
efficient way.

Research leveraging FP8 operators, e.g., Fish-
man et al. (2024) DeepSeek-Al et al. (2024), and
FP4 operators, e.g., Wang et al. (2025), for LLM
training has been conducted. They employed scal-
ing in various ways to compensate for the limited
dynamic range of internal datatype. Additionally,
Wang et al. (2025) introduces the Differentiable
Gradient Estimator (DGE) to address the limita-
tions of the STE in low-bit settings of MXFP4.

B Pre-training setup and resource

For pre-training OPT2, Karpathy (2022) with
commit 9755682b was used as the starting
point and nvcr.io/nvidia/pytorch:24.10-py3
was used as the training environment. For pre-
training Llama2, Liang et al. (2024) with commit
90567fc9 was used as the starting point and
ghcr.io/pytorch/pytorch-nightly with a tag
2.7.0.dev20250107-cudal2.4-cudnn9-devel
was used as the training environment. We
used A100-SXM4-40G, RTX 3090 and RTX
4090 GPUs for pre-training. Pre-training the
OPT2-124M model with the AdamW optimizer
and GaussWS[od] for 300B tokens took 1541
GPU-hour using four RTX 3090s. Pre-training the
Llama2-134M model with the AdamW optimizer
and GaussWS[all] for 300B tokens took 896
GPU-hours using eight RTX 4090s. Pre-training
the Llama2-1B model with the AdamW optimizer
and GaussWSJall] for 100B tokens took 2926
GPU-hours using eight RTX 4090s. Pre-training
the baseline Llama2-1B model with the AdamW
optimizer for 100B tokens took 1055 GPU-hours
using four A100s.

C Detailed bitwidth

The resulting bitwidth b, is presented in Figures C.1
through C.36. Each row corresponds to the 12 trans-
former blocks of the OPT2-124M model which

10

was trained with GaussWS[all] and Adam-mini
optimizer up to 300B tokens. Each column corre-
sponds to the number of tokens processed, at 50B,
100B and 200B.

https://arxiv.org/abs/2408.15300
https://arxiv.org/abs/2408.15300
https://arxiv.org/abs/2408.15300
https://arxiv.org/abs/2408.15300
https://arxiv.org/abs/2408.15300
https://doi.org/10.48550/arxiv.2412.05270
https://doi.org/10.48550/arxiv.2412.05270
https://doi.org/10.48550/arxiv.2412.05270

Module 1, 50B tokens Module 1, 100B tokens Module 1, 200B tokens
(akv) (out) (qkv) (out) (akv) (out)
8
6 , 6
" 6 . 6
2 4 2 4
20 20 20 20
0 0 0 0
20, 10 o 10 0 ol 20 44 0 ol 10 10 ol
60 0 20 0 60 0 20 0 0
oW (up) row (down) oW (up) row (down) row (up) row (down)
7 7
| 6 \ - 6 ib | | 7
X 6 1 6 6 6
5 5 5 5 5
4 4
2 100 2 100 2 100
0 o 0 10 50 ‘ 0 0. 0 10 50 ' 0 w0, ° 0 50 ‘
col col col col col col
0 .0 20 o 0 0 20 0 0 .0 20 o

Figure C.1 Figure C.2 Figure C.3

Module 2, 50B tokens Module 2, 100B tokens Module 2, 2008 tokens
(gkv) (out) (gkv) (out) (gkv) (out)
7 |
6 6 6 1
r o b q . 6 b 6
N LY 4 [
2 3 2 4 4
20 20 20 20 20
% 20 40 e % 10 20 o ® 20 40 P % 10 10 0 ° 10 20 o
0 0 20 0 0 0 20 20 0
row (up) row (dUWn) row (up) row (dUWn) row (dUWn)
5.0 5.5
a5 5 b 5 5 5.0 5
4.0 4 4.5
35 4 4 4.0 4
2 100 2 100 2 100
0 0 0 N 50 ‘ 0 10 ' 0 0 50 ' 0 0 0 L 50
0 L0 © 5 o 0 0 @ 0 o 0 L0 © ® % o
Figure C.4 Figure C.5 Figure C.6
Module 3, 50B tokens Module 3, 100B tokens Module 3, 200B tokens
(akv) (out) (qkv) (out) (akv) (out)

55 5.5
50 b 50b 6 500D
|
4.5 4.5 4 \ 4.5
4.0 4.0 4.0
20 20 20 20
10 col 0 20 10 0 10

col | 40 col 10 col
60 0 20
up row (down) row - (up) row (down)
6
b

5
4

100 100

50 50
col col
20 [
Figure C.7 Figure C.8 Figure C.9
Module 4, 50B tokens Module 4, 100B tokens Module 4, 2008 tokens
(gkv) (out) (gkv) (out) (gkv) (out)
7 7 8
6 7 7
6 b . 6 b : 6
> 4 > 4 5
4 4 4
20
0 5 " 10
0 0 0 0 0
oW (up) row (down) (up) row (down) row (up) row (down)
7 8
6.0

6 b ‘ 55 ; b 6 b
5 5.0 5 5 6
4 45 4

100 2 100 2 100

0 | 0 10 ! 0 50 ' 0 10 ' 0 50 |

col 50 0 col 10 0 o col 50 0 col 10 0 o co

Figure C.10 Figure C.11 Figure C.12

11

Module 5, 100B tokens Module 5, 200B tokens

Module 5, 50B tokens
(akv) (out) (qkv) (out) (akv) (out)
7 7
6 6
5 5
4 4
20
0 10
20
0 o 0
row - (up) row (down) up row (down) row (up) row (down)

8 s 7

e o b 6 b 6 8

5 ! 5 6 s 6

4 4

2 100 % 100 % 100

0 0 0 50 ‘ 0 0 0 50 ' 0 0 0 50 ‘
50 0 col 10 20 0 col 50 i 0 col 10 20 0 col 50 e 0 col 10 20 0 col

Figure C.13 Figure C.14 Figure C.15

Module 6, 100B tokens Module 6, 200B tokens

Module 6, 50B tokens
(gkv) (out) (gkv) (out) (gkv) (out)
7 7
6 p 6 b 6 b
5 5 5
4 4 4
0 0 0 0 0
row (up) row (dOWn) row (up) row (down) row (up) row (down)
6.0 7 7 6.0
5.5 6 b g'g 6 b 6 55 p
5.0 5 5.0 5 5 :’-0
45 45 S
2 100 2 100 2 100
0 0 0 N 50 ‘ 0 10 ' 0 0 50 ' 0 0 0 L 50 ‘
0 L0 © 5 o 0 0 @ 0 o 0 L0 © ® % o
Figure C.16 Figure C.17 Figure C.18
Module 7, 50B tokens Module 7, 100B tokens Module 7, 200B tokens
(akv) (out) (qkv) (out) (akv) (out)
7 5.5 7 5.5 ;
6 50 b 6 5.0 b 6
5 45 5 4.5 5
4 4.0 4 4.0 4
20 20
col o o
(up) row (down) up row (down) row (up) row (down)

6.0 6.0
5.5 55 b J 6.0 55 b
55
5.0 5.0 50
; 45
20 20 100
0 e % 10 ol
col col
0 .0 20 0

0 10
col

50 0

Figure C.20 Figure C.21

Figure C.19

Module 8, 100B tokens Module 8, 2008 tokens

Module 8, 50B tokens
(gkv) (out) (gkv) (out) (gkv) (out)
©
5
4
20
0 10
0 o 40 60 o
row (Up) row (dUWn) row (Up)

Figure C.24

Figure C.22 Figure C.23

12

Module 9, 50B tokens

(gkv) (out)

40 col
60 20
oW (up) row (down)
6.5
6.0 6
5.5 |
5.0 ! 5
2 100
0 0 col ° 10 50co\
50
aan O 20 0
Figure C.25
Module 10, 50B tokens
(akv) (out)
7 7
6 6
5 5
4 4
20 20
% 20 40 e % 10 20 o
60 20 0
oW (up) oW (down)
6.5
6.0
5.5
5.0 5
2 100
0 RIS % I
50 col col
aan O 20 0
Figure C.28
Module 11, 50B tokens
(gkv) (out)

ENRV N

Al
\) \)20
0 0 10
2 10 0

6
5
4
20
10
® 40 60 0o 20
oW (Up) oW (down)

Figure C.31

Module 12, 50B tokens

(gkv) (out)

7
6
5
4

20 20

0 10 0 10
20 col 10 col
40 ¢ o

0 20 0
row (yp) row (down)

6.5
6.0
5.5
5.0

20

0 10
50 col

Figure C.34

LT I-N

Module 9, 100B tokens

(gkv) (out)
\)2
0 1
20
Qe 0
oW (up)

o
-
o
N
5}
v
o
o
5}
"
1)
S v o
o

o
S
>
5
)
a
2
=
5
N
°
o
a
=3

Figure C.26

Module 10, 100B tokens

(gkv) (out)
7 7
6 6
5 5
4 4
20 20
0 [
20 4 0 o 10 10
60 20 0
oW (up) row (down)

o
=
)

N

o

«

o
v l
o

.

o

S v o o

H

5

o
.
S

N

>

o

a
S

Figure C.29

Module 11, 100B tokens

(gkv) (out)

o
15
-
o
N
5
LTS
B
=
o
N
5]
ooy

N
IS
S

o

S

o
a
(-3
=
o
a
S

20 0
oW (up) row (down)

o
-
o
N
5}
[C.I-

>
5
o
N
°
)

Figure C.32

Module 12, 100B tokens

(akv) (out)

-
5
=3

o
o
=
5
AN
o

20
oW (down)

o
a
=
o
a
S

a
D uo o
ouwoun

o

o

S
=
S

N
>
o

Figure C.35

13

o
o
5}

-

1)

S Vo uow

=
S
a
=3

LU

S uvoa o

o

o

Module 9, 200B tokens

(gkv) (out)

55 b

°
o
L
N
S
0o
°
o
s
o
° sruuoa
bohg

N
5]
IS
k=)
o
a
S
=
o
a
e

60

20 [
row (yp) row (down)

o
=
o
N
S
-
o
v
S
-
o
S v oo
o

o
S
a
-3
=
o
N
S
o
a
e

>
3
o

Figure C.27

Module 10, 200B tokens

(gkv) (out)

[CRr- N
o

o
=
5

~

°

ERUR- .

o
=
o

N

°

N
S
IS
S
o
a
=3
=
o
a
=2

60

20 [
row (yp) row (down)

(SR
—
o
S v o

o
.
S
N
15}
o
w
=)

a
a
=X

50 ol 10

Figure C.30

Module 11, 200B tokens

(gkv) (out)

LTI

c
HE
L
N
3
oo
°
o
5
N
3

N
5]
IS
k=)
o
a
S
=
o
a
e

60

20 [
oW (up) row (down)

w
S
a
-3
=
o
a
o]

o
=
5

N

S

[

o
u
3

o

S

S Vo uw

>

3
)
N
S
)

Figure C.33

Module 12, 200B tokens

(akv) (out)

o

~
S
IS
S
a
=3
=
o
a
S

o
L
s

N
3
U
o
o
-
s
N
S
«

60 20
oW (up) oW (down)
6.5
6.0 7
5.5 6
5.0 5
2 100
0 10 0 50
50 col 10 col

>

3

o
N
>
o

Figure C.36

o

o

o

	Introduction
	Preliminaries and Problems
	Oscillation issue in low-precision training
	Problem of existing PQT

	Method
	Overview
	Gaussian weight sampling
	Choice of FP-friendly R
	Efficient generation of R
	Effect of training with the proposed PQN
	Design decisions
	Implementation details

	Experimental results
	Pre-train OPT2-124M on OpenWebText
	Pre-train Llama2 on C4
	Overhead
	Bitwidth

	Discussion
	Related works
	Pre-training setup and resource
	Detailed bitwidth

