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Abstract

The resources required for training transformer001
models increase as the model size grows, lead-002
ing to the proposal and implementation of003
hardware-friendly computation methods such004
as FP8 and OCP MX. These methods introduce005
the mixed-precision problem, which has an ex-006
ponentially large search space and negatively007
impacts training stability during extensive train-008
ing over 200B tokens.009

Based on our observation that FP mixed pre-010
cision training shares the same issues of con-011
ventional mixed-precision Quantization-Aware012
Training (QAT), including the oscillation prob-013
lem of Straight-Through Estimator (STE)-014
based QAT, we propose Gaussian weight sam-015
pling. The proposed method, or GaussWS, ad-016
dresses the problem on mixed-precision by ex-017
tending Pseudo Quantization Training (PQT)018
with an FP-friendly noise distribution and a019
GPU-friendly noise generation method.020

We demonstrate that Gaussian weight sam-021
pling is scalable, i.e., supports low-precision022
FP down to MXFP4, both analytically and em-023
pirically. The proposed method is efficient, in-024
curring a low computational overhead as low025
as 0.47% on the A100 GPU in terms of Llama2026
training tokens per second, and requiring 2027
bytes per parameter in GPU memory.028

We demonstrate that the proposed method is029
stable, closely following or even surpassing030
pre-training performance of BF16 baseline with031
the OPT2-124M model on the OpenWebText032
dataset, the Llama2-134M model on the C4033
dataset (up to 300B tokens) and the Llama2-1B034
model on the C4 dataset (up to 100B tokens).035

1 Introduction036

The training cost of Large Language Model (LLM)037

has increased as the model size has grown over038

time. For Grattafiori et al. (2024), the training re-039

quires 16K H100 and at least 11.2MW for total040

(a) Overview of proposed method. The figure on the left
illustrates the loss landscape in real numbers with FP approxi-
mation. The dot in the middle of the rectangle represents a pa-
rameter instance and the rectangles represent sampling range
with the corresponding noise distribution on the right. The
figure on the right depicts computation graph of the proposed
method, where solid arrows indicate the forward pass, and dot-
ted arrows indicate the backward pass. The proposed method
determines the optimal bitwidth b through training. We pro-
pose an FP-friendly noise distribution and a GPU-friendly
noise generation method.
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(b) Result of pre-training the OPT2-124M model on the Open-
WebText dataset. [part] indicates that the corresponding
method is applied to “part” layers of the transformer mod-
ule. [od] is used as shorthand for [out,down]. Both PQT
methods mitigate training instability of baseline AdamW (pur-
ple). GaussWS[od] (dashed green) yields the best result with
learning rate 6 × 10−5. GaussWS (green and olive) outper-
forms the corresponding DiffQ (orange and red) throughout
the training process.

Figure 1: Summary of Gaussian weight sampling.

TDP of the GPUs. Studies have been conducted to 041

reduce training cost. PEFT, e.g., Hu et al. (2021), 042

Dettmers et al. (2023) and Loeschcke et al. (2024), 043

reduce the size of training parameters. Ren et al. 044
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(2021) and Rajbhandari et al. (2021) offload GPU045

memory into CPU memory. Peng et al. (2023)046

reduces required throughput of collective commu-047

nication. Zhang et al. (2024) and Zhu et al. (2024)048

introduce optimizer with less internal state which049

results in less GPU memory required.050

Especially, hardware-friendly low precision data051

types such as FP8 (Micikevicius et al., 2022) and052

OCP MX (Rouhani et al., 2023) have been pro-053

posed. However, low-precision (e.g., FP8 based)054

training faces two critical problems. First, it suf-055

fers from training instability due to quantization-056

induced oscillations like traditional STE-based057

QAT. Second, the problem of mapping parts of the058

model to specific bit precision is of an exponential059

complexity. For example, mapping n operations060

to either FP8 or BF16 results in O(2n) cases that061

requires extensive training with over 200B tokens062

to validate training stability. This makes manual063

search methods inefficient and suboptimal, thereby064

often resorting to suboptimal designs, e.g., all BF16065

training.066

Pseudo Quantization Training (PQT), e.g., Dé-067

fossez et al. (2022) and Park et al. (2022), can solve068

the problem. PQT employs Pseudo Quantization069

Noise (PQN), which generalizes actual quantiza-070

tion noise during the training process. PQT is fully071

differentiable without approximation like that of072

STE. However, existing PQT methods are neither073

FP-friendly nor GPU-friendly, leading to numerical074

instablility and computational overhead. Specifi-075

cally, as shown in Figure 1a, the limited dynamic076

range of U(−0.5, 0.5) degrades the effect of PQN077

when cast into low-precision FP, while requiring078

unnecessary precision for representation and FP079

operations for generation.080

In this paper, we extend PQT to be FP- and GPU-081

friendly, thereby ensuring scalability to low preci-082

sion operators with minimal overhead. Specifically,083

we propose an FP-friendly noise distribution and084

a GPU-friendly noise generation method. The pro-085

posed Gaussian weight sampling is scalable down086

to MXFP4, incurs an overhead as low as 0.47%087

in terms of training throughput on A100, and re-088

quires only 2 bytes per parameter in terms of GPU089

memory. The latter can be compensated using a090

parameter-efficient optimizer, such as Adam-mini091

(Zhang et al., 2024).092

We demonstrate that the proposed method en-093

ables stable pre-training that closely follows, or094

even outperforms, the BF16 counterpart for the095

OPT2-124M and the Llama2-{134M, 1B} models096
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Figure 2: Forward-backward error when following
vector-wise quantization. Used internal datatype of
INT4 with block size of 2 for simplicity. Note that
visualized values are fake-quantized. T(M,M) is ran-
domly sampled from N(0, 1).

up to 300B tokens. 097

To sum up, our contributions are as follows: 098

• We show that FP-based mixed-precision train- 099

ing shares the same problems of STE-based 100

QAT, namely an exponential search space and 101

challenges with training stability. 102

• We extend the existing solution, differentiable 103

mixed precision QAT, i.e., PQT, to be FP- 104

and GPU-friendly, making it scalable down to 105

MXFP4 with minimal overhead. 106

• We demonstrate that the proposed method en- 107

ables stable PQT that closely follows, or even 108

outperforms, the baseline BF16 pre-training. 109

2 Preliminaries and Problems 110

2.1 Oscillation issue in low-precision training 111

Reducing bit precision for training is one of the 112

most effective methods to reduce the training 113

cost of large language model, e.g., Peng et al. 114

(2023), Fishman et al. (2024), Wang et al. (2025), 115

DeepSeek-AI et al. (2024), Rouhani et al. (2023). 116

Specifically, the bottom row of Figure 2 visualizes 117

how OCP MX works in a simple example. Con- 118

sider T(M,MQ) · T(MQ,M). The matrix multiplica- 119

tion is realized via vector dot products (of size-2 120

MX blocks) which are realized by MX-based com- 121

pute units. 122

A naïve appalication of low-precision training 123

can incur an oscillation problem which hurts train- 124

ing stability. Consider an MX-compliant matrix 125
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multiplication where the quantization axis lies126

along the inner dimension:127

• forward T(M,N) = A(M,KQ)W(KQ,N)128

• gradient ∂L
∂W (K,N)

= AT
(K,MQ)

∂L
∂T (MQ,N)

129

• backprop ∂L
∂A (M,K)

= ∂L
∂T (M,NQ)

W T
(NQ,K)130

where A is the input activation, W the parameter,131

T the output activation and L the target loss. Sub-132

script corresponds to the shape of the given matrix,133

where Q marks the quantization axis.134

Note the difference between A and W in the135

forward and backward passes, i.e., A(M,KQ) and136

W(KQ,N) compared to AT
(K,MQ) and W T

(NQ,K), as137

demonstrated in Figure 2. This discrepancy can138

lead to oscillation issues, similar to those ob-139

served with STE-based QAT, resulting in subopti-140

mal model training and preventing the model from141

reaching the desired optimal point in the loss land-142

scape. (Défossez et al., 2022) (Park et al., 2022)143

2.2 Problem of existing PQT144

PQT effectively addresses a problem of mixed pre-145

cision QAT by directly training quantization pa-146

rameter, i.e., bit precision, without the forward-147

backward discrepancy introduced by the STE. This148

results in a fully differentiable training process with149

forward-backward consistency. However, current150

PQT methods are neither FP-friendly nor GPU-151

friendly.152

Current PQT methods are not FP-friendly, as153

they use uniform noise U(−0.5, 0.5) as the basis154

for PQN. This requires unnecessary precision and155

disrupts forward-backward consistency with nu-156

merical instability. Consequently, these methods157

are limited in the range of “safe” bitwidths for PQN158

and necessitate high-precision operators, such as159

BF16. Refer to Section 3.3 for detail.160

Current PQT methods are not GPU-friendly.161

They generate random values by performing FP162

operations on random integer streams produced163

by Pseudo-Random Number Generator (PRNG).164

This exacerbates the bottleneck on vector opera-165

tor (CUDA core) during the training process. This166

issue is particularly pronounced on NVIDIA’s dat-167

acenter GPUs like the A100. Datacenter GPUs168

have relatively lower vector operation throughput169

compared to their consumer counterparts. See em-170

pirical result in Figure 5.171

3 Method 172

3.1 Overview 173

We aim to address the problem of PQT with low- 174

precision floating point hardware in mind. The 175

proposed Gaussian weight sampling method ex- 176

tends PQT to be MX-compliant (Section 3.2), re- 177

silient to low precision floating point operations 178

(Section 3.3) and computationally lightweight (Sec- 179

tion 3.4). We discuss the effect of training with 180

the proposed PQN in Section 3.5. The proposed 181

method is implemented in Triton (Mattson et al., 182

2019) with decisions that favor predictably opti- 183

mal throughput and straightforward implementa- 184

tion (Section 3.6). Section 3.7 describes the im- 185

plementation details, including the method to en- 186

sure unbiased PQN while maintaining forward- 187

backward consistency, and the bitwidth parameter 188

implementation. 189

While Park et al. (2022) applied PQT to both 190

weights and activations, our study focuses on ap- 191

plying the method exclusively to weights. This 192

approach has the potential to decrease the volume 193

of collective communication, a major bottleneck 194

in LLM training, thereby accelerating the training 195

process. (Peng et al., 2023) Moreover, it offers 196

faster training with reduced overhead compared to 197

applying the method to both weights and activa- 198

tions. 199

3.2 Gaussian weight sampling 200

As discussed in Section 2.1, a vector-wise quanti- 201

zation, aligned with the inner dimension of matrix 202

multiplication, can cause discrepancies between 203

forward and backward passes, leading to the oscilla- 204

tion problem. The issue arises because the absolute 205

maximum value of the block, e.g., size-2 blocks 206

in Figure 2, changes when transposed. Square- 207

blockwise quantization can resolve this problem 208

and ensures transpose-commutativity. Therefore, in 209

Gaussian weight sampling, parameters are grouped 210

into square block units, as in DeepSeek-AI et al. 211

(2024). Note that square-blockwise quantization 212

is a special case of vectorwise quantization where 213

adjacent vectors share the same scale, making it 214

MX-compliant. 215

The formulation of Gaussian weight sampling is 216

as follows: 217

ŵ = w+R ·broadcastbl

(
max
bl

(|w|) · 21−bt

)
(1) 218

where w, ŵ, R ∈ Rm×n, bt ∈ R⌈m/bl⌉×⌈n/bl⌉, and 219
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bl = 32 is the square block size following OCP220

MX. w is an original parameter, ŵ is a sampled221

parameter, R represents random and bt is blockwise222

bitwidth. We refer to the right-hand side of the223

addition as PQN.224

Note that the formula above is fully differen-225

tiable. With an approximation of
∂maxbl (|w|)

∂w ≈ 0226

assuming gradient to single element out of 32 by 32227

block is negligible, we can calculate the gradient228

as follows:229
∂L

∂w
=

∂L

∂ŵ
(2)230

231
∂L

∂bt
= − ln 2 ·max

bl
(|w|) · 21−bt ·

∑
bl

(
∂L

∂ŵ
⊙R

)
(3)232

where ⊙ denotes the Hadamard product.233

3.3 Choice of FP-friendly R234

A uniform distribution U(−0.5, 0.5) is theoreti-235

cally the best fit as a basis for PQN. However,236

a rounded normal distribution ⌊N(0, 1)/2⌉ en-237

hances numerical stability because of its limited238

data points with limited precision, i.e., {-3, -2, -1, 0,239

1, 2, 3}, allowing a less stringent constraint on the240

precision of the subsequent operator, i.e., matrix241

multiplication, and the range of bt.242

In particular, the value of ŵ is cast into floating243

point, e.g., BF16 or FP8, to serve as the input for244

the subsequent matrix multiplication. Note that245

FP casting, similar to integer casting, introduces246

rounding errors. However, the backward pass in247

Equation 3 has no indication of whether the PQN248

was rounded to zero in the forward pass of Equa-249

tion 1 and the subsequent FP casting. To ensure250

stable training without errors between the forward251

and the backward pass, the PQN should not under-252

flow, i.e.,253

fpe,m(ŵij) ̸= fpe,m(wij)
∀i, j|Rij ̸=0 (4)254

where fpe,m(x) denotes casting x into a floating255

point representation with an e-bit exponent and an256

m-bit mantissa.257

Without loss of generality, assume FP8_e5m2258

and scaled maximum value in range [1, 2) where259

possible values are {1.0, 1.25, 1.5, 1.75}. Abso-260

lute value of the addition delta should be ≥ 0.25 to261

ensure the value is updated in an unbiased man-262

ner. Note that the stepsize is 0.25 = 2−2 =263

2⌊log2 |w|⌋−m. We need to ensure that the magnitude264

of every non-zero element of the PQN is greater265

than or equal to it. Specifically, for each block and 266
∀i, j|Rij ̸=0, 267

Rij

(
max
bl

(|w|) · 21−bt

)
≥ 2⌊log2 |wij |⌋−m (5) 268

With 2−r = minRij ̸=0 |Rij |, this simplifies to: 269

bt ≤ m+ 2− r (6) 270

Equation 6 sets the upper bound of the bitwidth 271

bt, or the lower bound of the magnitude of the PQN, 272

to prevent underflow in a floating-point representa- 273

tion with an m-bit mantissa. For example, with a 274

BF16 operator, R = U(−0.5, 0.5) represented in 275

4-bit requires bt ≤ 5, while R ∈ {−2,−1, 0, 1, 2} 276

requires a less stringent constraint of bt ≤ 9. 277

3.4 Efficient generation of R 278

A Pseudo-Random Number Generator (PRNG), 279

e.g., Lathrop et al. (2011) and Overton (2020), 280

produces a random bit stream, effectively gener- 281

ating random integers. Random numbers in the 282

real number domain are derived from these random 283

integers. To obtain a value from U(0, 1), random 284

integers are divided by their maximum possible 285

value. To generate a value from N(0, 1), two val- 286

ues from U(0, 1) are used and transformed via the 287

Box-Muller method. (Box and Muller, 1958) 288

Note that the rounded normal ⌊N(0, 1)/2⌉ does 289

not require aforementioned floating point opera- 290

tions. Assuming that each bit of the random bit 291

stream from the PRNG is independently random, 292

we create a random distribution that approximates 293

the rounded normal distribution using two base 294

cases: 295{
P (A&B) = P (A) · P (B)

P (A|B) = P (A) + P (B)− P (A&B)
(7) 296

where A and B represent bitwise random variables, 297

& and | are bitwise operators, and P (X) is short- 298

hand for Pr(X = 1). 299

Specifically, the distribution that we generate is: 300
Pr(−2) = Pr(+2) = 3/4 · 2−9 ≈ 1/682.7

Pr(−1) = Pr(+1) = (3/4)2 · 2−2 ≈ 1/7.1

Pr(0) = 1− Pr(±1)− Pr(±2) ≈ 0.716
(8) 301

The generated R values are represented in a sign- 302

mantissa format with 4 bits per element, and 8 ele- 303

ments are packed into a 32-bit register. Compared 304

to 2’s complement, the sign-mantissa format is sim- 305

pler to generate and reconstruct into floating point. 306
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3.5 Effect of training with the proposed PQN307

The proposed method effectively performs stochas-308

tic annealing on the precision of near-zero values309

of high-precision parameters.310

Assume a block w, which is represented in high-311

precision FP, contains small non-negative value 2s,312

and resilient to PQN with bt = 6. Without loss313

of generality, assume the absolute maximum value314

of w is scaled to be in the interval [1, 2). With315

Rij = 1, adding the PQN shifts 2s to the range316

[2s +2−5, 2s +2−4). Assuming s is small enough,317

the subsequent FP rounding limits the precision of318

the value to that of low-precision FP in the range319

[2−5, 2−4), with a stepsize of 2−m−5. 2s ≥ 2−m−5320

prevents underflow while 2s < 2−m−5 risks under-321

flow. In other words, the proposed method incor-322

porates stochastic precision annealing, nullifying323

near-zero values of high-precision FP parameters324

with a probability of up to ≈ 0.284.325

3.6 Design decisions326

Separate kernels. While baseline BF16 training327

require only one kernel call for the linear layer,328

we need three kernel calls: (1) generating R, (2)329

unpacking R and adding scaled maximum, and (3)330

the linear operation. Fusing consecutive operations331

typically helps achieve maximum throughput by332

reducing GPU memory communication. In our333

case, however, fusing the operations does more334

harm than good.335

Firstly, R generation is not fused. PRNG is an336

algorithm that loops based on its internal state to337

generate random values iteratively. The longer a338

PRNG’s internal state is reused, the more it reduces339

the degree of parallelism, limiting the utilization340

of parallel hardware. In other words, there exists341

an optimal ratio of parallelization to achieve opti-342

mal throughput. If the number of random values343

R generated and used per operator (CUDA core)344

does not match, additional communication is re-345

quired. In practice, fusing the generation of R with346

subsequent operations led to significant throughput347

variations depending on the shape of w.348

Secondly, we do not fuse the scaled addition349

with the subsequent matrix multiplication. This350

decision allows us to use the highly optimized Py-351

Torch implementation of the linear operation and352

straightforward implementation.353

GPU memory. Calculating the gradient of in-354

put activation in matrix multiplication requires ŵ,355

while calculating the gradient of bt requires regen-356

erating R. R is regenerated using the same seed 357

value used in the forward pass, requiring 0.5 byte 358

per parameter temporarily. 359

Although reconstructing ŵ in the backward com- 360

putation would reduce GPU memory overhead, we 361

store ŵ explicitly in BF16. It helps keep the imple- 362

mentation simple at the cost of a marginal increase 363

in GPU memory. Note that overhead of 2 bytes 364

per parameter can be offset by adopting parameter- 365

efficient optimizers, such as Adam-mini. 366

In conjunction, the design decisions described 367

above enable a straightforward implementation 368

where f(w) = ŵ is modularized into a single Py- 369

Torch layer. 370

3.7 Implementation details 371

Managing seed. A seed value is required to initial- 372

ize the PRNG. For proper training, the value of R 373

in the forward pass must be identical to the value 374

of R in the backward pass. Additionally, to avoid 375

bias across the entire model, the R values for each 376

layer should be distinct and independent. 377

To achieve these properties, a multi-layer PRNG 378

is employed to manage seeds and their correspond- 379

ing random values effectively. First, a PRNG or 380

seed generator is created using the user-specified 381

seed value. Second, this seed generator is used to 382

produce seed values to initialize the PRNG of each 383

layer. Finally, the output of each layer’s PRNG 384

serves as the seed value for the GPU’s PRNG, 385

which then generates R. 386

The state of the final PRNG is updated every 387

training iteration but remains frozen during gradi- 388

ent accumulation to mimic the virtual batch effect. 389

Bitwidth. We implemented an internal bitwidth 390

parameter bi for each 32 by 32 square unit of pa- 391

rameters in the linear layers. bi is linearly scaled to 392

represent bitwidth bt as follows: 393

bt = btarget + bi · (binit − btarget) (9) 394

where binit and btarget are hyperparameters repre- 395

senting the initial and target bitwidths, respectively. 396

bi should be initialized with 1. bt is guided towards 397

btarget through the weight decay applied to bi. 398

A loss term related to bt can also be incorporated 399

into the training loss: 400

L′ = L+
λ

n

n∑
i=1

∣∣bit − btarget
∣∣ (10) 401

where n is the number of bt, and bit denotes bitwidth 402

of i-th block. In this scenario, an additional hyper- 403
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(a) Stability case study with AdamW optimizer.
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(b) With Adam-mini optimizer.

Figure 3: Training loss curve. OPT2-124M on OpenWebText dataset.

0 50 100 150 200 250 300

3

4

5

6

7

8

9

10

11

Ll
am

a2
-1

34
M

av
er

ag
e 

lo
ss

200 250 300
2.875

2.900

2.925

60 80

3.05

3.10

3.15
AdamW
+GaussWS[od]
+GaussWS[all]
Adam-mini
+GaussWS[od]
+GaussWS[all]

0 50 100 150 200 250 300
3

4

5

6

7

8

9

10

11

m
ax

im
um

 lo
ss

AdamW
+GaussWS[od]
+GaussWS[all]
Adam-mini
+GaussWS[od]
+GaussWS[all]

220 230 240 250 260 270
3.74

3.76

3.78

3.80

3.82

3.84

3.86

3.88

3.90
AdamW
+GaussWS[od]
+GaussWS[all]
Adam-mini
+GaussWS[od]
+GaussWS[all]

0 20 40 60 80 100
tokens (B)

4

6

8

10

Ll
am

a2
-1

B
av

er
ag

e 
lo

ss

60 80 100
2.450

2.475

2.500

2.525

2.550

2.575

2.600 AdamW
+GaussWS[od]
+GaussWS[all]
Adam-mini
+GaussWS[od]
+GaussWS[all]

0 20 40 60 80 100
tokens (B)

3

4

5

6

7

8

9

10

11

m
ax

im
um

 lo
ss

Adam-mini
+GaussWS[od]
+GaussWS[all]

25.0 27.5 30.0 32.5 35.0 37.5 40.0 42.5 45.0
tokens (B)

3.96

3.98

4.00

4.02

4.04

4.06

4.08

4.10

4.12
Adam-mini
+GaussWS[od]
+GaussWS[all]

Figure 4: Training loss curve. Llama2-{134M, 1B} on C4 dataset. First column represents average loss and the
other two represent maximum loss. Each datapoint corresponds to 19.66M tokens for Llama2-134M and 6.55M
tokens for Llama2-1B. Weighted moving average is used with α = 1/16 on left column and α = 1/128 on right
column for better visualization. Third column corresponds to range that is annotated with orange arrow on the
second column.

parameter, λ, is required to appropriately scale the404

loss associated with the bitwidth parameter.405

4 Experimental results406

Transformer-based language models were trained407

from scratch: the OPT2-124M model on the Open-408

WebText dataset (Gokaslan and Cohen, 2019) (Sec-409

tion 4.1), and the Llama2-134M and Llama2-1B410

models on the C4 dataset (Raffel et al., 2023) (Sec-411

tion 4.2). The overhead of the proposed method412

is presented in Section 4.3. Resulting bitwidth is413

presented in Section 4.4.414

We use “GaussWS[part]” to represent which415

part of the transformer block adopts the proposed416

method. We further shorten the notation as “[part]”417

in text. [od] is used as shorthand for [out,down].418

Note that the OPT2 transformer block comprises419

four linear layers: qkv, out, up, and down. The420

qkv and out layers, along with the self-attention 421

operation, constitute the attention module, while 422

the up and down layers form the feed-forward mod- 423

ule. “DiffQ[all]” represents that all linear layers 424

of the transformer block adopt an extension of 425

DiffQ, which is equivalent to GaussWS with BF16 426

U(−0.5, 0.5) in place of ⌊N(0, 1)/2⌉. 427

We used BF16 GEMM with FP32 accumulation. 428

While the proposed method supports low-precision 429

operators, the use of high-precision operator allows 430

for differential search over a larger range of bt, as 431

discussed in Section 3.3. 432

4.1 Pre-train OPT2-124M on OpenWebText 433

The OPT2-124M model is trained from scratch on 434

the OpenWebText dataset up to 300B tokens. We 435

used binit = 6, btarget = 0 for weight decay, and 436

btarget = 4 for bitwidth loss with λ = 10−4. 437
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GaussWS stabilizes training with minimal438

loss increase. The baseline BF16 with the AdamW439

optimizer is highly sensitive to the choice of learn-440

ing rate. Results in Figure 1b shows that the train-441

ing with a learning rate of 6 × 10−4 proceeds442

smoothly whereas a learning rate of 6 × 10−5 di-443

verges and fails to recover. Both PQT methods mit-444

igate such training instability while the proposed445

method incurs minimal increase in loss, especially446

with [od]. The difference in performance between447

GaussWS and DiffQ is attributed to the choice of R.448

GaussWS consistently outperforms DiffQ, which449

supports the argument presented in Section 3.3.450

Stability case study. To identify the source of451

training instability, we restrict the application of452

the proposed method to each of the linear layers453

within the transformer block.454

As shown in Figure 3a, at ≈30B tokens of train-455

ing, [qkv], [up], and [down] begin to diverge and456

fail to recover. In contrast, [out] does not diverge457

and closely approximates the optimal training loss458

curve of AdamW with a learning rate of 6× 10−4459

until ≈200B tokens. [od], which applies the pro-460

posed method to the last layers of the residual ad-461

dition branches in the transformer block, reduces462

divergence and yields the best results with a learn-463

ing rate of 6× 10−5.464

These training results show that the attention465

module is the source of instability at ≈30B tokens466

of training, while the feed-forward module is the467

source of instability at ≈200B tokens of training.468

The latter is consistent with Fishman et al. (2024).469

Adam-mini. As shown in Figure 3b, baseline470

Adam-mini also stabilizes training at ≈30B tokens471

of training. [out] with Adam-mini do not suffer472

from instability at ≈200B tokens and approximates473

[od] with AdamW. [od] with Adam-mini slightly474

degrades in performance.475

4.2 Pre-train Llama2 on C4476

The Llama2-134M and Llama2-1B models are477

trained from scratch on the C4 dataset up to 300B478

and 100B tokens, respectively. We used binit = 6,479

btarget = 4.480

Llama2-134M training. As shown on the first481

row of Figure 4, Gaussian weight sampling im-482

proves Llama2-134M pre-training, for both aver-483

age and worst case. Additionally, with GaussWS,484

it requires fewer tokens for Adam-mini to surpass485

AdamW.486

Llama2-1B training. As shown on the second487

row of Figure 4, Gaussian weight sampling slightly488

degrades Llama2-1B pre-training, both for average 489

and worst case. [od] minimizes loss degradation. 490

Note that in all cases shown in Figure 4, train- 491

ing with the proposed method closely follows the 492

baseline. 493

tps (k) 134M 360M 1B 3B
AdamW 143.3 57.2 26.0 7.58
+GaussWS[od] 142.9 57.0 25.8 7.50
+GaussWS[all] 141.3 56.3 25.5 4.23⋆

+DiffQ[all] 116.6 52.2 23.1 -
Adam-mini 93.9 40.6 21.1 6.18
+GaussWS[od] 91.8 39.3 20.6 5.96
+GaussWS[all] 85.7 36.3 19.3 5.44
+DiffQ[all] 82.3 34.3 17.8 1.91⋆

GMEM (GiB) 134M 360M 1B 3B
AdamW 34.00 27.83 30.69 30.66
+GaussWS[od] 34.04 28.00 31.22 32.47
+GaussWS[all] 34.16 28.37 32.42 36.59
+DiffQ[all] 34.18 28.44 32.64 37.35
Adam-mini 33.87 27.50 29.70 27.53
+GaussWS[od] 33.92 27.66 30.23 29.34
+GaussWS[all] 34.03 28.03 31.43 33.45
+DiffQ[all] 34.05 28.10 31.65 34.21

Table 1: Tokens per second per GPU (top) and GPU
memory usage (bottom) during Llama2 pre-training on
the A100 GPU. Tokens per second in thousands and
GPU memory in GiB. We used local batch size of {24,
12, 8, 3} for each case with fixed sequence length of
2048. ⋆ corresponds to low throughput due to frequent
reallocation of GPU memory. “-” represents failed case
with out-of-memory.

4.3 Overhead 494

Table 1 reports the throughput and GPU memory 495

usage during Llama2 training. 496

The geometric mean of the overhead on training 497

throughput for Llama2-{134M, 360M, 1B} with 498

AdamW is 0.47%, 1.63% and 12.95% for [od], [all] 499

and DiffQ[all], respectively, and 2.60%, 9.29% and 500

14.52% with Adam-mini. The proposed generation 501

method enables efficient generation of the basis for 502

PQN and reduces computational overhead. 503

GPU memory overhead is ≈2 bytes per param- 504

eter to store ŵ in BF16. The proposed method 505

requires less temporary memory to store R, using 506

0.5 bytes per element for ⌊N(0, 1)/2⌉ compared 507

to 2 bytes for U(−0.5, 0.5). 508

Figure 5 presents the results of the unit bench- 509

mark for the forward pass of the proposed method. 510

Both the bitwise manipulation method and the Box- 511

7



0 1 2 3 4 8 12 16
M=N (× 1024)

0

25

50

75

100

125

150
Ge

le
m

/s
A100

ours
bm
torch

0 1 2 3 4 8 12 16
M=N (× 1024)

0

20

40

60

80

Ge
le

m
/s

3090

ours
bm
torch

0 1 2 3 4 8 12 16
M=N (× 1024)

0

20

40

60

80

100

Ge
le

m
/s

4090

ours
bm
torch

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Re
la

tiv
e

ours/bm

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Re
la

tiv
e

ours/bm

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Re
la

tiv
e

ours/bm

Figure 5: Forward pass benchmark results for the PyTorch layer implementing Equation 1 on a matrix W(M,N).
Absolute throughput in 109 elements per second. “torch” indicates PyTorch baseline while the other two are
implemented in Triton. “bm” implements Box-Muller transform and “ours” implements the proposed generation
method described in Section 3.4.
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Figure 6: Resulting bitwidth bt. Upper and lower solid lines represent layerwise maximum and minimum while
dotted lines represent transformer-blockwise maximum and minimum. Dots and red lines indicate layerwise mean
and standard deviation.

Muller method demonstrate at least a 3× improve-512

ment compared to the baseline, as they are imple-513

mented in Triton and reduce global memory com-514

munication. The proposed noise generation method515

enhances throughput compared to the Box-Muller516

method across all test cases. It is particularly effec-517

tive with larger matrix and the A100 GPU. Note518

that weight dimension of Llama 3.2 1B ranges from519

(2k, 0.5k) to (2k, 8k) while Llama 3.1 405B ranges520

from (16k, 1k) to (16k, 16k).521

4.4 Bitwidth522

Resulting bitwidth bt is visualized in Figure 6 and523

Appendix C. Layers towards the end of the model524

tend to be more sensitive and require more preci-525

sion. Layers in the feed-forward module tend to526

be more sensitive than those in the attention mod-527

ule. For the Llama-style transformer block, the528

out projection layer, or w2, requires the highest529

precision on average among the three layers of the530

feed-forward module. The Llama2-1B model typi-531

cally contains one layer with outlier per transformer532

block, unlike the other two models.533

bt Exponent (#range) Mantissa
3 2 (3+1) 1
6 3 (6+1) 4

12 4 (12+1) 10

Table 2: The number of exponent and mantissa bits
that is analytically safe for inference when the model
is trained using the proposed method. #range refers to
the number of exponent ranges, with +1 accounting for
the subnormal range. The number of mantissa bits is
derived from Equation 6. Refer to Section 5 for detail.

5 Discussion 534

Stable pre-training results with the proposed 535

method imply that |wij | < 2−m−bt+1 is not nec- 536

essary, given appropriate scaling as discussed in 537

Section 3.5. With bt = 6, the minimum number 538

of exponent ranges that satisfies the condition is 539

7, with 6 normal ranges, 1 subnormal range, and 540

an optional Inf/NaN range. Note that more expo- 541

nent ranges are required during training to support 542

updates of w that are smaller than non-zero PQN 543

values. We obtain Table 2 by repeating this logic. 544
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Limitations545

Proposed method is applied only on weight, leav-546

ing activation and gradient same as baseline. In547

particular, it is impossible to conduct differentiable548

search on gradient. Extending the proposed method549

to activation is left as future work.550

The results are limited to pre-training the OPT2-551

124M model and the Llama2-134M model up to552

300B tokens, and the Llama2-1B model up to 100B553

tokens. Further validation with larger models and554

longer training is required.555

To improve the noise distribution R, we need to556

align the results of PQT with actual or fake quanti-557

zation. This is left for future work.558

References559

G. E. P. Box and Mervin E. Muller. 1958. A Note on the560
Generation of Random Normal Deviates. The Annals561
of Mathematical Statistics, 29(2):610–611.562

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingx-563
uan Wang, et al. 2024. DeepSeek-V3 Technical Re-564
port. arXiv.565

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and566
Luke Zettlemoyer. 2023. QLoRA: Efficient Finetun-567
ing of Quantized LLMs. arXiv.568

Alexandre Défossez, Yossi Adi, and Gabriel Synnaeve.569
2022. Differentiable model compression via pseudo570
quantization noise. Preprint, arXiv:2104.09987.571

Maxim Fishman, Brian Chmiel, Ron Banner, and Daniel572
Soudry. 2024. Scaling FP8 training to trillion-token573
LLMs. arXiv.574

Aaron Gokaslan and Vanya Cohen. 2019. Open-575
webtext corpus. http://Skylion007.github.io/576
OpenWebTextCorpus.577

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,578
Abhinav Pandey, Abhishek Kadian, and other.579
2024. The llama 3 herd of models. Preprint,580
arXiv:2407.21783.581

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan582
Allen-Zhu, Yuanzhi Li, et al. 2021. LoRA: Low-583
Rank Adaptation of Large Language Models. arXiv.584

Andrej Karpathy. 2022. NanoGPT. https://github.585
com/karpathy/nanoGPT.586

Scott Lathrop, Jim Costa, William Kramer, John K587
Salmon, Mark A Moraes, et al. 2011. Parallel ran-588
dom numbers: As easy as 1, 2, 3. 2011 International589
Conference for High Performance Computing, Net-590
working, Storage and Analysis (SC), pages 1–12.591

Wanchao Liang, Tianyu Liu, Less Wright, Will Con- 592
stable, Andrew Gu, Chien-Chin Huang, Iris Zhang, 593
Wei Feng, Howard Huang, Junjie Wang, Sanket 594
Purandare, Gokul Nadathur, and Stratos Idreos. 595
2024. Torchtitan: One-stop pytorch native solu- 596
tion for production ready llm pre-training. Preprint, 597
arXiv:2410.06511. 598

Sebastian Loeschcke, Mads Toftrup, Michael J Kasto- 599
ryano, Serge Belongie, and Vésteinn Snæbjarnarson. 600
2024. LoQT: Low Rank Adapters for Quantized 601
Training. arXiv. 602

Tim Mattson, Abdullah Muzahid, Armando Solar- 603
Lezama, Philippe Tillet, H T Kung, and David Cox. 604
2019. Triton: an intermediate language and compiler 605
for tiled neural network computations. Proceedings 606
of the 3rd ACM SIGPLAN International Workshop 607
on Machine Learning and Programming Languages, 608
pages 10–19. 609

Paulius Micikevicius, Dusan Stosic, Neil Burgess, Mar- 610
ius Cornea, Pradeep Dubey, et al. 2022. FP8 Formats 611
for Deep Learning. arXiv. 612

Mark A Overton. 2020. Romu: Fast Nonlinear Pseudo- 613
Random Number Generators Providing High Quality. 614
arXiv. 615

Sein Park, Junhyuk So, Juncheol Shin, and Eunhyeok 616
Park. 2022. NIPQ: Noise Injection Pseudo Quantiza- 617
tion for Automated DNN Optimization. arXiv. 618

Houwen Peng, Kan Wu, Yixuan Wei, Guoshuai Zhao, 619
Yuxiang Yang, et al. 2023. FP8-LM: Training FP8 620
Large Language Models. arXiv. 621

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine 622
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, 623
Wei Li, and Peter J. Liu. 2023. Exploring the limits 624
of transfer learning with a unified text-to-text trans- 625
former. Preprint, arXiv:1910.10683. 626

Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley, 627
Shaden Smith, and Yuxiong He. 2021. ZeRO- 628
Infinity: Breaking the GPU Memory Wall for Ex- 629
treme Scale Deep Learning. arXiv. 630

Jie Ren, Samyam Rajbhandari, Reza Yazdani Am- 631
inabadi, Olatunji Ruwase, Shuangyan Yang, et al. 632
2021. ZeRO-Offload: Democratizing Billion-Scale 633
Model Training. arXiv. 634

Bita Darvish Rouhani, Ritchie Zhao, Ankit More, 635
Mathew Hall, Alireza Khodamoradi, et al. 2023. Mi- 636
croscaling Data Formats for Deep Learning. arXiv. 637

Ruizhe Wang, Yeyun Gong, Xiao Liu, Guoshuai Zhao, 638
Ziyue Yang, et al. 2025. Optimizing Large Language 639
Model Training Using FP4 Quantization. arXiv. 640

Yushun Zhang, Congliang Chen, Ziniu Li, Tian Ding, 641
Chenwei Wu, et al. 2024. Adam-mini: Use Fewer 642
Learning Rates To Gain More. arXiv. 643

9

https://doi.org/10.1214/aoms/1177706645
https://doi.org/10.1214/aoms/1177706645
https://doi.org/10.1214/aoms/1177706645
https://doi.org/10.48550/arxiv.2412.19437
https://doi.org/10.48550/arxiv.2412.19437
https://doi.org/10.48550/arxiv.2412.19437
https://arxiv.org/abs/2305.14314
https://arxiv.org/abs/2305.14314
https://arxiv.org/abs/2305.14314
https://arxiv.org/abs/2104.09987
https://arxiv.org/abs/2104.09987
https://arxiv.org/abs/2104.09987
https://arxiv.org/abs/2409.12517
https://arxiv.org/abs/2409.12517
https://arxiv.org/abs/2409.12517
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
https://arxiv.org/abs/2407.21783
https://doi.org/10.48550/arxiv.2106.09685
https://doi.org/10.48550/arxiv.2106.09685
https://doi.org/10.48550/arxiv.2106.09685
https://github.com/karpathy/nanoGPT
https://github.com/karpathy/nanoGPT
https://github.com/karpathy/nanoGPT
https://doi.org/10.1145/2063384.2063405
https://doi.org/10.1145/2063384.2063405
https://doi.org/10.1145/2063384.2063405
https://arxiv.org/abs/2410.06511
https://arxiv.org/abs/2410.06511
https://arxiv.org/abs/2410.06511
https://doi.org/10.48550/arxiv.2405.16528
https://doi.org/10.48550/arxiv.2405.16528
https://doi.org/10.48550/arxiv.2405.16528
https://doi.org/10.1145/3315508.3329973
https://doi.org/10.1145/3315508.3329973
https://doi.org/10.1145/3315508.3329973
https://doi.org/10.48550/arxiv.2209.05433
https://doi.org/10.48550/arxiv.2209.05433
https://doi.org/10.48550/arxiv.2209.05433
https://doi.org/10.48550/arxiv.2002.11331
https://doi.org/10.48550/arxiv.2002.11331
https://doi.org/10.48550/arxiv.2002.11331
https://doi.org/10.48550/arxiv.2206.00820
https://doi.org/10.48550/arxiv.2206.00820
https://doi.org/10.48550/arxiv.2206.00820
https://arxiv.org/abs/2310.18313
https://arxiv.org/abs/2310.18313
https://arxiv.org/abs/2310.18313
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://doi.org/10.48550/arxiv.2104.07857
https://doi.org/10.48550/arxiv.2104.07857
https://doi.org/10.48550/arxiv.2104.07857
https://doi.org/10.48550/arxiv.2104.07857
https://doi.org/10.48550/arxiv.2104.07857
https://doi.org/10.48550/arxiv.2101.06840
https://doi.org/10.48550/arxiv.2101.06840
https://doi.org/10.48550/arxiv.2101.06840
https://arxiv.org/abs/2310.10537
https://arxiv.org/abs/2310.10537
https://arxiv.org/abs/2310.10537
https://doi.org/10.48550/arxiv.2501.17116
https://doi.org/10.48550/arxiv.2501.17116
https://doi.org/10.48550/arxiv.2501.17116
https://doi.org/10.48550/arxiv.2406.16793
https://doi.org/10.48550/arxiv.2406.16793
https://doi.org/10.48550/arxiv.2406.16793


Maxim Zhelnin, Viktor Moskvoretskii, Egor Shvetsov,644
Egor Venediktov, Mariya Krylova, et al. 2024. Gift-645
sw: Gaussian noise injected fine-tuning of salient646
weights for llms. Preprint, arXiv:2408.15300.647

Hanqing Zhu, Zhenyu Zhang, Wenyan Cong, Xi Liu,648
Sem Park, et al. 2024. APOLLO: SGD-like Memory,649
AdamW-level Performance. arXiv.650

A Related works651

Zhelnin et al. (2024) proposed Quantization Noise652

Injection (QNI) to finetune LLM in a parameter-653

efficient way.654

Research leveraging FP8 operators, e.g., Fish-655

man et al. (2024) DeepSeek-AI et al. (2024), and656

FP4 operators, e.g., Wang et al. (2025), for LLM657

training has been conducted. They employed scal-658

ing in various ways to compensate for the limited659

dynamic range of internal datatype. Additionally,660

Wang et al. (2025) introduces the Differentiable661

Gradient Estimator (DGE) to address the limita-662

tions of the STE in low-bit settings of MXFP4.663

B Pre-training setup and resource664

For pre-training OPT2, Karpathy (2022) with665

commit 9755682b was used as the starting666

point and nvcr.io/nvidia/pytorch:24.10-py3667

was used as the training environment. For pre-668

training Llama2, Liang et al. (2024) with commit669

90567fc9 was used as the starting point and670

ghcr.io/pytorch/pytorch-nightly with a tag671

2.7.0.dev20250107-cuda12.4-cudnn9-devel672

was used as the training environment. We673

used A100-SXM4-40G, RTX 3090 and RTX674

4090 GPUs for pre-training. Pre-training the675

OPT2-124M model with the AdamW optimizer676

and GaussWS[od] for 300B tokens took 1541677

GPU-hour using four RTX 3090s. Pre-training the678

Llama2-134M model with the AdamW optimizer679

and GaussWS[all] for 300B tokens took 896680

GPU-hours using eight RTX 4090s. Pre-training681

the Llama2-1B model with the AdamW optimizer682

and GaussWS[all] for 100B tokens took 2926683

GPU-hours using eight RTX 4090s. Pre-training684

the baseline Llama2-1B model with the AdamW685

optimizer for 100B tokens took 1055 GPU-hours686

using four A100s.687

C Detailed bitwidth688

The resulting bitwidth bt is presented in Figures C.1689

through C.36. Each row corresponds to the 12 trans-690

former blocks of the OPT2-124M model which691

was trained with GaussWS[all] and Adam-mini 692

optimizer up to 300B tokens. Each column corre- 693

sponds to the number of tokens processed, at 50B, 694

100B and 200B. 695
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Figure C.12
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