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Abstract

We introduce GraphGPT, a novel self-supervised
generative pre-trained model for graph learning
based on the Graph Eulerian Transformer (GET).
First, we propose GET, which combines a stan-
dard transformer encoder or decoder architecture
with an innovative graph-to-sequence transforma-
tion method. This method converts graphs or sam-
pled subgraphs into sequences of tokens repre-
senting nodes, edges, and attributes in a reversible
manner using Eulerian paths. We pre-train GET
using either of the two self-supervised tasks: next-
token prediction (NTP) and scheduled masked-
token prediction (SMTP). The pre-trained model
is then fine-tuned for downstream tasks such as
graph-, edge-, and node-level prediction. Despite
its simplicity, GraphGPT achieves performance
comparable to or surpassing state-of-the-art meth-
ods on multiple large-scale Open Graph Bench-
mark (OGB) datasets. It demonstrates excep-
tional results on the molecular property prediction
dataset PCQM4Mv2 and the protein-protein inter-
action dataset ogbl-ppa. Notably, generative pre-
training enables scaling GraphGPT to 2 billion
parameters while maintaining performance gains
— a breakthrough that overcomes the scalability
limitations of traditional Graph Neural Networks
(GNNs) and prior graph transformers (GTs). To
advance research in graph foundation models and
facilitate scientific discovery in chemistry, mate-
rials science, and related fields, we have released
the source code1 and model checkpoints2.

1Alibaba Inc., Hangzhou, China. Correspondence to:
Qifang Zhao <james.zqf@alibaba-inc.com>, Xiaoxiao Xu
<xiaoxiao.xuxx@alibaba-inc.com>.
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1. Introduction
The deep learning revolution sparked by AlexNet
(Krizhevsky et al., 2012) has driven remarkable progress
in computer vision (CV) and natural language processing
(NLP). The graph learning community similarly shifted
from traditional machine learning to deep learning with the
rise of graph neural networks (GNNs) (Kipf & Welling,
2017; Hamilton et al., 2017; Zhang & Chen, 2018; Wu et al.,
2020).

Today, transformers dominate CV (Dosovitskiy et al., 2021;
Liu et al., 2021) and NLP (Devlin et al., 2019; Radford
et al., 2018), scaling to billions of parameters (Liu et al.,
2021; Brown et al., 2020) and achieving superhuman perfor-
mance on benchmarks like ImageNet (Deng et al., 2009) and
GLUE (Wang et al., 2019). These advances underpin trans-
formative applications such as ChatGPT (Open-AI, 2023)
and Midjourney (Midjourney, 2023).

Despite progress, GNNs remain constrained by over-
smoothing (Rusch et al., 2023) and over-squashing (Alon
& Yahav, 2021), limiting their scalability and capacity to
leverage large-scale graph data. Recent efforts to adapt
transformers to graphs (Ying et al., 2021; Kim et al., 2022;
Luo et al., 2023; Müller et al., 2024) show promise but
face critical challenges: 1). Structural Bias: Most graph
transformers (GTs) rely on handcrafted features or GNN
modules to encode graph topology, compromising general-
ization. 2). Task Limitations: GTs excel at graph-level tasks
but struggle with edge- and node-level objectives (Müller
et al., 2024). 3). Pre-Training Gap: Unlike NLP’s suc-
cess with self-supervised pre-training (Radford et al., 2018;
Devlin et al., 2019), GTs lack effective frameworks for gen-
erative pre-training (Min et al., 2022; Müller et al., 2024).

In this work, we propose GraphGPT, a novel model for
graph learning comprising three key innovations. 1). GET
Backbone: A transformer-based architecture that operates
on graph-equivalent token sequences via Eulerian paths, 2).
Self-Supervised Pre-Training: Utilizing NTP and SMTP
tasks (Radford et al., 2018; Chang et al., 2022), and 3).
Task-Agnostic Fine-Tuning: Adapting the pre-trained model
to supervised graph-, edge-, and node-level tasks.

Our contributions are summarized as follows:
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• Graph Eulerian Transformer (GET): We introduce
GET, a novel architecture that leverages Eulerian or
semi-Eulerian paths3 to losslessly and reversibly con-
vert graphs into token sequences. By integrating sub-
graph sampling and node identity encoding, GET effi-
ciently processes graphs of arbitrary sizes. A standard
transformer encoder or decoder is then applied to these
sequences, eliminating the need for specialized archi-
tectural modifications.

• Generative Pre-Training Framework: GraphGPT
is pre-trained using NTP or SMTP tasks, offering
three advantages: a) Captures structural and semantic
graph patterns without handcrafted features or domain-
specific architectures, b) Scales to over 2 billion param-
eters with sustained performance gains, and c) Enables
effective graph generation through its sequence-based
formulation.

• Unified Task Formatting: We design a novel method
to reformat graph-, edge-, and node-level tasks into se-
quences compatible with transformers. This approach
allows downstream tasks to fully exploit pre-trained
representations while unifying pretext and target task
frameworks.

• State-of-the-Art (SOTA) Performance: Extensive ex-
periments on OGB datasets demonstrate GraphGPT’s
superiority: it achieves SOTA results in graph- and
edge-level tasks (e.g., molecular property prediction
on PCQM4Mv2 and protein-protein interaction on
ogbl-ppa), while delivering competitive performance
in node-level tasks.

2. Approach
2.1. Overview

GraphGPT employs a three-stage framework: 1). Graph-
to-Sequence Transformation of GET: The input graph is
converted into a sequence of tokens via (semi-)Eulerian
paths, ensuring a lossless, reversible mapping between the
graph and its sequential representation. This transforma-
tion preserves node, edge, and attribute information while
enabling compatibility with transformer architectures. 2).
Self-Supervised Pre-Training: A standard transformer back-
bone (e.g., Llama; Touvron et al. (2023)) processes these se-
quences using the tasks NTP or SMTP (Radford et al., 2018;
Chang et al., 2022). These tasks enable the model to learn
structural and semantic graph patterns without task-specific
supervision. 3). Task-Specific Fine-Tuning: The pre-trained
model is adapted to downstream tasks—including graph

3For a quick recap, a connected graph with every node of even
degree is Eulerian, and with exactly two nodes of odd degree
is semi-Eulerian. In this paper, ‘(semi-)Eulerian’ refers to both
Eulerian and semi-Eulerian unless specified otherwise.

classification/regression, link prediction, and node classifi-
cation—by reformatting task objectives into sequence-based
inputs. This unified approach maximizes the transfer of pre-
trained knowledge.

2.2. Graph to Sequence of Tokens

To convert graphs into token sequences, we employ distinct
strategies based on graph size:

• Small graphs (e.g., molecular graphs) are directly seri-
alized using the method in §2.2.1.

• Large graphs (with up to billions of nodes/edges) are
first decomposed into subgraphs via the sampling pro-
cess described in §2.2.2. Node identity preservation
(§2.2.3) ensures structural consistency during this de-
composition. These subgraphs are then serialized using
§2.2.1’s guidelines.

2.2.1. SERIALIZING GRAPHS WITH (SEMI-)EULERIAN
PATHS

We propose a lossless, reversible graph serialization method
based on traversing all edges and nodes via (semi-)Eulerian
paths. This approach guarantees:

• Complete representation of nodes and edges in the
sequence.

• Bijective mapping between the graph and its serialized
form4.

Algorithmic Foundation: The problem aligns with the Chi-
nese Postman Problem (Mei-Ko, 1962; Edmonds & Johnson,
1973), which seeks the shortest path traversing all edges.
For graphs lacking (semi-)Eulerian properties, we apply
Eulerization (Edmonds & Johnson, 1973; Daubechies &
Hughes, 2009), duplicating minimal edges to create an Eu-
lerian multigraph.

Implementation:

1. Connectivity Check:

• Check if the graph is connected. If not, link discon-
nected components by adding synthetic edges between
randomly selected nodes. For example, given a graph
with disconnected components A, B, and C, connect A
and B via a random node pair, then B and C similarly.

• Label these edges with a dedicated [EDGE_JUMP]
token and default attribute tokens.

4Given a fixed starting node and predetermined node indices,
the Eulerian path generated by NetworkX (Hagberg et al., 2008) is
guaranteed to be unique.
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Figure 1. Overview of Graph-to-Sequence Tokenization. (Left) The process of converting a (sub)graph into a token sequence via a
(semi-)Eulerian path. Dashed lines indicate duplicated edges added during Eulerization to enable full edge traversal. (Right) Three
methods (short, long, prolonged) for integrating node/edge attributes into the Eulerian sequence. For simplicity, we assume one node
attribute (n1) and one edge attribute (e1) per edge. Special tokens include padding token [p] and edge type et (e.g., incoming/outgoing
direction). Sequence parameters: m is length of the Eulerian sequence, and l = 2 + #edge-attrs + #node-attrs (here, l = 4).

• This ensures the graph becomes connected, enabling
Eulerian path generation.

2. Path Identification:

• Check Eulerian properties using established criteria
(West et al., 2001).

• If non-Eulerian, perform Eulerization to enable path
traversal.

• Randomly sample one valid path from possible candi-
dates, introducing stochasticity as a data augmentation
strategy akin to computer vision techniques (Perez &
Wang, 2017). This stochasticity forces the transformer
to learn invariance across different paths of the same
graph and empirically reduces overfitting.

3. Node Re-indexing:

• Assign indices 0, 1, · · · , n − 1 based on nodes’ first
appearance in the path (e.g., Fig. 1: node F → 0,
A→ 1).

• Introduce cyclic re-indexing: i′ = (i+ r)%N , where
r is a random integer and N (hyperparameter) exceeds
the maximum node count. Without cyclic re-indexing,
Eulerian paths would always start with low-index to-
kens (e.g., 0, 1, 2), leading to skewed token frequency
distributions. Cyclic re-indexing randomizes start-
ing indices (e.g., selecting from {0, 1, · · · , 255} for

N = 256), ensuring uniform training across all index
tokens.

• Cyclic re-indexing is critical for datasets like Triangles
(§3.2.1), where test graphs have significantly more
nodes than training graphs (e.g., test graphs up to
100 nodes vs. training graphs ≤ 25 nodes). With-
out re-indexing, higher-index tokens (e.g., 25 ∼ 255)
remained undertrained, degrading performance.

4. Attribute Attaching:

• Discrete attributes: Direct tokenization.

• Continuous attributes: Digit-wise tokenization (e.g.,
3.14→ [3, ., 1, 4]).

• Edge directionality: Distinct tokens for incoming/out-
going edges (e.g., [→], [←]).

• Three attribute integration strategies (Fig. 1): short,
long, and prolonged formats.

Theoretical Guarantee:

The serialization is lossless and reversible (up to isomor-
phism) per the Eulerian Path Theorem: reconstructing edges
from adjacent tokens recovers the original graph structure
(Grohe & Schweitzer, 2020). For example, in Fig. 1’s se-
quence, connecting consecutive tokens (13→ 14→ 15→
...) reconstructs all edges, yielding a graph isomorphic to
the input.
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2.2.2. SUBGRAPH SAMPLING

Directly serializing large graphs into sequences via the
method in §2.2.1 produces excessively long sequences that
exceed transformer context limits. While truncating such
sequences is possible, this approach faces two critical issues:

• Computational Overhead: Eulerization and path iden-
tification for a large graph are computationally expen-
sive.

• Inconsistent Training: Sequence fragmentation intro-
duces mismatches between pre-training and fine-tuning
data formats.

To address these challenges, we adopt subgraph sam-
pling—a scalable strategy that decomposes a large graph
into smaller, manageable subgraphs before serialization.

Implementation:

• We use the ShaDowKHop sampler (Zeng et al., 2021)
to extract localized subgraphs centered on randomly
selected nodes or edges.

• Sampler parameters (e.g., hop depth, neighbor count)
are preconfigured to ensure generated sequences fit
within the transformer’s context window. These param-
eters are dataset- and hardware-dependent (see App.
A.1 for configuration details).

2.2.3. NODE IDENTITY ENCODING

Preserving global node identities during subgraph sampling
is essential to avoid information loss. While unique token-
based encoding (via learnable embeddings) is theoretically
viable, it becomes impractical for graphs with billions of
nodes due to:

• Vocabulary Explosion: A 10-billion-node graph would
require a vocabulary of size 1010.

• Memory Constraints: Corresponding embedding ma-
trices become prohibitively large.

Solution: Multi-Token Node Encoding. We propose en-
coding each node as a combination of k tokens, reducing
vocabulary size exponentially. For example: A 1010-node
graph can be uniquely represented with two tokens from a
105-size vocabulary (105 × 105 = 1010). Graph partition-
ing via METIS (Karypis & Kumar, 1997) enables this by
dividing the graph into 105 clusters, each containing ∼ 105

nodes.

Trade-offs: Increasing k (e.g., k = 5) allows smaller vo-
cabularies (1005 = 1010) but lengthens sequences. This

mirrors variable-length encodings like utf-8 (Allen et al.,
2012, Chapter 2), where characters are represented by 1–4
bytes (vocabulary size = 256).

Our ablation studies (§3.5.3) demonstrate this method’s
effectiveness in preserving node identity.

2.3. Modeling with the Transformer Decoder/Encoder

We demonstrate how the transformer architecture processes
graph token sequences under a unified pre-training and fine-
tuning paradigm for diverse graph tasks.

2.3.1. PRE-TRAINING WITH THE NTP OR SMTP TASKS

Self-supervised pre-training has proven critical for success
in NLP (Devlin et al., 2019; Radford et al., 2019) and CV
(He et al., 2022; Chang et al., 2022). We adopt two foun-
dational generative tasks: NTP, which enables SOTA per-
formance in NLP (Brown et al., 2020), and SMTP, which
extends masked prediction with scheduled masking rates.

Implementation:

• Masking (SMTP only): For node-level masking, all
occurrences of a masked node in the Eulerian sequence
are hidden to prevent leakage (e.g., two occurrences of
node A in Fig. 1 are masked concurrently).

• Mask Scheduling (SMTP only): Following Chang et al.
(2022), we adopt the same linear scheduling function,
which empirically balances training stability and per-
formance.

• Multi-Token Prediction (NTP and SMTP): For se-
quences encoded in short or long formats (Fig. 1),
we predict all non-padding tokens per column simulta-
neously, similar to Gloeckle et al. (2024).

2.3.2. FINE-TUNING ON DOWNSTREAM GRAPH TASKS

We adapt the pre-trained transformer to supervised tasks by
reformatting the sequence-based inputs, ensuring alignment
with pre-training:

1. Graph-Level Tasks (e.g., classification/regression): Ap-
pend a special [GSUM] token to the sequence.

2. Edge-Level Tasks (e.g., link prediction): Append to-
kens of the target edge’s source and destination nodes.

3. Node-Level Tasks (e.g., node classification): Append
the target node’s token to the sequence.

The final token’s output is fed to a randomly initialized
multilayer perceptron (MLP). Fig. 2 (Appendix) illustrates
the implementation.
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The transformer weights are initialized from pre-trained
checkpoints, and the MLP layers are initialized randomly.
All parameters are updated during fine-tuning.

This formulation ensures seamless knowledge transfer from
pre-training, mirroring successes in NLP (Brown et al.,
2020; Wei et al., 2022).

3. Experiments
3.1. Datasets

Recent advances in AI for scientific discovery (Wang et al.,
2023) motivate our evaluation of GraphGPT on large-scale
scientific graph datasets spanning physics, chemistry, and
bioinformatics. To demonstrate its versatility across graph
tasks, we select benchmarks for graph-, edge-, and node-
level objectives:

• Graph-level: PCQM4Mv2 (quantum chemistry), ogbg-
molpcba (molecular property prediction) and Triangles
(triangles counting).

• Edge-level: ogbl-ppa (protein-protein associations)
and ogbl-citation2 (citation networks).

• Node-level: ogbn-proteins (protein interaction net-
works) and ogbn-arxiv (paper categorization).

Dataset statistics are detailed in Table 9 (Appendix A).

• PCQM4Mv2 contains > 3.7 million organic molecules
from PubChemQC (Nakata & Shimazaki, 2017).
Nodes represent atoms (9D attributes: atomic number,
chirality, etc.), and edges denote chemical bonds (3D
attributes: bond type, stereochemistry, conjugation).

• ogbg-molpcba is a smaller molecular dataset (Wu et al.,
2017) with the same node/edge attributes.

• Triangles (Knyazev et al., 2019) contains 45k graphs
(no node/edge attributes).

• ogbl-ppa: Nodes are proteins from 58 species; edges
represent functional associations (Szklarczyk et al.,
2019).

• ogbl-citation2: A directed citation network with ∼ 3
million papers (nodes) and > 30 million edges.

• ogbn-proteins: Undirected, weighted graph of 132,534
proteins (nodes) with 8D edge attributes encoding as-
sociation strengths.

• ogbn-arxiv: Citation network of 169,343 papers; tasks
involve predicting 40 subject categories.

Empirical results demonstrate that SMTP pre-training
achieves superior or comparable performance across
all benchmarks. Unless otherwise specified, reported
GraphGPT results utilize SMTP pre-training.

3.2. Graph-Level Tasks

Table 1. Results of the graph regression task on the PCQM4Mv2
dataset. The metric is mean absolute error (MAE), the smaller
the better. 86% of the valid dataset is added to training after
hyper-parameters selection. Superscript numbers indicate source
references, while subscript numbers correspond to model vari-
ants in Table 11 (Appendix). The best results are in bold, and
second-best are underlined. This notation convention applies to all
subsequent tables.

Models MAE ↓ ParamsValid Test

GNN

GCN1 0.1379 0.1398 2.0M
GIN2 0.1195 0.1218 3.8M
GCN1-VN3 0.1153 0.1152 4.9M
GIN2-VN3 0.1083 0.1084 6.7M

GT

TokenGT4 0.0910 0.0919 48.5M
Graphformer5 0.0864 N/A 48.3M
GPS-Deep6 0.0852 0.0862 138.1M
GPS++ (no 3D)7 0.0818 N/A 40.0M
GPTrans-L8 0.0809 0.0821 86.0M

Ours

GraphGPT-M 0.0827 N/A 37.7M
GraphGPT-B12 0.0807 N/A 113.6M
GraphGPT-B24 0.0793 N/A 227.3M
GraphGPT-B48 0.0792 0.0804 453.4M

1Kipf & Welling (2017), 2Xu et al. (2019), 3Gilmer et al. (2017), 4Kim et al. (2022),
5Ying et al. (2021), 6Rampásek et al. (2022), 7Masters et al. (2023), 8Chen et al.

(2023b)

We evaluate GraphGPT on two molecular datasets where
tasks involve predicting quantum chemical properties solely
from 2D molecular graphs—a practical alternative to relying
on 3D equilibrium structures. Specifically, PCQM4Mv2
predicts the HOMO-LUMO energy gap, and ogbg-molpcba
predicts 128 binary molecular properties.

On PCQM4Mv2, GraphGPT achieves a test MAE of 0.0804,
significantly outperforming the previous SOTA (0.0821,
Chen et al. (2023b)).

Compared to GTs like TokenGT, Graphformer, GPS, and
GPTrans—which require handcrafted features or intricate
architectures to encode structural information—GraphGPT
attains superior performance without manual feature engi-
neering. It also surpasses GNNs by a substantial margin
(Table 1).

Analysis (Tables 1 and 2):

Lossless Serialization: The Eulerian path-based serializa-
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tion and generative pre-training enable GraphGPT to fully
capture structural and semantic graph information.

Scalability: While GTs with fewer parameters often plateau
when scaled (Shi et al., 2022), GraphGPT shows consistent
improvement up to 200M parameters. The log-log scaling
law plot for both pre-training loss and supervised fine-tuning
loss is shown in Fig. 3 (Appendix).

Parameter Efficiency: GraphGPT’s larger parameter count
may reflect its capacity to implicitly learn features that other
GTs encode manually. Generative pre-training also allocates
model capacity to generation tasks, potentially limiting dis-
criminative performance of models at smaller scales.

Limitations: Pre-training on additional external large-scale
molecular datasets yielded diminishing returns, suggesting
saturation in 2D structural information. Incorporating 3D
molecular data could help address this limitation.

Transfer Learning: When fine-tuned on ogbg-molpcba, our
PCQM4Mv2-pretrained model achieves results exceeding
powerful GNNs (GCN, GIN) and matching SOTA GTs
(Table 2).

Table 2. Results of the graph classification task on the ogbg-
molpcba dataset. All the baseline results are from the OGB leader-
board or the corresponding papers. † indicates the model is pre-
trained on PCQM4M-v2 dataset.

Models Average Precision (%) ↑ ParamsTest Valid

GCN1 20.20±0.24 20.59±0.33 0.57M
GIN2 22.66±0.28 23.05±0.27 1.92M
GINE3-VN4 29.17±0.15 30.65±0.30 6.1M
NGIN5-VN4 30.07±0.37 30.59±0.56 44.19M
PDF6 30.31±0.26 31.15±0.20 3.84M

Graphormer-L†7 31.40±0.32 32.27±0.24 119.5M
EGT-Larger†8 29.61±0.24 N/A 110.8M
GRPE-Large†9 31.50±0.10 N/A 118.3M
GPTrans-L†10 32.43±0.22 N/A 86.0M

GraphGPT-M† 30.13±0.25 31.62±0.24 37.7M
GraphGPT-B†

12 31.28±0.23 32.27±0.15 113.6M
GraphGPT-B†

24 31.81±0.1 32.54±0.2 227.3M
1Kipf & Welling (2017), 2Xu et al. (2019), 3Brossard et al. (2020), 4Gilmer et al.

(2017), 5Zhang & Li (2021), 6Yang et al. (2023), 7Ying et al. (2021), 8Hussain et al.
(2022), 9Park et al. (2022), 10Chen et al. (2023b)

3.2.1. GRAPH STRUCTURE UNDERSTANDING

To evaluate GraphGPT’s ability to learn structural patterns
through generative pre-training, we use the Triangles dataset
with the task of counting triangles. The dataset is split into:
1). Training/Validation: 30k and 5k small graphs (≤ 25
nodes); 2). Testing: 5k small graphs (Test-small) and 5k
large graphs (25–100 nodes, Test-large).

This task is challenging even for in-distribution (ID) graphs
and considerably harder for out-of-distribution (OOD)
graphs.

Pre-Training Setup: We augment pre-training with diverse
datasets, i.e., Reddit-threads (Rozemberczki et al., 2020),
Erdős-Rényi random graphs (Erdos et al., 1960), and Inter-
nal real-world graphs (See Table 9, Appendix A).

Analysis (Table 3):

Pre-Training Efficacy: GraphGPT achieves comparable ac-
curacy to GTs on ID graphs and superior OOD generaliza-
tion (lower variance). This demonstrates that generative
pre-training effectively encodes structural knowledge trans-
ferable to downstream tasks.

Impact of Graph Types: Pre-training on real-world graphs
(e.g., internal datasets) outperforms random Erdős-Rényi
graphs, suggesting meaningful structural patterns in real-
world data enhance model learning.

Dataset Diversity: Combining Triangles with diverse
datasets (Reddit-threads, internal graphs) yields better per-
formance than pre-training on Triangles alone. This high-
lights the importance of diverse pre-training data for learn-
ing generalizable structural patterns.

Attributed Graphs: Models pre-trained on attributed
graphs (PCQM4Mv2, ogbl-ppa, ogbn-proteins) and fine-
tuned on Triangles achieve significant improvements:
64.3%/86.1%/86.6% vs. 32.6% (baseline GET without
pre-training). This confirms that structural knowledge is ob-
tained even when pre-training includes node/edge attributes.

3.3. Edge-Level Tasks

We evaluate GraphGPT on link prediction using the ogbl-
ppa and ogbl-citation2 datasets. Results are summarized in
Table 4.

Performance Superiority: GraphGPT significantly outper-
forms all baseline methods, including GNNs, heuristic mod-
els, and latent-factor approaches, across both datasets. This
underscores the effectiveness of generative pre-training and
sequence-based modeling for edge-level tasks.

Scalability: GraphGPT scales seamlessly to 2 billion param-
eters, achieving sustained performance gains with increas-
ing model size. This motivates future exploration of even
larger architectures and datasets.

Transformer Efficacy: To our knowledge, GraphGPT is the
first transformer-based model to achieve SOTA results on
ogbl-ppa and ogbl-citation2, demonstrating the viability
of sequence-driven architectures for large-scale edge-level
tasks.
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Table 3. Results of the graph classification task on the Triangles
dataset. Superscript numbers indicate source references, while
letters denote specific pre-training datasets. We report averaged
metrics from 10 independent runs to ensure statistical reliability.
The baseline results are from Müller et al. (2024).

Models Accuracy (%) ↑ ParamsT-small T-large

GIN1 71.53±0.94 33.54±0.30 0.15M
Transformer2 12.08±0.31 10.01±0.04 0.2M

Transformer-LapPE3 78.29±0.25 10.64±2.94 0.2M
Transformer-RWSE3 99.40±0.10 54.76±7.24 0.2M
Graphormer4 99.09±0.31 42.34±6.48 0.2M

GET-B 32.60±1.86 13.99±1.78 113.5M
GraphGPT-Ba 92.16±0.28 26.51±1.01 113.5M
GraphGPT-Bb 81.38±0.27 37.68±0.99 113.5M
GraphGPT-Bc 99.08±0.14 38.80±3.60 113.5M
GraphGPT-Bd 90.93±0.51 40.79±1.40 113.5M

GraphGPT-Be 64.28±0.33 17.38±0.61 113.5M
GraphGPT-Bf 86.14±7.38 26.94±4.80 113.5M
GraphGPT-Bg 86.57±2.74 23.45±1.44 113.5M

GraphGPT-Ba+b 84.83±0.81 39.62±1.84 113.5M
GraphGPT-Ba+c 98.68±0.18 50.07±3.28 113.5M
GraphGPT-Bb+c 98.26±0.30 52.33±2.61 113.5M

GraphGPT-Ba+b+d 89.98±0.54 33.45±2.51 113.5M
GraphGPT-Ma+b+c 95.07±0.67 51.72±1.12 33.7M
GraphGPT-Ba+b+c 98.63±0.18 58.96±1.90 113.5M

1Xu et al. (2019), 2Vaswani et al. (2017), 3Rampásek et al. (2022), 4Ying et al. (2021)

Pre-trained with: aTriangles (45K), bReddit-threads (0.2M), cInternal dataset (3.1M),
dRandom graphs (3.1M), ePCQM4M-v2 (3.7M), fogbl-ppa (1), gogbn-proteins (1).

3.4. Node-Level Tasks

We evaluate GraphGPT on two node-level benchmarks:
ogbn-proteins predicts 112 binary protein function labels,
and ogbn-arxiv classifies arXiv papers into 40 subject cate-
gories. Results are summarized in Table 5.

ogbn-proteins: GraphGPT surpasses well-tuned GNN base-
lines (GCN, GraphSAGE, GAT) and significantly outper-
forms graph transformers (GTs). Remarkably, GraphGPT
achieves competitive performance with input subgraphs of
∼ 40 nodes, while SOTA GNNs like AGDN (Sun et al.,
2025) require subgraphs with > 22, 000 nodes.

ogbn-arxiv: GraphGPT delivers performance comparable
to or approaching SOTA graph transformers and optimized
GNNs.

The strong performance with minimal neighborhood sam-
pling suggests that generative pre-training effectively en-
codes global structural and semantic graph information into
node token embeddings and transformer parameters. This
contrasts with traditional GNNs, which rely on extensive

Table 4. Results of the link prediction task on the ogbl-ppa and
ogbl-citation2 datasets.

Models ogbl-ppa ogbl-citation2
HR@100 (%) ↑ MRR (%) ↑

Common Neighbor 27.65±0.00 51.47±0.00

Adamic Adar 32.45±0.00 51.89±0.00

Resource Allocation1 49.33±0.00 51.98±0.00

Node2Vec2 22.26±0.83 61.41±0.11

Matrix Factorization3 32.29±0.94 51.86±4.43

GCN4 18.67±1.32 84.74±0.21

GraphSAGE5 16.55±2.40 82.60±0.36

SEAL6 48.80±3.16 87.67±0.32

AGDN7 41.23±1.59 85.49±0.29

SIEG8 63.22±1.74 90.18±0.15

MPLP9 65.24±1.50 90.72±0.12

RefinedGAE10 73.74±0.92 84.55±0.15

GraphGPT-M 65.44±0.43 92.82±0.27

GraphGPT-B 68.76±0.67 93.05±0.20

GraphGPT-XXL 76.55±0.67 N/A

1Zhou et al. (2009), 2Grover & Leskovec (2016), 3Mnih & Salakhutdinov (2008),
4Kipf & Welling (2017), 5Hamilton et al. (2017), 6Zhang et al. (2021), 7Sun et al.

(2025), 8Shi et al. (2024), 9Dong et al. (2024), 10Ma et al. (2024)

local aggregation with feature propagation.

3.5. Ablation Study

We analyze the impact of three core components of
GraphGPT: pre-training, node re-indexing and node identity
encoding.

3.5.1. PRE-TRAINING

The self-supervised NTP or SMTP tasks are central to
GraphGPT’s success. As shown in Table 6, pre-training de-
livers performance improvements of 10–100% across graph-
, edge-, and node-level tasks. These gains highlight its role
in enabling the model to learn intrinsic graph structural pat-
terns and capture semantic relationships inherent in node
and edge attributes.

3.5.2. NODE RE-INDEXING

As illustrated in Fig. 1, we re-index the nodes based on
their order in the (semi-)Eulerian path. To evaluate the
effectiveness of this approach, we conduct experiments on
the ogbg-molpcba dataset, with results summarized in Tab.
7.

While node re-indexing increases pre-training loss, it con-
sistently improves performance on downstream tasks across
various model sizes. This technique acts as a form of
data augmentation, preventing the model from memoriz-
ing graph-specific artifacts—such as arbitrary node label-

7
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Table 5. Results of the node classification task on the ogbn-proteins
and ogbn-arxiv datasets.

Models ogbn-proteins ogbn-arxiv
ROC-AUC (%) ↑ Accuracy (%) ↑

GCN1,2 77.29±0.46 73.53±0.12

GraphSAGE1,3 82.21±0.32 73.00±0.28

GAT1,4 85.01±0.46 73.30±0.18

DRGAT5 N/A 74.16±0.07

AGDN6 88.65±0.13 73.41±0.25

DeeperGCN7 85.80±0.17 71.92±0.16

GraphGPS1,8 77.15±0.64 71.23±0.59

NAGphormer1,9 72.17±0.45 70.88±0.24

Exphormer1,10 77.62±0.33 72.32±0.36

GOAT1,11 79.31±0.42 72.76±0.29

NodeFormer1,12 77.86±0.84 67.78±0.28

SGFormer1,13 79.92±0.48 72.76±0.33

Polynormer1,14 79.53±0.67 73.40±0.22

GraphGPT-S 83.56±0.16 70.83±0.33

GraphGPT-M 84.02±0.21 71.20±0.34

GraphGPT-B 85.33±0.10 72.10±0.30

1Luo et al. (2024), 2Kipf & Welling (2017), 3Hamilton et al. (2017), 4Vaswani et al.

(2017), 5Zhang et al. (2023), 6Sun et al. (2025), 7Li et al. (2023), 8Rampásek et al.

(2022), 9Chen et al. (2023a), 10Shirzad et al. (2023), 11Kong et al. (2023), 12Wu et al.

(2022), 13Wu et al. (2024), 14Deng et al. (2024)

ing—and thereby enhancing generalization.

Furthermore, re-indexing enables constrained decoding of
node tokens during graph generation with GraphGPT, re-
ducing the search space for valid outputs.

3.5.3. NODE IDENTITY ENCODING

Node identity encoding (see §2.2.3)—representing nodes’
identity in large graphs as multiple tokens—is critical for
edge- and node-level tasks. Using GraphGPT-mini (a
lightweight variant to conserve computational resources),
we demonstrate that this method significantly enhances per-
formance (Table 8). Further implementation details are
provided in Appendices A and F.

4. Limitations
We critically assess the limitations of GraphGPT to contex-
tualize its applicability and inspire future improvements.

Transferability. GraphGPT’s reliance on dataset-specific
pre-training limits its ability to generalize across domains
with divergent semantics (e.g., social networks vs. molec-
ular graphs). However, it demonstrates robust cross-
dataset structural understanding (§3.2.1) and effective intra-
domain transferability, as evidenced by molecular data ex-
periments (§3.2).

Table 6. Ablation study of pre-training on the datasets of various
types of tasks. Superscripts D/E stand for transformer decoder/en-
coder. ∗ means both molpcba and PCQM4Mv2 datasets are used
for SMTP pre-training, and † indicates that the model is further
trained using PCQM4M-v2’s regression task. For the PCQM4Mv2
dataset, the metric is MAE, the lower the better.

DATASETS PRE-TRAINING TEST VALID

PCQM4MV2

✗D N/A 0.0978
✗E N/A 0.0856

NTP N/A 0.0875
SMTP N/A 0.0807

OGBG-MOLPCBA

✗D 12.80 13.31
✗E 25.80 26.33

NTP 23.85 27.77
SMTP 27.56 28.74
SMTP∗ 27.20 28.49

SMTP∗ + FT† 28.07 29.01

OGBL-PPA

✗D 41.28 40.14
✗E 42.13 41.57

NTP 55.56 54.87
SMTP 55.68 54.93

OGBN-PROTEINS

✗D 57.52 61.19
✗E 53.20 56.39

NTP 75.61 80.47
SMTP 83.56 87.73

Table 7. Ablation study of node re-indexing on the ogbg-molpcba
dataset with two model sizes. PT means pre-training.

PARAMS RE-INDEX PT LOSS TEST VALID

4.48M ✗ 0.0844 23.10 25.25
✓ 0.0874 23.85 27.77

114.12M ✗ 0.0689 22.70 26.21
✓ 0.0750 25.17 28.57

Dataset size. Performance on some small- to medium-sized
datasets (e.g., ogbn-arxiv) lags behind traditional GNNs.
This can be mitigated by expanding datasets with semanti-
cally aligned data.

Computational Cost. Pre-training on large-scale graphs
(ogbn-proteins, ogbl-ppa) or extensive small graphs
(PCQM4Mv2) with 50M+ parameters is resource-intensive.
For example, pre-training GraphGPT-B (100M+ parame-
ters) on PCQM4Mv2 with 1 × 109 tokens requires ∼ 63
V100 GPU hours, and fine-tuning incurs ∼ 3 V100 GPU
hours per epoch in the distributed data parallel setting with
4 GPUs.

While GraphGPT is less practical for small datasets due to
compute-performance trade-offs, it excels with large-scale
data. Emerging techniques like quantization (Dettmers et al.,
2022; Frantar et al., 2022), distributed training frameworks
(Rasley et al., 2020; Shoeybi et al., 2019), and transformer

8
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Table 8. Ablation study of node identity encoding (NIE) on the
ogbl-ppa and ogbn-proteins datasets.

DATASETS PARAMS NIE TEST VALID

OGBL-PPA 14.75M ✗ 44.38 45.08
✓ 55.56 54.87

OGBN-PROTEINS 10.76M ✗ 60.22 65.66
✓ 75.61 80.47

optimizations (Dao, 2024) are poised to alleviate these costs.

Future Directions. These limitations highlight opportu-
nities for research in cross-domain transfer, data-efficient
training, and scalable architectures.

5. Related Works
Graph Neural Networks (GNNs) GNNs have dominated
graph learning for decades, with numerous variants achiev-
ing strong performance across tasks (Wu et al., 2020).
However, they face fundamental limitations such as over-
smoothing and over-squashing (Rusch et al., 2023; Alon &
Yahav, 2021), which hinder their scalability and ability to
model long-range dependencies.

Graph Transformers (GTs) Inspired by transformers’ suc-
cess in NLP and CV, recent work has adapted these archi-
tectures to graphs (Ying et al., 2021; Rampásek et al., 2022;
Müller et al., 2024). While GTs achieve competitive results
on large-scale graph-level tasks (Müller et al., 2024), they
typically rely on handcrafted structural features or GNN-
based modules to encode graph topology—either in input
representations (Ying et al., 2021; Kim et al., 2022; Masters
et al., 2023) or attention mechanisms (Ying et al., 2021;
Chen et al., 2022; Luo et al., 2023).

Pre-training and fine-tuning The self-supervised pre-
training and supervised fine-tuning paradigm, popularized
by transformers (Vaswani et al., 2017), revolutionized NLP
(Devlin et al., 2019; Radford et al., 2018). Scaling this
approach with web-scale data (Brown et al., 2020) and tech-
niques like instruction tuning (Wei et al., 2022) or rein-
forcement learning from human feedback (Ouyang et al.,
2022) further advanced the field. In CV, self-supervised
methods like MAE He et al. (2022) and MaskGIT (Chang
et al., 2022) demonstrated that masked prediction tasks (e.g.,
reconstructing masked image patches) enable transformers
to achieve SOTA results.

6. Conclusions
We introduce GraphGPT, a novel model built on the GET
backbone, which achieves SOTA or near-SOTA perfor-
mance across graph-, edge-, and node-level tasks on large-

scale benchmarks. By unifying pretext and downstream
tasks into a sequence-based paradigm, GraphGPT demon-
strates strong transferability in capturing both structural
graph patterns and domain-specific knowledge (e.g., molec-
ular properties). Notably, scaling GraphGPT to billions of
parameters yields consistent performance gains, highlight-
ing its potential as a foundation for graph-centric foundation
models.

Looking ahead, GraphGPT’s architecture is inherently scal-
able—capable of expanding to hundreds of billions of pa-
rameters—and offers promising avenues for integration or
alignment with large language models (LLMs), bridging
graph reasoning and textual intelligence.
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A. Datasets
The detailed statistics of the datasets are in the Tab. 9.

Table 9. Statistics of graph-/edge-/node-level datasets. Here ‘BC’ stands for binary classification. p in Random Graph datasets means the
probability of creating the edge between a node pair.

datasets # of graphs avg # of nodes avg # of edges task-type metrics

PCQM4Mv2 3,746,619 14.14 14.56 regression MAE
ogbg-molpcba 437,929 26.0 28.1 multi-label BC AP
reddit-threads 203,088 23.9 24.9 BC ROC-AUC
Triangles 45,000 20.9 32.7 multi-class classification ACC
Internal dataset 3,100,000 24.8 54.7 N/A N/A
Random Graphp=0.03 3,100,000 67.1 74.8 N/A N/A

ogbl-ppa 1 576,289 30,326,273 BC HR@100
ogbl-citation2 1 2,927,963 30,561,187 BC MRR

ogbn-proteins 1 132,534 39,561,252 multi-label BC ROC-AUC
ogbn-arxiv 1 169,343 1,166,243 multi-class classification ACC

A.1. Subgraph Sampling

The subgraph sampling configurations for different datasets of large graphs are shown in the Tab. 10.

Table 10. Details of subgraph sampling for ogbl-ppa and ogbn-proteins datasets. ‘seq-len’ means the average length of the Eulerian
sequences. Edge-ego means sampling subgraph around the central edge, and Node-ego means sampling around the central node.

dataset sampling depth (d) # neighbors (n) seq-len

ogbl-ppa edge-ego 1 14 90
1 30 280

ogbl-citation2 edge-ego
1 14 60
1 20 90
1 30 130

ogbn-proteins node-ego

9 1 20
20 1 50
40 1 120
60 1 200

ogbn-arxiv node-ego 1 30 30
1 40 40

B. Models
We list the model specifics in the Tab. 11. We experiment with eight different scales of models.

C. Implementation Details
C.1. Graphs to Sequences of Tokens

The implementation uses PyTorch as the primary framework. For graph preprocessing tasks such as subgraph sampling,
we utilize torch-geometric (Fey & Lenssen, 2019). When required, we employ NetworkX (Hagberg et al., 2008) to
Eulerize (sub)graphs and identify (semi-)Eulerian paths. A custom tokenizer converts these paths into token sequences, with
dataset-specific vocabularies constructed for each case.
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Table 11. Statistics of GraphGPT models of different sizes. The GraphGPT-Base is of the same scale as Bert-Base (Devlin et al., 2019).

Model-size Hidden-size # of layers # of heads Params (excluding embed)

Mini 256 4 4 4.2M
S (Small) 512 4 8 16.8M
M (Medium) 512 8 8 33.6M
B / B12 (Base) 768 12 12 113.2M
B24 (Base24) 768 24 12 226.5M
B48 (Base48) 768 48 12 453.0M
L (Large) 1024 24 16 402.7M
XXL (XXLarge) 1600 48 25 2.0B

C.2. Model Backbone

We employ a transformer architecture based on Llama (Touvron et al., 2023), implemented via the Hugging Face Transform-
ers library (Wolf et al., 2020), as the backbone for NTP pre-training. For SMTP pre-training, we modify the architecture by
replacing the causal attention mask with a bidirectional attention mask to create an encoder. We initialize all parameters
randomly, and train models at various scales (see Table 11).

C.3. Training

The models are pre-trained and fine-tuned on A800-80G GPU clusters5 using DeepSpeed’s Stage-2 strategy with mixed
precision (FP16/FP32) or BF16 (Rasley et al., 2020). We employ the AdamW optimizer (Loshchilov & Hutter, 2019) with a
learning rate scheduler. To maximize computational efficiency in pre-training stage, we pack multiple graph sequences
into single entries, optimizing context window utilization (Raffel et al., 2020) for certain graph datasets. Dataset-specific
configurations are detailed in their respective sections below.

The variance is inherently low for most large-scale datasets (e.g., PCQM4Mv2, ogbl-ppa), where reporting variance is
standard practice only when significant. For these datasets, 3–5 runs consistently yield minimal variance (as shown in
tables). For the Triangles dataset, variance is higher—particularly on out-of-distribution (OOD) test data. So we conducted
10 runs to ensure robustness.

The pre-training and fine-tuning paradigm is illustrated in Fig. 2.
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Figure 2. Pre-training and fine-tuning illustrations.

5We also utilize clusters of other types of GPUs, for example, Nvidia V100-32G, L20, L40 and etc.
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C.4. Vocabulary

In NLP, the vocabulary is typically constructed by tokenizing text data using the byte-pair encoding (BPE) algorithm
(Sennrich et al., 2016). The resulting unique tokens form the vocabulary, which usually comprises frequent subwords from
the text corpus.

In contrast, our GraphGPT employs a fundamentally different vocabulary construction approach. The vocabulary is split
into two distinct parts: 1). structural and special tokens, which are dataset-agnostic and transferable across different datasets.
2). semantic tokens, which encode dataset-specific information, such as node and edge attributes.

An example is provided in Appendix F. In the graph sequence: i). tokens like ‘1’, ‘2’, etc., represent structural tokens; ii).
Tokens such as ‘ogbl-ppa#node#0#17’ and ‘ogbl-ppa#node#1#1959’ are semantics tokens; iii). Special tokens like <gsum>
and <eos> (Fig. 1) denote graph-specific functions (e.g., graph summary and end-of-sequence markers).

For the datasets ogbl-ppa/citation2, ogbn-proteins/arxiv, we set k = 2 (§2.2.3), resulting in vocabulary sizes of 41, 634 /
25, 687 and 31, 360 / 25, 600, respectively.

D. Graphs to Sequences of Tokens
In this section, we show some examples of turning graphs to sequences of tokens.

D.1. Molecular Graphs to Tokens

Below is one example of 2D molecular graphs in the ogbg-molpcba dataset in torch-geometric data format (Fey & Lenssen,
2019).

Data ( x = [4 , 9 ] , e d g e _ i n d e x = [2 , 6 ] , e d g e _ a t t r = [6 , 3 ] , y = [ 1 2 8 ] )

The graph has 4 nodes and 3 edges. The source and destination nodes of the edges are recorded in ‘edge_index’, and its
dimension is (2, 2 · number_of_edges) for undirected graphs. ‘x’ is the node attributes of 9 dimensions, and ‘edge_attr’
stores the edge attributes of 3 dimensions.

The node and edge attributes of the graphs are numbers. If we directly discretize them into tokens, i.e., using one token to
represent each unique number, the numbers that appear few times in the dataset cannot be well-trained. At the same time,
the vocabulary may blow up. Therefore, we split them into single digits and represent them with the combination of the
following tokens. They are dataset agnostic, and can be shared across different datasets.

<−>, <. > , <0 > , <1 > , <2 > , <3 > , <4 > , <5 > , <6 > , <7 > , <8 > , <9>

The resulting vocabulary is 556 for both ogbg-molpcba and PCQM4Mv2.

Below shows the tokens from one of the possible (semi-)Eulerain paths of the above molecular graph.

[ ’ 1 ’ , ’ ogbg −molpcba # node #0#1 ’ , ’ <7 > ’ , ’ ogbg −molpcba # node #2#1 ’ , ’ <1 > ’ , ’ ogbg −
molpcba # node #3#1 ’ , ’ <5 > ’ , ’ ogbg −molpcba # node #6#1 ’ , ’ <1 > ’ , ’ ogbg −molpcba # edge
#0#1 ’ , ’ <1 > ’ , ’2 ’ , ’3 ’ , ’ ogbg −molpcba # node #0#1 ’ , ’ <5 > ’ , ’ ogbg −molpcba # node
#2#1 ’ , ’ <4 > ’ , ’ ogbg −molpcba # node #3#1 ’ , ’ <5 > ’ , ’ ogbg −molpcba # node #4#1 ’ , ’ <3 > ’ ,

’ ogbg −molpcba # node #6#1 ’ , ’ <2 > ’ , ’2 ’ , ’ ogbg −molpcba # node #0#1 ’ , ’ <5 > ’ , ’ ogbg −
molpcba # node #2#1 ’ , ’ <3 > ’ , ’ ogbg −molpcba # node #3#1 ’ , ’ <5 > ’ , ’ ogbg −molpcba # node
#6#1 ’ , ’ <1 > ’ , ’4 ’ , ’ ogbg −molpcba # node #0#1 ’ , ’ <5 > ’ , ’ ogbg −molpcba # node #2#1 ’ ,
’ <4 > ’ , ’ ogbg −molpcba # node #3#1 ’ , ’ <5 > ’ , ’ ogbg −molpcba # node #4#1 ’ , ’ <3 > ’ , ’ ogbg −
molpcba # node #6#1 ’ , ’ <2 > ’]

In the sequence of tokens above, for the node ‘1’, we can deduce that its 9 dimensional attributes are (7, 0, 1, 5, 0, 0, 1, 0, 0, 0).
Node ‘1’ is connected to ‘2’ with edge attributes (1, 0, 0). We set 0 as the the default value of the attributes in this dataset,
and do not encode it into tokens.

In the (semi-)Eulerian path, a node may appear several times. We append its attributes tokens to one of its appearances
randomly. This can prevent the model from copying the attributes from the previous appearance, and also shorten the
resulting sequence.
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For a graph obtained from Eulerization, an edge may present several times in the path. We apply the same logic to insert the
edge attributes tokens.

As in the above sequence, node ‘2’ appears two times, and its node attributes tokens are appended after its second appearance.
There is no tokens encode the edge attributes of edge between ‘2’ and ‘3’, which implies the edge attributes are default value
(0, 0, 0).

D.2. Subgraphs to Tokens

In edge/node-level tasks, we usually have one big graph. In this section, we use ogbl-ppa and ogbn-proteins datasets to show
how to sample subgraphs from the big graph, and then transform the subgraph to sequences of tokens.

The whole ogbl-ppa dataset is summarized in torch-geometric format as follows.

Data ( num_nodes =576289 , e d g e _ i n d e x = [2 , 42463862] , x =[576289 , 5 8 ] )

It has 576289 nodes and 21231931 edges in the training data. ‘x’ is the one-hot representation of the species that the node
(protein) belongs to.

We sample a subgraph from it as below.

Data ( num_nodes =30 , r o o t _ n _ i d = [ 2 ] , e d g e _ i n d e x = [2 , 8 4 ] , x =[30 , 2 ] )

It has 30 nodes, 42 edges as in ‘edge_index’. ‘x’ is the node attributes of 2 dimensions, and it encodes the node identity
as described in Sec. 2.2.3. We partition the nodes (proteins) based on the associated species. The number of proteins
inside each species varies from 616 to 41017. Finally we use 58 tokens for species and 41017 tokens for the local indices.
Combined with the tokens for the structure and the special tokens, the total vocabulary is 41231.

Here ‘root_n_id’ records the two seed nodes, and the subgraph is sampled centered around them. The resulting tokens from
one of the possible (semi-)Eulerian paths are:

[ ’ 1 ’ , ’2 ’ , ’3 ’ , ’ ogbl −ppa # node #0#17 ’ , ’ ogbl −ppa # node #1#1959 ’ , ’4 ’ , ’5 ’ , ’ ogbl −ppa
# node #0#17 ’ , ’ ogbl −ppa # node #1#2460 ’ , ’6 ’ , ’7 ’ , ’ ogbl −ppa # node #0#17 ’ , ’ ogbl −
ppa # node #1#3566 ’ , ’6 ’ , ’8 ’ , ’ ogbl −ppa # node #0#17 ’ , ’ ogbl −ppa # node #1#4145 ’ ,
’6 ’ , ’9 ’ , ’ ogbl −ppa # node #0#20 ’ , ’ ogbl −ppa # node #1#5334 ’ , ’10 ’ , ’ ogbl −ppa # node
#0#27 ’ , ’ ogbl −ppa # node #1#17324 ’ , ’6 ’ , ’ ogbl −ppa # node #0#17 ’ , ’ ogbl −ppa # node
#1#6850 ’ , ’11 ’ , ’ ogbl −ppa # node #0#17 ’ , ’ ogbl −ppa # node #1#5498 ’ , ’6 ’ , ’12 ’ , ’
ogbl −ppa # node #0#17 ’ , ’ ogbl −ppa # node #1#5776 ’ , ’6 ’ , ’4 ’ , ’ ogbl −ppa # node #0#17 ’ ,
’ ogbl −ppa # node #1#8183 ’ , ’2 ’ , ’5 ’ , ’2 ’ , ’13 ’ , ’ ogbl −ppa # node #0#17 ’ , ’ ogbl −ppa #
node #1#3514 ’ , ’2 ’ , ’ ogbl −ppa # node #0#17 ’ , ’ ogbl −ppa # node #1#9374 ’ , ’14 ’ , ’ ogbl −
ppa # node #0#17 ’ , ’ ogbl −ppa # node #1#6164 ’ , ’15 ’ , ’ ogbl −ppa # node #0#17 ’ , ’ ogbl −ppa
# node #1#8368 ’ , ’2 ’ , ’6 ’ , ’16 ’ , ’ ogbl −ppa # node #0#17 ’ , ’ ogbl −ppa # node #1#10803 ’ ,

’6 ’ , ’17 ’ , ’ ogbl −ppa # node #0#17 ’ , ’ ogbl −ppa # node #1#11465 ’ , ’6 ’ , ’10 ’ , ’18 ’ , ’
ogbl −ppa # node #0#20 ’ , ’ ogbl −ppa # node #1#16505 ’ , ’6 ’ , ’19 ’ , ’ ogbl −ppa # node
#0#17 ’ , ’ ogbl −ppa # node #1#15071 ’ , ’2 ’ , ’20 ’ , ’ ogbl −ppa # node #0#17 ’ , ’ ogbl −ppa #
node #1#7761 ’ , ’2 ’ , ’21 ’ , ’ ogbl −ppa # node #0#17 ’ , ’ ogbl −ppa # node #1#8828 ’ , ’2 ’ ,
’22 ’ , ’ ogbl −ppa # node #0#17 ’ , ’ ogbl −ppa # node #1#14477 ’ , ’2 ’ , ’23 ’ , ’ ogbl −ppa #
node #0#17 ’ , ’ ogbl −ppa # node #1#16026 ’ , ’2 ’ , ’24 ’ , ’ ogbl −ppa # node #0#17 ’ , ’ ogbl −
ppa # node #1#16825 ’ , ’6 ’ , ’25 ’ , ’ ogbl −ppa # node #0#17 ’ , ’ ogbl −ppa # node #1#17615 ’ ,
’19 ’ , ’25 ’ , ’2 ’ , ’26 ’ , ’ ogbl −ppa # node #0#17 ’ , ’ ogbl −ppa # node #1#19524 ’ , ’2 ’ ,
’27 ’ , ’ ogbl −ppa # node #0#17 ’ , ’ ogbl −ppa # node #1#17854 ’ , ’6 ’ , ’28 ’ , ’ ogbl −ppa #
node #0#17 ’ , ’ ogbl −ppa # node #1#17733 ’ , ’6 ’ , ’29 ’ , ’ ogbl −ppa # node #0#27 ’ , ’ ogbl −
ppa # node #1#23255 ’ , ’6 ’ , ’30 ’ , ’ ogbl −ppa # node #0#17 ’ , ’ ogbl −ppa # node #1#19700 ’ ,
’6 ’ , ’27 ’ , ’1 ’ , ’ ogbl −ppa # node #0#17 ’ , ’ ogbl −ppa # node #1#20474 ’]

In the ablation study on node identity encoding in Sec. 3.5.3, an example of the subgraph sampled from ogbl-ppa without
identity encoding is shown below.

Data ( num_nodes =30 , r o o t _ n _ i d = [ 2 ] , e d g e _ i n d e x = [2 , 1 3 6 ] , x =[30 , 1 ] )
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Different from the subgraph with node identity encoded in ‘x’, its node attribute ‘x’ contains only the information of the
node’s (protein) hosting species. It cannot be used to uniquely identify the nodes. The vocabulary decreases from 41231 to
214.

The resulting tokens from one of its possible (semi-)Eulerian paths is below.

[ ’ 1 ’ , ’2 ’ , ’3 ’ , ’4 ’ , ’ ogbl −ppa # node #0#17 ’ , ’5 ’ , ’6 ’ , ’7 ’ , ’5 ’ , ’8 ’ , ’9 ’ , ’1 ’ , ’
ogbl −ppa # node #0#17 ’ , ’10 ’ , ’ ogbl −ppa # node #0#17 ’ , ’11 ’ , ’ ogbl −ppa # node #0#17 ’ ,
’3 ’ , ’ ogbl −ppa # node #0#17 ’ , ’11 ’ , ’12 ’ , ’1 ’ , ’5 ’ , ’13 ’ , ’ ogbl −ppa # node #0#17 ’ ,
’5 ’ , ’14 ’ , ’ ogbl −ppa # node #0#17 ’ , ’5 ’ , ’9 ’ , ’10 ’ , ’8 ’ , ’ ogbl −ppa # node #0#17 ’ ,
’3 ’ , ’15 ’ , ’ ogbl −ppa # node #0#17 ’ , ’3 ’ , ’16 ’ , ’ ogbl −ppa # node #0#17 ’ , ’3 ’ , ’2 ’ , ’
ogbl −ppa # node #0#20 ’ , ’17 ’ , ’ ogbl −ppa # node #0#27 ’ , ’1 ’ , ’18 ’ , ’ ogbl −ppa # node
#0#20 ’ , ’1 ’ , ’19 ’ , ’ ogbl −ppa # node #0#17 ’ , ’3 ’ , ’9 ’ , ’ ogbl −ppa # node #0#17 ’ ,
’20 ’ , ’ ogbl −ppa # node #0#17 ’ , ’10 ’ , ’3 ’ , ’21 ’ , ’3 ’ , ’5 ’ , ’10 ’ , ’12 ’ , ’ ogbl −ppa #
node #0#17 ’ , ’3 ’ , ’22 ’ , ’ ogbl −ppa # node #0#17 ’ , ’3 ’ , ’17 ’ , ’18 ’ , ’3 ’ , ’23 ’ ,
’13 ’ , ’24 ’ , ’5 ’ , ’25 ’ , ’ ogbl −ppa # node #0#17 ’ , ’23 ’ , ’ ogbl −ppa # node #0#17 ’ ,
’21 ’ , ’ ogbl −ppa # node #0#17 ’ , ’20 ’ , ’5 ’ , ’26 ’ , ’ ogbl −ppa # node #0#17 ’ , ’5 ’ , ’22 ’ ,

’24 ’ , ’ ogbl −ppa # node #0#17 ’ , ’23 ’ , ’5 ’ , ’27 ’ , ’6 ’ , ’ ogbl −ppa # node #0#17 ’ ,
’28 ’ , ’ ogbl −ppa # node #0#17 ’ , ’7 ’ , ’ ogbl −ppa # node #0#17 ’ , ’28 ’ , ’5 ’ , ’ ogbl −ppa #
node #0#17 ’ , ’27 ’ , ’ ogbl −ppa # node #0#17 ’ , ’29 ’ , ’ ogbl −ppa # node #0#17 ’ , ’5 ’ ,
’30 ’ , ’ ogbl −ppa # node #0#17 ’ , ’5 ’ , ’19 ’ , ’5 ’ , ’12 ’ , ’20 ’ , ’ 1 ’ ]

In the following, we use the ogbn-proteins dataset as the example. The entire dataset is a large graph as below.

Data ( num_nodes =132534 , e d g e _ i n d e x = [2 , 79122504] , e d g e _ a t t r =[79122504 , 8 ] ,
n o d e _ s p e c i e s =[132534 , 1 ] , y =[132534 , 1 1 2 ] )

It has 132,534 nodes and 39,561,252 edges. ‘node_species’ stores the species’ numeric id that the node (proteins) belongs
to.

One sampled subgraph in the torch-geometric data format is:

Data ( num_nodes =10 , r o o t _ n _ i d =0 , e d g e _ i n d e x = [2 , 2 2 ] , e d g e _ a t t r = [22 , 8 ] , y =[10 ,
1 1 2 ] , x =[10 , 2 ] )

It has 10 nodes, 11 edges as in ‘edge_index’. Edge attributes is stored in ‘edge_attr’ of dimension 8. ‘x’ is the node attributes
of 2 dimensions, and it encodes the node identity as described in Sec. 2.2.3. Its first dimension (token) represents the species,
and the second is local numbering of each protein inside its species. Similar to the ogbl-ppa dataset, the identity encoding of
132,534 nodes occupies 25,465 tokens in the vocabulary, and the total vocabulary is 25,620.

‘y’ records the labels for the supervised node-level task. ‘root_n_id’ represents the target node, and the subgraph is sampled
centered around it.

The resulting tokens from one of the possible (semi-)Eulerian paths are as follows.

[ ’ 1 ’ , ’ ogbn − p r o t e i n s # node #0#3702 ’ , ’ ogbn − p r o t e i n s # node #1#16267 ’ , ’ ogbn − p r o t e i n s #
edge #7#1 ’ , ’ <1 > ’ , ’ <6 > ’ , ’ <4 > ’ , ’2 ’ , ’ ogbn − p r o t e i n s # node #0#3702 ’ , ’ ogbn −
p r o t e i n s # node #1#6896 ’ , ’ ogbn − p r o t e i n s # edge #4#1 ’ , ’ <3 > ’ , ’ <4 > ’ , ’ <0 > ’ , ’3 ’ , ’
ogbn − p r o t e i n s # node #0#3702 ’ , ’ ogbn − p r o t e i n s # node #1#4121 ’ , ’ ogbn − p r o t e i n s # edge
#4#1 ’ , ’ <3 > ’ , ’ <9 > ’ , ’ <8 > ’ , ’4 ’ , ’ ogbn − p r o t e i n s # node #0#3702 ’ , ’ ogbn − p r o t e i n s #
node #1#3963 ’ , ’ ogbn − p r o t e i n s # edge #4#1 ’ , ’ <1 > ’ , ’ <5 > ’ , ’ <3 > ’ , ’5 ’ , ’ ogbn −
p r o t e i n s # node #0#3702 ’ , ’ ogbn − p r o t e i n s # node #1#8259 ’ , ’ ogbn − p r o t e i n s # edge #4#1 ’ ,

’ <4 > ’ , ’ <8 > ’ , ’ ogbn − p r o t e i n s # edge #7#1 ’ , ’ <2 > ’ , ’ <1 > ’ , ’ <5 > ’ , ’6 ’ , ’7 ’ , ’ ogbn
− p r o t e i n s # edge #7#1 ’ , ’ <4 > ’ , ’ <1 > ’ , ’ <8 > ’ , ’8 ’ , ’ ogbn − p r o t e i n s # node #0#3702 ’ , ’
ogbn − p r o t e i n s # node #1#1 ’ , ’7 ’ , ’ ogbn − p r o t e i n s # node #0#3702 ’ , ’ ogbn − p r o t e i n s #
node #1#89 ’ , ’ ogbn − p r o t e i n s # edge #7#1 ’ , ’ <3 > ’ , ’ <2 > ’ , ’ <1 > ’ , ’6 ’ , ’ ogbn −
p r o t e i n s # node #0#3702 ’ , ’ ogbn − p r o t e i n s # node #1#955 ’ , ’ ogbn − p r o t e i n s # edge #7#1 ’ ,
’ <2 > ’ , ’ <7 > ’ , ’ <0 > ’ , ’9 ’ , ’ ogbn − p r o t e i n s # node #0#3702 ’ , ’ ogbn − p r o t e i n s # node
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#1#7055 ’ , ’ ogbn − p r o t e i n s # edge #4#1 ’ , ’ <1 > ’ , ’ <6 > ’ , ’ <5 > ’ , ’10 ’ , ’ ogbn − p r o t e i n s
# node #0#3702 ’ , ’ ogbn − p r o t e i n s # node #1#10010 ’ , ’ ogbn − p r o t e i n s # edge #4#1 ’ , ’ <1 > ’ ,

’ <6 > ’ , ’ <9 > ’ , ’4 ’ , ’5 ’ , ’ ogbn − p r o t e i n s # edge #4#1 ’ , ’ <2 > ’ , ’ <0 > ’ , ’ <7 > ’ , ’ 3 ’ ]

The original edge attributes are 8-dimensional vector of 3 decimal numbers from 0.001 to 1. We split them into single digits
and represent them with the combination of the digits tokens as in App. E.

To reduce the number of tokens in the resultant sequences further, we multiply the number with 1000 and then minus it by 1.
So we do not need to encode ‘.’ any more. At the same time, we treat the value 0.001 (0 after the above transformation) as
the default value and do not encode it with tokens.

E. Graph-Level Task
E.1. PCQM4M-v2

100 101 102

# Parameters (non-embedding)

2.5 × 10 1

2.6 × 10 1

2.7 × 10 1

2.8 × 10 1

2.9 × 10 1

Va
lid

 lo
ss

SMTP pre-trained loss vs #Params (non-embedding)

100 101 102

# Parameters (non-embedding)

10 1

8 × 10 2

9 × 10 2
Va

lid
 lo

ss

Supervised fine-tuned loss vs #Params (non-embedding)

Figure 3. Log-log plot of pre-training loss and supervised fine-tuning loss versus the number of non-embedding parameters for the
Mini/Small/Medium/Base/Base24 model configurations (see Table 11) on the PCQM4M-v2 dataset.

The pre-training and fine-tuning configurations for PCQM4M-v2 are in Tab. 12. The log-scale scaling law plot for both
pre-training loss and supervised fine-tuning loss is shown in Fig. 3.

F. Edge-Level Task
F.1. ogbl-ppa

We use two tokens for the node identity encoding introduced in Sec. 2.2.3. Specifically, we use the species to partition the
nodes, so the first token represents the species, and the second is the local indices of proteins inside each species.

The pre-training and fine-tuning configurations for ogbl-ppa are listed in Tab. 13. The loss of pre-training versus the number
of tokens is shown in Fig. 4.

The fine-tuning data consists of subgraphs induced by the positive edges for training and equal negative edges randomly
sampled.

In general, a larger model results in lower pre-training loss, and better results in down-stream fine-tuning tasks.

F.2. ogbl-citation2

The pre-training and fine-tuning configurations for ogbl-citation2 are listed in Tab. 14. The subgraph sampling is edge-ego
with d = 1 and n = 14/30 as in Tab. 10. The pre-training losses of the ogbl-citation2 dataset with different model sizes and
subgraph sampling settings are shown in Fig. 5.
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Figure 4. Pre-train loss versus tokens of ogbl-ppa dataset for models mini/small/medium/base/large/xxlarge as in Tab. 11.
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Figure 5. Pre-train loss versus tokens of ogbl-citation2 dataset for models medium/base as in Tab. 11.
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Table 12. Pre-train and fine-tune configurations for the PCQM4M-v2 dataset. LSI means layer-scale-initialization, EMA is exponential
moving average, MPE stands for max-position-embedding, and TWE means tie-word-embeddings.

pre-train fine-tune

model-size Mini Small Medium Base Base24 Base48
batch-size 1024/1024/1024/1024/8192/8192 1024
total 1/1/1/1/4/4× 109 tokens 32 epochs
warmup 108 tokens 9.6 epochs

lr scheduler Warmup & linear decay Warmup & cosine decay
max-lr 3× 10−4 6/6/6/6/2/1.5× 10−4

min-lr 0 automatic set
Adam-betas [0.9, 0.95] [0.9, 0.99]
Adam-eps 1× 10−8 1× 10−10

max-grad-norm 5 1
weight-decay 0.1 0.02

attention-dropout 0.1
path-dropout 0 0/0/0/0.05/0.1/0.2
embed-dropout 0
mlp-dropout 0
LSI-val NA 1
EMA NA

hidden-act gelu
MPE 1024
TWE FALSE NA

G. Node-Level Task
G.1. ogbn-proteins

The configurations of pre-training and fine-tuning are in Tab. 15. The subgraph sampling is node-ego with d = 20 and n = 1
as in Tab. 10. The node identity is encoded with two tokens similar to the ogbl-ppa in Sec. 3.3 (see App. F for details).

G.2. ogbn-arxiv

The configurations of pre-training and fine-tuning are in Tab. 16. The subgraph sampling is node-ego with d = 1 and
n = 40 as in Tab. 10. The node identity is encoded with two tokens.

H. Question and Answering
Q1. Evaluating GraphGPT on real-world citation networks (e.g., PubMed, Cora) or social networks (e.g., Twitter,
Facebook graphs) could be great.

A1. We evaluated GraphGPT on large-scale real-world citation networks: ogbn-arxiv (169K nodes, 1.17M edges) and
ogbl-citation2 (2.93M nodes, 30.6M edges). These datasets are significantly larger than traditional benchmarks like Cora
(2.7K nodes, 5.4K edges) and PubMed (19.7K nodes, 44.3K edges), aligning with our focus on scaling to massive graph
data.

We chose these datasets because GraphGPT’s performance benefits from large-scale pre-training data to learn inductive
biases (e.g., node permutation invariance). For instance, pre-training on the small Triangles dataset (45K graphs) yielded
poor fine-tuning results (32.6%), whereas scaling pre-training data improved performance to 99% (Section 3.2.1). This
mirrors the trend in Vision Transformers (ViT), which outperform CNNs only with sufficiently large datasets (Dosovitskiy
et al., 2021).

While GNNs may outperform GraphGPT on small datasets like Cora or PubMed, our goal is to demonstrate scalability for
large-scale graphs—a critical challenge in modern applications.

Q2. While GraphGPT enables a lossless and reversible graph-to-seq transformation, how well does it do this in
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Table 13. The Pre-training and fine-tuning configurations for the ogbl-ppa dataset. For XXL model, we use fp16 in the pre-train stage, and
bf16 in the fine-tune stage for numerical stability.

pre-train fine-tune

model-size Mini Small Medium Base Large XXLarge
batch-size 1024 8192
total 2× 1010 tokens 8/8/8/8/16/16 epochs
warmup 109 tokens 2.4/2.4/2.4/2.4/4.8/4.8 epochs

lr scheduler Warmup & linear decay Warmup & cosine decay
max-lr 3× 10−4 3/3/3/3/3/2× 10−5

min-lr 0 automatic set
Adam-betas [0.9, 0.95] [0.9, 0.99]
Adam-eps 1× 10−8 1× 10−10

max-grad-norm 5 1
weight-decay 0.1 0

attention-dropout 0.1
path-dropout 0/0/0/0/0.1/0.1 0/0/0/0.05/0.1/0.2
embed-dropout 0
mlp-dropout 0
LSI-val NA NA/NA/1/1/1/NA
EMA NA

hidden-act gelu
MPE 1024
TWE FALSE NA

real-world noisy graphs?

A2. While not the focus of this paper, we tested GraphGPT on an internal noisy graph dataset (3.1M graphs, avg. 24.8 nodes,
54.7 edges) for edge denoising.

Using a semi-supervised node classification task, GraphGPT achieved 10-20% F1 score improvement over baselines. We
formulated the task analogously to Part-of-Speech tagging in NLP, leveraging token-level embeddings. The ‘long’ variant
outperformed ‘short’ (see Fig. 1) likely due to its edge-agnostic token embeddings of nodes.

Results were robust enough for online deployment.

Q3. What are the run-time comparisons with GNNs?

A3. We evaluated the run-time of GraphGPT versus GNNs using the PCQM4M-v2 dataset on a single V100-32G GPU. The
GNN baselines (adopted from Hu et al. (2021)) were implemented using the official GitHub repository6.

Results are shown in Table 17. Run-time remains nearly constant across GraphGPT models ranging from 0.62M to 33.95M
parameters. This consistency stems from an IO bottleneck during CPU-based data preprocessing. This time-consuming
preprocessing phase involves determining if a graph is Eulerian, Eulerizing non-Eulerian graphs, and generating Eulerian
paths.

Overall, GraphGPT’s run-time is comparable to GNNs when model sizes are similar.

Q4. What’s the computational cost of GraphGPT models?

A4. We have included computational cost details for the PCQM4Mv2 dataset in §4. The cost of other datasets are in the Tab.
18.

Q5. How robust is the model to adversarial graph perturbations?

A5. Adversarial robustness is a promising research area across NLP, CV, and graphs (Guo et al., 2021; Shao et al., 2022; Jin
et al., 2020; Sun et al., 2023). While not our primary focus, preliminary results on noisy graphs (Q2) suggest robustness
through large-scale training. A deeper study would bridge GraphGPT’s transformer architecture with adversarial graph

6https://github.com/snap-stanford/ogb/tree/master/examples/lsc/pcqm4m-v2
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Table 14. Pre-train and fine-tune configurations for the ogbl-citation2 dataset. We use bf16 in both the pre-training and fine-tuning stages
for numerical stability. One epochs contains 10% randomly sampled positive edges and negative edges. For a given positive edge of head
and tail node, we randomly sample a node as the tail node, and then form a negative edge with the head node.

pre-train fine-tune

model-size Medium Base
batch-size 1024 4096/2048
total 2× 1010 tokens 32 epochs
warmup 109 tokens 9.6 epochs

lr scheduler Warmup & linear decay Warmup & cosine decay
max-lr 1× 10−4 3× 10−5

min-lr 0 automatic set
Adam-betas [0.9, 0.95] [0.9, 0.99]
Adam-eps 1× 10−8 1× 10−10

max-grad-norm 1
weight-decay 0.1 0

attention-dropout 0.1
path-dropout 0 0.05
embed-dropout 0
mlp-dropout 0
LSI-val N/A
EMA N/A

hidden-act gelu
MPE 512 1024
TWE FALSE N/A

defenses, an encouraging future direction.

Q6. Can GraphGPT generate graphs that match real-world constraints (e.g., chemical validity)?

A6. While generation is not the primary focus, preliminary experiments show GraphGPT can generate valid molecules after
pre-trained on PCQM4M-v2.

However, generation quality depends on hyperparameters (e.g., temperature, top-p, iteration count T). Unconditional/condi-
tional generation and diversity control require further study, which is planned for future work.

Q7. Can you compare with other pre-trained-based graph models to highlight the advantages of GraphGPT?

A7. While models like GraphBERT (Zhang et al., 2020), GraphMAE (Hou et al., 2022), and GCC (Qiu et al., 2020)
employ graph pre-training, they primarily target small-scale datasets. GraphGPT’s evaluation focuses on large-scale
OGB leaderboard benchmarks, where existing pre-trained models lack competitive entries. Our comparisons align with
state-of-the-art baselines dominating these leaderboards, emphasizing scalability and performance on real-world graph tasks.

Q8. Why there is a need to introduce stochasticity when doing path identification?

A8. GraphGPT lacks some inductive biases inherent to GNNs (e.g., node permutation invariance). Randomly sampling
Eulerian paths per epoch forces the model to learn invariance between different paths of the same graph, akin to how ViT
(lacking CNN’s inductive biases) benefits from large-scale data and data augmentation. Empirically, this reduced overfitting
on molecular datasets.

Q9. Size to performance ratio.

A9. We clarify parameter counts and performance across datasets below:

Graph-Level (Tab. 1–2): GraphGPT’s parameter counts are comparable to prior SOTA (e.g., 113.6M vs. 86M for GPTrans).

Edge-Level (Tab.4): For ogbl-ppa, GraphGPT-B (145.3M) is a bit worse than Refined-GAE (295.8M), but GraphGPT-XXL
(2B) achieves the highest performance. For ogbl-citation2, GraphGPT-M (46.8M) and GraphGPT-B (133.1M) outperform
MPLP (749.8M).
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Table 15. Configurations of pre-training with SMTP and fine-tuning for the ogbn-proteins dataset.

pre-train fine-tune

model-size Small Medium Base
batch-size 256 128
total 2× 1010 tokens 16/16/8 epochs
warmup 109 tokens 4.8/4.8/2.4 epochs

lr scheduler Warmup & linear decay Warmup & cosine decay
max-lr 3× 10−4 3× 10−5

min-lr 0 automatic set
Adam-betas [0.9, 0.95] [0.9, 0.99]
Adam-eps 1× 10−8 1× 10−10

max-grad-norm 1
weight-decay 0.1 0

attention-dropout 0.1
path-dropout 0
embed-dropout 0 0.1/0.2/0.1
mlp-dropout 0
LSI-val N/A
EMA N/A 0.999

hidden-act gelu
MPE 512
TWE FALSE N/A

Node-Level (Tab.5): GraphGPT requires larger parameters on ogbn-proteins and ogbn-arxiv. This may reflect insufficient
pre-training data for these tasks, leading to suboptimal parameter utilization.

Q10. It is unclear what is intended by model scalability in §3.3; additionally scalability seems to not be the answer to
the problem if we take into account costs and computational resources required to solve the tasks.

A10. Our investigation of model scalability serves two critical purposes:

1. Studying performance limits reveals fundamental insights of data. Even small performance gains can reduce real-world
validation costs (OGB Team, 2020).

2. This study aligns with foundational NLP scaling law research (Kaplan et al., 2020; Hoffmann et al., 2022), aiming to
catalyze similar investigations for graph-structured data.

Q11. How do you evaluate the correctness of the response? Do you query the Transformer model again with
additional information if the response is not correct?

A11. The model directly outputs predictions via the task head during inference. Results are evaluated using standard
metrics (e.g., MAE, accuracy) for the downstream task. Each test/valid instance is processed once; no iterative querying is
performed.

Q12. How is the prompt structured? How do you express the task to solve?

A12. We do not use prompts. Instead, tasks are encoded via specialized tokens appended to the input sequence and processed
by an additional MLP head during fine-tuning as discussed in §2.3.2. Fig. 2 illustrates the implementations.
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Table 16. Configurations of pre-training with SMTP and fine-tuning for the ogbn-arxiv dataset.

pre-train fine-tune

model-size Small Medium Base
batch-size 256 128
total 4× 109 tokens 4 epochs
warmup 2× 108 tokens 1.2 epochs

lr scheduler Warmup & linear decay Warmup & cosine decay
max-lr 3× 10−4 3/3/2× 10−4

min-lr 0 automatic set
Adam-betas [0.9, 0.95] [0.9, 0.99]
Adam-eps 1× 10−8 1× 10−10

max-grad-norm 1
weight-decay 0.1 0

attention-dropout 0.1
path-dropout 0 0/0/0.1
embed-dropout 0 0.1
mlp-dropout 0
LSI-val N/A
EMA N/A 0.9997

hidden-act gelu
MPE 1024
TWE FALSE N/A

Table 17. Run-time comparison between GraphGPT variants and GNNs on the PCQM4Mv2 dataset. Time per epoch is measured in
minutes.

model # params time per epoch

GIN 3.76 M 9.25 min
GIN-virtual 6.66 M 11.2 min
GCN 1.96 M 8.0 min
GCN-virtual 4.85 M 9.6 min

GraphGPT-Tiny 0.62 M 20 min
GraphGPT-Mini 4.39 M 21 min
GraphGPT-Small 17.17 M 20 min
GraphGPT-Medium 33.95 M 20 min
GraphGPT-Base 113.85 M 46.7 min

Table 18. Computational cost details of the main datasets in the paper. ‘PT’ means pre-training and ‘FT’ stands for fine-tuning. Time is
measured in hours. The model size is ‘Base’ as in Tab. 11 with number of parameters about 110M. The corresponding hyper-parameters
can be found in Tab. 13, 14, 15, 16.

dataset model size PT time FT time GPU-PT GPU-FT

ogbl-ppa B 58.73 h 112.62 h 8 Nvidia L20 16 V100-32G
ogbl-citation2 B 72 h 100.3 h 8 Nvidia L20 8 Nvidia L20

ogbn-proteins B 27.1 h 3.1 h 8 Nvidia L20 1 V100-32G
ogbn-arxiv B 9.25 h 4.3 h 8 Nvidia L20 1 V100-32G
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