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Abstract

Recently, learning with soft labels has been shown to achieve better performance
than learning with hard labels in terms of model generalization, calibration, and
robustness. However, collecting pointwise labeling confidence for all training
examples can be challenging and time-consuming in real-world scenarios. This
paper delves into a novel weakly supervised binary classification problem called
confidence-difference (ConfDiff) classification. Instead of pointwise labeling con-
fidence, we are given only unlabeled data pairs with confidence difference that
specifies the difference in the probabilities of being positive. We propose a risk-
consistent approach to tackle this problem and show that the estimation error bound
achieves the optimal convergence rate. We also introduce a risk correction ap-
proach to mitigate overfitting problems, whose consistency and convergence rate
are also proven. Extensive experiments on benchmark data sets and a real-world
recommender system data set validate the effectiveness of our proposed approaches
in exploiting the supervision information of the confidence difference.

1 Introduction

Recent years have witnessed the prevalence of deep learning and its successful applications. However,
the success is built on the basis of the collection of large amounts of data with unique and accurate
labels. However, in many real-world scenarios, it is often difficult to satisfy such requirements.
To circumvent the difficulty, various weakly supervised learning problems have been investigated
accordingly, including but not limited to semi-supervised learning [1, 2, 3, 4], label-noise learning [5,
6, 7, 8, 9], positive-unlabeled learning [10, 11, 12], partial-label learning [13, 14, 15, 16, 17],
unlabeled-unlabeled learning [18, 19], and similarity-based classification [20, 21, 22].

Learning with soft labels has been shown to achieve better performance than learning with hard
labels in the context of supervised learning [23, 24], where each example is equipped with pointwise
labeling confidence indicating the degree to which the labels describe the example. The advantages
have been validated in many aspects, including model generalization [25, 26], calibration [27, 28], and
robustness [29, 30]. For example, with the help of soft labels, knowledge distillation [25, 31] transfers
knowledge from a large teacher network to a small student network. The student network can be
trained more efficiently and reliably with the soft labels generated by the teacher network [32, 33, 34].

However, collecting a large number of training examples with pointwise labeling confidence may be
demanding under many circumstances since it is challenging to describe the labeling confidence for
each training example exactly [35, 36, 37]. Different annotators may give different values of pointwise
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labeling confidence to the same example due to personal biases, and it has been demonstrated that
skewed confidence values can harm classification performance [36]. Besides, giving pointwise
labeling information to large-scale data sets is also expensive, laborious, and even unrealistic in many
real-world scenarios [38, 39, 9]. On the contrary, leveraging supervision information of pairwise
comparisons may ameliorate the biases of skewed pointwise labeling confidence and save labeling
costs. Following this idea, we investigate a more practical problem setting for binary classification
in this paper, where we are given unlabeled data pairs with confidence difference indicating the
difference in the probabilities of being positive. Collecting confidence difference for training examples
in pairs is much cheaper and more accessible than collecting pointwise labeling confidence for all the
training examples.

Take click-through rate prediction in recommender systems [40, 41] for example. The combinations
of users and their favorite/disliked items can be regarded as positive/negative data. Collecting training
data takes work to distinguish between positive and negative data. Furthermore, the pointwise labeling
confidence of training data may be difficult to be determined due to the extraordinarily sparse and
class-imbalance problems [42]. Therefore, the collected confidence values may be biased. However,
collecting the difference in the preference between a pair of candidate items for a given user is more
accessible and may alleviate the biases. Section 4 will give a real-world case study of this problem.
Take the disease risk estimation problem for another example. Given a person’s attributes, the goal is
to predict the risk of having some disease. When asking doctors to annotate the probabilities of having
the disease for patients, it takes work to determine the exact values of the probabilities. Furthermore,
the probability values given by different doctors may differ due to their diverse backgrounds. On the
other hand, it is much easier and less biased to estimate the relative difference in the probabilities
of having the disease between two patients. Therefore, the problem of learning with confidence
difference is of practical research value, but has yet to be investigated in the literature.

As a related work, Feng et al. [43] elaborated that a binary classifier can be learned from pairwise
comparisons, termed Pcomp classification. For a pair of samples, they used a pairwise label of one
is being more likely to be positive than the other. Since knowing the confidence difference implies
knowing the pairwise label, our method requires stronger supervision than Pcomp classification.
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Figure 1: Experimental results for
different strategies of handling ex-
amples from (−1,+1).

Nevertheless, we argue that, in many real-world scenarios, we
may not only know one example is more likely to be positive
than the other, but also know how much the difference in confi-
dence is, as explained in the above examples. Therefore, the set-
ting of the current paper is not so restrictive compared with that
of Pcomp classification. Furthermore, our setting is more flexi-
ble than that of Pcomp classification from the viewpoint of data
generation process. Pcomp classification limits the labels of
pairs of training data to be in {(+1,+1), (+1,−1), (−1,−1)}.
To cope with collected data with labels (−1,+1), they either
discard them or reverse them as (+1,−1). On the contrary, our
setting is more general and we take the examples from (−1,+1)
also into consideration explicitly in the data distribution assump-
tion. Figure 1 shows the results of a pilot experiment. Here,
Strategy1 denotes Pcomp-Teacher [43] discarding examples from (−1,+1) while Strategy2 denotes
Pcomp-Teacher reversing examples from (−1,+1). We can observe that both strategies perform ac-
tually similarly. Since Strategy1 loses many data, it is intuitively expected that Strategy2 works much
better, but the improvement is actually marginal. This may be because the training data distribution
after reversing differs from the expected one. On the contrary, in this work we take examples from
(−1,+1) into consideration directly, which is a more appropriate way to handle these data.

Learning with pairwise comparisons has been investigated pervasively in the community [44, 45, 46,
47, 48, 49, 50], with applications in information retrieval [51], computer vision [52], regression [53,
54], crowdsourcing [55, 56], and graph learning [57]. It is noteworthy that there exist distinct
differences between our work and previous works on learning with pairwise comparisons. Previous
works have mainly tried to learn a ranking function that can rank candidate examples according to
relevance or preference. In this paper, we try to learn a pointwise binary classifier by conducting
empirical risk minimization under the binary classification setting.

Our contributions are summarized as follows:
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• We investigate confidence-difference (ConfDiff) classification, a novel and practical weakly super-
vised learning problem, which can be solved via empirical risk minimization by constructing an
unbiased risk estimator. The proposed approach can be equipped with any model, loss function,
and optimizer flexibly.

• An estimation error bound is derived, showing that the proposed approach achieves the optimal
parametric convergence rate. The robustness is further demonstrated by probing into the influence
of an inaccurate class prior probability and noisy confidence difference.

• To mitigate overfitting issues, a risk correction approach [19] with consistency guarantee is further
introduced. Extensive experimental results on benchmark data sets and a real-world recommender
system data set validate the effectiveness of the proposed approaches.

2 Preliminaries

In this section, we discuss the background of binary classification, binary classification with soft labels,
and Pcomp classification. Then, we elucidate the data generation process of ConfDiff classification.

2.1 Binary Classification

For binary classification, let X = Rd denote the d-dimensional feature space and Y = {+1,−1}
denote the label space. Let p(x, y) denote the unknown joint probability density over random
variables (x, y) ∈ X × Y . The task of binary classification is to learn a binary classifier g : X → R
which minimizes the following classification risk:

R(g) = Ep(x,y)[ℓ(g(x), y)], (1)

where ℓ(·, ·) is a non-negative binary-class loss function, such as the 0-1 loss and logistic loss. Let
π+ = p(y = +1) and π− = p(y = −1) denote the class prior probabilities for the positive and
negative classes respectively. Furthermore, let p+(x) = p(x|y = +1) and p−(x) = p(x|y = −1)
denote the class-conditional probability densities of positive and negative data respectively. Then the
classification risk in Eq. (1) can be equivalently expressed as

R(g) = π+Ep+(x)[ℓ(g(x),+1)] + π−Ep−(x)[ℓ(g(x),−1)]. (2)

2.2 Binary Classification with Soft Labels

When the soft labels of training examples are accessible to the learning algorithm, taking advantage
of them can often improve the generalization performance [23]. First, the classification risk in Eq. (1)
can be equivalently expressed as

R(g) = Ep(x)[p(y = +1|x)ℓ(g(x),+1) + p(y = −1|x)ℓ(g(x),−1)]. (3)

Then, given training data equipped with confidence {(xi, ri)}ni=1 where ri = p(yi = +1|xi) is the
pointwise positive confidence associated with xi, we minimize the following unbiased risk estimator
to perform empirical risk minimization:

R̂soft(g) =
1

n

∑n

i=1
(riℓ(g(xi),+1) + (1− ri)ℓ(g(xi),−1)). (4)

However, accurate pointwise positive confidence may be hard to be obtained in reality [36].

2.3 Pairwise-Comparison (Pcomp) Classification

In principle, collecting supervision information of pairwise comparisons is much easier and
cheaper than pointwise supervision information [43]. In Pcomp classification [43], we are given
pairs of unlabeled data where we know which one is more likely to be positive than the other.
It is assumed that Pcomp data are sampled from labeled data pairs whose labels belong to
{(+1,−1), (+1,+1), (−1,−1)}. Based on this assumption, the probability density of Pcomp
data (x,x′) is given as q(x,x′)/(π2

+ + π2
− + π+π−) where q(x,x′) = π2

+p+(x)p+(x
′) +

π2
−p−(x)p−(x

′) + π+π−p+(x)p−(x
′). Then, an unbiased risk estimator for Pcomp classifica-

tion is derived as follows:

R̂Pcomp(g) =
1

n

∑n

i=1
(ℓ(g(xi),+1) + ℓ(g(x′

i),−1)− π+ℓ(g(xi),−1)− π−ℓ(g(x
′
i),+1)). (5)
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In real-world scenarios, we may not only know one example is more likely to be positive than the other,
but also know how much the difference in confidence is. Next, a novel weakly supervised learning
setting named ConfDiff classification is introduced which can utilize such confidence difference.

2.4 Confidence-Difference (ConfDiff) Classification

In this subsection, the formal definition of confidence difference is given firstly. Then, we elaborate
the data generation process of ConfDiff data.
Definition 1 (Confidence Difference). The confidence difference c(x,x′) between an unlabeled data
pair (x,x′) is defined as

c(x,x′) = p(y′ = +1|x′)− p(y = +1|x). (6)

As shown in the definition above, the confidence difference denotes the difference in the class
posterior probabilities between the unlabeled data pair, which can measure how confident the
pairwise comparison is. In ConfDiff classification, we are only given n unlabeled data pairs with
confidence difference D = {((xi,x

′
i), ci)}ni=1. Here, ci = c(xi,x

′
i) is the confidence difference

for the unlabeled data pair (xi,x
′
i). Furthermore, the unlabeled data pair (xi,x

′
i) is assumed to

be drawn from a probability density p(x,x′) = p(x)p(x′). This indicates that xi and x′
i are two

i.i.d. instances sampled from p(x). It is worth noting that the confidence difference ci will be positive
if the second instance x′

i has a higher probability to be positive than the first instance xi, and will be
negative otherwise. During the data collection process, the labeler can first sample two unlabeled data
independently from the marginal distribution p(x), then provide the confidence difference for them.

3 The Proposed Approach

In this section, we introduce our proposed approaches with theoretical guarantees. Besides, we show
the influence of an inaccurate class prior probability and noisy confidence difference theoretically.
Furthermore, we introduce a risk correction approach to improve the generalization performance.

3.1 Unbiased Risk Estimator

In this subsection, we show that the classification risk in Eq. (1) can be expressed with ConfDiff data
in an equivalent way.
Theorem 1. The classification risk R(g) in Eq. (1) can be equivalently expressed as

RCD(g) = Ep(x,x′)[
1

2
(L(x,x′) + L(x′,x))], (7)

where
L(x,x′) = (π+ − c(x,x′))ℓ(g(x),+1) + (π− − c(x,x′))ℓ(g(x′),−1).

Accordingly, we can derive an unbiased risk estimator for ConfDiff classification:

R̂CD(g) =
1

2n

∑n

i=1
(L(xi,x

′
i) + L(x′

i,xi)). (8)

Minimum-variance risk estimator. Actually, Eq. (8) is one of the candidates of the unbiased risk
estimator. We introduce the following lemma:
Lemma 1. The following expression is also an unbiased risk estimator:

1

n

∑n

i=1
(αL(xi,x

′
i) + (1− α)L(x′

i,xi)), (9)

where α ∈ [0, 1] is an arbitrary weight.

Then, we introduce the following theorem:
Theorem 2. The unbiased risk estimator in Eq. (8) has the minimum variance among all the candidate
unbiased risk estimators in the form of Eq. (9) w.r.t. α ∈ [0, 1].

Theorem 2 indicates the variance minimality of the proposed unbiased risk estimator in Eq. (8), and
we adopt this risk estimator in the following sections.
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3.2 Estimation Error Bound

In this subsection, we elaborate the convergence property of the proposed risk estimator R̂CD(g)
by giving an estimation error bound. Let G = {g : X 7→ R} denote the model class. It is assumed
that there exists some constant Cg such that supg∈G ∥g∥∞ ≤ Cg and some constant Cℓ such that
sup|z|≤Cg

ℓ(z, y) ≤ Cℓ. We also assume that the binary loss function ℓ(z, y) is Lipschitz continuous
for z and y with a Lipschitz constant Lℓ. Let g∗ = argming∈G R(g) denote the minimizer of the
classification risk in Eq. (1) and ĝCD = argming∈G R̂CD(g) denote the minimizer of the unbiased
risk estimator in Eq. (8). The following theorem can be derived:

Theorem 3. For any δ > 0, the following inequality holds with probability at least 1− δ:

R(ĝCD)−R(g∗) ≤ 8LℓRn(G) + 4Cℓ

√
ln 2/δ

2n
, (10)

where Rn(G) denotes the Rademacher complexity of G for unlabeled data with size n.

From Theorem 3, we can observe that as n → ∞, R(ĝCD) → R(g∗) because Rn(G) → 0 for all
parametric models with a bounded norm, such as deep neural networks trained with weight decay [58].
Furthermore, the estimation error bound converges in Op(1/

√
n), where Op denotes the order in

probability, which is the optimal parametric rate for empirical risk minimization without making
additional assumptions [59].

3.3 Robustness of Risk Estimator

In the previous subsections, it was assumed that the class prior probability is known in advance. In
addition, it was assumed that the ground-truth confidence difference of each unlabeled data pair
is accessible. However, these assumptions can rarely be satisfied in real-world scenarios, since
the collection of confidence difference is inevitably injected with noise. In this subsection, we
theoretically analyze the influence of an inaccurate class prior probability and noisy confidence
difference on the learning procedure. Later in Section 4.5, we will experimentally verify our
theoretical findings.

Let D̄ = {((xi,x
′
i), c̄i)}ni=1 denote n unlabeled data pairs with noisy confidence difference, where

c̄i is generated by corrupting the ground-truth confidence difference ci with noise. Besides, let π̄+

denote the inaccurate class prior probability accessible to the learning algorithm. Furthermore, let
R̄CD(g) denote the empirical risk calculated based on the inaccurate class prior probability and noisy
confidence difference. Let ḡCD = argming∈G R̄CD(g) denote the minimizer of R̄CD(g). Then the
following theorem gives an estimation error bound:

Theorem 4. Based on the assumptions above, for any δ > 0, the following inequality holds with
probability at least 1− δ:

R(ḡCD)−R(g∗) ≤ 16LℓRn(G) + 8Cℓ

√
ln 2/δ

2n
+

4Cℓ

∑n
i=1 |c̄i − ci|
n

+ 4Cℓ|π̄+ − π+|. (11)

Theorem 4 indicates that the estimation error is bounded by twice the original bound in Theorem 3
with the mean absolute error of the noisy confidence difference and the inaccurate class prior
probability. Furthermore, if

∑n
i=1 |c̄i − ci| has a sublinear growth rate with high probability and the

class prior probability is estimated consistently, the risk estimator can be even consistent. It elaborates
the robustness of the proposed approach.

3.4 Risk Correction Approach

It is worth noting that the empirical risk in Eq. (8) may be negative due to negative terms, which is
unreasonable because of the non-negative property of loss functions. This phenomenon will result
in severe overfitting problems when complex models are adopted [19, 22, 43]. To circumvent this
difficulty, we wrap the individual loss terms in Eq. (8) with risk correction functions proposed in Lu
et al. [19], such as the rectified linear unit (ReLU) function f(z) = max(0, z) and the absolute value
function f(z) = |z|. In this way, the corrected risk estimator for ConfDiff classification can be
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expressed as follows:

R̃CD(g) =
1

2n
(f(

∑n

i=1
(π+ − ci)ℓ(g(xi),+1)) + f(

∑n

i=1
(π− − ci)ℓ(g(x

′
i),−1))

+f(
∑n

i=1
(π+ + ci)ℓ(g(x

′
i),+1)) + f(

∑n

i=1
(π− + ci)ℓ(g(xi),−1))). (12)

Theoretical analysis. We assume that the risk correction function f(z) is Lipschitz continuous with
Lipschitz constant Lf . For ease of notation, let Â(g) =

∑n
i=1(π+ − ci)ℓ(g(xi),+1)/2n, B̂(g) =∑n

i=1(π−−ci)ℓ(g(x
′
i),−1)/2n, Ĉ(g) =

∑n
i=1(π++ci)ℓ(g(x

′
i),+1)/2n, and D̂(g) =

∑n
i=1(π−+

ci)ℓ(g(xi),−1)/2n. From Lemma 3 in Appendix A, the values of E[Â(g)],E[B̂(g)],E[Ĉ(g)], and
E[D̂(g)] are non-negative. Therefore, we assume that there exist non-negative constants a, b, c,

and d such that E[Â(g)] ≥ a,E[B̂(g)] ≥ b,E[Ĉ(g)] ≥ c, and E[D̂(g)] ≥ d. Besides, let g̃CD =

argming∈G R̃CD(g) denote the minimizer of R̃CD(g). Then, Theorem 5 is provided to elaborate the
bias and consistency of R̃CD(g).

Theorem 5. Based on the assumptions above, the bias of the risk estimator R̃CD(g) decays exponen-
tially as n → ∞:

0 ≤ E[R̃CD(g)]−R(g) ≤ 2(Lf + 1)Cℓ∆, (13)

where ∆ = exp (−2a2n/C2
ℓ )+exp (−2b2n/C2

ℓ )+exp (−2c2n/C2
ℓ )+exp (−2d2n/C2

ℓ ). Further-
more, with probability at least 1− δ, we have

|R̃CD(g)−R(g)| ≤ 2CℓLf

√
ln 2/δ

2n
+ 2(Lf + 1)Cℓ∆. (14)

Theorem 5 demonstrates that R̃CD(g) → R(g) in Op(1/
√
n), which means that R̃CD(g) is biased

yet consistent. The estimation error bound of g̃CD is analyzed in Theorem 6.
Theorem 6. Based on the assumptions above, for any δ > 0, the following inequality holds with
probability at least 1− δ:

R(g̃CD)−R(g∗) ≤ 8LℓRn(G) + 4Cℓ(Lf + 1)

√
ln 2/δ

2n
+ 4(Lf + 1)Cℓ∆. (15)

Theorem 6 elucidates that as n → ∞, R(g̃CD) → R(g∗), since Rn(G) → 0 for all parametric
models with a bounded norm [60] and ∆ → 0. Furthermore, the estimation error bound converges in
Op(1/

√
n), which is the optimal parametric rate for empirical risk minimization without additional

assumptions [59].

4 Experiments

In this section, we verify the effectiveness of our proposed approaches experimentally.

4.1 Experimental Setup

We conducted experiments on benchmark data sets, including MNIST [61], Kuzushiji-MNIST [62],
Fashion-MNIST [63], and CIFAR-10 [64]. In addition, four UCI data sets [65] were used, including
Optdigits, USPS, Pendigits, and Letter. Since the data sets were originally designed for multi-class
classification, we manually partitioned them into binary classes. For CIFAR-10, we used ResNet-
34 [66] as the model architecture. For other data sets, we used a multilayer perceptron (MLP)
with three hidden layers of width 300 equipped with the ReLU [67] activation function and batch
normalization [68]. The logistic loss is utilized to instantiate the loss function ℓ.

It is worth noting that confidence difference is given by labelers in real-world applications, while it
was generated synthetically in this paper to facilitate comprehensive experimental analysis. We firstly
trained a probabilistic classifier via logistic regression with ordinarily labeled data and the same
neural network architecture. Then, we sampled unlabeled data in pairs at random, and generated
the class posterior probabilities by inputting them into the probabilistic classifier. After that, we
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Table 1: Classification accuracy (mean±std) of each method on benchmark data sets with different
class priors, where the best performance (excluding Oracle) is shown in bold.

Class Prior Method MNIST Kuzushiji Fashion CIFAR-10

π+ = 0.2

Pcomp-Unbiased 0.761±0.017 0.637±0.052 0.737±0.050 0.776±0.023
Pcomp-ReLU 0.800±0.000 0.800±0.000 0.800±0.000 0.800±0.000
Pcomp-ABS 0.800±0.000 0.800±0.000 0.800±0.000 0.800±0.000
Pcomp-Teacher 0.965±0.010 0.871±0.046 0.853±0.017 0.836±0.019
Oracle-Hard 0.990±0.000 0.939±0.001 0.979±0.001 0.894±0.003
Oracle-Soft 0.989±0.001 0.939±0.004 0.979±0.001 0.893±0.003
ConfDiff-Unbiased 0.789±0.041 0.672±0.053 0.855±0.024 0.789±0.025
ConfDiff-ReLU 0.968±0.003 0.860±0.017 0.964±0.004 0.844±0.020
ConfDiff-ABS 0.975±0.003 0.898±0.003 0.965±0.002 0.862±0.015

π+ = 0.5

Pcomp-Unbiased 0.712±0.020 0.578±0.036 0.723±0.042 0.703±0.042
Pcomp-ReLU 0.502±0.003 0.502±0.004 0.500±0.000 0.602±0.032
Pcomp-ABS 0.842±0.012 0.727±0.006 0.851±0.012 0.583±0.018
Pcomp-Teacher 0.893±0.014 0.782±0.046 0.903±0.016 0.779±0.016
Oracle-Hard 0.986±0.000 0.929±0.002 0.976±0.001 0.871±0.003
Oracle-Soft 0.985±0.001 0.928±0.002 0.978±0.001 0.877±0.002
ConfDiff-Unbiased 0.911±0.046 0.712±0.046 0.896±0.036 0.720±0.024
ConfDiff-ReLU 0.944±0.011 0.805±0.015 0.960±0.003 0.830±0.007
ConfDiff-ABS 0.964±0.001 0.867±0.006 0.967±0.001 0.843±0.004

π+ = 0.8

Pcomp-Unbiased 0.799±0.005 0.671±0.029 0.813±0.029 0.737±0.022
Pcomp-ReLU 0.910±0.031 0.775±0.022 0.897±0.023 0.851±0.010
Pcomp-ABS 0.854±0.027 0.838±0.026 0.921±0.017 0.849±0.007
Pcomp-Teacher 0.943±0.026 0.814±0.027 0.936±0.014 0.821±0.003
Oracle-Hard 0.991±0.001 0.942±0.003 0.979±0.000 0.897±0.002
Oracle-Soft 0.990±0.002 0.945±0.003 0.980±0.001 0.904±0.009
ConfDiff-Unbiased 0.792±0.017 0.758±0.033 0.810±0.035 0.794±0.012
ConfDiff-ReLU 0.970±0.004 0.886±0.009 0.970±0.002 0.851±0.012
ConfDiff-ABS 0.983±0.002 0.915±0.001 0.975±0.002 0.874±0.011

generated confidence difference for each pair of sampled data according to Definition 1. To verify
the effectiveness of our approaches under different class prior settings, we set π+ ∈ {0.2, 0.5, 0.8}
for all the data sets. Besides, we assumed that the class prior π+ was known for all the compared
methods. We repeated the sampling-and-training procedure for five times, and the mean accuracy as
well as the standard deviation were recorded.

We adopted the following variants of our proposed approaches: 1) ConfDiff-Unbiased, which denotes
the method working by minimizing the unbiased risk estimator; 2) ConfDiff-ReLU, which denotes
the method working by minimizing the corrected risk estimator with the ReLU function as the
risk correction function; 3) ConfDiff-ABS, which denotes the method working by minimizing the
corrected risk estimator with the absolute value function as the risk correction function. We compared
our proposed approaches with several Pcomp methods [43], including Pcomp-Unbiased, Pcomp-
ReLU, Pcomp-ABS, and Pcomp-Teacher. We also recorded the experimental results of supervised
learning methods, including Oracle-Hard having access to ground-truth hard labels and Oracle-Soft
having access to pointwise positive confidence. All the experiments were conducted on NVIDIA
GeForce RTX 3090. The number of training epoches was set to 200 and we obtained the testing
accuracy by averaging the results in the last 10 epoches. All the methods were implemented in
PyTorch [69]. We used the Adam optimizer [70]. To ensure fair comparisons, We set the same
hyperparameter values for all the compared approaches, where the details can be found in Appendix H.

4.2 Experimental Results

Benchmark data sets. Table 1 reports detailed experimental results for all the compared methods
on four benchmark data sets. Based on Table 1, we can draw the following conclusions: a) On all the
cases of benchmark data sets, our proposed ConfDiff-ABS method achieves superior performance
against all of the other compared approaches significantly, which validates the effectiveness of our
approach in utilizing supervision information of confidence difference; b) Pcomp-Teacher achieves
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Table 2: Classification accuracy (mean±std) of each method on UCI data sets with different class
priors, where the best performance (excluding Oracle) is shown in bold.

Class Prior Method Optdigits USPS Pendigits Letter

π+ = 0.2

Pcomp-Unbiased 0.771±0.016 0.721±0.046 0.743±0.057 0.757±0.028
Pcomp-ReLU 0.800±0.000 0.800±0.000 0.800±0.000 0.800±0.000
Pcomp-ABS 0.800±0.001 0.800±0.000 0.800±0.000 0.800±0.000
Pcomp-Teacher 0.901±0.023 0.894±0.023 0.928±0.019 0.883±0.006
Oracle-Hard 0.990±0.002 0.984±0.002 0.997±0.001 0.978±0.003
Oracle-Soft 0.990±0.003 0.984±0.004 0.998±0.001 0.971±0.007
ConfDiff-Unbiased 0.831±0.078 0.840±0.078 0.865±0.079 0.732±0.053
ConfDiff-ReLU 0.953±0.014 0.957±0.007 0.987±0.003 0.929±0.008
ConfDiff-ABS 0.963±0.009 0.960±0.005 0.988±0.002 0.942±0.007

π+ = 0.5

Pcomp-Unbiased 0.651±0.112 0.671±0.090 0.748±0.038 0.632±0.019
Pcomp-ReLU 0.630±0.076 0.554±0.048 0.514±0.019 0.525±0.023
Pcomp-ABS 0.787±0.031 0.814±0.018 0.793±0.017 0.748±0.031
Pcomp-Teacher 0.890±0.009 0.860±0.012 0.883±0.018 0.864±0.024
Oracle-Hard 0.988±0.003 0.980±0.003 0.997±0.001 0.975±0.001
Oracle-Soft 0.987±0.003 0.980±0.003 0.997±0.001 0.967±0.006
ConfDiff-Unbiased 0.917±0.006 0.936±0.010 0.945±0.052 0.755±0.041
ConfDiff-ReLU 0.921±0.011 0.945±0.009 0.981±0.004 0.895±0.006
ConfDiff-ABS 0.962±0.006 0.959±0.004 0.988±0.003 0.925±0.003

π+ = 0.8

Pcomp-Unbiased 0.765±0.023 0.746±0.012 0.743±0.026 0.694±0.031
Pcomp-ReLU 0.902±0.017 0.891±0.024 0.913±0.023 0.827±0.025
Pcomp-ABS 0.894±0.019 0.879±0.009 0.911±0.009 0.870±0.006
Pcomp-Teacher 0.918±0.007 0.933±0.023 0.903±0.008 0.872±0.011
Oracle-Hard 0.987±0.003 0.983±0.002 0.997±0.001 0.976±0.004
Oracle-Soft 0.986±0.003 0.985±0.004 0.998±0.001 0.965±0.010
ConfDiff-Unbiased 0.886±0.037 0.803±0.042 0.892±0.096 0.748±0.015
ConfDiff-ReLU 0.949±0.007 0.958±0.008 0.986±0.003 0.927±0.008
ConfDiff-ABS 0.964±0.005 0.964±0.003 0.987±0.002 0.945±0.007

superior performance against all of the other Pcomp approaches by a large margin. The excellent
performance benefits from the effectiveness of consistency regularization for weakly supervised
learning problems [1, 17, 71]; c) It is worth noting that the classification results of ConfDiff-ReLU
and ConfDiff-ABS have smaller variances than ConfDiff-Unbiased. It demonstrates that the risk
correction method can enhance the stability and robustness for ConfDiff classification.

UCI data sets. Table 2 reports detailed experimental results on four UCI data sets as well. From
Table 2, we can observe that: a) On all the UCI data sets under different class prior probability
settings, our proposed ConfDiff-ABS method achieves the best performance among all the compared
approaches with significant superiority, which verifies the effectiveness of our proposed approaches
again; b) The performance of our proposed approaches is more stable than the compared Pcomp
approaches under different class prior probability settings, demonstrating the superiority of our
methods in dealing with various kinds of data distributions.

4.3 Experiments on a Real-world Recommender System Data Set

Table 3: Experimental results on
the KuaiRec data set.

Method HR NDCG

BPR 0.464 0.256
MRL 0.476 0.271
Oracle-Hard 0.469 0.283
Oracle-Soft 0.534 0.380
Pcomp-Teacher 0.179 0.066

ConfDiff-ABS 0.570 0.372

We also conducted experiments on a recommender system data
set to demonstrate our approach’s usefulness and promising
applications in real-world scenarios. We used the KuaiRec [72]
data set, a real-world recommender system data set collected
from a well-known short-video mobile app. In this data set,
user-item interactions are represented by watching ratios, i.e.,
the ratios of watching time to the entire length of videos. Such
statistics could reveal the confidence of preference, and we
regarded them as pointwise positive confidence. We generated
pairwise confidence difference between pairs of items for a
given user. We adopted the NCF [73] model as our backbone.
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Figure 2: Classification performance of ConfDiff-ReLU and ConfDiff-ABS given a fraction of
training data as well as Pcomp-Teacher given 100% of training data (π+ = 0.5).

Details of the experimental setup and the data set can be found in Appendix H. We employed 5
compared methods, including BPR [74], Margin Ranking Loss (MRL), Oracle-Hard, Oracle-Soft,
and Pcomp-Teacher. Table 3 reports the hit ratio (HR) and normalized discounted cumulative gain
(NDCG) results. Our approach performs comparably against Oracle in terms of NDCG and even
performs better in terms of HR. On the contrary, Pcomp-Teacher does not perform well on this data
set. It validates the effectiveness of our approach in exploiting the supervision information of the
confidence difference.

4.4 Performance with Fewer Training Data

We conducted experiments by changing the fraction of training data for ConfDiff-ReLU and ConfDiff-
ABS (100% indicated that all the ConfDiff data were used for training). For comparison, we used
100% of training data for Pcomp-Teacher during the training process. Figure 2 shows the results
with π+ = 0.5, and more experimental results can be found in Appendix I. We can observe that
the classification performance of our proposed approaches is still advantageous given a fraction of
training data. Our approaches can achieve superior or comparable performance even when only 10%
of training data are used. It elucidates that leveraging confidence difference may be more effective
than increasing the number of training examples.

4.5 Analysis on Robustness

In this subsection, we investigate the influence of an inaccurate class prior probability and noisy
confidence difference on the generalization performance of the proposed approaches. Specifically,
let π̄+ = ϵπ+ denote the corrupted class prior probability with ϵ being a real number around 1. Let
c̄i = ϵ′ici denote the noisy confidence difference where ϵ′i is sampled from a normal distribution
N (1, σ2). Figure 3 shows the classification performance of our proposed approaches on MNIST and
Pendigits (π+ = 0.5) with different ϵ and σ. It is demonstrated that the performance degenerates
with ϵ = 0.8 or ϵ = 1.2 on some data sets, which indicates that it is important to estimate the class
prior accurately.

5 Conclusion

In this paper, we dived into a novel weakly supervised learning setting where only unlabeled data pairs
equipped with confidence difference were given. To solve the problem, an unbiased risk estimator
was derived to perform empirical risk minimization. An estimation error bound was established to
show that the optimal parametric convergence rate can be achieved. Furthermore, a risk correction
approach was introduced to alleviate overfitting issues. Extensive experimental results validated the
superiority of our proposed approaches. In future, it would be promising to apply our approaches in
real-world scenarios and multi-class classification settings.
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(a) ConfDiff-Unbiased (b) ConfDiff-ReLU (c) ConfDiff-ABS

(d) ConfDiff-Unbiased (e) ConfDiff-ReLU (f) ConfDiff-ABS

Figure 3: Classification accuracy on MNIST (the first row) and Pendigits (the second row) with
π+ = 0.5 given an inaccurate class prior probability and noisy confidence difference.
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A Proof of Theorem 1

Before giving the proof of Theorem 1, we begin with the following lemmas:

Lemma 2. The confidence difference c(x,x′) can be equivalently expressed as

c(x,x′) =
π+p(x)p+(x

′)− π+p+(x)p(x
′)

p(x)p(x′)
(16)

=
π−p−(x)p(x

′)− π−p(x)p−(x
′)

p(x)p(x′)
(17)

Proof. On one hand,

c(x,x′) = p(y′ = +1|x′)− p(y = +1|x)

=
p(x′, y′ = +1)

p(x′)
− p(x, y = +1)

p(x)

=
π+p+(x

′)

p(x′)
− π+p+(x)

p(x)

=
π+p(x)p+(x

′)− π+p+(x)p(x
′)

p(x)p(x′)
.

On the other hand,

c(x,x′) = p(y′ = +1|x′)− p(y = +1|x)
= (1− p(y′ = 0|x′))− (1− p(y = 0|x))
= p(y = 0|x)− p(y′ = 0|x′)

=
p(x, y = 0)

p(x)
− p(x′, y = 0)

p(x′)

=
π−p−(x)

p(x)
− π−p−(x

′)

p(x′)

=
π−p−(x)p(x

′)− π−p(x)p−(x
′)

p(x)p(x′)
,

which concludes the proof.

Lemma 3. The following equations hold:

Ep(x,x′)[(π+ − c(x,x′))ℓ(g(x),+1)] = π+Ep+(x)[ℓ(g(x),+1)], (18)

Ep(x,x′)[(π− + c(x,x′))ℓ(g(x),−1)] = π−Ep−(x)[ℓ(g(x),−1)], (19)

Ep(x,x′)[(π+ + c(x,x′))ℓ(g(x′),+1)] = π+Ep+(x′)[ℓ(g(x
′),+1)], (20)

Ep(x,x′)[(π− − c(x,x′))ℓ(g(x′),−1)] = π−Ep−(x′)[ℓ(g(x
′),−1)]. (21)
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Proof. Firstly, the proof of Eq. (18) is given:

Ep(x,x′)[(π+ − c(x,x′))ℓ(g(x),+1)]

=

∫ ∫
π+p(x)p(x

′)− π+p(x)p+(x
′) + π+p+(x)p(x

′)

p(x)p(x′)
ℓ(g(x),+1)p(x,x′) dx dx′

=

∫ ∫
(π+p(x)p(x

′)− π+p(x)p+(x
′) + π+p+(x)p(x

′))ℓ(g(x),+1) dx dx′

=

∫
π+p(x)ℓ(g(x),+1) dx

∫
p(x′) dx′ −

∫
π+p(x)ℓ(g(x),+1) dx

∫
p+(x

′) dx′

+

∫
π+p+(x)ℓ(g(x),+1) dx

∫
p(x′) dx′

=

∫
π+p(x)ℓ(g(x),+1) dx−

∫
π+p(x)ℓ(g(x),+1) dx+

∫
π+p+(x)ℓ(g(x),+1) dx

=

∫
π+p+(x)ℓ(g(x),+1) dx

=π+Ep+(x)[ℓ(g(x),+1)].

After that, the proof of Eq. (19) is given:

Ep(x,x′)[(π− + c(x,x′))ℓ(g(x),−1)]

=

∫ ∫
π−p(x)p(x

′) + π−p−(x)p(x
′)− π−p(x)p−(x

′)

p(x)p(x′)
ℓ(g(x),−1)p(x,x′) dx dx′

=

∫ ∫
(π−p(x)p(x

′) + π−p−(x)p(x
′)− π−p(x)p−(x

′))ℓ(g(x),−1) dx dx′

=

∫
π−p(x)ℓ(g(x),−1) dx

∫
p(x′) dx′ +

∫
π−p−(x)ℓ(g(x),−1) dx

∫
p(x′) dx′

−
∫

π−p(x)ℓ(g(x),−1) dx

∫
p−(x

′) dx′

=

∫
π−p(x)ℓ(g(x),−1) dx+

∫
π−p−(x)ℓ(g(x),−1) dx−

∫
π−p(x)ℓ(g(x),−1) dx

=

∫
π−p−(x)ℓ(g(x),−1) dx

=π−Ep−(x)[ℓ(g(x),−1)].

It can be noticed that c(x,x′) = −c(x′,x) and p(x,x′) = p(x′,x). Therefore, it can be deduced
naturally that Ep(x,x′)[(π+ − c(x,x′))ℓ(g(x),+1)] = Ep(x′,x)[(π+ + c(x′,x))ℓ(g(x),+1)]. Be-
cause x and x′ are symmetric, we can swap them and deduce Eq. (20). Eq. (21) can be deduced in
the same manner, which concludes the proof.

Based on Lemma 3, the proof of Theorem 1 is given.

Proof of Theorem 1. To begin with, it can be noticed that Ep+(x)[ℓ(g(x),+1)] =
Ep+(x′)[ℓ(g(x

′),+1)] and Ep−(x)[ℓ(g(x),−1)] = Ep−(x′)[ℓ(g(x
′),−1)]. Then, by summing up all

the equations from Eq. (18) to Eq. (21), we can get the following equation:

Ep(x,x′)[L+(g(x), g(x
′)) + L−(g(x), g(x

′))]

= 2π+Ep+(x)[ℓ(g(x),+1)] + 2π−Ep−(x)[ℓ(g(x),−1)]

After dividing each side of the equation above by 2, we can obtain Theorem 1.
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B Analysis on Variance of Risk Estimator

B.1 Proof of Lemma 1

Based on Lemma 3, it can be observed that
Ep(x,x′)[L(x,x′)] =Ep(x,x′)[(π+ − c(x,x′))ℓ(g(x),+1) + (π− − c(x,x′))ℓ(g(x′),−1)]

=π+Ep+(x)[ℓ(g(x),+1)] + π−Ep−(x′)[ℓ(g(x
′),−1)]

=π+Ep+(x)[ℓ(g(x),+1)] + π−Ep−(x)[ℓ(g(x),−1)]

=R(g)

and
Ep(x,x′)[L(x′,x)] =Ep(x,x′)[(π+ + c(x,x′))ℓ(g(x′),+1) + (π− + c(x,x′))ℓ(g(x),−1)]

=π−Ep−(x)[ℓ(g(x),−1)] + π+Ep+(x′)[ℓ(g(x
′),+1)]

=π−Ep−(x)[ℓ(g(x),−1)] + π+Ep+(x)[ℓ(g(x),+1)]

=R(g).

Therefore, for an arbitrary weight α ∈ [0, 1],
R(g) =αR(g) + (1− α)R(g)

=αEp(x,x′)[L(x,x′)] + (1− α)Ep(x,x′)[L(x′,x)],

which indicates that
1

n

n∑
i=1

(αL(xi,x
′
i) + (1− α)L(x′

i,xi))

is also an unbiased risk estimator and concludes the proof.

B.2 Proof of Theorem 2

In this subsection, we show that Eq. (8) in the main paper achieves the minimum variance of

S(g;α) =
1

n

n∑
i=1

(αL(xi,x
′
i) + (1− α)L(x′

i,xi))

w.r.t. any α ∈ [0, 1]. To begin with, we introduce the following notations:

µ1 ≜ Ep(x,x′)[(
1

n

n∑
i=1

L(xi,x
′
i))

2] = Ep(x,x′)[(
1

n

n∑
i=1

L(x′
i,xi))

2],

µ2 ≜ Ep(x,x′)[
1

n2

n∑
i=1

L(xi,x
′
i)

n∑
i=1

L(x′
i,xi)].

Furthermore, according to Lemma 1 in the main paper, we have
Ep(x,x′)[S(g;α)] = R(g).

Then, we provide the proof of Theorem 2 as follows.

Proof of Theorem 2.
Var(S(g;α)) =Ep(x,x′)[(S(g;α)−R(g))2]

=Ep(x,x′)[S(g;α)
2]−R(g)2

=α2Ep(x,x′)[(
1

n

n∑
i=1

L(xi,x
′
i))

2] + (1− α)2Ep(x,x′)[(
1

n

n∑
i=1

L(x′
i,xi))

2]

+ 2α(1− α)Ep(x,x′)[
1

n2

n∑
i=1

L(xi,x
′
i)

n∑
i=1

L(x′
i,xi)]−R(g)2

=µ1α
2 + µ1(1− α)2 + 2µ2α(1− α)−R(g)2

=(2µ1 − 2µ2)(α− 1

2
)2 +

1

2
(µ1 + µ2)−R(g)2.
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Besides, it can be observed that

2µ1 − 2µ2 = Ep(x,x′)[(
1

n

n∑
i=1

(L(xi,x
′
i)− L(x′

i,xi)))
2] ≥ 0.

Therefore, Var(S(g;α)) achieves the minimum value when α = 1/2, which concludes the proof.

C Proof of Theorem 3

To begin with, we give the definition of Rademacher complexity.

Definition 2 (Rademacher complexity). Let Xn = {x1, · · ·xn} denote n i.i.d. random variables
drawn from a probability distribution with density p(x), G = {g : X 7→ R} denote a class of
measurable functions, and σ = (σ1, σ2, · · · , σn) denote Rademacher variables taking values from
{+1,−1} uniformly. Then, the (expected) Rademacher complexity of G is defined as

Rn(G) = EXnEσ

[
sup
g∈G

1

n

n∑
i=1

σig(xi)

]
. (22)

Let Dn
i.i.d.∼ p(x,x′) denote n pairs of ConfDiff data and LCD(g;xi,x

′
i) = (L(x,x′)+L(x′,x))/2,

then we introduce the following lemma.

Lemma 4.
R̄n(LCD ◦ G) ≤ 2LℓRn(G),

where LCD ◦ G = {LCD ◦ g|g ∈ G} and R̄n(·) is the Rademacher complexity over ConfDiff data
pairs Dn of size n.

Proof.

R̄n(LCD ◦ G) =EDn
Eσ[sup

g∈G

1

n

n∑
i=1

σiLCD(g;xi,x
′
i)]

=EDn
Eσ[sup

g∈G

1

2n

n∑
i=1

σi((π+ − ci)ℓ(g(xi),+1) + (π− − ci)ℓ(g(x
′
i),−1)

+ (π+ + ci)ℓ(g(x
′
i),+1) + (π− + ci)ℓ(g(xi),−1))].

Then, we can induce that

∥∇LCD(g;xi,x
′
i)∥2

=∥∇(
(π+ − ci)ℓ(g(xi),+1) + (π− − ci)ℓ(g(x

′
i),−1)

2

+
(π+ + ci)ℓ(g(x

′
i),+1) + (π− + ci)ℓ(g(xi),−1)

2
)∥2

≤∥∇(
(π+ − ci)ℓ(g(xi),+1)

2
)∥2 + ∥∇(

(π− − ci)ℓ(g(x
′
i),−1)

2
)∥2

+ ∥∇(
(π+ + ci)ℓ(g(x

′
i),+1)

2
)∥2 + ∥∇(

(π− + ci)ℓ(g(xi),−1)

2
)∥2

≤|π+ − ci|Lℓ

2
+

|π− − ci|Lℓ

2
+

|π+ + ci|Lℓ

2
+

|π− + ci|Lℓ

2
. (23)

Suppose π+ ≥ π−, the value of RHS of Eq. (23) can be determined as follows: when ci ∈ [−1,−π+),
the value is −2ciLℓ; when ci ∈ [−π+,−π−), the value is (π+ − ci)Lℓ; when ci ∈ [−π−, π−), the
value is Lℓ; when ci ∈ [π−, π+), the value is (π+ + ci)Lℓ; when ci ∈ [π+, 1], the value is 2ciLℓ. To
sum up, when π+ ≥ π−, the value of RHS of Eq. (23) is less than 2Lℓ. When π+ ≤ π−, we can
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deduce that the value of RHS of Eq. (23) is less than 2Lℓ in the same way. Therefore,

R̄n(LCD ◦ G) ≤2LℓEDn
Eσ[sup

g∈G

1

n

n∑
i=1

σig(xi)]

=2LℓEXnEσ[sup
g∈G

1

n

n∑
i=1

σig(xi)]

=2LℓRn(G),
which concludes the proof.

After that, we introduce the following lemma.
Lemma 5. The inequality below hold with probability at least 1− δ:

sup
g∈G

|R(g)− R̂CD(g)| ≤ 4LℓRn(G) + 2Cℓ

√
ln 2/δ

2n
.

Proof. To begin with, we introduce Φ = supg∈G(R(g) − R̂CD(g)) and Φ̄ = supg∈G(R(g) −̂̄RCD(g)), where R̂CD(g) and ̂̄RCD(g) denote the empirical risk over two sets of training examples
with exactly one different point {(xi,x

′
i), ci} and {(x̄i, x̄

′
i), c(x̄i, x̄

′
i)} respectively. Then we have

Φ̄− Φ ≤ sup
g∈G

(R̂CD(g)− ̂̄RCD(g))

≤ sup
g∈G

(
LCD(g;xi,x

′
i)− LCD(g; x̄i, x̄

′
i)

n
)

≤ 2Cℓ

n
.

Accordingly, Φ−Φ̄ can be bounded in the same way. The following inequalities holds with probability
at least 1− δ/2 by applying McDiarmid’s inequality:

sup
g∈G

(R(g)− R̂CD(g)) ≤ EDn
[sup
g∈G

(R(g)− R̂CD(g))] + 2Cℓ

√
ln 2/δ

2n
,

Furthermore, we can bound EDn [supg∈G(R(g) − R̂CD(g))] with Rademacher complexity. It is a
routine work to show by symmetrization [60] that

EDn [sup
g∈G

(R(g)− R̂CD(g))] ≤ 2R̄n(LCD ◦ G) ≤ 4LℓRn(G),

where the second inequality is from Lemma 4. Accordingly, supg∈G(R̂CD(g)−R(g)) has the same
bound. By using the union bound, the following inequality holds with probability at least 1− δ:

sup
g∈G

|R(g)− R̂CD(g)| ≤ 4LℓRn(G) + 2Cℓ

√
ln 2/δ

2n
,

which concludes the proof.

Finally, the proof of Theorem 3 is provided.

Proof of Theorem 3.

R(ĝCD)−R(g∗) = (R(ĝCD)− R̂CD(ĝCD)) + (R̂CD(ĝCD)− R̂CD(g
∗)) + (R̂CD(g

∗)−R(g∗))

≤ (R(ĝCD)− R̂CD(ĝCD)) + (R̂CD(g
∗)−R(g∗))

≤ |R(ĝCD)− R̂CD(ĝCD)|+
∣∣∣R̂CD(g

∗)−R(g∗)
∣∣∣

≤ 2 sup
g∈G

|R(g)− R̂CD(g)|

≤ 8LℓRn(G) + 4Cℓ

√
ln 2/δ

2n
.
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The first inequality is derived because ĝCD is the minimizer of R̂CD(g). The last inequality is derived
according to Lemma 5, which concludes the proof.

D Proof of Theorem 4

To begin with, we provide the following inequality:

|R̄CD(g)− R̂CD(g)|

=
1

2n
|

n∑
i=1

((π̄+ − π+ + ci − c̄i)ℓ(g(xi),+1) + (π̄− − π− + ci − c̄i)ℓ(g(x
′
i),−1)

+ (π̄+ − π+ + c̄i − ci)ℓ(g(x
′
i),+1) + (π̄− − π− + c̄i − ci)ℓ(g(xi),−1))|

≤ 1

2n

n∑
i=1

(|(π̄+ − π+ + ci − c̄i)ℓ(g(xi),+1)|+ |(π̄− − π− + ci − c̄i)ℓ(g(x
′
i),−1)|

+ |(π̄+ − π+ + c̄i − ci)ℓ(g(x
′
i),+1)|+ |(π̄− − π− + c̄i − ci)ℓ(g(xi),−1)|)

=
1

2n

n∑
i=1

(|π̄+ − π+ + ci − c̄i|ℓ(g(xi),+1) + |π̄− − π− + ci − c̄i|ℓ(g(x′
i),−1)

+ |π̄+ − π+ + c̄i − ci|ℓ(g(x′
i),+1) + |π̄− − π− + c̄i − ci|ℓ(g(xi),−1))

≤ 1

2n

n∑
i=1

((|π̄+ − π+|+ |ci − c̄i|)ℓ(g(xi),+1) + (|π̄− − π−|+ |ci − c̄i|)ℓ(g(x′
i),−1)

+ (|π̄+ − π+|+ |c̄i − ci|)ℓ(g(x′
i),+1) + (|π̄− − π−|+ |c̄i − ci|)ℓ(g(xi),−1))

=
1

2n

n∑
i=1

((|π̄+ − π+|+ |ci − c̄i|)ℓ(g(xi),+1) + (|π+ − π̄+|+ |ci − c̄i|)ℓ(g(x′
i),−1)

+ (|π̄+ − π+|+ |c̄i − ci|)ℓ(g(x′
i),+1) + (|π+ − π̄+|+ |c̄i − ci|)ℓ(g(xi),−1))

≤
2Cℓ

∑n
i=1 |c̄i − ci|
n

+ 2Cℓ|π̄+ − π+|.

Then, we deduce the following inequality:

R(ḡCD)−R(g∗) =(R(ḡCD)− R̂CD(ḡCD)) + (R̂CD(ḡCD)− R̄CD(ḡCD)) + (R̄CD(ḡCD)− R̄CD(ĝCD))

+ (R̄CD(ĝCD)− R̂CD(ĝCD)) + (R̂CD(ĝCD)−R(ĝCD)) + (R(ĝCD)−R(g∗))

≤2 sup
g∈G

|R(g)− R̂CD(g)|+ 2 sup
g∈G

|R̄CD(g)− R̂CD(g)|+ (R(ĝCD)−R(g∗))

≤4 sup
g∈G

|R(g)− R̂CD(g)|+ 2 sup
g∈G

|R̄CD(g)− R̂CD(g)|

≤16LℓRn(G) + 8Cℓ

√
ln 2/δ

2n
+

4Cℓ

∑n
i=1 |c̄i − ci|
n

+ 4Cℓ|π̄+ − π+|.

The first inequality is derived because ḡCD is the minimizer of R̄(g). The second and third inequality
are derived according to the proof of Theorem 3 and Lemma 5 respectively.

E Proof of Theorem 5

To begin with, let D+
n (g) = {Dn|Â(g) ≥ 0 ∩ B̂(g) ≥ 0 ∩ Ĉ(g) ≥ 0 ∩ D̂(g) ≥ 0} and D−

n (g) =

{Dn|Â(g) ≤ 0 ∪ B̂(g) ≤ 0 ∪ Ĉ(g) ≤ 0 ∪ D̂(g) ≤ 0}. Before giving the proof of Theorem 5, we
give the following lemma based on the assumptions in Section 3.

Lemma 6. The probability measure of D−
n (g) can be bounded as follows:

P(D−
n (g)) ≤ exp (

−2a2n

C2
ℓ

) + exp (
−2b2n

C2
ℓ

) + exp (
−2c2n

C2
ℓ

) + exp (
−2d2n

C2
ℓ

). (24)
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Proof. It can be observed that

p(Dn) = p(x1,x
′
1) · · · p(xn,x

′
n)

= p(x1) · · · p(x′
n)p(x1) · · · p(x′

n).

Therefore, the probability measure P(D−
n (g)) can be defined as follows:

P(D−
n (g)) =

∫
Dn∈D−

n (g)

p(Dn) dDn

=

∫
Dn∈D−

n (g)

p(Dn) dx1 · · · dxn dx
′
1 · · · dx′

n.

When exactly one ConfDiff data pair in Sn is replaced, the change of Â(g), B̂(g), Ĉ(g) and D̂(g)
will be no more than Cℓ/n. By applying McDiarmid’s inequality, we can obtain the following
inequalities:

P(E[Â(g)]− Â(g) ≥ a) ≤ exp (
−2a2n

C2
ℓ

),

P(E[B̂(g)]− B̂(g) ≥ b) ≤ exp (
−2b2n

C2
ℓ

),

P(E[Ĉ(g)]− Ĉ(g) ≥ c) ≤ exp (
−2c2n

C2
ℓ

),

P(E[D̂(g)]− D̂(g) ≥ d) ≤ exp (
−2d2n

C2
ℓ

).

Furthermore,

P(D−
n (g)) ≤P(Â(g) ≤ 0) + P(B̂(g) ≤ 0) + P(Ĉ(g) ≤ 0) + P(D̂(g) ≤ 0)

≤P(Â(g) ≤ E[Â(g)]− a) + P(B̂(g) ≤ E[B̂(g)]− b)

+ P(Ĉ(g) ≤ E[Ĉ(g)]− c) + P(D̂(g) ≤ E[D̂(g)]− d)

=P(E[Â(g)]− Â(g) ≥ a) + P(E[B̂(g)]− B̂(g) ≥ b)

+ P(E[Ĉ(g)]− Ĉ(g) ≥ c) + P(E[D̂(g)]− D̂(g) ≥ d)

≤ exp (
−2a2n

C2
ℓ

) + exp (
−2b2n

C2
ℓ

) + exp (
−2c2n

C2
ℓ

) + exp (
−2d2n

C2
ℓ

),

which concludes the proof.

Then, the proof of Theorem 5 is given.

Proof of Theorem 5. To begin with, we prove the first inequality in Theorem 5.

E[R̃CD(g)]−R(g)

=E[R̃CD(g)− R̂CD(g)]

=

∫
Dn∈D+

n (g)

(R̃CD(g)− R̂CD(g))p(Dn) dDn

+

∫
Dn∈D−

n (g)

(R̃CD(g)− R̂CD(g))p(Dn) dDn

=

∫
Dn∈D−

n (g)

(R̃CD(g)− R̂CD(g))p(Dn) dDn ≥ 0,
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where the last inequality is derived because R̃CD(g) is an upper bound of R̂CD(g). Furthermore,

E[R̃CD(g)]−R(g)

=

∫
Dn∈D−

n (g)

(R̃CD(g)− R̂CD(g))p(Dn) dDn

≤ sup
Dn∈D−

n (g)

(R̃CD(g)− R̂CD(g))

∫
Dn∈D−

n (g)

p(Dn) dDn

= sup
Dn∈D−

n (g)

(R̃CD(g)− R̂CD(g))P(D−
n (g))

= sup
Dn∈D−

n (g)

(f(Â(g)) + f(B̂(g)) + f(Ĉ(g)) + f(D̂(g))

− Â(g)− B̂(g)− Ĉ(g)− D̂(g))P(D−
n (g))

≤ sup
Dn∈D−

n (g)

(Lf |Â(g)|+ Lf |B̂(g)|+ Lf |Ĉ(g)|+ Lf |D̂(g)|

+ |Â(g)|+ |B̂(g)|+ |Ĉ(g)|+ |D̂(g)|)P(D−
n (g)

= sup
Dn∈D−

n (g)

Lf + 1

2n
(|

n∑
i=1

(π+ − ci)ℓ(g(xi),+1)|+ |
n∑

i=1

(π− − ci)ℓ(g(x
′
i),−1)|

+ |
n∑

i=1

(π+ + ci)ℓ(g(x
′
i),+1)|+ |

n∑
i=1

(π− + ci)ℓ(g(xi),−1)|)P(D−
n (g))

≤ sup
Dn∈D−

n (g)

Lf + 1

2n
(

n∑
i=1

|(π+ − ci)ℓ(g(xi),+1)|+
n∑

i=1

|(π− − ci)ℓ(g(x
′
i),−1)|

+

n∑
i=1

|(π+ + ci)ℓ(g(x
′
i),+1)|+

n∑
i=1

|(π− + ci)ℓ(g(xi),−1)|)P(D−
n (g))

= sup
Dn∈D−

n (g)

Lf + 1

2n

n∑
i=1

(|(π+ − ci)ℓ(g(xi),+1)|+ |(π− − ci)ℓ(g(x
′
i),−1)|

+ |(π+ + ci)ℓ(g(x
′
i),+1)|+ |(π− + ci)ℓ(g(xi),−1)|)P(D−

n (g))

≤ sup
Dn∈D−

n (g)

(Lf + 1)Cℓ

2n

n∑
i=1

(|π+ − ci|+ |π− − ci|+ |π+ + ci|+ |π− + ci|)P(D−
n (g)).

Similar to the proof of Theorem 3, we can obtain

|π+ − ci|+ |π− − ci|+ |π+ + ci|+ |π− + ci| ≤ 4.

Therefore, we have
E[R̃CD(g)]−R(g) ≤ 2(Lf + 1)Cℓ∆,

which concludes the proof of the first inequality in Theorem 5. Before giving the proof of the second
inequality, we give the upper bound of |R̃CD(g) − E[R̃CD(g)]|. When exactly one ConfDiff data
pair in Dn is replaced, the change of R̃CD(g) is no more than 2CℓLf/n. By applying McDiarmid’s
inequality, we have the following inequalities with probability at least 1− δ/2:

R̃CD(g)− E[R̃CD(g)] ≤ 2CℓLf

√
ln 2/δ

2n
,

E[R̃CD(g)]− R̃CD(g) ≤ 2CℓLf

√
ln 2/δ

2n
.

Therefore, with probability at least 1− δ, we have

|R̃CD(g)− E[R̃CD(g)]| ≤ 2CℓLf

√
ln 2/δ

2n
.
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Finally, we have

|R̃CD(g)−R(g)| = |R̃CD(g)− E[R̃CD(g)] + E[R̃CD(g)]−R(g)|
≤ |R̃CD(g)− E[R̃CD(g)]|+ |E[R̃CD(g)]−R(g)|
= |R̃CD(g)− E[R̃CD(g)]|+ E[R̃CD(g)]−R(g)

≤ 2CℓLf

√
ln 2/δ

2n
+ 2(Lf + 1)Cℓ∆,

with probability at least 1− δ, which concludes the proof.

F Proof of Theorem 6

With probability at least 1− δ, we have

R(g̃CD)−R(g∗) =(R(g̃CD)− R̃CD(g̃CD)) + (R̃CD(g̃CD)− R̃CD(ĝCD))

+ (R̃CD(ĝCD)−R(ĝCD)) + (R(ĝCD)−R(g∗))

≤|R(g̃CD)− R̃CD(g̃CD)|+ |R̃CD(ĝCD)−R(ĝCD)|+ (R(ĝCD)−R(g∗))

≤4Cℓ(Lf + 1)

√
ln 2/δ

2n
+ 4(Lf + 1)Cℓ∆+ 8LℓRn(G).

The first inequality is derived because g̃CD is the minimizer of R̃CD(g). The second inequality is
derived from Theorem 5 and Theorem 3. The proof is completed.

G Limitations and Potential Negative Social Impacts

G.1 Limitations

This work focuses on binary classification problems. To generalize it to multi-class problems, we need
to convert multi-class classification to a set of binary classification problems via the one-versus-rest
or the one-versus-one strategies. In the future, developing methods directly handling multi-class
classification problems is promising.

G.2 Potential Negative Social Impacts

This work is within the scope of weakly supervised learning, which aims to achieve comparable
performance while reducing labeling costs. Therefore, when this technique is very effective and
prevalent in society, the demand for data annotations may be reduced, leading to the increasing
unemployment rate of data annotation workers.

H Additional Information about Experiments

In this section, the details of experimental data sets and hyperparameters are provided.

H.1 Details of Experimental Data Sets

The detailed statistics and corresponding model architectures are summarized in Table 4. The basic
information of data sets, sources and data split details are elaborated as follows.

For the four benchmark data sets,

• MNIST [61]: It is a grayscale handwritten digits recognition data set. It is composed of 60,000
training examples and 10,000 test examples. The original feature dimension is 28*28, and the label
space is 0-9. The even digits are regarded as the positive class while the odd digits are regarded as
the negative class. We sampled 15,000 unlabeled data pairs as training data. The data set can be
downloaded from http://yann.lecun.com/exdb/mnist/.
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Table 4: Characteristics of experimental data sets.

Data Set # Train # Test # Features # Class Labels Model

MNIST 60,000 10,000 784 10 MLP
Kuzushiji 60,000 10,000 784 10 MLP
Fashion 60,000 10,000 784 10 MLP

CIFAR-10 50,000 10,000 3,072 10 ResNet-34

Optdigits 4,495 1,125 62 10 MLP
USPS 7,437 1,861 256 10 MLP

Pendigits 8,793 2,199 16 10 MLP
Letter 16,000 4,000 16 26 MLP

• Kuzushiji-MNIST [62]: It is a grayscale Japanese character recognition data set. It is composed
of 60,000 training examples and 10,000 test examples. The original feature dimension is 28*28,
and the label space is {‘o’, ‘su’,‘na’, ‘ma’, ‘re’, ‘ki’,‘tsu’,‘ha’, ‘ya’,‘wo’}. The positive class is
composed of ‘o’, ‘su’,‘na’, ‘ma’, and ‘re’ while the negative class is composed of ‘ki’,‘tsu’,‘ha’,
‘ya’, and ‘wo’. We sampled 15,000 unlabeled data pairs as training data. The data set can be
downloaded from https://github.com/rois-codh/kmnist.

• Fashion-MNIST [63]: It is a grayscale fashion item recognition data set. It is composed of 60,000
training examples and 10,000 test examples. The original feature dimension is 28*28, and the
label space is {‘T-shirt’, ‘trouser’, ‘pullover’, ‘dress’, ‘sandal’, ‘coat’, ‘shirt’, ‘sneaker’, ‘bag’,
‘ankle boot’}. The positive class is composed of ‘T-shirt’, ‘pullover’, ‘coat’, ‘shirt’, and ‘bag’
while the negative class is composed of ‘trouser’, ‘dress’, ‘sandal’, ‘sneaker’, and ‘ankle boot’.
We sampled 15,000 unlabeled data pairs as training data. The data set can be downloaded from
https://github.com/zalandoresearch/fashion-mnist.

• CIFAR-10 [64]: It is a colorful object recognition data set. It is composed of 50,000 training
examples and 10,000 test examples. The original feature dimension is 32*32*3, and the label
space is {‘airplane’, ‘bird’, ‘automobile’, ‘cat’, ‘deer’, ‘dog’, ‘frog’, ‘horse’, ‘ship’, ‘truck’}. The
positive class is composed of ‘bird’, ‘deer’, ‘dog’, ‘frog’, ‘cat’, and ‘horse’ while the negative class
is composed of ‘airplane’, ‘automobile’, ‘ship’, and ‘truck’. We sampled 10,000 unlabeled data
pairs as training data. The data set can be downloaded from https://www.cs.toronto.edu/
~kriz/cifar.html.

For the four UCI data sets, they can be downloaded from Dua and Graff [65].

• Optdigits, USPS, Pendigits [65]: They are handwritten digit recognition data set. The train-test
split can be found in Table 4. The feature dimensions are 62, 256, and 16 respectively and the
label space is 0-9. The even digits are regarded as the positive class while the odd digits are
regarded as the negative class. We sampled 1,200, 2,000, and 2,500 unlabeled data pairs for
training respectively.

• Letter [65]: It is a letter recognition data set. It is composed of 16,000 training examples and
4,000 test examples. The feature dimension is 16 and the label space is the 26 capital letters in the
English alphabet. The positive class is composed of the top 13 letters while the negative class is
composed of the latter 13 letters. We sampled 4,000 unlabeled data pairs for training.

H.2 Details of Experiments on the KuaiRec Data Set

We used the small matrix of the KuaiRec [72] data set since it has dense confidence scores. It has
1,411 users and 3,327 items. We clipped the watching ratio above 2 and regarded the examples with
watching ratio greater than 2 as positive examples. Following the experimental protocol of He et al.
[73], we regarded the latest positive example foe each user as the positive testing data, and sampled
49 negative testing data to form the testing set for each user. The HR and NDCG were calculated at
top 10. The learning rate was set to 1e-3 and the dropout rate was set to 0.5. The number of epochs
was set to 50 and the batch size was set to 256. The number of MLP layers was 2 and the embedding
dimension was 128. The hyperparameters was the same for all the approaches for a fair comparison.
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H.3 Details of Hyperparameters

For MNIST, Kuzushiji-MNIST and Fashion-MNIST, the learning rate was set to 1e-3 and the weight
decay was set to 1e-5. The batch size was set to 256 data pairs. For training the probabilistic classifier
to generate confidence, the batch size was set to 256 and the epoch number was set to 10.

For CIFAR10, the learning rate was set to 5e-4 and the weight decay was set to 1e-5. The batch size
was set to 128 data pairs. For training the probabilistic classifier to generate confidence, the batch
size was set to 128 and the epoch number was set to 10.

For all the UCI data sets, the learning rate was set to 1e-3 and the weight decay was set to 1e-5. The
batch size was set to 128 data pairs. For training the probabilistic classifier to generate confidence,
the batch size was set to 128 and the epoch number was set to 10.

The learning rate and weight decay for training the probabilistic classifier were the same as the setting
for each data set correspondingly.

I More Experimental Results with Fewer Training Data

Figure 4 shows extra experimental results with fewer training data on other data sets with different
class priors.
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(h) CIFAR-10
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(i) Kuzushiji
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(j) Fashion
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(m) Optdigits
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(o) MNIST
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(p) CIFAR-10

Figure 4: Classification performance of ConfDiff-ReLU and ConfDiff-ABS given a fraction of
training data as well as Pcomp-Teacher given 100% of training data with different prior settings
(π+ = 0.2 for the fist and the second row and π+ = 0.8 for the third and the fourth row).
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