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Abstract
Estimating counterfactual outcomes of time-varying treatment types and associated dosages is

important for addressing medical problems. This task becomes more challenging when both the
treatment type and dosage assignment are biased due to the presence of time-varying confounders,
as compared to estimating outcomes for treatment types alone. Specifically, the setup yields
the following two obstacles: first, treatment types and dosages are selected sequentially, causing
observed outcomes to be biased at each time step, leading to 2×𝜏 biases for a 𝜏-step-ahead prediction
(sequential selection bias); second, the number of treatment trajectories increases exponentially with
𝜏 (combinatorial explosion). In this paper, we introduce Encoder-Decoder Time-SCIGAN (EDTS),
which combines a longitudinal encoder-decoder transformer with a Generative Adversarial Network
(GAN) for estimating counterfactuals. The encoder-decoder architecture predicts outcomes for one-
step- and multi-step-ahead predictions separately, while the GAN generates counterfactual outcomes
that cannot be distinguished from observed outcomes by the discriminators to handle sequential
selection bias. To address combinatorial explosion, we propose a novel discrimination method,
Sequential Counterfactual Discrimination (SCD) for EDTS discriminators. Our evaluation of
synthetic and semi-synthetic datasets demonstrate that EDTS outperforms the current baselines.
To the best of our knowledge, this is the first study to propose an architecture for estimating
counterfactual outcomes of both time-varying treatment types and dosages. Implementation is
available at https://github.com/ynorimat/EDTS.
Keywords: Causal Inference, GAN, Time-varying treatment types and dosages

1. Introduction

Estimating counterfactual outcomes of time-varying treatments has been an important challenge
for machine learning (Lim et al., 2018; Bica et al., 2020a; Melnychuk et al., 2022). A typical
example is a problem of medical treatments. For various medical conditions (e.g., medication
treatment, cancer therapy, and COVID-19 vaccinations), the estimation allows us to select the optimal
treatment trajectories for each patient. The treatment effect varies not only with treatment types
(e.g., chemotherapy or radiotherapy) but also with treatment dosages (i.e., amount of chemotherapy,
intensity of radiotherapy). It has been an important issue to choose the best treatment type and
optimal dosage for each treatment (Imbens, 2000; Wang et al., 2019; Vegetabile et al., 2021).

To determine the optimal treatment type-dosage pair at a given point in time, we often need to
estimate all possible outcomes of treatment type-dosage pair over the future. This requires estimating
the impact of treatment type-dosage pair over time on the outcomes, a relationship referred to as a
dose-response curve. Since we can only observe one outcome from each treatment type-dosage pair

© 2025 Y. Norimatsu & M. Imaizumi.

https://github.com/ynorimat/EDTS


Norimatsu Imaizumi

Figure 1: (a) This is an example setting for 4-step-ahead prediction, and there are two types
of treatment with two dosages. y𝑡+1:𝑡+4 (solid line) and ŷ𝑡+1:𝑡+4 (dashed line) are the outcomes
of the factual trajectory and counterfactual treatment trajectories, respectively. The solid and
dashed line boxes denote the factual and counterfactual dose-response curves, and outline characters
indicate the counterfactual treatment type and dosage options, respectively. The green densities
represent the observation probabilities of the outcomes. (b) By using SCD, we reduce the number
of counterfactuals for discriminations in GAN. In this case, we limit only 4 counterfacutal outcomes
and 4 dose-response curves for discriminations with SCD.

in patients at a time, we need to estimate unobserved outcomes of other treatment type-dosage pairs,
which are called counterfactual outcomes.

Several methods have been proposed to estimate outcomes of treatment type-dosage pairs (or
dose-response curves for one treatment) in the static setting (Imbens, 2000; Imai and Van Dyk, 2004;
Hirano and Imbens, 2004; Schwab et al., 2020; Bica et al., 2020b; Nie et al., 2021; Wang et al.,
2022).

An important challenge is to estimate counterfactuals in the longitudinal setting. Specifically,
there are mainly two difficulties.

(i). Sequential selection bias: When the assignments of treatment type and dosage are sequen-
tially biased due to the time-varying confounders (sequential selection bias), we rarely observe
counterfactual treatment trajectories that significantly deviate from the factual trajectory over
time or in other patients (Figure 1 (a) green densities). Estimating counterfactual outcomes for
long-step-ahead prediction becomes more difficult. State-of-the-art methods build upon long
short-term memory (LSTM) (Hochreiter and Schmidhuber, 1997) or transformer (Vaswani
et al., 2017) and handle treatment assignment bias using propensity score (Robins et al., 2000;
Lim et al., 2018), g-computation (Li et al., 2021), and balancing methods (Bica et al., 2020a;
Melnychuk et al., 2022). However, these methods only consider time-varying treatment types,
and not both time-varying treatment types and dosages.
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(ii). Combinatorial explosion: The number of possible treatment trajectories increases exponen-
tially with 𝜏-step-ahead prediction. As shown in (Figure 1(a)), this is an example setting for
4-step-ahead prediction, and there are two types of treatment with two dosages (e.g. half-dose
and full-dose). There are 256 = 44 possible treatment trajectories (𝑡 + 1 ∼ 𝑡 + 4) in the
longitudinal setting, whereas there are only 4 = 41 possible treatment trajectories (𝑡 + 1) in the
static setting.

In this paper, we introduce the Encoder-Decoder Time-SCIGAN (EDTS) that builds upon
encoder-decoder transformer and GAN (Goodfellow et al., 2014). EDTS solves the two difficulties
by the following two ideas,

(i). To address the sequential selection bias, the GAN generates counterfactual outcomes for
all treatment type-dosage pairs that cannot be distinguished from observed outcomes by two
different discriminators (one for treatment type and one for dosage). This approach can remove
sequential selection bias of treatment type and dosage, simultaneously.

(ii). To address the combinatorial explosion for the long-step-ahead prediction, we propose a
novel discrimination method, Sequential Counterfactual Discrimination (SCD) for EDTS’s
GAN discriminations, shown in Figure 1 (b). Using SCD, we generate only the first-degree
relative counterfactuals of a direct line (the factual trajectory). This approach reduces the num-
ber of discriminations, whether observed or generated, to 4 (treatment type) and 4 (dosage),
and the GAN can be effectively trained by using only predictable counterfactuals for training.

We evaluate our EDTS on synthetic and semi-synthetic datasets, and it achieves superior per-
formance over the current baselines. To the best of our knowledge, this is the first study to estimate
counterfactual outcomes of both time-varying treatment types and dosages using GAN to handle the
bias due to time-varying confounders.

2. Related work

2.1. Estimating dose-response curves in the static setting

Several studies have proposed methods to estimate treatment effects (Louizos et al., 2017; Yoon
et al., 2018; Ghosh et al., 2021, 2023) or dose-response curves, such as DRNets (Dose Response
networks) by Schwab et al. (2020) and SCIGAN (eStimating the effects of Continuous Interventions
using GAN) by Bica et al. (2020b).

DRNets estimate dose-response curves of continuous treatment (treatment with a continuous
dosage) using a balancing representations method to handle treatment type assignment bias. This
method learns an invariant treatment representation, which is simultaneously predictive of the
outcome but non-predictive of the treatment type.

SCIGAN estimates dose-response curves using GAN to handle both treatment type and dosage
assignment bias. SCIGAN treats input dosages as discrete values for training, so the choice of
dosage-level is limited to the number of dosage samples. After training, the trained generator can
generate treatment outcomes at any continuous dosage value. Since SCIGAN is for the static setting
and the input is given by cross-sectional data, our longitudinal setup with time-varying covariates,
treatments, and outcomes cannot be handled.
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2.2. Estimating counterfactual outcomes in the longitudinal setting

Methods for estimating time-varying outcomes were originally introduced in epidemiology. Exam-
ples of such methods include G-computation, marginal structural models (MSMs), and structural
nested models (Robins, 1986; Robins et al., 2000; Hernán et al., 2001; Robins and Hernán, 2009).
Here, state-of-the-art methods are RMSNs (Recurrent Marginal Structural Networks) (Lim et al.,
2018), CRN (Causal Recurrent Network) (Bica et al., 2020a), G-Net (Li et al., 2021), CT (Causal
Transformer), and EDCT (Encoder-Decoder Causal Transforer) (Melnychuk et al., 2022). These
methods address bias due to time-varying confounding in different ways. RMSNs combine two
propensity networks and use the predicted inverse probability of treatment weighting (IPTW) scores
for training the prediction networks. G-Net aims to predict both outcomes and time-varying covari-
ates, and then performs G-computation for multiple-step-ahead prediction. CRN, CT and EDCT
use balancing representaions method. However, the previous studies consider only time-varying
treatment types and their assignment bias, without considering time-varying dosages and dosage
assignment bias.

3. Problem formulation

We build upon the standard setting for estimating counterfactual outcomes in the longitudinal setting
as in Robins and Hernán (2009); Lim et al. (2018); Bica et al. (2020a); Li et al. (2021); Melnychuk
et al. (2022).

Suppose that there are 𝑁 patients and an 𝑖-th patient has 𝑇 times steps for 𝑖 = 1, ..., 𝑁 . We
also consider a space of treatment types. There are 𝑛W types of treatments in total, and thus we
define W = {𝑤𝑘}𝑛W

𝑘=1 as a set of indices of the treatments. Further, for each treatment 𝑘 = 1, ..., 𝑛W ,

we define a space of discretized dosages D𝑘 = {𝑑𝑘, 𝑗}𝑛
𝑘
D
𝑗=1 with 𝑛𝑘D values and its combination

D = D1 × · · · × D𝑛W .
We define our observations. For the patient 𝑖 and each time step 𝑡 = 1, ..., 𝑇 , we observe

time-varying covariates X𝑖
𝑡 ∈ R𝑑𝑥 , outcomes y𝑖𝑡 ∈ R𝑑𝑦 , treatments (W𝑖

𝑡 ,D𝑖
𝑡 ) ∈ W × D, and static

covariates describing a patient V𝑖 ∈ R𝑑𝑣 , such as gender and age. We have access to the following
observations

𝔇 =

{{
X𝑖
𝑡 , y𝑖𝑡 ,W

𝑖
𝑡 ,D𝑖

𝑡

}𝑇
𝑡=1 ∪ V𝑖

}𝑁
𝑖=1
. (1)

Here, we summarize the observations and define histories of the patients as

H1:𝑡 = {X1:𝑡 , y1:𝑡 ,W1:𝑡−1,D1:𝑡−1,V}, (2)

where X𝑡 = {𝑋 𝑖
𝑡 }𝑁𝑖=1 and X1:𝑡 = {X1, . . . ,X𝑡 }. y1:𝑡 ,W1:𝑡 , D1:𝑡 and V are defined in the same way.

Note that if some patient has a shorter treatment period than 𝑇 , we mask the remaining time steps.
We build on the potential outcome framework (Neyman, 1923; Rubin, 1978) and its extension

to time-varying treatments (Robins and Hernán, 2009). Let 𝜏 ≥ 1 denote the prediction horizon for
𝜏-step-ahead prediction, and let (w𝑡:𝑡+𝜏−1, d𝑡:𝑡+𝜏−1) ∈ (W × D)×𝜏 denote a given (non-random)
treatment intervention over the horizon. Then, we define a potential outcome Y𝑡+𝜏 with the invention
(w𝑡:𝑡+𝜏−1, d𝑡:𝑡+𝜏−1), which is typically not observed.

Our goal is thus to estimate potential outcomes Y𝑡+𝜏 , after applying a treatment intervention
(w𝑡:𝑡+𝜏−1, d𝑡:𝑡+𝜏−1) for a given patient history H1:𝑡 . Formally, we aim to estimate:

E(Y𝑡+𝜏 | (w𝑡:𝑡+𝜏−1, d𝑡:𝑡+𝜏−1),H1:𝑡 ). (3)

4



Encode-Decoder-based GAN for Estimating Counterfactual Outcomes

Figure 2: Overview of Encoder-Decoder Time-SCIGAN (EDTS).

Note that the potential counterfactual outcomes are identifiable from factual observational data 𝔇

under three standard assumptions: (1) consistency, (2) sequential ignorability, and (3) sequential
overlap (see Appendix A for details).

4. Encoder-Decoder Time-SCIGAN (EDTS)

4.1. Overview of EDTS

We first give an overview of our proposal, Encoder-Decoder Time-SCIGAN (EDTS), which is an
Encoder-Decoder architecture and consists of EDCT-Base ℛ and Time-SCIGAN as shown in Figure
2. The encoder predicts one-step-ahead prediction ŷ𝑡+1(w𝑡 , d𝑡 ), whereas the decoder predicts multi-
step-ahead prediction ŷ𝑡+𝜏 (w𝑡+𝜏−1, d𝑡+𝜏−1) with 𝜏 > 1.

EDCT-Base ℛ takes H1:𝑡 as an argument and outputs its representation 𝚽𝑡 . EDCT-Base is
identical to the original EDCT (Melnychuk et al., 2022) excluding the outcome prediction and
treatment classifier networks. The detailed architecture of EDCT-Base is presented in Appendix B.

Time-SCIGAN is an extension of SCIGAN (Bica et al., 2020b), which is designed for static
settings, to accommodate longitudinal settings. Time-SCIGAN generates counterfactual outcomes
of treatment type-dosage pairs from 𝚽𝑡 . The details are presented in subsection 4.3.

We note that a straightforward combination of Causal Transformer (EDCT) and SCIGAN, which
we applied for our EDTS, resulted in poor training. Adversarial training models such as GANs are
difficult to train, especially in the longitudinal setting. GAN models that work well in the static
setting do not easily generalize to the longitudinal setting due to the instability of the training of
GANs. To address this problem, we introduce SCD and two different weights into Time-SCIGAN.

4.2. Sequential counterfactual discrimination (SCD)

For multi-step ahead prediction (Figure 1(a)), there are numerous counterfactuals (outcomes and
dose-response curves) for possible treatment trajectories. If we generate all counterfactuals and then
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Figure 3: Overview of Time-SCIGAN. (a) Example setting with four treatment types and two
dosages at 𝜏 step ahead prediction from current 𝑡. 𝑤1 represents no treatment and 𝑤2 ∼ 𝑤4 represent
treatment types with two dosages (H: a half-dose, F: a full-dose) each. Factual treatment type w𝑡+𝜏−1
is 𝑤3 and factual dosage d𝑡+𝜏−1 is 𝑑3,𝐻𝑎𝑙 𝑓 . For notation, red denotes factual objects, and black
denotes counterfactual objects.

discriminate whether they were observed (factual) or generated (counterfactual) for training, the
traning of GANs can be ineffective. This is because counterfactuals that significantly deviate from
the factual trajectory are infrequently observed over time or in other patients, making them difficult
to predict. To train the GAN effectively, we should select only counterfactuals that are closely related
to the factual trajectory.

To address this problem, we propose Sequential Counterfactual Discrimination (SCD) to limit
the number of counterfactuals used for discrimination. SCD focuses on first-degree relatives (coun-
terfactuals) of the factual trajectory, which are direct siblings of the factuals (as shown in Figure
1(b)) and excludes more distant relatives (etc. nieces and nephews). SCD limits counterfactuals
vertically (relatives) along the time step, not horizontally (descendants).

SCD focuses on partial trajectories, but it has more utility than ignoring less common trajectories.
Most counterfactual trajectories are infrequently observed over time or in other patients, hence
ignoring them does not have a significant impact on discrimination and generation. In addition, this
approach has the advantage of avoiding the exponential computational costs. In the case of Figure
1, we generate only 4 counterfactual outcomes and 4 counterfactual dose-response curves with SCD
(Figure 1(b)), compared to 336 and 156 without SCD (Figure 1(a)). With SCD, we discriminate only
4 times by treatment type and dosage discriminators, and by using only predictable counterfactuals,
the GAN can be effectively trained. When including counterfactuals of second-degree relatives or
higher, the GAN become untrainable.

4.3. Time-SCIGAN

Time-SCIGAN consists of counterfactual generator𝒢, treatment type discriminator𝒟W , and dosage
discriminators 𝒟D = {𝒟𝑘

D}𝑛W
𝑘=1. Note that we utilize the dosage discriminator 𝒟𝑘

D for a treatment
𝑘 = 1, ..., 𝑛W when the treatment 𝑘 has more than one dosage option, since no discriminator is
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necessary for a treatment with only one dosage option. An overview of Time-SCIGAN is shown in
Figure 3, and the detailed architectures of 𝒢, 𝒟W and 𝒟D are presented in Appendix C.

At 𝜏 step ahead prediction (encoder: 𝜏 = 1, decoder: 𝜏 = 2 ∼ 𝜏𝑚𝑎𝑥), Time-SCIGAN
takes 𝚽𝑡+𝜏−1, w𝑡+𝜏−1 and d𝑡+𝜏−1 as input, and outputs ŷ𝑡+𝜏 , 𝑃𝑡+𝜏−1(W) and 𝑃𝑡+𝜏−1(D), where
𝑃𝑡+𝜏−1(W) represents the probability that the dose-response curve corresponds to either factual or
counterfactual treatment, and 𝑃𝑡+𝜏−1(D) represents the probability that the outcome corresponds to
either factual or counterfactual dosage (shown in Figure 3(b)).

In the original SCIGAN, the same weight is used to calculate the discriminator loss. In our
Time-SCIGAN, we introduce two different weights: scale and factual weights. The scale weights
address the unbalanced scales caused by significant outcome changes in the longitudinal setting.
The factual weights handle the unbalanced labels between factual and counterfactual treatment types
or dosages.

Counterfactual generator

The counterfactual generator 𝒢 receives 𝚽𝑡 from EDCT-Base ℛ, and outputs all dose-response
curves ŷ𝑡+𝜏 (W) = {ŷ𝑡+𝜏 (𝑤𝑘)}𝑛W

𝑘=1, where ŷ𝑡+𝜏 (𝑤𝑘) = {ŷ𝑡+𝜏 (𝑤𝑘 , 𝑑𝑘, 𝑗)}𝑛
𝑘
D
𝑗=1. The supervised loss

L𝜏
𝑆

is defined via the mean squared error (MSE) as follows,

L𝜏
𝑆 (𝒢,ℛ) =|y𝑡+𝜏 (w𝑡+𝜏−1, d𝑡+𝜏−1) −𝒢(𝚽𝑡+𝜏−1) (w𝑡+𝜏−1, d𝑡+𝜏−1) |2

=|y𝑡+𝜏 (w𝑡+𝜏−1, d𝑡+𝜏−1) − ŷ𝑡+𝜏 (w𝑡+𝜏−1, d𝑡+𝜏−1) |2. (4)

When training 𝒟W and 𝒟D , we replace the predicted factual outcome ŷ𝑡+𝜏 (w𝑡+𝜏−1, d𝑡+𝜏−1) ∈
ŷ𝑡+𝜏 (w𝑡+𝜏−1) with the observed factual outcome y𝑡+𝜏 (w𝑡+𝜏−1, d𝑡+𝜏−1). For notation, let y(𝑤)
denote a dose-response curve, y(𝑤, 𝑑) denote an outcome, and ·̂ denote a predicted value.

Treatment type discriminator

The treatment type discriminator 𝒟W receives all dose-response curves ŷ𝑡+𝜏 (W) from counterfac-
tual generator 𝒢 and 𝚽𝑡+𝜏−1 from EDCT-Base ℛ, and outputs 𝑃𝑡+𝜏−1(W). The treatment type
discriminator loss L𝜏

W is calculated as follows,

L𝜏
W (𝒟W ;𝒢,ℛ, 𝑟W) (5)

=

𝑛W∑︁
𝑘=1

y𝑡+𝜏 (w𝑡+𝜏−1, d𝑡+𝜏−1)
y𝑚𝑎𝑥

[
1{𝑤𝑘=w𝑡+𝜏−1}𝑟W log𝒟W

(
ŷ𝑡+𝜏 (𝑤𝑘),𝚽𝑡+𝜏−1

)
+ 1{𝑤𝑘≠w𝑡+𝜏−1} (1 − 𝑟W) log

(
1 −𝒟W

(
ŷ𝑡+𝜏 (𝑤𝑘),𝚽𝑡+𝜏−1

))]
, (6)

where 1[ · ] is the indicator function, 𝑟W is factual weights for treatment types, respectively, and
y𝑚𝑎𝑥 is the maximum of y.

y𝑡+𝜏 (w𝑡+𝜏−1, d𝑡+𝜏−1)/y𝑚𝑎𝑥 are scale weights to address the unbalanced scales between the
supervised loss L𝜏

𝑆
and the discriminator loss L𝜏

W due to significant outcome changes in the
longitudinal setting. 𝑟W and (1 − 𝑟W) are factual and counterfactual weights to address the
unbalanced labels between factual and counterfactual treatment types. During training 𝒟W , we set
𝑟W = (𝑛W − 1)/𝑛W (in the case of Figure 3(a), 𝑟W is 0.75).
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Dosage discriminator

The dosage discriminators 𝒟D receive the factual dose-response curve ŷ𝑡+𝜏 (w𝑡+𝜏−1) from 𝒢 and
𝚽𝑡+𝜏−1 from ℛ, and output 𝑃𝑡 (D). We calculate the dosage discriminator loss L𝜏,𝑘

D for treatment
𝑤𝑘 as follows,

L𝜏,𝑘

D (𝒟𝑘
D ;𝒢,ℛ, 𝑟𝑘D) (7)

= 1{𝑤𝑘=w𝑡+𝜏−1}

𝑛𝑘
D∑︁

𝑗=1

y𝑡+𝜏 (w𝑡+𝜏−1, d𝑡+𝜏−1)
y𝑚𝑎𝑥

[
1{𝑑𝑘, 𝑗=d𝑡+𝜏−1}𝑟

𝑘
D log

(
𝒟

𝑘
D

(
ŷ𝑡+𝜏 (𝑤𝑘 , 𝑑𝑘, 𝑗),𝚽𝑡+𝜏−1

))
+ 1{𝑑𝑘, 𝑗≠d𝑡+𝜏−1}

(
1 − 𝑟𝑘D

)
log

(
1 −𝒟

𝑘
D

(
ŷ𝑡+𝜏 (𝑤𝑘 , 𝑑𝑘, 𝑗),𝚽𝑡+𝜏−1

))]
, (8)

where 1{𝑤𝑘=w𝑡+𝜏−1} term ensures that only factual dose-response curve is used for 𝒟
𝑘
D . 𝑟𝑘D and

(1 − 𝑟𝑘D) are factual and counterfactual weights for dosages of treatment type 𝑤𝑘 . During training
𝒟

𝑘
D , we set 𝑟𝑘D = (𝑛𝑘D − 1)/𝑛𝑘D (in the case of Figure 3(a), 𝑟𝑘D is 0.5).

Overall discriminator loss

To train the non-discriminator parameters (𝒢,ℛ), we calculate the overall discriminator loss L𝜏
O by

summing L𝜏
W and L𝜏,𝑘

D , as follows,

L𝜏
O (𝒟W ,𝒟D ;𝒢,ℛ) = L𝜏

W (𝒟W ;𝒢,ℛ, 𝑟W) +
𝑛W∑︁
𝑘=1

L𝜏,𝑘

D (𝒟𝑘
D ;𝒢,ℛ, 𝑟𝑘D). (9)

The factual outcomes are trained using the supervised loss in Eq. (4) and the overall discriminator
loss in Eq. (9). However, the counterfactual outcomes are trained only via the overall discriminator
loss. We want to estimate the counterfactual outcomes rather than factual outcomes, therefore, we
set factual weights equal to counterfactual weights (𝑟W = 0.5, 𝑟𝑘D = 0.5) unlike when training the
treatment type or dosage discriminators.

4.4. Training of EDTS

Encoder

We perform the encoder-decoder two-stage training. To address confounding bias, we use the GAN
with two simultaneous objectives, non-discriminator (𝒢,ℛ) and discriminator (𝒟W ,𝒟D). (𝒢,ℛ)
and (𝒟W ,𝒟D) are trained according to the minimax game defined as follows,

(�̂�, ℛ̂) = arg min
𝒢,ℛ

L1
𝑆 (𝒢,ℛ) − 𝛼L1

O (�̂�W , �̂�D ;𝒢,ℛ) (10)

(�̂�W , �̂�D) =


�̂�W = arg min

𝒟W

𝛼L1
W (𝒟W ; �̂�, ℛ̂)

�̂�
𝑘
D = arg min

𝒟
𝑘
D

𝛼L1,𝑘
𝒟

(𝒟𝑘
D ; �̂�, ℛ̂) 𝑓 𝑜𝑟 𝑒𝑎𝑐ℎ 𝑤𝑘 (11)

where 𝛼 ≥ 0 is the Overall Discriminator (OD) coefficient.
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Decoder

Each loss is summarized in Eq. (10-11) for 𝜏𝑚𝑎𝑥-step-ahead prediction using L2:𝜏𝑚𝑎𝑥 =
∑𝜏𝑚𝑎𝑥

𝜏=2 L𝜏 ,
where L𝜏 = {L𝜏

𝑆
,L𝜏

O ,L
𝜏
W ,L𝜏,𝑘

𝒟
}. The decoder parameters (𝒢,ℛ,𝒟W ,𝒟D) are trained in the

same manner as the encoder. During the training of the decoder, we use the teacher forcing technique
(Williams and Zipser, 1989), and we switch off the teacher forcing and autoregressively feed model
predictions during the evaluation of the multiple-step-ahead prediction.

4.5. Theoretical insights

We develop a theoretical result to state that the overall discriminator loss (eq. 9) aims to remove
the time-varing confounding bias (𝑝(W𝑡 |H1:𝑡 ) and 𝑝(D𝑡 |H1:𝑡 )). This result implies that the GAN
allows us to obtain a low error in estimating counterfactuals for all treatments.

Let Φ(H1:𝑡 ) = 𝒢(ℛ(H1:𝑡 )). Let 𝑃𝑘 and 𝑃Φ
𝑘

denote the distributions of H1:𝑡 and Φ(H1:𝑡 )
conditional on W𝑡 = 𝑤𝑘 , respectively. Let 𝑃𝑘, 𝑗 and 𝑃Φ

𝑘, 𝑗
denote the distributions of H1:𝑡 and

Φ(H1:𝑡 ) conditional on W𝑡 = 𝑤
𝑘 and D𝑡 = 𝑑

𝑘, 𝑗 , respectively. Let 𝒟𝑘
W and 𝒟

𝑘, 𝑗

D denote the output
of 𝒟W corresponding to 𝑤𝑘 and 𝒟

𝑘
D corresponding to 𝑑𝑘, 𝑗 , respectively.

Theorem 1 The minimax game is defined as follows:

min
Φ

max
𝒟W ,𝒟D

𝑛W∑︁
𝑘=1

©«EH𝑡∼𝑃𝑘

[
log

(
𝒟

𝑘
W (Φ(H1:𝑡 ))

)]
+

𝑛𝑘
D∑︁

𝑗=1
EH𝑡∼𝑃𝑘, 𝑗

[
log

(
𝒟

𝑘, 𝑗

D (Φ(H1:𝑡 ))
)]ª®¬ (12)

subject to
𝑛W∑︁
𝑘=1

𝒟
𝑘
W (Φ(H1:𝑡 )) = 1 𝑎𝑛𝑑

𝑛𝑘
D∑︁

𝑗=1
𝒟

𝑘, 𝑗

D (Φ(H1:𝑡 )) = 1 (13)

The minimax game has a global minimum of Φ which is attained if and only if 𝑃Φ
1 = 𝑃Φ

2 = · · · = 𝑃Φ
𝑛W

and 𝑃Φ
𝑘,1 = 𝑃Φ

𝑘,2 = · · · = 𝑃Φ

𝑘,𝑛𝑘
D

for each treatment 𝑤𝑘 , i.e. when the learned counterfactual
generators are invariant across all treatment type and dosage pairs.

Proof See Appendix D.

5. Experiments

Baselines

In our study, the baselines are identical to those in the previous, state-of-the-art literature for
estimating counterfactual outcomes of time-varying treatment types. These include MSMs (Robins
et al., 2000), RMSNs (Lim et al., 2018), CRN (Bica et al., 2020a), G-Net (Li et al., 2021), CT and
EDCT (Melnychuk et al., 2022). For the new setting of time-varying treatment types and dosages,
we modified those baseline methods to add dosages to their inputs. Furthermore, we modified CRN,
CT and EDCT to add a dosage classifier network to handle dosage assignment bias (CRN+, CT+,
and EDCT+). The baseline methods are detailed in Appendix E,
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Training

We applied exponential growth to 𝛼, and used an exponential moving average (EMA) (Yazıcı et al.,
2018) during training as well as CT (Melnychuk et al., 2022), in order to avoid the difficulty of
training adversarial models such as GANs especially in the longitudinal setting. The details of
training procedures and hyperparameter tuning are described in Appendix F.

Table 1: Normalized RMSE for 𝜏-step-ahead prediction in the setting of time-varying treatment
types and dosages. Shown: mean ± standard deviation over five runs (lower is better). 𝛾𝑤 and 𝛾𝑑
represent the amount of time-varying confounding parameters, with higher values indicating larger
assignment bias of treatment and dosage, respectively.

𝜏 = 1 𝜏 = 2 𝜏 = 3 𝜏 = 4 𝜏 = 5 𝜏 = 6
𝛾𝑤 = 0 MSMs 0.88 (±0.08) 1.35 (±0.10) 1.89 (±0.14) 1.68 (±0.12) 1.49 (±0.11) 1.32 (±0.10)
𝛾𝑑 = 0 RMSNs 0.53 (±0.02) 0.66 (±0.03) 0.72 (±0.04) 0.73 (±0.06) 0.72 (±0.06) 0.70 (±0.07)

CRN+ 0.52 (±0.04) 0.66 (±0.04) 0.73 (±0.05) 0.74 (±0.06) 0.73 (±0.05) 0.70 (±0.05)
G-Net 0.53 (±0.03) 0.69 (±0.05) 0.75 (±0.05) 0.77 (±0.06) 0.76 (±0.06) 0.74 (±0.06)
CT+ 0.63 (±0.05) 0.77 (±0.05) 0.81 (±0.05) 0.82 (±0.06) 0.79 (±0.06) 0.76 (±0.06)
EDCT+ 0.50 (±0.05) 0.63 (±0.05) 0.68 (±0.05) 0.68 (±0.06) 0.66 (±0.05) 0.63 (±0.05)
EDTS(𝛼 = 0) 0.49 (±0.05) 0.62 (±0.05) 0.68 (±0.05) 0.69 (±0.06) 0.67 (±0.05) 0.64 (±0.05)
EDTS 0.48 (±0.04) 0.61 (±0.04) 0.67 (±0.05) 0.67 (±0.05) 0.65 (±0.05) 0.62 (±0.05)

𝛾𝑤 = 1 MSMs 1.09 (±0.10) 1.90 (±0.16) 2.61 (±0.19) 2.30 (±0.17) 2.01 (±0.15) 1.77 (±0.13)
𝛾𝑑 = 1 RMSNs 0.58 (±0.06) 0.83 (±0.10) 0.92 (±0.10) 0.94 (±0.10) 0.92 (±0.10) 0.88 (±0.10)

CRN+ 0.54 (±0.05) 0.77 (±0.09) 0.86 (±0.11) 0.90 (±0.12) 0.89 (±0.12) 0.86 (±0.11)
G-Net 0.58 (±0.09) 0.85 (±0.18) 0.97 (±0.23) 1.04 (±0.28) 1.06 (±0.33) 1.05 (±0.35)
CT+ 0.67 (±0.05) 0.89 (±0.08) 0.97 (±0.09) 0.99 (±0.09) 0.98 (±0.10) 0.95 (±0.09)
EDCT+ 0.68 (±0.05) 0.91 (±0.09) 0.98 (±0.10) 0.99 (±0.10) 0.98 (±0.10) 0.94 (±0.10)
EDTS(𝛼 = 0) 0.49 (±0.05) 0.70 (±0.07) 0.78 (±0.07) 0.80 (±0.07) 0.79 (±0.08) 0.76 (±0.08)
EDTS 0.50 (±0.05) 0.70 (±0.07) 0.77 (±0.08) 0.79 (±0.09) 0.78 (±0.09) 0.75 (±0.09)

𝛾𝑤 = 2 MSMs 1.46 (±0.12) 2.69 (±0.23) 3.57 (±0.30) 3.10 (±0.28) 2.68 (±0.25) 2.32 (±0.21)
𝛾𝑑 = 2 RMSNs 0.66 (±0.05) 1.01 (±0.11) 1.14 (±0.12) 1.17 (±0.12) 1.14 (±0.11) 1.09 (±0.10)

CRN+ 0.64 (±0.05) 0.98 (±0.11) 1.13 (±0.13) 1.19 (±0.13) 1.18 (±0.10) 1.14 (±0.12)
G-Net 0.61 (±0.06) 0.94 (±0.12) 1.09 (±0.14) 1.16 (±0.15) 1.17 (±0.15) 1.14 (±0.15)
CT+ 0.70 (±0.05) 1.04 (±0.11) 1.18 (±0.13) 1.24 (±0.14) 1.24 (±0.16) 1.22 (±0.16)
EDCT+ 0.62 (±0.06) 0.91 (±0.10) 1.00 (±0.11) 1.03 (±0.12) 1.00 (±0.12) 0.96 (±0.11)
EDTS(𝛼 = 0) 0.59 (±0.10) 0.86 (±0.11) 0.96 (±0.11) 0.99 (±0.11) 0.97 (±0.11) 0.92 (±0.10)
EDTS 0.58 (±0.08) 0.86 (±0.10) 0.96 (±0.11) 0.98 (±0.11) 0.96 (±0.11) 0.92 (±0.10)

𝛾𝑤 = 3 MSMs 1.91 (±0.16) 3.47 (±0.30) 4.50 (±0.38) 3.74 (±0.33) 3.07 (±0.29) 2.54 (±0.25)
𝛾𝑑 = 3 RMSNs 0.76 (±0.10) 1.43 (±0.18) 1.57 (±0.17) 1.61 (±0.14) 1.60 (±0.12) 1.57 (±0.11)

CRN+ 0.86 (±0.09) 1.34 (±0.16) 1.53 (±0.16) 1.58 (±0.15) 1.57 (±0.16) 1.53 (±0.17)
G-Net 0.76 (±0.06) 1.25 (±0.12) 1.47 (±0.16) 1.56 (±0.19) 1.57 (±0.21) 1.54 (±0.23)
CT+ 0.93 (±0.13) 1.39 (±0.17) 1.60 (±0.16) 1.68 (±0.15) 1.70 (±0.12) 1.68 (±0.11)
EDCT+ 0.81 (±0.13) 1.35 (±0.16) 1.52 (±0.15) 1.54 (±0.12) 1.52 (±0.11) 1.49 (±0.11)
EDTS(𝛼 = 0) 0.73 (±0.10) 1.18 (±0.13) 1.36 (±0.15) 1.41 (±0.16) 1.41 (±0.17) 1.37 (±0.18)
EDTS 0.75 (±0.12) 1.18 (±0.13) 1.34 (±0.13) 1.38 (±0.13) 1.35 (±0.13) 1.29 (±0.12)

𝛾𝑤 = 4 MSMs 2.37 (±0.18) 3.89 (±0.34) 4.58 (±0.44) 3.46 (±0.34) 2.77 (±0.28) 2.45 (±0.25)
𝛾𝑑 = 4 RMSNs 1.07 (±0.04) 2.04 (±0.17) 2.19 (±0.23) 2.18 (±0.24) 2.10 (±0.23) 1.97 (±0.22)

CRN+ 1.01 (±0.16) 1.72 (±0.20) 2.03 (±0.23) 2.18 (±0.25) 2.24 (±0.28) 2.23 (±0.31)
G-Net 0.98 (±0.17) 1.79 (±0.25) 2.12 (±0.26) 2.26 (±0.24) 2.31 (±0.23) 2.29 (±0.23)
CT+ 1.39 (±0.26) 2.05 (±0.36) 2.33 (±0.39) 2.42 (±0.37) 2.43 (±0.33) 2.38 (±0.31)
EDCT+ 1.11 (±0.17) 2.20 (±0.27) 2.36 (±0.28) 2.32 (±0.26) 2.23 (±0.25) 2.15 (±0.29)
EDTS(𝛼 = 0) 1.13 (±0.17) 1.72 (±0.27) 1.91 (±0.28) 1.95 (±0.28) 1.93 (±0.29) 1.91 (±0.36)
EDTS 0.90 (±0.10) 1.57 (±0.13) 1.82 (±0.18) 1.91 (±0.21) 1.90 (±0.22) 1.85 (±0.22)
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5.1. Experiments with fully-synthetic data

Simulation model

We use the pharmacokinetic-pharmacodynamic model of tumor growth (Geng et al., 2017). This
model simulates the combined effects of chemotherapy and radiotherapy in patients with lung cancer.
The same model was previously used to evaluate RMSNs (Lim et al., 2018), CRN (Bica et al., 2020a),
G-Net (Li et al., 2021), CT and EDCT (Melnychuk et al., 2022). In the experimental setting of time-
varying treatment types and dosages, full (regular) and half dosages were chosen for each treatment
type at each time step, and the treatment dosages were used as model inputs. The simulation details
are provided in Appendix G.

Results

Table 1 presents the results. EDTS has a consistent and significant improvement across all prediction
horizons 𝜏. There is a notable performance gain in EDTS over the state-of-the-art baselines,
especially pronounced for larger confounding 𝛾 and larger 𝜏. Furthermore, by comparing our EDTS
against EDTS (𝛼 = 0), we see clear performance gains. Positive 𝛼 is effective in the case of high
selection bias (𝛾𝑤 , 𝛾𝑑 = 3 and 4). It becomes difficult to predict the counterfactual outcomes using
only the transformer architecture without discriminators (𝛼 = 0), so there is a remarkable difference
(about 2.3% and 5.7% when 𝛾𝑤 , 𝛾𝑑 = 3 and 4, respectively) between the proposed model with 𝛼 = 0
and with positive values on 𝛼.

In Appendix G.4, we also compared our EDTS performance with a prior studies setting of
time-varying treatment types. For this setting, we modified EDTS to omit the input of dosages and
dosage discriminators (EDTS-).

5.2. Experiments with semi-synthetic data

Dataset descriptions

To validate baseline models with multi-output outcomes, high-dimensional covariates and complex
feature interactions, CT (Melnychuk et al., 2022) use a semi-synthetic dataset based on real-world
medical data from MIMIC-III dataset (Johnson et al., 2016). Instead of MIMIC-III dataset, we use
high-dimensional real-world vital data from ElectroEncephaloGraphy (EEG) dataset (Zhang et al.,
1995).

We use a similar approach to CT to create semi-synthetic dataset from real-world data. We
generate patient trajectories with outcomes under endogeneous and exogeneous dependencies while
considering treatment effects. This allows us control for the amount of confounding and access
ground-truth counterfactuals for evaluation. Details are provided in Appendix H.

Result

Table 2 shows the results. Again, EDTS demonstrates consistent and significant improvement across
all prediction horizons 𝜏 with an average improvement of 25.4% over the baselines. Our EDTS
performs well on high-dimentional data with complex interactions.
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Table 2: Results for semi-synthetic data for 𝜏-step-ahead prediction based on real-world vital data
(EEG). Shown: RMSE as mean ± standard deviation over five runs.

𝜏 = 1 𝜏 = 2 𝜏 = 3 𝜏 = 4 𝜏 = 5 𝜏 = 6
MSMs 0.54 (±0.00) 1.57 (±0.03) 2.48 (±0.06) 2.30 (±0.06) 2.07 (±0.05) 1.89 (±0.05)
RMSNs 0.47 (±0.01) 0.91 (±0.01) 0.96 (±0.01) 1.07 (±0.02) 1.17 (±0.04) 1.28 (±0.05)
CRN+ 0.54 (±0.01) 1.13 (±0.02) 1.17 (±0.03) 1.22 (±0.03) 1.27 (±0.04) 1.31 (±0.05)
G-Net 0.57 (±0.01) 1.21 (±0.01) 1.18 (±0.01) 1.22 (±0.03) 1.28 (±0.05) 1.34 (±0.07)
CT+ 0.51 (±0.01) 1.05 (±0.01) 1.12 (±0.03) 1.22 (±0.05) 1.34 (±0.07) 1.45 (±0.09)
EDCT+ 0.58 (±0.01) 1.09 (±0.02) 1.10 (±0.03) 1.19 (±0.05) 1.28 (±0.07) 1.36 (±0.09)
EDTS (𝛼=0) 0.48 (±0.00) 0.94 (±0.02) 0.97 (±0.02) 1.05 (±0.01) 1.12 (±0.02) 1.19 (±0.03)
EDTS 0.41 (±0.03) 0.91 (±0.02) 0.96 (±0.03) 1.04 (±0.05) 1.12 (±0.07) 1.19 (±0.10)

5.3. Ablation study

Subsequently, we performed an ablation study using full-synthetic data to examine the effectiveness
of the treatment type and dosage discriminators.

a. The effectiveness of the treatment type discriminator: We removed the dosage discriminators
(𝒟D) and trained the model with or without treatment type discriminator using data with only
treatment type assignment bias (𝛾𝑤 = 5, 𝛾𝑑 = 0).

b. The effectiveness of the dosage discriminators: (i) We removed the treatment type discrim-
inator (𝒟W) and trained the model with dosage discriminators using data biased with only
dosage assignment bias (𝛾𝑤 = 0, 𝛾𝑑 = 5). (ii) We trained EDTS without discriminators, with
only the treatment type discriminator, or with both treatment type and dosage discriminators
using data with treatment type and dosage assignment bias (𝛾𝑤 = 4, 𝛾𝑑 = 4).

Table 3 presents the results. Our treatment type and dosage discriminators improved over the
baseline values. Therefore, their effectiveness has been verified.

Table 3: Ablation study of EDTS. Shown: Normalized RMSE as mean ± standard deviation over
five runs.

𝜏 = 1 𝜏 = 2 𝜏 = 3 𝜏 = 4 𝜏 = 5 𝜏 = 6

a
𝛾𝑤 = 5, 𝛾𝑑 = 0

None 1.51 (±0.24) 2.30 (±0.12) 2.60 (±0.13) 2.68 (±0.12) 2.64 (±0.14) 2.56 (±0.19)
𝒟W 1.37 (±0.17) 2.15 (±0.19) 2.47 (±0.19) 2.56 (±0.21) 2.57 (±0.23) 2.53 (±0.29)

b

𝛾𝑤 = 0, 𝛾𝑑 = 5
None 0.44 (±0.04) 0.70 (±0.05) 0.80 (±0.05) 0.82 (±0.05) 0.80 (±0.05) 0.76 (±0.05)
𝒟D 0.45 (±0.03) 0.70 (±0.07) 0.79 (±0.08) 0.81 (±0.08) 0.79 (±0.08) 0.75 (±0.08)

𝛾𝑤 = 4, 𝛾𝑑 = 4
None 1.13 (±0.17) 1.72 (±0.27) 1.91 (±0.28) 1.95 (±0.28) 1.93 (±0.29) 1.91 (±0.36)
𝒟W 1.06 (±0.19) 1.67 (±0.12) 1.96 (±0.18) 2.09 (±0.26) 2.13 (±0.35) 2.12 (±0.43)

𝒟W ,𝒟D 0.90 (±0.10) 1.57 (±0.13) 1.82 (±0.18) 1.91 (±0.21) 1.90 (±0.22) 1.85 (±0.22)

6. Limitations.

Training GANs by a minimax optimization becomes unstable if the assignment bias is too large
(𝛾𝑤 = 𝛾𝑑 > 4) or if the dose-response curves are complex (i.e., not monotonically increasing or
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decreasing). To ensure stable training and reduce the complexity of EDTS, we imposed the following
restrictions on the experimental settings:

a. We avoid using a large selection bias such as 𝛾𝑤 = 𝛾𝑑 > 4.
b. We simply make the dose-response curves monotone.
c. We only use two options for dosages for each treatment: half-dose and full-dose.

Although these approaches have improved the stability of the training, there is still room for more
improvement.

7. Conclusion

We propose a starte-of-the-art method Encoder-Decoder Time-SCIGAN (EDTS) to estimate the
counterfactual outcomes of time-varying treatment types and dosages. We also developed a GAN’s
discrimination method, Sequential Counterfactual Discrimination (SCD) and introduce two different
weights: scale and factual weights into SCIGAN, confirming GAN’s effectiveness for time-varying
confounders. GANs generate counterfactual outcomes via adversarial training, while other methods
MSMs, G-methods and balancing representaion do not directly consider them during training. Since
GANs can directly train the prediction of counterfactual outcomes, GANs would be preferred over
these methods. We believe that our proposed EDTS represents an important advancement in the
setting of time-varying treatment types and dosages.

In future work, we aim to explore more challenging setting, including time-varying treatment
types and continuous dosages instead of discrete ones. We also intend to develop more stable methods
than GANs for addressing treatment assignment bias, potentially utilizing generative models like
VAE and diffusion models as proposed by Wu et al. (2024).
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Appendix A. Assumptions

We build on the potential outcome framework (Rubin, 1974) and extend it to the time-varying
treatments and outcomes (Robins and Hernán, 2009). The potential outcome framework has been
widely used in earlier studies with objectives similar to (Robins and Hernán, 2009; Lim et al., 2018;
Bica et al., 2020a). To achieve this, three standard assumptions for data generating mechanism are
necessary to identify a counterfactual outcome distribution in the longitudinal setting. Specifically,
we consider the average 𝜏-step-ahead potential outcome conditioned on history from Eq. (3):

• Assumption A.1. (Consistency).
If (W1:𝑡 ,D1:𝑡 ) = (w1:𝑡 , d1:𝑡 ) is a given sequence of treatments for a patient, then Y𝑡+1(w1:𝑡 , d1:𝑡 ) =
Y𝑡+1(W1:𝑡 ,D1:𝑡 ). This implies that the potential outcome under the given treatment sequence
(w1:𝑡 , d1:𝑡 ) coincides with the observed (factual) outcome, with the condition (W1:𝑡 ,D1:𝑡 ) =
(w1:𝑡 , d1:𝑡 ).

• Assumption A.2. (Sequential Overlap).
There is always a nonzero probability of receiving or not receiving any treatment across
the entire history space over time: 0 < P(W𝑡 = w𝑡 ,D𝑡 = d𝑡 ) | H1:𝑡 = h1:𝑡 ) < 1, if
P(H1:𝑡 = h1:𝑡 ) > 0, where h1:𝑡 is the realization of a patient history.

• Assumption A.3. (Sequential Ignorability) or No Unobserved Confounding.
The current treatment is independent of the potential outcome, conditioning on the observed
history: (W𝑡 ,D𝑡 ) ⊥⊥ Y𝑡+1(w𝑡 , d𝑡 ) | H1:𝑡 ,∀(w𝑡 , d𝑡 ). This implies that no unobserved con-
founders affect either treatment or outcome.
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Appendix B. Details for EDCT-Base

EDCT-Base consists of a transformer-based encoder and decoder. The encoder builds a treatment
invariant sequence of representations of the history 𝚽1:𝑡 , balanced with a custom adversarial objec-
tive. The decoder subsequently uses 𝚽1:𝑡 as cross-attention keys and values for estimating outcomes
of future treatments.

We start by mapping the concatenated past outcomes y𝑡 , time-varying covariates X𝑡 , static
covariates V, past treatment W𝑡−1, and past treatment dosages D𝑡−1 to a hidden state space of
dimensionality 𝑑ℎ via a fully-connected linear layer as follows:

h0
𝑡 = Linear(Concat(W𝑡−1,D𝑡−1, y𝑡 ,X𝑡 ,V)) (14)

In the case of the decoder, we apply a similar input transformation

h0
𝑡 = Linear(Concat(w𝑡−1, d𝑡−1, ŷ𝑡 ,V)) (15)

where ŷ𝑡 are autoregressively-fed model outputs.
We then stack 𝐵 identical encoder/decoder blocks or layers, which transform the whole sequence

of hidden states (h0
1, . . . , h

0
𝑡 ) in quadratic time, depending on sequence length 𝑙. This is given by as

follows,

H𝑏 = (h𝑏
1 , . . . , h

𝑏
𝑡 )

⊤ ∈ R𝑙×𝑑ℎ , (16)
H𝑏 = Block𝑏 (H𝑏−1), 𝑏 ∈ {1, . . . , 𝐵}, (17)

where 𝐵 is the total number of blocks.
The encoder uses hidden states to infer keys 𝐾 , queries 𝑄, and values 𝑉 (self-attention). In

contrast, the decoder has both self- and cross-attention. Subsequently, we use keys and values,
inferred from a sequence of balanced representations of history.

B.1. Encoder block

The encoder block is defined in the following way:

H̃𝑏−1
= LN

(
MHA

(
𝑄(H𝑏−1), 𝐾 (H𝑏−1), 𝑉 (H𝑏−1)

)
+ H𝑏−1

)
, (18)

H𝑏 = LN
(
FF(H̃𝑏−1) + H̃𝑏−1)

, (19)

where LN is the layer norm, MHA is the multi-head attention, and FF is the feed-forward layer.
We take the representations H𝑏 from the last transformer block as the outputs. Here, we apply

an additional fully connected linear layer and exponential linear unit (ELU) nonlinearity, as follows,

𝚽𝑡 = ELU(Linear(H𝑏)) (20)

where fully-connected linear layer is followed by dropout, 𝚽𝑡 ∈ R𝑑𝑟 and 𝑑𝑟 is the dimensionality
of the representation.
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B.2. Decoder block

The decoder block adds a cross-attention layer after self-attention (that is between Eq. (18) and Eq.
(19)). Note that the dimensionality of the hidden decoder state is set such that it matches the size of
the balanced representations of the encoder, i.e., 𝑑ℎ = 𝑑𝑟 . This is formalized as follows:

H̃𝑏−1
= LN

(
MHA

(
𝑄(H𝑏−1), 𝐾 (H𝑏−1), 𝑉 (H𝑏−1)

)
+ H𝑏−1

)
, (21)

˜̃H𝑏−1 = LN
(
MHA

(
𝑄(H̃𝑏−1), 𝐾 ((𝚽1:𝑡 )⊤), 𝑉 ((𝚽1:𝑡 )⊤)

)
+ H̃𝑏−1

)
, (22)

H𝑏 = LN
(
FF( ˜̃H𝑏−1) + ˜̃H𝑏−1) , (23)

where 𝚽1:𝑡 is a sequence of the encoder representations (i.e., the encoded history H1:𝑡 ), as
transformed according to Eq. (16).

We calculate 𝚽𝑡+𝜏 in the same manner of the encoder block using Eq. (20).
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Appendix C. Details for Time-SCIGAN

C.1. Counterfactual Generator

Figure 4: Architecture of Generator 𝒢

The counterfactual generator𝒢 is a multi-head model of fully-connected layers for each treatment.
We concatenate representations 𝚽𝑡 , dosage 𝑑𝑘, 𝑗 and some noises Z (a uniform distribution in the
interval [0, 1]) as input, and transform them to outcomes ŷ𝑡+1(𝑤𝑘 , 𝑑𝑘, 𝑗) via a double fully-connected
linear layer:

ŷ𝑡+1(𝑤𝑘 , 𝑑𝑘, 𝑗) = Linear(ELU(Linear(Concat(𝚽𝑡 ,Z, 𝑑𝑘, 𝑗)))) (24)

We calculate the outcomes for all treatment-dosage pairs {{(𝑤𝑘 , 𝑑𝑘, 𝑗)}𝑛
𝑘
D
𝑗=1}

𝑛W
𝑘=1, and obtain the

dose-response curve ŷ𝑡+1(𝑤𝑘) = {ŷ𝑡+1(𝑤𝑘 , 𝑑𝑘, 𝑗)}𝑛
𝑘
D
𝑗=1 for each treatment 𝑤𝑘 . The factual outcome

corresponds to factual treatment and dosage, the factual dose-response curve corresponds to factual
treatment, and the other outcomes and dose-response curves are counterfactual (Eq.25, Eq.26).

ŷ𝑡+1(𝑤, 𝑑) =
{

ŷ 𝑓

𝑡+1(𝑤, 𝑑) 𝑖 𝑓 𝑤 = w𝑡 𝑎𝑛𝑑 𝑑 = d𝑡

ŷ𝑐 𝑓
𝑡+1(𝑤, 𝑑) 𝑒𝑙𝑠𝑒

(25)

ŷ𝑡+1(𝑤) =
{

ŷ 𝑓

𝑡+1(𝑤) 𝑖 𝑓 𝑤 = w𝑡

ŷ𝑐 𝑓
𝑡+1(𝑤) 𝑒𝑙𝑠𝑒

(26)

C.2. Discriminators

To ensure that the discriminators act as functions of sets, SCIGAN use ideas from Zaheer et al.
(2017) to create permutation-invariant for the treatment discriminator and permutation-equivariant
networks for the dosage discriminators.

C.2.1. Treatment Type Discriminator

We want the treatment discriminator 𝒟W , to be permutation-invariant with respect to ŷ𝑡+1(𝑤𝑘) for
each treatment 𝑤𝑘 . To achieve this, we define ℎ𝑡 :

∑𝑛W
𝑘=1(D

𝑘 × Y)𝑛𝑘
D → H𝐻 and require that ℎ𝑡

be permutation invariant w.r.t. each of the spaces (D𝑘 × Y)𝑛𝑘
D . To construct ℎ𝑡 , we concatenate
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Figure 5: Treatment discriminator 𝒟W Figure 6: Dosage Discriminator 𝒟𝑘
D

Figure 7: Architecture of discriminators

the outputs of several invariant layers, and each individual acts in space (D𝑘 × Y)𝑛𝑘
D . That is, for

each treatment 𝑤𝑘 , we define a map ℎ𝑘𝑡 : (D𝑘 ×Y)𝑛𝑘
D → H 𝑘

ℎ
. We then define H𝐻 =

∑𝑛W
𝑘=1 H

𝑘
𝐻

and
ℎ𝑡 (ŷ𝑡+1) = (ℎ1

𝑡 (ŷ𝑡+1(𝑤1)), . . . , ℎ𝑛W𝑡 (ŷ𝑡+1(𝑤𝑛W ))).
We begin by mapping the concatenated ŷ𝑡+1(𝑤𝑘 , 𝑑𝑘, 𝑗) and dosages 𝑑𝑘, 𝑗 to the hidden state space

of dimensionality 𝑑𝑖𝑛𝑣 via a fully-connected linear layer:

ℎ
𝑘, 𝑗
𝑡 = ELU

(
Linear

(
Concat

(
ŷ𝑡+1(𝑤𝑘 , 𝑑𝑘, 𝑗), 𝑑𝑘, 𝑗

)))
(27)

We summarize the hidden value ℎ𝑘, 𝑗𝑡 for each treatment 𝑤𝑘 ,

ℎ𝑘𝑡 =

𝑛𝑘
D∑︁

𝑗=1
ℎ
𝑘, 𝑗
𝑡 (28)

We transformed 𝚽𝑡 to a hidden state space of dimensionality 𝑑𝑖𝑛𝑣 via a fully connected linear
layer, as shown in Eq. (29). Then, we concatenate ℎ𝑘𝑡 and �̃�𝑡 , and apply an additional fully-connected
linear and ELU layer as shown in Eq. (30).

�̃�𝑡 = ELU(Linear(𝚽𝑡 )) (29)
ℎ̃𝑡 = ELU(Linear(Concat(ℎ1

𝑡 , ℎ
2
𝑡 , . . . , ℎ

𝑛W
𝑡 , �̃�𝑡 ))) (30)

We finally pass ℎ̃𝑡 through a fully connected network ℎ̃𝑡 → [0, 1]𝑘 .

𝑃𝑡 (W) = Linear( ℎ̃𝑡 ) (31)

C.2.2. Dosage Discriminator

We want each dosage discriminator,𝒟𝑘
D , to be permutation equivariant with respect to ŷ𝑡+1(𝑤𝑘, 𝑗 , 𝑑𝑘, 𝑗) ∈

ŷ𝑡+1(𝑤𝑘) for each dosage 𝑑𝑘, 𝑗 . The basic building block for equivariant functions is defined in terms
of equivariance input, u, and auxiliary input, v, by:

𝑓𝑒𝑞𝑢𝑖 (u, v) = 𝜎(𝜆I𝑚u + 𝛾(1𝑚1𝑇𝑚)u + (1𝑚Θ𝑇 )v), (32)
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where I𝑚 is the 𝑚 × 𝑚 identity matrix, 𝜆 and 𝛾 are scalar parameters and Θ is a vector of weights.
To achieve this, each 𝒟

𝑘
D consists of two layers, as given in Eq. 32 (as shown in Figure 6).

Equivariant Layer 1 receives ŷ𝑡+1(𝑤𝑘) for the equivariance input and 𝚽𝑡 for the auxiliary input.

𝐼
𝑘, 𝑗
𝑡 = Concat(ŷ𝑡+1(𝑤𝑘 , 𝑑𝑘, 𝑗), 𝑑𝑘, 𝑗) (33)

𝜆𝑘𝑡 = Linear(
𝑛𝑘
D∑︁

𝑗=1
𝐼
𝑘, 𝑗
𝑡 ) 𝛾

𝑘, 𝑗
𝑡 = Linear(𝐼𝑘, 𝑗𝑡 ) �̃�𝑡 = ELU(Linear(𝚽𝑡 )) (34)

ℎ
𝑘, 𝑗
𝑡 = ELU(−𝜆𝑘𝑡 + 𝛾

𝑘, 𝑗
𝑡 + �̃�𝑡 ) (35)

Equivariant Layer 2 receives the output of the first layer ℎ𝑘, 𝑗𝑡 for the equivariance input.

�̃�𝑘𝑡 = Linear(
𝑛𝑘
D∑︁

𝑗=1
ℎ
𝑘, 𝑗
𝑡 ) �̃�

𝑘, 𝑗
𝑡 = Linear(ℎ𝑘, 𝑗𝑡 ) (36)

ℎ̃
𝑘, 𝑗
𝑡 = ELU(−�̃�𝑘𝑡 + �̃�

𝑘, 𝑗
𝑡 ) (37)

We finally pass the output of the second layer through a fully connected network ℎ̃𝑘, 𝑗𝑡 → [0, 1].

𝑃𝑡 (𝑑𝑘, 𝑗) = Linear( ℎ̃𝑘, 𝑗𝑡 ) (38)
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Appendix D. Proof of theorem

We extend the theorem of Bica et al. (2020a) for time-varying treatment types to our theorem for
time-varying treatment types and dosages.

We first prove the following proposition.
Proposition 1. For fixed Φ, let 𝑥′ = Φ(H𝑡 ). Then the optimal prediction probabilities of 𝒟W

and 𝒟
𝑘
D are given as follows:

𝒟
𝑘∗
W (𝑥′) =

𝑃Φ
𝑘
(𝑥′)∑𝑛W

𝑘=1 𝑃
Φ
𝑘
(𝑥′)

𝒟
𝑘, 𝑗∗
D (𝑥′) =

𝑃Φ
𝑘, 𝑗

(𝑥′)∑𝑛𝑘
D
𝑗=1 𝑃

Φ
𝑘, 𝑗

(𝑥′)
(39)

Proof: For fixed Φ, the optimal prediction probabilities are given as follows:

𝒟
∗
W = max

𝒟W

𝑛W∑︁
𝑘=1

∫
𝑥′

log
(
𝒟

𝑘
W (𝑥′)

)
𝑃Φ
𝑘 (𝑥

′)𝑑𝑥′ 𝑠𝑢𝑏 𝑗𝑒𝑐𝑡 𝑡𝑜

𝑛W∑︁
𝑘=1

𝒟
𝑘
W (𝑥′) = 1 (40)

𝒟
𝑘∗
D = max

𝒟D

𝑛𝑘
D∑︁

𝑗=1

∫
𝑥′

log
(
𝒟

𝑘, 𝑗

D (𝑥′)
)
𝑃Φ
𝑘, 𝑗 (𝑥

′)𝑑𝑥′ 𝑠𝑢𝑏 𝑗𝑒𝑐𝑡 𝑡𝑜

𝑛𝑘
D∑︁

𝑗=1
𝒟

𝑘, 𝑗

D (𝑥′) = 1 (41)

By maximizing the value function pointwise and applying Lagrange multiples, we get

𝒟
∗
W = max

𝒟W

𝑛W∑︁
𝑘=1

log
(
𝒟

𝑘
W (𝑥′)

)
𝑃Φ
𝑘 (𝑥

′) + 𝜆𝑤

(
𝑛W∑︁
𝑘=1

𝒟
𝑘
W (𝑥′) − 1

)
(42)

𝒟
𝑘∗
D = max

𝒟
𝑘
D

𝑛𝑘
D∑︁

𝑗=1
log

(
𝒟

𝑘, 𝑗

D (𝑥′)
)
𝑃Φ
𝑘, 𝑗 (𝑥

′) + 𝜆𝑘𝑑
©«
𝑛𝑘
D∑︁

𝑗=1
𝒟

𝑘, 𝑗

D (𝑥′) − 1ª®¬ (43)

Setting the derivative (w.r.t. 𝒟
𝑘∗
W (𝑥′) and 𝒟

𝑘, 𝑗∗
D (𝑥′)) to zero and solving for 𝒟

𝑘∗
W (𝑥′) and

𝒟
𝑘, 𝑗∗
D (𝑥′), we get

𝒟
𝑘∗
W (𝑥′) = −

𝑃Φ
𝑘
(𝑥′)
𝜆𝑤

𝒟
𝑘, 𝑗∗
D (𝑥′) = −

𝑃Φ
𝑘, 𝑗

(𝑥′)
𝜆𝑘
𝑑

(44)

where 𝜆𝑤 and 𝜆𝑘
𝑑

can now be solved for using the constraint to be 𝜆𝑤 = −∑𝑛W
𝑘=1 𝑃

Φ
𝑘
(𝑥′) and

𝜆𝑘
𝑑
= −∑𝑛𝑘

D
𝑗=1 𝑃

Φ
𝑘, 𝑗

(𝑥′). This gives the result.
Proof. (Theorem 1): by substituting the expression from Proposition 1 into the minimax game

defined in Eq. 6, the objective for Φ becomes

min
Φ

𝑛W∑︁
𝑘=1

©«E𝑥′∼𝑃Φ
𝑘

[
log

(
𝑃Φ
𝑘
(𝑥′)∑𝑛W

𝑘′=1 𝑃
Φ
𝑘′ (𝑥′)

)]
+

𝑛𝑘
D∑︁

𝑗=1
E𝑥′∼𝑃Φ

𝑘, 𝑗

log
©«

𝑃Φ
𝑘, 𝑗

(𝑥′)∑𝑛𝑘
D
𝑗′=1 𝑃

Φ
𝑘, 𝑗′ (𝑥′)

ª®®¬

ª®®¬ (45)
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We then note that
𝑛W∑︁
𝑘=1

E𝑥′∼𝑃Φ
𝑘

[
log

(
𝑃Φ
𝑘
(𝑥′)∑𝑛W

𝑘′=1 𝑃
Φ
𝑘′ (𝑥′)

)]
+ 𝑛W log 𝑛W

+
𝑛W∑︁
𝑘=1

©«
𝑛𝑘
D∑︁

𝑗=1
E𝑥′∼PΦ

𝑘, 𝑗

log
©«

𝑃Φ
𝑘, 𝑗

(𝑥′)∑𝑛𝑘
D
𝑗′=1 𝑃

Φ
𝑘, 𝑗′ (𝑥′)

ª®®¬
 + 𝑛

𝑘
D log 𝑛𝑘D

ª®®¬ (46)

=

𝑛W∑︁
𝑘=1

E𝑥′∼𝑃Φ
𝑘

[
log

(
𝑃Φ
𝑘
(𝑥′)

1
𝑛W

∑𝑛W
𝑘′=1 𝑃

Φ
𝑘′ (𝑥′)

)]
+

𝑛W∑︁
𝑘=1

©«
𝑛𝑘
D∑︁

𝑗=1
E𝑥′∼𝑃Φ

𝑘, 𝑗

log
©«

𝑃Φ
𝑘, 𝑗

(𝑥′)

1
𝑛𝑘
D

∑𝑛𝑘
D
𝑗′=1 𝑃

Φ
𝑘, 𝑗′ (𝑥′)

ª®®¬

ª®®¬ (47)

=

𝑛W∑︁
𝑘=1

𝐾𝐿

(
𝑃Φ
𝑘 (𝑥

′)∥ 1
𝑛W

𝑛W∑︁
𝑘′=1

𝑃Φ
𝑘′ (𝑥

′)
)
+

𝑛W∑︁
𝑘=1

©«
𝑛𝑘
D∑︁

𝑗=1
𝐾𝐿

©«𝑃Φ
𝑘, 𝑗 (𝑥

′)∥ 1
𝑛𝑘D

𝑛𝑘
D∑︁

𝑗′=1
𝑃Φ
𝑘, 𝑗′ (𝑥

′)ª®¬ª®¬ (48)

= 𝐾 · 𝐽𝑆𝐷 (𝑃Φ
1 , . . . , 𝑃

Φ
𝑛W ) +

𝑛W∑︁
𝑘=1

𝐾 · 𝐽𝑆𝐷 (𝑃Φ
𝑘,1, . . . , 𝑃

Φ

𝑘,𝑛𝑘
D
) (49)

where 𝐾𝐿 (·∥·) is the Kullback-Leibler divergence and 𝐽𝑆𝐷 (·, . . . , ·) is the multi-distribution
Jensen-Shannon Divergence (Li et al., 2018). Because 𝑛W log 𝑛W and 𝑛𝑘D log 𝑛𝑘D are constants and
the multi-distribution JSD is non-negative and 0 if and only if all distributions are equal, we have
that 𝑃Φ

1 = 𝑃Φ
2 = · · · = 𝑃Φ

𝑛W and 𝑃Φ
𝑘,1 = 𝑃Φ

𝑘,2 = · · · = 𝑃Φ

𝑘,𝑛𝑘
D

for any treatment 𝑤𝑘 .
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Appendix E. Baseline methods

We select six methods as baselines, which make use of the previous setting of time-varying treatment
types. These methods are as follows: (1) Marginal Structural Models (MSMs) (Robins et al., 2000;
Hernán et al., 2001), (2) Recurrent Marginal Structural Networks (RMSNs) (Lim et al., 2018), (3)
Counterfactual Recurrent Network (CRN) (Bica et al., 2020a), (4) G-Net (Li et al., 2021), (5) Causal
Transformer (CT) and, (6) Encoder-Decoder Causal Transformer (EDCT) (Melnychuk et al., 2022).

a. For the prior setting of time-varying treatment types, we follow the same approach used in
Melnychuk et al. (2022) for the baseline methods.

b. For our new settings of time-varying treatment types and dosages, we modify the baseline
methods to include dosages in their inputs. Additionally, we extend CRN, CT, and EDCT to
add a dosage classifier network to address dosage assignment bias. These modified baseline
methods are denoted as CRN+, CT+, and EDCT+, respectively.

We provide details for each baseline and the modification for the new setting in the following
sections.

E.1. Marginal Structural Models (MSMs)

MSMs (Robins et al., 2000; Hernán et al., 2001) is a standard baseline in epidemiology, which
aims to estimate counterfactual outcomes using inverse probability of treatment weights (IPTW).
Time-varying confounding bias is addressed by applying stabilized weights,

𝑆𝑊 (𝑡, 𝜏) =
∏𝑡+𝜏

𝑛=𝑡 𝑓 (W𝑛 |W1:𝑛−1)∏𝑡+𝜏
𝑛=𝑡 𝑓 (W𝑛 |H1:𝑛)

. (50)

Here, 𝜏 ranges from 1 to 𝜏𝑚𝑎𝑥 , and 𝑓 (W𝑛 |W1:𝑛−1) and 𝑓 (W𝑛 |H1:𝑛) denote the conditional proba-
bility mass functions for discrete treatments of W𝑛 given W1:𝑛−1 and H1:𝑛, respectively.

Both are estimated using logistic regressions, which depend on the sum of previous treatment
type applications, two previous time-varying covariates and static covariates, as follows,

𝑓 (W𝑡 |W𝑡−1) =𝜎
(
𝑛W∑︁
𝑘=1

𝜔𝑘1[W𝑡−1=𝑤𝑘 ]

)
(51)

𝑓 (W𝑡 |H𝑡−1:𝑡 ) =𝜎
(
𝑎1,𝑥X𝑡 + 𝑎2,𝑥X𝑡−1 + 𝑎1,𝑦y𝑡 + 𝑎2,𝑦y𝑡−1 + 𝑎𝑣V +

𝑛W∑︁
𝑘=1

𝜙𝑘1[W𝑡−1=𝑤𝑘 ]

)
(52)

where 𝜎(·) is a sigmoid function and 𝜔, 𝜙, 𝑎 are logistic regression parameters. After the stabilized
weights are estimated, they are normalized and truncated at their 1st and 99th percentiles as carried
out by Lim et al. (2018).

Counterfactual outcome regressions are defined, as follows,

𝑓 (y𝑡+1 |H𝑡−1:𝑡 ,W𝑡 ) = 𝑏1,𝑥X𝑡 + 𝑏2,𝑥X𝑡−1 + 𝑏1,𝑦y𝑡 + 𝑏2,𝑦y𝑡−1 + 𝑏𝑣V +
𝑛W∑︁
𝑘=1

𝛽𝑘

𝑡∑︁
𝑛=𝑡−1

1[W𝑛=𝑤
𝑘 ] (53)

where 𝛽 and 𝑏 are regression coefficients. These outcome regressions are fitted separately for each
prediction horizon. We consider six projection horizons and create a separate model for each one.
Each model is fitted independently, and we do not adjust the weight based on the projection horizon.
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For the setting of time-varying treatment types and dosages

We add the previous dosage D𝑡−1 to 𝑓 (W𝑡 |H𝑡 ) (Eq. (54)), and previous dosage D𝑡−1 and current
dosage D𝑡 to 𝑓 (y𝑡+1 |H𝑡 ) (Eq. (55)) as inputs.

𝑓 (W𝑡 |H𝑡−1:𝑡 ) = 𝜎
(
𝑎1,𝑥X𝑡 + 𝑎2,𝑥X𝑡−1 + 𝑎1,𝑦y𝑡 + 𝑎2,𝑦y𝑡−1 + 𝑎𝑣V+
𝑛W∑︁
𝑘=1

𝜙𝑘1[W𝑡−1=𝑤𝑘 ] + 𝑎2,𝑑D𝑡−1

)
(54)

𝑓 (y𝑡+1 |H𝑡−1:𝑡 ,W𝑡 ,D𝑡 ) =𝑏1,𝑥X𝑡 + 𝑏2,𝑥X𝑡−1 + 𝑏1,𝑦y𝑡 + 𝑏2,𝑦y𝑡−1 + 𝑏𝑣V+
𝑛W∑︁
𝑘=1

𝛽𝑘

𝑡∑︁
𝑛=𝑡−1

1[W𝑛=𝑤
𝑘 ] + 𝑏1,𝑑D𝑡 + 𝑏2,𝑑D𝑡−1 (55)

E.2. Recurrent Marginal Structural Networks (RMSNs)

RMSNs refer to sequence-to-sequence architectures consisting of four LSTM subnetworks: a propen-
sity treatment network, a propensity history network, an encoder, and a decoder. RMSNs are designed
to handle multiple binary treatments. To perform one-step-ahead prdiction, the encoder first learns
a representation 𝚽𝑡 of the observed history H1:𝑡 . To perform 𝜏-step-ahead prediction, the decoder
uses this representation to compute 𝑓 (y𝑡+𝜏 |𝚽𝑡 ,w𝑡+1:𝑡+𝜏−1). A fully-connected linear layer (memory
adapter) is used to match the size of the representation of the encoder with the hidden units of the
decoder.

In RMSNs, time-varying confounding is addressed by reweighting the objective using IPTW
(Robins et al., 2000) during training. IPTW creates a pseudo-population that mimics a randomized
controlled trial. As demonstrated in Lim et al. (2018), we use the stabilized weights (Eq. (50)).
Both 𝑓 (W𝑡 |W1:𝑡−1) and 𝑓 (W𝑡 |H1:𝑡 ) are learned from the data using LSTM networks, which are
called propensity treatment network (nominator) and propensity history network (denominator).

During training, the propensity networks are initially trained to estimate the stabilized weights
𝑆𝑊 (𝑡, 𝜏). The encoder is trained using a mean squared error (MSE) weighted by 𝑆𝑊 (·, 1). Similar
to MSMs, the stabilized weights are subsequently normalized and truncated. Finally, the decoder is
trained by minimizing the loss using the the stabilized weights 𝑆𝑊 (·, 𝜏𝑚𝑎𝑥).

For the setting of time-varying treatment types and dosages

We add past dosage D1:𝑡−1 to the observed history H1:𝑡 , and future dosage d𝑡:𝑡+𝜏−1 to the prediction
y𝑡+𝜏 [w𝑡:𝑡+𝜏−1, d𝑡:𝑡+𝜏−1] for 𝜏-step-ahead prediction.

E.3. Counterfactual Recurrent Network (CRN)

CRN consists of an encoder-decoder architecture. The encoder and decoder each consist of a single
LSTM-layer (𝐺𝑅). At each time step 𝑡, the output of 𝐺𝑅 is passed through a fully-connected linear
layer to build a representation 𝚽𝑡 . Then, two fully-connected networks 𝐺𝑌 and 𝐺𝑊 (as 𝐺𝐴 in
original paper (Bica et al., 2020a)) are on top of 𝚽𝑡 , to predict the next outcome y𝑡+1 and the current
treatment type w𝑡 , respectively. CRN builds balanced representations that predict outcomes, and
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do not predict the treatment type assignment. This is achieved by adopting an adversarial learning
technique, known as gradient reversal (Ganin et al., 2016). Both the encoder and decoder is trained
by minimizing the following loss,

L(𝐺𝑌 , 𝐺W , 𝐺𝑅) = |y𝑡+1 − 𝐺𝑌 (𝚽𝑡 ,w𝑡 ) |2 − 𝜆
𝑛W∑︁
𝑘=1

1[𝑤𝑘=w𝑡 ] log𝐺𝑊 (𝚽𝑡 ) (56)

with hyperparameter 𝜆.
Loss L is based on a gradient reversal layer (Ganin et al., 2016), which forces 𝐺𝑊 to minimize

the cross-entropy between the predicted and current treatments, but 𝚽𝑡 to maximize it. In our
experiments, we kept 𝜆 = 1, similar to Atan et al. (2018); Bica et al. (2020a); Melnychuk et al.
(2022).

E.4. G-Net

G-Net is based on the G-computation formula in Eq. (57), which expresses the average counter-
factual outcome y𝑡+𝜏 [w𝑡:𝑡+𝜏−1] conditioned on the history H1:𝑡 in terms of the observational data
distribution.

E(y𝑡+𝜏 [w𝑡:𝑡+𝜏−1] | H1:𝑡 ) =
∫
R𝑑𝑥 ×···×R𝑑𝑥

E(y𝑡+𝜏 |H1:𝑡 , y𝑡+1:𝑡+𝜏−1,w𝑡+1:𝑡+𝜏−1)×

𝑡+𝜏−1∏
𝑗=𝑡+1

P(y 𝑗 |H1:𝑡 , y𝑡+1: 𝑗−1,w𝑡: 𝑗−1) dy𝑡+1:𝑡+𝜏−1 (57)

G-Net performs counterfactual outcome prediction in two steps. First, the conditional dis-
tributions P(y 𝑗 |H1:𝑡 , y𝑡+1: 𝑗−1,w𝑡: 𝑗−1) are estimated. Subsequently, Monte Carlo simulations are
performed using Eq. (57), by sampling from the estimated distributions. Later, y𝑡+𝜏 [w𝑡:𝑡+𝜏−1] is
predicted by calculating the empirical mean over the Monte Carlo samples (M = 50).

The conditional distributions P(y 𝑗 |H1:𝑡 , x𝑡+1: 𝑗−1,w𝑡: 𝑗−1) are learned by estimating the respective
conditional expectations E(y 𝑗 |H1:𝑡 , y𝑡+1: 𝑗−1,w𝑡: 𝑗−1), which are in turn learned via a single LSTM
jointly with outcome prediction. We can then sample from P(y 𝑗 |H1:𝑡 , y𝑡+1: 𝑗−1,w𝑡: 𝑗−1) by drawing
from the empirical distributions of the residuals on a holdout set that is not used to estimate the
conditional expectations. We used 10% of the training data as the holdout dataset.

For the setting of time-varying treatment types and dosages

We add past dosage D1:𝑡−1 to the observed history H1:𝑡 , and future dosage d𝑡:𝑡+𝜏−1 to the prediction
y𝑡+𝜏 [w𝑡 ,𝑡+𝜏−1, d𝑡:𝑡+𝜏−1] for 𝜏-step-ahead prediction.

E.5. Causal Transformer (CT)

The state-of-the-art study (Melnychuk et al., 2022) proposes two transformer models, CT and
EDCT. CT is a single multi-input architecture that combines separate transformer subnetworks for
each feature, whereas EDCT consists of a transformer-based encoder and decoder, with all input
sequences are fed into a single subnetwork.

CT and EDCT fed outputs of transformers 𝐺𝑅 into a fully-connected linear layer that builds a
representation 𝚽𝑡 . Two fully-connected networks 𝐺𝑌 and 𝐺W (as 𝐺𝐴 in Melnychuk et al. (2022))
are placed on top of 𝚽𝑡 to predict the next outcome y𝑡+1 and the current treatment w𝑡 , respectively.
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𝐺W is fit to predict the current treatment, as follows,

LW (𝐺W , 𝐺𝑅) = −
𝑛W∑︁
𝑘=1

1[𝑤𝑘=w𝑡 ] log𝐺W (𝚽𝑡 ). (58)

This minimizes the classification loss of the current treatment type assignment given by 𝚽𝑡 .
However, while 𝐺W can predict the current treatment, the actual representation 𝚽𝑡 should be
non-predictive to address treatment type assignment bias.

To handle adversarial objectives, CT and EDCT use an adversarial learning technique called the
counterfactual domain confusion (CDC) loss (Melnychuk et al., 2022) to minimize the cross-entropy
between a uniform distribution over the treatment categorical space and the predictions of 𝐺W , as
follows,

L𝑐𝑜𝑛 𝑓 (𝐺W , 𝐺𝑅) = −
𝑛W∑︁
𝑘=1

1
𝑛W

log𝐺W (𝚽𝑡 ). (59)

Overall, �̂�𝑌 , �̂�𝑅 and �̂�W are trained according to the minimax game defined as follows,

(�̂�𝑌 , �̂�𝑅) = arg min
𝐺𝑌 ,𝐺𝑅

L𝑌 (𝐺𝑌 , 𝐺𝑅) + 𝛼L𝑐𝑜𝑛 𝑓 (�̂�W , 𝐺𝑅) (60)

�̂�W = arg min
𝐺𝑊

𝛼LW (𝐺W , �̂�𝑅) (61)

where 𝛼 is a hyperparameter for domain confusion, and L𝑌 is the factual loss of the outcome.
The optimal values of �̂�𝑌 , �̂�𝑅 and �̂�W achieve an equilibrium between the factual outcome

prediction and domain confusion.

E.6. CRN+, CT+, EDCT+

We add the previous dosage to the sequential network (LSTM (CRN) or transformer (CT)) and the
current dosage to 𝐺𝑌 , as inputs. Moreover, we add treatment dosage classifier network 𝐺D to the
baseline methods (CRN, CT and EDCT) (Figure 8).

CRN+

The encoder and decoder of CRN+ are trained by minimizing the loss, as follows:

L(𝐺𝑌 , 𝐺W , 𝐺D , 𝐺𝑅) = |y𝑡+1 − 𝐺𝑌 (𝚽𝑡 ,w𝑡 , d𝑡 ) |2−𝜆
𝑛W∑︁
𝑤=1

1[𝑤=w𝑡 ] log𝐺𝑊 (𝚽𝑡 )

−𝜆
𝑛
𝑤𝑡
D∑︁
𝑗=1

1[𝑑𝑘, 𝑗=d𝑡 ] log𝐺𝐷 (𝚽𝑡 ,w𝑡 ). (62)
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CT+ and EDCT+

We define the dosage discriminator loss and CDC loss for dosages, as follows:

LD (𝐺𝐷 , 𝐺𝑅) = −
𝑛
𝑤𝑡
D∑︁
𝑗=1

1[𝑑𝑤𝑡 , 𝑗=d𝑡 ] log𝐺D (𝚽𝑡 ,w𝑡 ) (63)

L𝑐𝑜𝑛 𝑓 (𝐺𝐷 , 𝐺𝑅) = −
𝑛
𝑤𝑡
D∑︁
𝑗=1

1
𝑛
𝑤𝑡

D
log𝐺D (𝚽𝑡 ,w𝑡 ) (64)

Then, (𝐺𝑌 , 𝐺𝑅) and (𝐺W , 𝐺D) are trained according to the minimax game defined as follows,

(�̂�𝑌 , �̂�𝑅) = arg min
𝐺𝑌 ,𝐺𝑅

L𝑌 (𝐺𝑌 , 𝐺𝑅) + 𝛼L𝑐𝑜𝑛 𝑓 (�̂�W , 𝐺𝑅) + 𝛼L𝑐𝑜𝑛 𝑓 (�̂�D , 𝐺𝑅) (65)

(�̂�W , �̂�D) =

�̂�W = argmin

𝐺W

𝛼LW (𝐺W , �̂�𝑅)

�̂�D = argmin
𝐺D

𝛼LD (𝐺D , �̂�𝑅)
(66)

Figure 8: Architecture of CRN+, CT+, EDCT+
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Appendix F. Implementation

F.1. Training

We implemented EDTS in PyTorch, and conduced training on AMD Ryzen Threadripper 3960X
CPU and a 2 × Nvidia RTX 3090 GPUs. Baseline models were trained using Adam (Kingma and
Ba, 2014) optimized with a learning rate 𝜂 and a specified number of epochs 𝑛𝑒. During training,
we employes an exponential decay of the learning rate 𝜂. The number of epochs (𝑛𝑒) was set to 100
∼ 300 to account for the complexities of the baselines (Tables 4 and 5). Additionally, we used the
teacher forcing technique (Williams and Zipser, 1989) when training the models for multiple-step-
ahead predictions. During the evaluation of the multiple-step-ahead predictions, we switched off the
teacher forcing and fed the model predictions autoregressively.

Adversarial Training

For the parameters 𝛼 (in CDC loss of CT (EDCT) or OD loss of EDTS) and 𝜆 (in gradient reversal
of CRN) of adversarial training, we chose 𝛼 = 0.01 and 𝜆 = 1.00, as chosen in the original works
(Tzeng et al., 2015; Yazıcı et al., 2018). We applied exponential growth to both 𝛼 and 𝜆 as follows:

𝛼𝑒 = 𝛼 ·
(

2
1 + exp(−10 × 𝑒/𝑛𝑒)

− 1
)
, 𝜆𝑒 = 𝜆 ·

(
2

1 + exp(−10 × 𝑒/𝑛𝑒)
− 1

)
, (67)

where 𝑒 ∈ 1, . . . , 𝑛𝑒 represents the current epoch index.
To enhance the stability of the adversarial training, in the original paper (Melnychuk et al., 2022),

CT and EDCT use an exponential moving average (EMA) (Yazıcı et al., 2018) during training. We
also use EMA for EDTS, CT and EDCT in this study. The detail of EMA is described in Melnychuk
et al. (2022).

F.2. Hyperparameter tuning.

𝑝, 𝜂, and all other hyperparameters (number of blocks 𝐵, minibatch size, number of attention heads
𝑛ℎ, size of hidden units 𝑑ℎ, size of representaion or balanced representation 𝑑𝑟 , size of hidden
units in fully-connected networks 𝑛𝐹𝐶) are subjected to tuning. We conducted hyperparameter
optimization for all benchmarks using a random grid search based on the factual RMSE of the
validation set. The ranges of the hyperparameter grids are listed in Tables 4 and 5. Additional
information on the model-specific hyperparameters is provided in Table 6. In specific cases such
as in the LSTM hidden units or transformer blocks, we employed one- or two-layer sequential
models. We conducted hyperparameter tuning separately for all the models, different values of the
confounding amount using the 1,000 factual patient time-series from the validation set.
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Table 4: Ranges for hyperparameter tuning across experiments of data using (1) the tumor growth
(TG) simulator, (2) data from the semi-synthetic data from real-world EEG data. C is the input size.
𝑑𝑟 is the size of BR or the output of the LSTM (in the case of G-Net).

Model Sub-model Hyperparameter Range

RMSNs

Propensity
Treatment
Network

LSTM layers (𝐵) 1, 2
Learning late (𝜂) 0.01, 0.001, 0.0001
Minibatch size 64, 128, 256
LSTM hidden units (𝑑ℎ) 0.5C, 1C, 2C, 3C, 4C
LSTM dropout rate (𝑝) 0.1, 0.2, 0.3, 0.4, 0.5
Max gradient norm 0.5, 1.0, 2.0
Number of epochs (𝑛𝑒) 100 (TG), 200 (EEG)

Propensity
History
Network
/Encoder

LSTM layers (𝐵) 1, 2
Learning late (𝜂) 0.01, 0.001, 0.0001
Minibatch size 64, 128, 256
LSTM hidden units (𝑑ℎ) 0.5C, 1C, 2C, 3C, 4C
LSTM dropout rate (𝑝) 0.1, 0.2, 0.3, 0.4, 0.5
Max gradient norm 0.5, 1.0, 2.0
Number of epochs (𝑛𝑒) 100 (TG), 200 (EEG)

Decoder

LSTM layers (𝐵) 1, 2
Learning late (𝜂) 0.01, 0.001, 0.0001
Minibatch size 256, 512, 1024
LSTM hidden units (𝑑ℎ) 1C, 2C, 4C, 8C, 16C
LSTM dropout rate (𝑝) 0.1, 0.2, 0.3, 0.4, 0.5
Max gradient norm 0.5, 1.0, 2.0, 4.0
Number of epochs (𝑛𝑒) 100 (TG), 200 (EEG)

CRN

Encoder

LSTM layers (𝐵) 1, 2
Learning late (𝜂) 0.01, 0.001, 0.0001
Minibatch size 64, 128, 256
LSTM hidden units (𝑑ℎ) 0.5C, 1C, 2C, 3C, 4C
BR size (𝑑𝑟 ) 0.5C, 1C, 2C, 3C, 4C
FC hidden units (𝑛𝐹𝐶) 0.5𝑑𝑟 , 1𝑑𝑟 , 2𝑑𝑟 , 3𝑑𝑟 , 4𝑑𝑟
LSTM dropout rate (𝑝) 0.1, 0.2, 0.3, 0.4, 0.5
Number of epochs (𝑛𝑒) 100 (TG), 200 (EEG)

Decoder

LSTM layers (𝐵) 1, 2
Learning late (𝜂) 0.01, 0.001, 0.0001
Minibatch size 256, 512, 1024
LSTM hidden units (𝑑ℎ) BR size of encoder
BR size (𝑑𝑟 ) 0.5C, 1C, 2C, 3C, 4C
FC hidden units (𝑛𝐹𝐶) 0.5𝑑𝑟 , 1𝑑𝑟 , 2𝑑𝑟 , 3𝑑𝑟 , 4𝑑𝑟
LSTM dropout rate (𝑝) 0.1, 0.2, 0.3, 0.4, 0.5
Number of epochs (𝑛𝑒) 100 (TG), 200 (EEG)

G-Net -

LSTM layers (𝐵) 1, 2
Learning late (𝜂) 0.01, 0.001, 0.0001
Minibatch size 64, 128, 256
LSTM hidden units (𝑑ℎ) 0.5C, 1C, 2C, 3C, 4C
LSTM output size (𝑑𝑟 ) 0.5C, 1C, 2C, 3C, 4C
FC hidden units (𝑛𝐹𝐶) 0.5𝑑𝑟 , 1𝑑𝑟 , 2𝑑𝑟 , 3𝑑𝑟 , 4𝑑𝑟
LSTM dropout rate (𝑝) 0.1, 0.2, 0.3, 0.4, 0.5
Number of epochs (𝑛𝑒) 100 (TG), 200 (EEG)

CT -

Transformer blocks (𝐵) 1, 2
Learning late (𝜂) 0.01, 0.001, 0.0001
Minibatch size 64, 128, 256
Attention head (𝑛ℎ) 2, 3
Transformer units (𝑑ℎ) 1C, 2C, 3C, 4C
BR size (𝑑𝑟 ) 0.5C, 1C, 2C, 3C, 4C
FC hidden units (𝑛𝐹𝐶) 0.5𝑑𝑟 , 1𝑑𝑟 , 2𝑑𝑟 , 3𝑑𝑟 , 4𝑑𝑟
Sequential dropout rate (𝑝) 0.1, 0.2, 0.3, 0.4, 0.5
Max positional encoding (𝑙𝑚𝑎𝑥) 15 (TG), 20 (EEG)
Number of epochs (𝑛𝑒) 150 (TG), 300 (EEG)
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Table 5: Ranges for hyperparameter tuning across experiments. C is the input size. 𝑑𝑟 is the size of
BR in EDCT or representation in EDTS.

Model Sub-model Hyperparameter Range

EDCT

Encoder

Transformer blocks (𝐵) 1, 2
Learning late (𝜂) 0.01, 0.001, 0.0001
Minibatch size 64, 128, 256
Attention head (𝑛ℎ) 2, 3
Transformer units (𝑑ℎ) 1C, 2C, 3C, 4C
BR size (𝑑𝑟 ) 0.5C, 1C, 2C, 3C, 4C
FC hidden units (𝑛𝐹𝐶) 0.5𝑑𝑟 , 1𝑑𝑟 , 2𝑑𝑟 , 3𝑑𝑟 , 4𝑑𝑟
Sequential dropout rate (𝑝) 0.1, 0.2, 0.3, 0.4, 0.5
Max positional encoding (self-attention) (𝑙𝑚𝑎𝑥) 15 (TG), 20 (EEG)
Number of epochs (𝑛𝑒) 100 (TG), 200 (EEG)

Decoder

Transformer blocks (𝐵) 1, 2
Learning late (𝜂) 0.01, 0.001, 0.0001
Minibatch size 256, 512, 1024
Attention head (𝑛ℎ) 2, 3
Transformer units (𝑑ℎ) BR size of encoder
BR size (𝑑𝑟 ) 0.5C, 1C, 2C, 3C, 4C
FC hidden units (𝑛𝐹𝐶) 0.5𝑑𝑟 , 1𝑑𝑟 , 2𝑑𝑟 , 3𝑑𝑟 , 4𝑑𝑟
Sequential dropout rate (𝑝) 0.1, 0.2, 0.3, 0.4, 0.5
Max positional encoding (cross-attention) (𝑙𝑚𝑎𝑥) 𝜏𝑚𝑎𝑥

Max positional encoding (self-attention) (𝑙𝑚𝑎𝑥) 15 (TG), 20 (EEG)
Number of epochs (𝑛𝑒) 100 (TG), 200 (EEG)

EDTS

Encoder

Transformer blocks (𝐵) 1, 2
Learning late (𝜂) 0.01, 0.001, 0.0001
Minibatch size 64, 128, 256
Attention head (𝑛ℎ) 2, 3
Transformer units (𝑑ℎ) 1C, 2C, 3C, 4C
R size (𝑑𝑟 ) 0.5C, 1C, 2C, 3C, 4C
FC hidden units (𝑛𝐹𝐶) 0.5𝑑𝑟 , 1𝑑𝑟 , 2𝑑𝑟 , 3𝑑𝑟 , 4𝑑𝑟
Invariant/Eqivariant hidden units (𝑛𝐼𝐸) FC hidden units
Sequential dropout rate (𝑝) 0.1, 0.2, 0.3, 0.4, 0.5
Max positional encoding (self-attention) (𝑙𝑚𝑎𝑥) 15 (TG), 20 (EEG)
Number of epochs (𝑛𝑒) 100 (TG), 200 (EEG)

Decoder

Transformer blocks (𝐵) 1, 2
Learning late (𝜂) 0.01, 0.001, 0.0001
Minibatch size 256, 512, 1024
Attention head (𝑛ℎ) 2, 3
Transformer units (𝑑ℎ) R size of encoder
R size (𝑑𝑟 ) 0.5C, 1C, 2C, 3C, 4C
FC hidden units (𝑛𝐹𝐶) 0.5𝑑𝑟 , 1𝑑𝑟 , 2𝑑𝑟 , 3𝑑𝑟 , 4𝑑𝑟
Invariant/Eqivariant hidden units (𝑛𝐼𝐸) FC hidden units
Sequential dropout rate (𝑝) 0.1, 0.2, 0.3, 0.4, 0.5
Max positional encoding (self-attention) (𝑙𝑚𝑎𝑥) 𝜏𝑚𝑎𝑥

Max positional encoding (cross-attention) (𝑙𝑚𝑎𝑥) 15 (TG), 20 (EEG)
Number of epochs (𝑛𝑒) 100 (TG), 200 (EEG)
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Table 6: Additional information on model-specific hyperparameters (constant for all experiments).

Model Sub-model Hyperparameter Value

RMSNs

Propensity
Treatment
Network

Random search iterations 50
Input size (C) 𝑑𝑤
Output size 𝑑𝑤

Propensity
History
Network

Random search iterations 50
Input size (C) 𝑑𝑦 + 𝑑𝑥 + 𝑑𝑣 + 𝑑𝑤 + 𝑑𝑑
Output size 𝑑𝑤

Encoder
Random search iterations 50
Input size (C) 𝑑𝑦 + 𝑑𝑥 + 𝑑𝑣 + 𝑑𝑤 + 𝑑𝑑
Output size 𝑑𝑦

Decoder
Random search iterations 20
Input size (C) 𝑑𝑦 + 𝑑𝑣 + 𝑑𝑤 + 𝑑𝑑
Output size 𝑑𝑦

CRN

Encoder

Random search iterations 50
Input size (C) 𝑑𝑦 + 𝑑𝑥 + 𝑑𝑣 + 𝑑𝑤 + 𝑑𝑑
Output size 𝑑𝑦 + 𝑑𝑤 + 𝑑𝑑
Gradient reversal coefficient 1.0

Decoder

Random search iterations 50
Input size (C) 𝑑𝑦 + 𝑑𝑣 + 𝑑𝑤 + 𝑑𝑑
Output size 𝑑𝑦 + 𝑑𝑤 + 𝑑𝑑
Gradient reversal coefficient 1.0

G-Net -

Random search iterations 50
Input size (C) 𝑑𝑦 + 𝑑𝑥 + 𝑑𝑣 + 𝑑𝑤 + 𝑑𝑑
Output size 𝑑𝑦
MC samples (M) 50
Number of covariate groups 1
Holdout dataset radio (empirical residuals) 10%

CT -

Random search iterations 50
Input size (C) max{𝑑𝑦 , 𝑑𝑥 , 𝑑𝑣 , 𝑑𝑤 , 𝑑𝑑}
Output size 𝑑𝑦 + 𝑑𝑤
CDC coefficient 0.01
EMA of model weights 0.99
Positional encoding relative, trainable

EDCT

Encoder

Random search iterations 50
Input size (C) 𝑑𝑦 + 𝑑𝑥 + 𝑑𝑣 + 𝑑𝑤 + 𝑑𝑑
Output size 𝑑𝑦 + 𝑑𝑤
CDC coefficient 0.01
EMA of model weights 0.99
Positional encoding relative, trainable

Decoder

Random search iterations 50
Input size (C) 𝑑𝑦 + 𝑑𝑣 + 𝑑𝑤 + 𝑑𝑑
Output size 𝑑𝑦 + 𝑑𝑤
CDC coefficient 0.01
EMA of model weights 0.99
Positional encoding relative, trainable

EDTS

Encoder

Random search iterations 50
Input size (C) 𝑑𝑦 + 𝑑𝑥 + 𝑑𝑣 + 𝑑𝑤 + 𝑑𝑑
Output size 𝑑𝑦 + 𝑑𝑤 + 𝑑𝑑
OD coefficient 0.01
EMA of model weights 0.99
Positional encoding relative, trainable

Decoder

Random search iterations 50
Input size (C) 𝑑𝑦 + 𝑑𝑣 + 𝑑𝑤 + 𝑑𝑑
Output size 𝑑𝑦 + 𝑑𝑤 + 𝑑𝑑
OD coefficient 0.01
EMA of model weights 0.99
Positional encoding relative, trainable
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Appendix G. Details on experiments with synthetic data

G.1. Summary of Tumor Growth Simulator

The tumor growth simulator (Geng et al., 2017) models the volume of the tumor y𝑡+1 for 𝑡 + 1 days
after cancer diagnosis, resulting in a one-dimensional outcome, i.e., 𝑑𝑦 = 1. The model includes
two binary treatments: (i) radiotherapy (𝑤𝑟

𝑡 ) and (ii) chemotherapy (𝑤𝑐
𝑡 ), which are modeled as

follows: (i) Radiotherapy when assigned to a patient has an immediate effect on the outcome. (ii)
Chemotherapy affects several future outcomes with an exponentially decaying effect.

Model of tumor growth.

The volume of tumor 𝑡 days after diagnosis is modelled as follows:

𝑦𝑡+1︸︷︷︸
𝑉𝑜𝑙𝑢𝑚𝑒 𝑜 𝑓
𝑇𝑢𝑚𝑜𝑟

=
{

1 + 𝜌 log (𝐾/𝑦𝑡 )︸               ︷︷               ︸
𝐺𝑟𝑜𝑤𝑡ℎ

− 𝛽𝑐𝑑
𝑐
𝑡︸︷︷︸

𝐶ℎ𝑒𝑚𝑜𝑡ℎ𝑒𝑟𝑎𝑝𝑦

−
(
𝛼𝑟𝑑

𝑟
𝑡 + 𝛽𝑟𝑑𝑟𝑡 2

)
︸              ︷︷              ︸
𝑅𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑡ℎ𝑒𝑟𝑎𝑝𝑦

+ 𝜖𝑡︸︷︷︸
𝑁𝑜𝑖𝑠𝑒

}
𝑦𝑡 (68)

where the parameters 𝜌, 𝐾, 𝛽𝑐, 𝛼𝑟 , 𝛽𝑟 are samples from the prior distributions described in Geng
et al. (2017), and 𝜖𝑡 ∼ N(0, 0.012) is independently sampled noise.

Patient type 𝑉 = {1, 2, 3} is randomly assigned to each patient. Type 1 patients respond more
favorably to radiotherapy, denoted as 𝜇′(𝛼𝑟 ) = 1.1 × 𝜇(𝛼𝑟 ), while type 3 patients respond more
favorably to chemotherapy, denoted as 𝜇′(𝛽𝑐) = 1.1× 𝜇(𝛽𝑐). Here, 𝜇(𝛼𝑟 ) represents the prior mean
of 𝛼𝑟 , and 𝜇(𝛽𝑐) represents the prior mean of 𝛽𝑐.

𝑑𝑐𝑡 is the chemotherapy dosage and 𝑑𝑟𝑡 is the radiotherapy dosage. The dose-response curve for
chemotherapy follows a linear function, while that for radiotherapy is quadratic.

Time-varying treatment types

In the setting of time-varying treatment types, the chemotherapy dosage 𝑑𝑐𝑡 = 5.0 𝑚𝑔/𝑐𝑚3 and
radiotherapy dosage 𝑑𝑟𝑡 = 2.0 𝐺𝑦 are constant, and the treatmet dosages are not used as model
inputs. Time-varying confounding is introduced by biased treatment type assignment, which is
identical for both treatment types. The probabilities of the chemotherapy and radiotherapy treatment
type assignments are as follows:

𝑝(𝑤𝑐
𝑡 = 1), 𝑝(𝑤𝑟

𝑡 = 1) = 𝜎
(
𝛾𝑤

𝐷𝑚𝑎𝑥

(
𝐷𝑡−14:𝑡 −

𝐷𝑚𝑎𝑥

2

))
(69)

where 𝑤𝑐
𝑡 , 𝑤

𝑟
𝑡 ∈ {0, 1}, 𝐷𝑡−14:𝑡 is the average tumor diameter over the last 15 days, 𝐷𝑚𝑎𝑥 is the

maximum tumor diameter 13 𝑐𝑚, and 𝜎 is the sigmoid.
𝛾𝑤 controls the degree of time-dependent confounding of treatment type. For 𝛾𝑤 = 0, the

treatment type assignment is fully randomized. With increasing values, the amount of time-varying
confounding becomes also increases. Chemotherapy and radiotherapy assignment are independent,
and there are four treatment type options: no treatment (𝑤𝑐

𝑡 = 0, 𝑤𝑟
𝑡 = 0), chemotherapy (𝑤𝑐

𝑡 =

1, 𝑤𝑟
𝑡 = 0), radiotherapy (𝑤𝑐

𝑡 = 0, 𝑤𝑟
𝑡 = 1), and both (𝑤𝑐

𝑡 = 1, 𝑤𝑟
𝑡 = 1) at each time step.

For the test data for 1-step-ahead prediction, we use counterfactual simulation data (CSD) that
are simulated with inverted probabilities of factual treatment type assignments 𝑝𝑖𝑛𝑣 (𝑤𝑐

𝑡 = 1) =

𝑝(𝑤𝑐
𝑡 = 0) and 𝑝𝑖𝑛𝑣 (𝑤𝑟

𝑡 = 1) = 𝑝(𝑤𝑟
𝑡 = 0). For 𝜏-step-ahead prediction (𝜏 > 1), CSD is highly

counterfactual, making it difficult to evaluate the baseline methods accurately. Subsequently, the
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counterfactual trajectory data after 2-step from each time step of CSD is simulated with a random
treatment type assignment (random trajectory used in CT).

Time-varying treatment types and dosages

In the setting of time-varying treatment types and dosages, full (regular) and half dosages can be
chosen for each treatment type at each time step (Table 7), and the treatment dosages are used as
model inputs.

Table 7: Treatment type-dosage pair

Dosage

Type Full (Regular) Half

no treatment 0 -
chemotherapy 5 2.5
radiotherapy 2 1
both 7 3.5

The probabilities of full dosage assignments are given in Eq.70 and Eq.71. 𝛾𝑑 is the amount of
time-varying confounding parameter of the dosage assignment.

𝑝(𝑑𝑐𝑡 = 𝐹𝑢𝑙𝑙), 𝑝(𝑑𝑟𝑡 = 𝐹𝑢𝑙𝑙) = 𝜎
(
𝛾𝑑

𝐷𝑚𝑎𝑥

(
𝐷𝑡−14:𝑡 −

𝐷𝑚𝑎𝑥

2

))
(70)

𝑝(𝑑𝑏𝑡 = 𝐹𝑢𝑙𝑙) =
𝑝(𝑑𝑐𝑡 = 𝐹𝑢𝑙𝑙) + 𝑝(𝑑𝑟𝑡 = 𝐹𝑢𝑙𝑙)

2
(71)

where 𝑑𝑐𝑡 , 𝑑𝑟𝑡 , 𝑑𝑏𝑡 ∈ {Half, Full} are dosage assignments of chemotherapy, radiotherapy, and
both treatments, respectively.

For the test data for 1-step-ahead prediction, CSD are simulated with an inverted factual treatment
and dosage assignment (i.e., 𝑝𝑖𝑛𝑣 (𝑑𝑐𝑡 = 𝐹𝑢𝑙𝑙) = 𝑝(𝑑𝑐𝑡 = 𝐻𝑎𝑙 𝑓 )). The counterfactual trajectory data
after 2-step from each time step of the CSD are simulated using a random treatment and dosage
assignment.

G.2. Dataset.

For each level of confounding 𝛾, we simulate 10,000 patient trajectories for training, and 1,000 each
for validation and testing. We limit the length of the trajectories to a maximum of 60 time steps.
Some patients have shorter trajectories due to recovery or death. For training, we only use periods
before death or recovery, so these events are not considered in this study.

G.3. Performance measurement.

We retrain the models on five simulated datasets using different random seeds. We then report the
averaged root mean square error (RMSE) on the test set, i.e., for the hold-out data. We report a
normalized RMSE, normalized by the maximum tumor volume, 𝑦𝑚𝑎𝑥 = 1150 𝑐𝑚3.
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G.4. Additional Results (prior setting)

We compared our EDTS performance with a prior studies setting of time-varying treatment types.
For this setting, we modified EDTS to omit the input of dosages and dosage discriminators (EDTS-).

Table 8 presents the results. Compared with the baseline methods, EDTS improved the prediction
accuracy of counterfactual outcomes. This proves that GAN is effective for handling treatment
assignment bias in the longitudinal setting, and not just in the static setting.

Table 8: Normalized RMSE for 𝜏-step-ahead prediction in the setting of time-varying treatment
types (setting in prior studies). Shown: mean ± standard deviation over five runs (lower is better).
𝛾𝑤 represents the amount of time-varying confounding parameters, with higher values indicating
larger assignment bias of treatments.

𝜏 = 1 𝜏 = 2 𝜏 = 3 𝜏 = 4 𝜏 = 5 𝜏 = 6
𝛾𝑤 = 0 MSMs 1.02 (±0.06) 1.44 (±0.10) 1.80 (±0.13) 1.51 (±0.10) 1.28 (±0.09) 1.09 (±0.08)

RMSNs 0.66 (±0.06) 0.76 (±0.07) 0.77 (±0.07) 0.74 (±0.07) 0.68 (±0.06) 0.62 (±0.06)
CRN 0.63 (±0.06) 0.73 (±0.07) 0.74 (±0.07) 0.72 (±0.07) 0.66 (±0.06) 0.60 (±0.06)
G-Net 0.65 (±0.07) 0.77 (±0.08) 0.78 (±0.07) 0.75 (±0.07) 0.70 (±0.06) 0.64 (±0.05)
CT 0.72 (±0.06) 0.83 (±0.07) 0.84 (±0.07) 0.81 (±0.06) 0.75 (±0.06) 0.69 (±0.05)
EDCT 0.65 (±0.07) 0.75 (±0.07) 0.76 (±0.07) 0.72 (±0.07) 0.67 (±0.06) 0.61 (±0.06)
EDTS- 0.63 (±0.06) 0.73 (±0.08) 0.74 (±0.07) 0.71 (±0.07) 0.65 (±0.07) 0.60 (±0.06)

𝛾𝑤 = 2 MSMs 1.48 (±0.08) 2.38 (±0.15) 2.81 (±0.21) 2.33 (±0.20) 1.94 (±0.18) 1.61 (±0.16)
RMSNs 0.78 (±0.08) 1.08 (±0.09) 1.14 (±0.10) 1.10 (±0.10) 1.01 (±0.10) 0.92 (±0.09)
CRN 0.71 (±0.07) 1.00 (±0.09) 1.06 (±0.10) 1.02 (±0.11) 0.94 (±0.11) 0.85 (±0.11)
G-Net 0.76 (±0.08) 1.06 (±0.10) 1.14 (±0.11) 1.11 (±0.12) 1.04 (±0.12) 0.95 (±0.12)
CT 0.75 (±0.06) 1.01 (±0.08) 1.07 (±0.09) 1.04 (±0.09) 0.97 (±0.09) 0.88 (±0.09)
EDCT 0.72 (±0.09) 1.01 (±0.07) 1.05 (±0.08) 1.01 (±0.09) 0.94 (±0.10) 0.85 (±0.10)
EDTS- 0.71 (±0.08) 0.98 (±0.09) 1.04 (±0.11) 1.00 (±0.12) 0.93 (±0.12) 0.84 (±0.12)

𝛾𝑤 = 4 MSMs 2.23 (±0.12) 3.63 (±0.24) 4.27 (±0.31) 3.46 (±0.29) 2.81 (±0.26) 2.31 (±0.23)
RMSNs 1.16 (±0.24) 1.76 (±0.22) 1.83 (±0.23) 1.76 (±0.22) 1.63 (±0.19) 1.48 (±0.17)
CRN 1.04 (±0.10) 1.54 (±0.16) 1.62 (±0.18) 1.57 (±0.19) 1.45 (±0.18) 1.33 (±0.16)
G-Net 0.94 (±0.14) 1.50 (±0.19) 1.67 (±0.23) 1.69 (±0.23) 1.63 (±0.24) 1.54 (±0.23)
CT 1.09 (±0.13) 1.50 (±0.18) 1.61 (±0.21) 1.62 (±0.23) 1.57 (±0.25) 1.49 (±0.26)
EDCT 1.01 (±0.21) 1.82 (±0.15) 1.85 (±0.15) 1.69 (±0.14) 1.50 (±0.13) 1.34 (±0.12)
EDTS- 0.99 (±0.12) 1.50 (±0.15) 1.60 (±0.17) 1.55 (±0.17) 1.45 (±0.16) 1.33 (±0.15)
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Appendix H. Details on experiments with semi-synthetic data

H.1. Data

We used the EEG dataset (Zhang et al., 1995), which can be downloaded from https://kdd.
ics.uci.edu/databases/eeg/eeg.html. This dataset originatess from a large study
examining EEG correlates of genetic predisposition to alcoholism. It contains measurements from
64 electrodes placed on the scalp sampled at 256 Hz (3.9-millisecond epochs) for one second. For
our semi-synthetic data, we randomly select 24 of 64 electrodes as time-varying covariates, and use
first 100 of 256 time steps.

There were two groups of subjects: alcoholic and control. Each subject was exposed to either
a single stimulus (S1) or to two stimuli (S1 and S2). We use the groups and exposures as static
covariates. We one-hot-encode all static covariates and use them later further for generating noise.
Altogether, this results into a 5-dimensional feature vector (𝑑𝑣 = 5).

Our simulation of semi-synthetic data for time-varying treatment types and dosages is based on
the framework establised by Melnychuk et al. (2022) for time-varying treatment types. We begin by
generating untreated outcome trajectories under endogeneous and exogeneous dependencies. Then,
we sequentially apply treatments to these trajectories. We assume that the dependencies between
treatments, outcomes, and time-varying covariates are sparse, meaning that outcomes are influenced
by only a few treatments and covariates. Treatment assignments depend on a limited number of
outcomes and covariates.
Our semi-synthetic simulator proceeds as follows.
First, we randomly select 1,000 trials of the EEG data set that contains all 120 trials for 122 subjects
(all over 14,640 trials).
Second, we simulate 𝑑𝑦 untreated outcomes Z 𝑗 , (𝑖)

𝑡 , 𝑗 = 1 . . . , 𝑑𝑦 , for each trial 𝑖. Therein, we
combine (1) an endogenous component (B-spline (𝑡) and random function 𝑔 𝑗 , (𝑖) ); (2) an exogenous
dependency 𝑓

𝑗

𝑍
(X(𝑖)

𝑡 ) on a subset of current time-varying covariates; and (3) independent random
noise 𝜖𝑡 . Formally, we generate the simulations via

Z 𝑗 , (𝑖)
𝑡 = 𝛼

𝑗

𝑆
B-spline(𝑡) + 𝛼 𝑗

𝑔𝑔
𝑗 , (𝑖) (𝑡)︸                              ︷︷                              ︸

endogenous

+𝛼 𝑗

𝑓
𝑓
𝑗

𝑍
(X(𝑖)

𝑡 )︸        ︷︷        ︸
exogenous

+ 𝜖𝑡︸︷︷︸
noise

(72)

with 𝜖𝑡 ∼ 𝑁 (0, 0.0052) and where 𝛼 𝑗

𝑆
, 𝛼

𝑗
𝑔, and 𝛼 𝑗

𝑓
are weight parameters.

Further, the B-spline (t) is sampled from a mixture of three cubic splines: one with a rapid
decline throughout the intensive care unit stay, one with a mild decline, and one that remains stable.
𝑔 𝑗 , (𝑖) (·) is independently sampled for each patient from Gaussian process with Matérn kernel;
and 𝑓

𝑗

𝑍
(·) is sampled using a random Fourier features (RFF) approximation of a Gaussian process

(Hensman et al., 2018). We specifically use to avoid the tedious Cholesky decomposition when
sampling random functions at many points in the time-varying feature space R𝑑𝑥 . By combining all
three components, we aim to simulate outcomes that exhibit endogenous dependencies at different
resolutions (global trends of B-splines and the local correlation structure of Gaussian processes) and
arbitrarily chosen exogeneous dependencies on other time-varying features.
Third, we sequentially simulate three synthetic treatments A𝑙

𝑡 = {W𝑙
𝑡 ,D𝑙

𝑡 }, 𝑙 = 1, . . . , 𝑑𝑎 (𝑑𝑎 = 4,
one is no treatment) as shown in Table 9. We add confounding to the treatments by a subset of
current time-varying covariates via a random function 𝑓 𝑙

𝑌
(X𝑡 ). Subsequently, we average of the

subset of previous 𝑇𝑙 treated outcomes �̄�𝑇𝑖 (ȳ𝑡−1). Formally, we compute A𝑙
𝑡 via
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𝑝A𝑙
𝑡
= 𝜎

(
𝛾𝑙𝐴�̄�𝑇𝑙 (ȳ𝑡−1) + 𝛾𝑙𝑋 𝑓

𝑙
𝑌 (X𝑡 ) + 𝑏 𝑗

)
, (73)

A𝑙
𝑡 =

{
W𝑙

𝑡 ∼ Softmax(𝑝A1
𝑡
, 𝑝A2

𝑡
, . . . , 𝑝A𝑑𝑎

𝑡
),

D𝑙
𝑡 ∼ Berunoulli(𝑝A𝑙

𝑡
),

(74)

where 𝜎(·) is the sigmoid activation, 𝛾𝑙
𝐴

and 𝛾𝑙
𝑋

are confounding parameters, 𝑏𝑙 is a fixed bias,
and 𝑓 𝑙

𝑌
(·) is sampled from an RFF approximation of a Gaussian process (similar to 𝑓

𝑗

𝑍
(·)).

Table 9: Treatment type-dosage pair
Half-dose effect is the ratio of the treatment effect of a half-dose to that of a full-dose.

Dosage Half-dose effect
Type Full Half

no treatment 0 - -
treatment 1 1 0.5 0.25
treatment 2 1 0.5 0.50
treatment 3 1 0.5 0.75

Fourth, we apply treatments to the untreated outcomes. For this, we set y1 = Z1. Each treatment
𝑙 is modeled to have a long-lasting effect on some outcome 𝑗 , with a maximal additive effect 𝛽𝑙 𝑗
immediately after application. We assume that the treatment has an effect within the time window
𝑡 − 𝑤𝑙, . . . , 𝑡. Additionally, we assume that the effect size of treatments follows an inverse-square
decay over time. We also scale the effect by the probability 𝑝A𝑙

𝑡
. Afterward, the effects of multiple

treatments are aggregated by taking the minimum across the treatment effects. Formally, we model
this via

𝐸 𝑗 (𝑡) =
𝑡∑︁

𝑖=𝑡−𝑤𝑡

min𝑙=1,...,𝑑𝑎1[A𝑙
𝑖=1] 𝑝A𝑙

𝑖
𝛽𝑙𝑘

(𝑤𝑙 − 𝑖)2 , (75)

where 𝛽𝑙 𝑗 is the maximum effect size of treatment 𝑙. This is either constant for all the outcomes
𝑗 , or zero, so that the treatment does not influence the outcome.
Fifth, we combine the above. That is, we simply add the simulated treatment effect 𝐸 𝑗 (𝑡) to untreated
outcome; i. e.,

y 𝑗
𝑡 = Z 𝑗

𝑡 + 𝐸 𝑗 (𝑡) (76)

Sixth, we generate our semi-synthetic dataset based on the above simulator. After simulating no
treatment and three synthetic treatments (𝑑𝑎 = 4), and two synthetic outcomes (𝑑𝑦 = 2),

We split 1,000 trials into train/validation/test subsets using a 60% / 20% / 20 % split. The test data
for 1-step-ahead prediction is simulated by inverting the actual treatment and dosage assignments
(i.e., 𝑝𝑖𝑛𝑣

A𝑙
𝑡

= 1− 𝑝A𝑙
𝑡
). For multiple-step-ahead prediction with 𝜏𝑚𝑎𝑥 = 6, the test data after the 2-step

(𝜏 = 2, . . . , 𝜏𝑚𝑎𝑥) is simulated using random treatment and dosage assignments. We then sample 5
random trajectories for each patient at each time step.
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H.2. Experimental Details

Hyperparameter tuning.

We perform hyperparameter tuning separately for all models. For this, we use the 200 factual
time-series from the validation subset. Details are in Appendix F.

Performance measurement.

We retrain the models on five simulated datasets with different random seeds (the random seeds
for sampling from Gaussian processes are kept the same). We then report the averaged root mean
square error (RMSE) on the test set, which is the hold-out data. RMSE is calculated for standardized
outcomes.
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