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Abstract001

Advancements in language understanding by002
Language Models (LMs) have enabled reason-003
ing over tabular data, primarily through training004
mechanisms that support direct table modifica-005
tion. However, these approaches are often lim-006
ited to small tables that fit within the model’s007
context window, raising concerns about the008
scalability of tabular reasoning. To address this009
challenge, we propose TabularLens, a Retrieval-010
Augmented Generation (RAG) framework de-011
signed to retrieve and structure interpretable012
table content that can be scaled across multiple013
tables with different schemas, for LM-based014
applications. TabularLens employs a two-stage015
filtering process and a row-column retrieval016
strategy to efficiently index and extract rel-017
evant table elements before passing them to018
the LM, significantly reducing the input size019
and enhancing code generation precision. Fur-020
thermore, unlike existing models that strug-021
gle with proper nouns—such as named enti-022
ties or domain-specific identifiers—which of-023
ten lack meaningful embeddings, TabularLens024
introduces a dedicated mechanism to recognize025
and appropriately handle such tokens. This en-026
sures robust retrieval and reasoning even when027
dealing with semantically sparse or opaque ta-028
ble entries.029

1 Introduction030

Large Language Models (LLMs) have significantly031

advanced the state of natural language understand-032

ing and reasoning across diverse domains, includ-033

ing question answering, summarization, and dia-034

logue systems (Brown et al., 2020; Raffel et al.,035

2023). These models demonstrate strong contex-036

tual awareness and logical inference abilities, en-037

abling them to answer complex queries by ana-038

lyzing both structure and semantics of the input039

data (Wei et al., 2022; Kojima et al., 2023).040

However, as the size and complexity of real-041

world tasks increase, so do the challenges associ-042

ated with processing long contexts efficiently (Liu043

et al., 2024a; Press et al., 2022). Particularly in 044

scenarios where the input consists of extensive tex- 045

tual or structured data, such as documents or tables, 046

naive inclusion of the full context often exceeds 047

model limits, leading to degraded reasoning perfor- 048

mance (Beltagy et al., 2020). 049

Naive approaches to table-based question an- 050

swering (QA) (Jiang et al., 2023; Yang et al., 2022) 051

often rely on large language models (LLMs) like 052

GPT-4, which use their coding and reasoning abili- 053

ties to interpret table structures and generate code 054

for data analysis. For small tables, where context 055

length constraints are less prohibitive, it becomes 056

feasible to input the entire table directly into the 057

LLM, allowing it to perform reasoning holistically 058

across the full dataset. However, the same approach 059

cannot be used for larger tables, where including 060

the entire dataset is impractical due to input size 061

limitations. In such cases, LLMs interpret table 062

schemas to generate executable code, but this can 063

lead to loss of critical information present in the 064

table. 065

To mitigate these issues, retrieval-augmented 066

generation (RAG) frameworks (Lewis et al., 2021) 067

have emerged. These methods decouple retrieval 068

from generation by first identifying the most rel- 069

evant segments of input before prompting the 070

model (Guu et al., 2020). In the context of table 071

or document understanding, this means selectively 072

extracting schema elements, key-value pairs, or 073

high-salience passages as proposed by (Izacard and 074

Grave, 2021; Borgeaud et al., 2022). By narrow- 075

ing the context scope to only the most pertinent 076

information, RAG enhances both computational 077

efficiency and reasoning accuracy. Structured data 078

including tables, code, or database schemas, in- 079

troduces its own constraints making it harder to 080

process using embeddings-based methods. 081

To overcome all these shortcomings posed, we 082

introduce TabularLens which leverages RAG that 083

employs a multi-layered filtering to enhance at- 084
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Figure 1: Top: Retrieval performance across datasets
of varying sizes (row count). Bottom: Comparison of
TabularLens performance with other methods across
datasets of increasing retrieval complexity.

tribute matching for tabular data.085

Current approaches pretrain (Herzig et al., 2020;086

Yin et al., 2020) or utilize either an LLM or em-087

bedding models for the row-column extraction,088

whereas our approach incorporates a row-column089

retrieval to extract the essential information from090

the table, which is then passed into an LLM for091

solving user queries. The retrieval enables the iden-092

tification of appropriate sub-table and demonstrates093

superior performance across datasets of varying094

sizes and complexity as illustrated in Figure 1.095

Selective columns are retrieved to infer the table096

schema, which in turn guides the extraction of rele-097

vant rows. Furthermore, due to the infeasibility of098

encoding named entities, we also develop a new al-099

gorithm to facilitate their inclusion, which is absent100

in recent works (Lindemann et al., 2019; Narayan101

et al., 2017).102

They do not account for multi-sourced tables as103

input, whereas we support merging tables prior to104

question answering. This is carried out using the105

record linking algorithm we use for the RAG frame-106

work. Hence the retrieval approach utilized in our107

model provides a solution for multiple applications108

involving linking records (Christen, 2012). 109

Our contribution is TabularLens, a novel frame- 110

work for all-inclusive Tabular RAG. Our novel re- 111

trieval algorithm works for all kinds of data types 112

present in the table. We also develop a weighted 113

string matching algorithm that is versetile across 114

several applications. 115

2 Related Works 116

Research on table understanding has steadily 117

progressed from specialized neural architec- 118

tures (Herzig et al., 2020; Eisenschlos et al., 2020) 119

to more flexible, few-shot paradigms powered by 120

large language models (LLMs)(Wang et al., 2024; 121

Liu et al., 2024b). Early methods aimed to en- 122

code full table structures for tasks such as ques- 123

tion answering and semantic parsing. Models like 124

DATER(Ye et al., 2023) and BINDER (Cheng et al., 125

2023) demonstrated the ability of LLMs to reason 126

over structured data when provided entire tables. 127

However, these approaches are constrained by in- 128

put length limits and struggle with scalability as 129

table size increases. 130

To alleviate the reliance on full-table input, two 131

prominent directions have emerged: schema-based 132

generation and retrieval-augmented table reasoning. 133

Schema-based methods, including Text2SQL (Gao 134

et al., 2023) and its successors (Zhong et al., 2017; 135

Sun et al., 2024; Pourreza and Rafiei, 2024, 2023; 136

Wang et al., 2025a), emphasize the structural 137

aspects of tables—treating columns as schemas 138

and generating logical forms such as SQL queries. 139

TabSD (Wang et al., 2025b) proposed a method 140

to decompose tables using SQL commands to 141

removing noise and pre-process sub-tables. (Ji 142

et al., 2024) introduced a hierarchical reasoning 143

framework for large-scale table understanding by 144

performing similar decomposition and organizing 145

information into a tree-structured format. 146

Conversely, retrieval-based approaches like 147

ITR (Lin et al., 2023) and TAP4LLM (Sui et al., 148

2024) attempt to scale to larger tables by retrieving 149

salient rows and columns. Although this mitigates 150

context length concerns, these models often 151

depend on static embedding encoders and can 152

underperform in cases involving ambiguous or 153

domain-specific tokens due to limited semantic 154

generalization. Furthermore, a cell retrieval 155

method proposed by TableRAG (Chen et al., 2024) 156

intends to embed each cell of the table and retrieve 157

only the relevant ones. Though this approach may 158
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Figure 2: Architecture of TabularLens framework for table understanding. The pipeline illustrates our two-stage
filtering approach for tabular reasoning. The Schema Extractor identifies relevant columns from the input query,
while the Column Classifier categorizes columns as Generic or Specific. The Top-K condidates from the respective
filters are passed into the Retrieval agent for the final stage of matching. A compact sub-table that is passed to the
QA Agent for final reasoning.

reduce the inference time for medium sized tables159

(Typically 50,000 rows), it highly depends upon160

the embeddings produced and when the number161

of cells increase in the table the accuracy of the162

answers drop.163

164

TabularLens distinguishes itself from these165

prior approaches through several key innova-166

tions. Unlike embedding-based methods such as167

SBERT or standard TableRAG that struggle with168

proper nouns and domain-specific terminology,169

TabularLens introduces a specialized mechanism170

for handling named entities and domain-specific171

identifiers that traditionally have poor embedding172

representations. Most notably, TabularLens demon-173

strates exceptional performance improvements on174

complex datasets with real-world characteristics,175

such as AdSpend and HAdSpend, where it176

achieves gains of 6-8% in accuracy over competing177

approaches. This performance advantage stems178

from its ability to integrate multiple record-linking179

strategies (that is responsible for the retrieval of180

rows) and handle multi-sourced tables prior to181

question answering—capabilities absent in most182

existing frameworks.183

3 TabularLens184

3.1 Motivation185

Figure 2 illustrates the architecture of our pro-186

posed pipeline. The central goal is to integrate187

named entity and common noun recognition with188

schema-level retrieval to enable efficient and accu-189

rate question answering over tabular data. In most190

real-world scenarios, processing an entire table is 191

unnecessary and often infeasible due to context 192

length constraints. Instead, extracting a minimal 193

sub-table—comprising only the relevant rows and 194

columns—provides both computational efficiency 195

and interpretability. For example, given a question 196

such as "What is the cost efficiency of advertis- 197

ing on radio?" and a table containing information 198

on various spending channels, it is sufficient to re- 199

trieve only the rows referring to radio transmission 200

and the schema elements necessary for comput- 201

ing cost efficiency. Our framework, TabularLens, 202

is specifically designed to address this challenge. 203

It leverages both row and column-level retrieval 204

strategies to identify a compact, semantically rich 205

sub-table, which is then passed to the language 206

model for final reasoning. 207

Unlike prior approaches that struggle with 208

proper nouns or domain-specific entities—due 209

to poor embedding representations—TabularLens 210

introduces specialized mechanisms for handling 211

named entities. This enables robust retrieval even 212

when tables contain opaque or sparsely anno- 213

tated tokens. Overall, this motivates a retrieval- 214

augmented approach for table-based question an- 215

swering. 216

3.2 Problem Formulation 217

For applications of table understanding the input 218

table T can be represented as an N × M matrix 219

where T = tij | 1 ≤ i ≤ M, 1 ≤ j ≤ M . Where 220

N is the total number of rows and M is the total 221

number of columns and tij are the cell values. The 222
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query passed as input can be referred to as Q and223

the retrieved sub-table as tr. Given the infeasible224

size of the input table T, we also use a prompt de-225

signed to handle the subtable when passed into the226

Language Model L. The response A = L(P (tr)).227

Our objetive is to optimize the indexing of the sub-228

table tr, making it feasible for the LM to process.229

3.3 Components of TabularLens230

Schema Extractor To accurately index the sub-231

table, it is important to identify the relevant232

columns. We utilize a language model that is233

prompted to choose which columns and values234

should be accessed from the input query. A basic235

embedding model may struggle with more com-236

plex questions, such as What is the cost-efficiency237

of Company X? In such cases, cost-efficiency238

may not be a direct column in the table, and239

the model must instead infer which columns are240

related. This response R can be expressed as:241

R = Ci, Vi : i < degree(T ), where Ci are the se-242

lected columns, Vi = v1, v2, .. are the values refer-243

enced, and degree(T ) is the number of columns in244

the input table.245

Column Classifier To identify relevant rows246

from the selected columns Ci, we match the ex-247

tracted values Vi against unique entries in the table.248

Columns are first classified as either Generic (com-249

mon nouns) or Specific (proper nouns), and then250

routed through their respective filters accordingly.251

Generic Filter Common nouns being abundant252

can be numerically represented by vanilla embed-253

ding models like nomic or SBERT. The Generic254

filter handles these columns filled with common255

nouns using an encoder fenc, which encodes V i256

and compares it against the values in Ci. The top257

match for each value in V i is then used to filter the258

rows.259

Specific Filter To address the semantic uncer-260

tainty inherent in proper nouns, we introduce a fil-261

tering mechanism within our retrieval pipeline that262

leverages a language model (LM) augmented with263

a web-based description retrieval module (This one-264

time processing step can be performed prior to the265

QA session for faster inference). When a column266

predominantly contains proper nouns, direct com-267

parison becomes insufficient due to the subjective268

and context-dependent nature of these entities. To269

mitigate this, the LM first identifies proper nouns270

within the column and issues web queries to re-271

trieve contextual descriptions. These descriptions272

serve as semantic anchors, enabling the LM to per-273

form more informed comparisons and select the 274

top-K most relevant row values. In cases where the 275

queried proper nouns lack sufficient web presence, 276

the pipeline gracefully degrades to a lexical-based 277

filtering strategy. 278

Lexical Filter we propose a weighted string 279

matching algorithm designed to robustly handle 280

various forms of string ambiguity. This method is 281

particularly effective for proper nouns, where the 282

order of word occurrence plays a critical role in 283

semantic interpretation. As illustrated in Tab. 1, 284

our model demonstrates improved performance in 285

scenarios involving word-order ambiguity, where 286

conventional fuzzy matching techniques commonly 287

employed in retrieval-augmented generation (RAG) 288

pipelines tend to fail. 289

The algorithm begins by tokenizing each input 290

string Si into a sequence of words [w1, w2, ...]. It 291

then computes word-level similarity using a charac- 292

ter overlap metric and applies a position-sensitive 293

weighting scheme, which assigns exponentially de- 294

creasing importance to successive words. Unlike 295

standard similarity metrics, this approach empha- 296

sizes early word matches, reflecting the intuition 297

that leading terms often carry greater semantic 298

weight in named entities. 299

For each word wi in the first string S1, we com- 300

pute an occurrence score Oi, defined as the max- 301

imum normalized length of continuous character 302

overlap with any word in the second string S2: 303

Oi = max
j∈{1,...,m}

{
Continuous Overlap(wi, wj)

length of wi

}
(1) 304

The aggregation of the word-level scores for the 305

overall similarity score is then computed as: 306

Score(S1, S2) =

n∑
i=1

Wi ·Oi =

n∑
i=1

2−(i−1) ·Oi (2) 307

308

Score(S1, S2) = 1 ·O1 +
1

2
·O2 + . . .+

1

2n−1
·On (3) 309

where, Wi = 2−(i−1). However, since the algo- 310

rithm is not inherently commutative, we adopt a 311

bidirectional scoring strategy, computing the match 312

in both directions and taking the maximum score 313

as the final similarity value. This modification en- 314

sures robustness and practical applicability across 315

a wide range of string comparison tasks involving 316

non-standard or ambiguous entity representations. 317

The final expression can be written as: 318

Score(S1, S2) = max(Score(S1, S2), Score(S2, S1))
(4) 319
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String 1 String 2 Fuzzy matching Our Matching
Stanford University Cornell University 0.13 0.057
Stanford University University of Stanford 0.27 0.94
Stanford University Stanford California 0.74 0.87

Table 1: Comparison of string matching techniques. Our technique emphasizes the placement and ordering of
words within proper names, leading to more accurate similarity scores. It distinguishes between rephrasings that
preserve meaning and those that alter semantic relevance, unlike traditional fuzzy matching which may overestimate
similarity based on shared tokens alone.

Retrieval and QA agent The retrieval agent320

operates on the filtered candidates to select the321

most relevant subset, which is then used to re-322

trieve corresponding rows. After extracting the323

relevant schema and row segments using the fil-324

tering mechanisms described earlier, the final step325

involves reasoning over the resulting sub-table to326

generate an answer. To facilitate this, we employ327

a language model (LM) agent, which combines328

retrieval-augmented generation with structured ex-329

ecution capabilities. The sub-table tr, composed330

of selected columns Ci and filtered rows, is passed331

as part of a structured prompt P (tr) to the LM.332

To execute analytical or numerical operations (e.g.,333

computing averages, ratios, or identifying maxima),334

the QA agent is coupled with a lightweight execu-335

tion environment. This design ensures robustness336

across diverse question types.337

4 Experiments338

To evaluate the effectiveness of TabularLens, we339

conducted extensive experiments aimed at assess-340

ing both retrieval accuracy and question-answering341

performance across multiple datasets. Our evalua-342

tion focuses particularly on the framework’s ability343

to handle large tables with complex structures and344

named entities.345

4.1 Datasets346

Existing TableQA benchmarks such as Tab-347

Fact (Chen et al., 2020) and WikiTableQA (Kweon348

et al., 2023) primarily feature small to medium-349

sized tables that fit within the input limits of most350

language models. However, they fall short in re-351

flecting the complexities encountered in real-world352

marketing analytics—particularly in terms of table353

scale, hierarchical attribute structures, and domain-354

specific taxonomies. To highlight these limita-355

tions and rigorously evaluate model robustness356

and reasoning under scale and structure, we eval-357

uated the model on two new datasets: AdSpend358

and Hierarchical AdSpend (HAdSpend). These359

datasets are designed to mimic real world market- 360

ing datasets with brand names and categories. Both 361

datasets consist of large tables, with row counts 362

scaling up to 30,000. These characteristics make 363

them uniquely suited for benchmarking retrieval- 364

augmented TableQA agents under complex scenar- 365

ios. 366

4.2 Experimental Setup 367

Our experiment uses small LMs like GPT-4o-mini 368

for schema extraction and Qwen2.5-7b for descrip- 369

tion generation. Other agents like Retrieval agent 370

and QA Agent use larger models like Qwen2.5- 371

32b and GPT-4o. Smaller tasks are equipped with 372

smaller LLMs and tasks requiring more reasoning 373

and precision use larger LLMs. For the top can- 374

didates selection we opt for a K value of 5. The 375

parameters that best work for the matching agent 376

are, temperature of 0.6, top_p of 0.8. All experi- 377

ments were carried out on an NVIDIA A100 GPU 378

with a max consumption of 20GB . 379

4.3 Sub-table Retrieval Performance 380

To better understand the retrieval quality of Tabu- 381

larLens compared to baseline approaches, we as- 382

sessed the recall, precision, and F1 scores for both 383

column and row retrieval across our datasets, as 384

shown in Table 2. The ground truths were extracted 385

from manual annotations of the minimal necessary 386

columns and rows required to answer each question 387

accurately. 388

For column retrieval on the AdSpend dataset, 389

TabularLens demonstrates superiority, being on par 390

with GPT-4 and yielding high F1 score. In con- 391

trast, embedding-based approaches showed lower 392

precision, suggesting they retrieved more irrelevant 393

columns. The advantages of TabularLens become 394

even more evident in row retrieval tasks. Our ap- 395

proach achieved near-perfect metrics. This signifi- 396

cant improvement in row retrieval performance can 397

be attributed to our hybrid approach that effectively 398

handles both generic and specific columns. 399
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Table 2: Sub-Table Retrieval Metrics (P: Precision, R: Recall, F1: F1 Score). LT - Link Transformer (Arora and
Dell, 2023), SBERT (Devlin et al., 2019).

Model AdSpend HAdSpend
Col Retrieval Row Retrieval Col Retrieval Row Retrieval

P R F1 P R F1 P R F1 P R F1
Fuzzy Dist. - - - 0.617 0.644 0.630 - - - 0.610 0.580 0.594

LT 0.905 0.943 0.923 0.960 0.691 0.830 0.821 0.845 0.833 0.710 0.702 0.706
GPT-4 0.980 1.000 0.989 0.941 0.850 0.893 0.930 0.960 0.945 0.910 0.730 0.810
SBERT 0.910 0.950 0.930 0.941 0.735 0.825 0.820 0.860 0.839 0.715 0.720 0.720

Ours 0.960 1.000 0.979 0.995 1.000 0.997 0.930 0.940 0.935 0.981 0.987 0.984

Table 3: Accuracy metrics across Tabular Question Answering datasets

Models AdSpend HAdSpend TabFact WikiTableQA
TableRAG (GPT-3.5-Turbo) (Chen et al., 2024) 63.1 60.6 90.1 57.03

GPT-4 (ReadTable) 51.5 42.4 89.2 52.3
GPT-4 (ReadSchema) 54.5 41.4 87.5 50.6

GPT-4 (RandRowSampling) 36.4 33.7 86.2 51.9
Ours(GPT-3.5-Turbo) 69.5 65.0 91.7 56.75

Ours 69.7 66.6 91.7 57.0

In summary, this analysis underscores Tabular-400

Lens’s efficacy in retrieving essential information401

in both column and row aspects, particularly when402

dealing with large tables containing named entities403

and domain-specific identifiers.404

4.4 Question Answering Performance405

To evaluate our performance on the TableQA task,406

we compared TabularLens across various datasets,407

with different table sizes against methods that rely408

on different kinds of input used for QA purpose.409

Following (Chen et al., 2024), we evaluate our410

approach against three established methods for pri-411

mary table prompting:412

Read Table: This method presents the entire ta-413

ble as input to the LLM, allowing complete access414

to all tabular data at the cost of increased token415

consumption.416

Read Schema: This approach provides only the417

table schema (column headers and data types) as418

input to the LLM. The model is then prompted to419

generate code that can selectively retrieve relevant420

portions of the table required for reasoning, opti-421

mizing token efficiency at the potential expense of422

comprehensive data access.423

RandRow Sampling: This method is a preva-424

lent rule-based sampling approach (Sui et al., 2024)425

that randomly selects rows from the table with426

equal probabilities. When the total number of427

rows exceeds K, we select K rows to form a rep-428

resentative sample. This baseline is employed to429

underscore the benefits of more targeted retrieval430

methods, illustrating how they can provide more 431

relevant and efficient data selection compared to 432

random sampling. 433

These baseline approaches represent the current 434

standard methodologies against which we bench- 435

mark our novel contribution. 436

As shows in Table3 our approach surpasses 437

other methods across most datasets. Metrics on 438

publicly available datasets like TabFact and Wik- 439

iTableQA are on par or slightly better than existing 440

approaches due to the simple questions and small- 441

sized tables. Whereas, TabularLens achieves a 442

greater leap in accuracy when tested against dataset 443

with real-time complexities and large and complex 444

table structures. 445

4.5 Ablation 446

Since TabularLens employs a multi-stage retrieval 447

pipeline with several filtering mechanisms oper- 448

ating in a sequential manner, we conducted com- 449

prehensive ablation studies to quantify the contri- 450

bution of each component to the overall system 451

performance. These experiments serve multiple 452

purposes: (1) identifying which filtering strategies 453

are most effective for different data characteristics, 454

(2) determining the optimal combination of filters 455

for various table structures, and (3) understanding 456

the relative importance of schema extraction versus 457

row retrieval in the end-to-end question answering 458

process. 459

We systematically evaluated different configu- 460

rations of our framework by selectively enabling 461
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or disabling specific components, measuring the462

impact on downstream QA accuracy. This analysis463

provides insights into the strengths and limitations464

of each module, particularly in handling tables with465

complex schemas and named entities. Addition-466

ally, we investigate how different model choices467

and hyperparameter settings affect overall system468

performance across our benchmark datasets. All469

ablation results were obtained from testing on the470

datasets AdSpend and HAdSpend.471

Model Variant AdSpend HAdSpend

Single Filter

Only FM 31.5 28.0
Only LF 58.6 56.5

Only Description 65.4 61.3

Dual Filters

FM + Description 66.5 61.3
LF + Description 69.7 66.6

Table 4: Accuracy values for ablation study on different
filters used in TabularLens with the AdSpend and HAd-
Spend datasets. FM - Fuzzy Matching, LF - Lexical
Filter.

4.5.1 Filtering Step472

To analyze the influence of each filter that con-473

tributes to selecting the top candidates for each474

input, we conducted experiments employing dif-475

ferent methodological combinations as shown in476

Table4. Under the Single Filter configuration, our477

evaluation reveals that the description generator478

tool, which enables the language model to retrieve479

contextual information about named entities, deliv-480

ers the strongest performance across both datasets.481

This superior performance can be attributed to the482

prevalence of domain-specific abbreviations and se-483

mantic ambiguities in column values that challenge484

traditional string matching approaches.485

When examining Dual Filter configurations, we486

observe that combining fuzzy matching with de-487

scription generation yields only marginal improve-488

ments over using description generation alone.489

However, the integration of our Lexical Filter with490

the description generation module produces a sub-491

stantial performance boost across both datasets.492

This improvement underscores the complemen-493

tary nature of these two approaches—the Lexical494

Filter’s position-sensitive weighting scheme effec-495

tively captures word-order importance in named496

entities, while the description generation module 497

provides semantic context for ambiguous terms 498

commonly found in marketing datasets. 499

4.5.2 Matching Step 500

The final stage before sub-table querying the QA 501

Agent involves a language model-based matching 502

agent that aligns user input with candidate records. 503

This step is critical, as it governs the accuracy of 504

the entire pipeline. Effective retrieval of the correct 505

record from the table is essential to avoid halluci- 506

nated or semantically incorrect responses. Three 507

parameters have a significant influence on match- 508

ing efficacy: (1) the Top-K candidates chosen from 509

each filter, (2) the Batch size of input passed to 510

the LM, and (3) the choice of the language model 511

employed for semantic alignment. 512

As shown in Table 5, our proposed config- 513

uration—with K = 5 and a batch size of 1 514

—yields the highest average row retrieval accuracy 515

across both the AdSpend and HAdSpend datasets. 516

Ablation across these hyperparameters reveals 517

important trends. While larger Top-K values (e.g., 518

K = 10) intuitively provide more candidates for 519

matching, they often introduce noise, particularly 520

in models with limited contextual discrimination 521

capabilities. Conversely, smaller K values improve 522

precision at the cost of potentially excluding 523

relevant rows. 524

Interestingly, model-specific behavior also plays a 525

role. GPT-4 variants demonstrate stability across 526

input configurations, with minimal degradation 527

in matching performance as batch size scales 528

(atmost 3.5%). This robustness is attributed to their 529

deeper contextual awareness and refined token 530

prioritization. On the other hand, Qwen2.5-32B 531

exhibits superior performance in low-input settings 532

but shows significant performance deterioration 533

with larger K and batch size (atmost 8%), likely 534

due to context overflow and overfitting to irrelevant 535

tokens. DeepSeek-32B, despite excelling in 536

tasks such as mathematical and philosophical 537

reasoning, struggles in tasks like table alignment. 538

Its verbose reasoning output leads to high inference 539

latency and increased token bloat, both of which 540

compromise precision and induce erroneous 541

assumptions. 542

543

In conclusion, our ablation confirms that 544

careful tuning of these parameters, aligned 545

with model-specific strengths, is imperative for 546

optimizing retrieval and minimizing semantic drift 547
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Num Input Set
GPT-4o-mini GPT-4o DeepSeek-32B Ours(Qwen2.5-32B)

K = 5 K = 10 K = 5 K = 10 K = 5 K = 10 K = 5 K = 10

1 92.2 90.1 97.5 94.2 89.3 89.1 99.2 96.4
2 92.2 88.5 96.0 94.0 88.5 87.7 97.3 94.2
5 91.5 87.4 95.5 92.5 86.2 85.2 93.2 91.8
8 88.6 87.0 93.6 91.3 84.7 82.4 91.1 88.8

Table 5: Effect of varying Top-K candidates and matching query batch size on matching across different LLMs.
Red represents the model that attains the highest accuracy followed by Blue

in large-scale table-based QA.548

5 Conclusion549

In this work, we presented TabularLens, a robust550

retrieval-augmented framework tailored for scal-551

able table-based question answering. By inte-552

grating schema-aware column extraction, named-553

entity sensitive row filtering, and a hybrid554

lexical-semantic matching strategy, TabularLens555

demonstrates strong performance across diverse556

datasets—particularly excelling in scenarios involv-557

ing large, multi-source tables and domain-specific558

terminology.559

Our experiments confirm that TabularLens not560

only improves retrieval fidelity but also leads561

to meaningful gains in downstream question-562

answering accuracy, even outperforming models563

that ingest full tables. The framework’s modular de-564

sign, with dedicated components for handling both565

common and proper nouns, offers flexibility across566

use cases and opens up possibilities for broader567

table-centric reasoning applications.568

6 Limitations and Future Work569

While TabularLens demonstrates strong perfor-570

mance and scalability, there remain several avenues571

for enhancement and extension. One promising di-572

rection is automating schema evolution, enabling573

dynamic adaptation to evolving table structures574

without manual intervention. Additionally, the575

current framework relies on predefined thresholds576

and filtering heuristics; integrating learned ranking577

models or reinforcement learning-based selection578

policies could further optimize retrieval quality.579

That said, a few aspects merit further exploration.580

While our description-based filtering mechanism581

effectively boosts retrieval for named entities, it in-582

troduces latency due to web-based lookups during583

preprocessing. This can be handled by retreiving584

the description prior to passing in the data through585

the pipeline, in this way the inference is faster but586

demands precomputation of the descriptions. Ad- 587

ditionally, the performance of our retrieval mod- 588

ule may vary across domains where external de- 589

scriptions are scarce or inconsistent. Finally, al- 590

though the system generalizes well across market- 591

ing datasets, evaluating its robustness across other 592

structured domains like healthcare or finance would 593

further validate its applicability. 594

We believe addressing these limitations and 595

expanding TabularLens into broader, domain- 596

agnostic applications will enhance the reliability 597

and versatility of retrieval-augmented reasoning 598

in structured data environments. Overall, Tabu- 599

larLens moves a step closer to enabling efficient 600

and interpretable table understanding at scale. We 601

hope this work encourages further research into 602

retrieval-based reasoning strategies for structured 603

data. 604
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