TabularLens: Leveraging Indexed Retrieval for Table Understanding

Anonymous ACL submission

Abstract

Advancements in language understanding by
Language Models (LMs) have enabled reason-
ing over tabular data, primarily through training
mechanisms that support direct table modifica-
tion. However, these approaches are often lim-
ited to small tables that fit within the model’s
context window, raising concerns about the
scalability of tabular reasoning. To address this
challenge, we propose TabularLens, a Retrieval-
Augmented Generation (RAG) framework de-
signed to retrieve and structure interpretable
table content that can be scaled across multiple
tables with different schemas, for LM-based
applications. TabularLens employs a two-stage
filtering process and a row-column retrieval
strategy to efficiently index and extract rel-
evant table elements before passing them to
the LM, significantly reducing the input size
and enhancing code generation precision. Fur-
thermore, unlike existing models that strug-
gle with proper nouns—such as named enti-
ties or domain-specific identifiers—which of-
ten lack meaningful embeddings, TabularLens
introduces a dedicated mechanism to recognize
and appropriately handle such tokens. This en-
sures robust retrieval and reasoning even when
dealing with semantically sparse or opaque ta-
ble entries.

1 Introduction

Large Language Models (LLMs) have significantly
advanced the state of natural language understand-
ing and reasoning across diverse domains, includ-
ing question answering, summarization, and dia-
logue systems (Brown et al., 2020; Raffel et al.,
2023). These models demonstrate strong contex-
tual awareness and logical inference abilities, en-
abling them to answer complex queries by ana-
lyzing both structure and semantics of the input
data (Wei et al., 2022; Kojima et al., 2023).
However, as the size and complexity of real-
world tasks increase, so do the challenges associ-
ated with processing long contexts efficiently (Liu

et al., 2024a; Press et al., 2022). Particularly in
scenarios where the input consists of extensive tex-
tual or structured data, such as documents or tables,
naive inclusion of the full context often exceeds
model limits, leading to degraded reasoning perfor-
mance (Beltagy et al., 2020).

Naive approaches to table-based question an-
swering (QA) (Jiang et al., 2023; Yang et al., 2022)
often rely on large language models (LLMs) like
GPT-4, which use their coding and reasoning abili-
ties to interpret table structures and generate code
for data analysis. For small tables, where context
length constraints are less prohibitive, it becomes
feasible to input the entire table directly into the
LLM, allowing it to perform reasoning holistically
across the full dataset. However, the same approach
cannot be used for larger tables, where including
the entire dataset is impractical due to input size
limitations. In such cases, LLMs interpret table
schemas to generate executable code, but this can
lead to loss of critical information present in the
table.

To mitigate these issues, retrieval-augmented
generation (RAG) frameworks (Lewis et al., 2021)
have emerged. These methods decouple retrieval
from generation by first identifying the most rel-
evant segments of input before prompting the
model (Guu et al., 2020). In the context of table
or document understanding, this means selectively
extracting schema elements, key-value pairs, or
high-salience passages as proposed by (Izacard and
Grave, 2021; Borgeaud et al., 2022). By narrow-
ing the context scope to only the most pertinent
information, RAG enhances both computational
efficiency and reasoning accuracy. Structured data
including tables, code, or database schemas, in-
troduces its own constraints making it harder to
process using embeddings-based methods.

To overcome all these shortcomings posed, we
introduce TabularLens which leverages RAG that
employs a multi-layered filtering to enhance at-

Performance Comparison Across Dataset Sizes

92 Method
=@= GPT-4

%0 Link Transformer
=== Ours
=+= SBERT

Retrieval Score
®

1000 5000 10000
Size of Dataset

15000

Performance Comparison with increasing dataset complexity

R

\._—.
>
90
§ +-
3
o] @
£ 85 +\.
©
(]
£ & Method
& -®- GPT-4
75 Link Transformer
=m= Ours
=+= SBERT +
70
10% 20% 30% 50%

Percentage of Proper Nouns/Named Entities

Figure 1: Top: Retrieval performance across datasets
of varying sizes (row count). Bottom: Comparison of
TabularLens performance with other methods across
datasets of increasing retrieval complexity.

tribute matching for tabular data.

Current approaches pretrain (Herzig et al., 2020;
Yin et al., 2020) or utilize either an LLM or em-
bedding models for the row-column extraction,
whereas our approach incorporates a row-column
retrieval to extract the essential information from
the table, which is then passed into an LLM for
solving user queries. The retrieval enables the iden-
tification of appropriate sub-table and demonstrates
superior performance across datasets of varying
sizes and complexity as illustrated in Figure 1.
Selective columns are retrieved to infer the table
schema, which in turn guides the extraction of rele-
vant rows. Furthermore, due to the infeasibility of
encoding named entities, we also develop a new al-
gorithm to facilitate their inclusion, which is absent
in recent works (Lindemann et al., 2019; Narayan
et al., 2017).

They do not account for multi-sourced tables as
input, whereas we support merging tables prior to
question answering. This is carried out using the
record linking algorithm we use for the RAG frame-
work. Hence the retrieval approach utilized in our
model provides a solution for multiple applications

involving linking records (Christen, 2012).

Our contribution is TabularLens, a novel frame-
work for all-inclusive Tabular RAG. Our novel re-
trieval algorithm works for all kinds of data types
present in the table. We also develop a weighted
string matching algorithm that is versetile across
several applications.

2 Related Works

Research on table understanding has steadily
progressed from specialized neural architec-
tures (Herzig et al., 2020; Eisenschlos et al., 2020)
to more flexible, few-shot paradigms powered by
large language models (LLMs)(Wang et al., 2024;
Liu et al., 2024b). Early methods aimed to en-
code full table structures for tasks such as ques-
tion answering and semantic parsing. Models like
DATER(Ye et al., 2023) and BINDER (Cheng et al.,
2023) demonstrated the ability of LLMs to reason
over structured data when provided entire tables.
However, these approaches are constrained by in-
put length limits and struggle with scalability as
table size increases.

To alleviate the reliance on full-table input, two
prominent directions have emerged: schema-based
generation and retrieval-augmented table reasoning.
Schema-based methods, including Text2SQL (Gao
et al., 2023) and its successors (Zhong et al., 2017;
Sun et al., 2024; Pourreza and Rafiei, 2024, 2023;
Wang et al., 2025a), emphasize the structural
aspects of tables—treating columns as schemas
and generating logical forms such as SQL queries.
TabSD (Wang et al., 2025b) proposed a method
to decompose tables using SQL commands to
removing noise and pre-process sub-tables. (Ji
et al., 2024) introduced a hierarchical reasoning
framework for large-scale table understanding by
performing similar decomposition and organizing
information into a tree-structured format.
Conversely, retrieval-based approaches like
ITR (Lin et al., 2023) and TAPALLM (Sui et al.,
2024) attempt to scale to larger tables by retrieving
salient rows and columns. Although this mitigates
context length concerns, these models often
depend on static embedding encoders and can
underperform in cases involving ambiguous or
domain-specific tokens due to limited semantic
generalization. Furthermore, a cell retrieval
method proposed by TableRAG (Chen et al., 2024)
intends to embed each cell of the table and retrieve
only the relevant ones. Though this approach may

&® - Union

Column Common Noun

Classifier

Input Query —> Schema
Extractor

Proper Noun

Enc —>

. Search

Description
generatlon agent

Top-K
Embeddings

P

Weh access

Speclﬁc Filter

Retrieval _ Rows

Agent

QA

“Retrieve

Agent

Columns

Figure 2: Architecture of TabularLens framework for table understanding. The pipeline illustrates our two-stage
filtering approach for tabular reasoning. The Schema Extractor identifies relevant columns from the input query,
while the Column Classifier categorizes columns as Generic or Specific. The Top-K condidates from the respective
filters are passed into the Retrieval agent for the final stage of matching. A compact sub-table that is passed to the

QA Agent for final reasoning.

reduce the inference time for medium sized tables
(Typically 50,000 rows), it highly depends upon
the embeddings produced and when the number
of cells increase in the table the accuracy of the
answers drop.

TabularLens distinguishes itself from these
prior approaches through several key innova-
tions. Unlike embedding-based methods such as
SBERT or standard TableRAG that struggle with
proper nouns and domain-specific terminology,
TabularLens introduces a specialized mechanism
for handling named entities and domain-specific
identifiers that traditionally have poor embedding
representations. Most notably, TabularLens demon-
strates exceptional performance improvements on
complex datasets with real-world characteristics,
such as AdSpend and HAdSpend, where it
achieves gains of 6-8% in accuracy over competing
approaches. This performance advantage stems
from its ability to integrate multiple record-linking
strategies (that is responsible for the retrieval of
rows) and handle multi-sourced tables prior to
question answering—capabilities absent in most
existing frameworks.

3 TabularLens

3.1 Motivation

Figure 2 illustrates the architecture of our pro-
posed pipeline. The central goal is to integrate
named entity and common noun recognition with
schema-level retrieval to enable efficient and accu-
rate question answering over tabular data. In most

real-world scenarios, processing an entire table is
unnecessary and often infeasible due to context
length constraints. Instead, extracting a minimal
sub-table—comprising only the relevant rows and
columns—provides both computational efficiency
and interpretability. For example, given a question
such as "What is the cost efficiency of advertis-
ing on radio?" and a table containing information
on various spending channels, it is sufficient to re-
trieve only the rows referring to radio transmission
and the schema elements necessary for comput-
ing cost efficiency. Our framework, TabularLens,
is specifically designed to address this challenge.
It leverages both row and column-level retrieval
strategies to identify a compact, semantically rich
sub-table, which is then passed to the language
model for final reasoning.

Unlike prior approaches that struggle with
proper nouns or domain-specific entities—due
to poor embedding representations—TabularLens
introduces specialized mechanisms for handling
named entities. This enables robust retrieval even
when tables contain opaque or sparsely anno-
tated tokens. Overall, this motivates a retrieval-
augmented approach for table-based question an-
swering.

3.2 Problem Formulation

For applications of table understanding the input
table 71" can be represented as an N X M matrix
where T =1t;; |1 <i <M, 1<j <M. Where
N is the total number of rows and M is the total
number of columns and ¢;; are the cell values. The

query passed as input can be referred to as () and
the retrieved sub-table as ¢,.. Given the infeasible
size of the input table T, we also use a prompt de-
signed to handle the subtable when passed into the
Language Model L. The response A = L(P(t,)).
Our objetive is to optimize the indexing of the sub-
table .., making it feasible for the LM to process.

3.3 Components of TabularLens

Schema Extractor To accurately index the sub-
table, it is important to identify the relevant
columns. We utilize a language model that is
prompted to choose which columns and values
should be accessed from the input query. A basic
embedding model may struggle with more com-
plex questions, such as What is the cost-efficiency
of Company X? In such cases, cost-efficiency
may not be a direct column in the table, and
the model must instead infer which columns are
related. This response R can be expressed as:
R =C;,V; i < degree(T), where C; are the se-
lected columns, V; = vy, vs, .. are the values refer-
enced, and degree(T) is the number of columns in
the input table.

Column Classifier To identify relevant rows
from the selected columns C;, we match the ex-
tracted values V; against unique entries in the table.
Columns are first classified as either Generic (com-
mon nouns) or Specific (proper nouns), and then
routed through their respective filters accordingly.

Generic Filter Common nouns being abundant
can be numerically represented by vanilla embed-
ding models like nomic or SBERT. The Generic
filter handles these columns filled with common
nouns using an encoder fe,., which encodes V¢
and compares it against the values in C;. The top
match for each value in V7 is then used to filter the
rOwS.

Specific Filter To address the semantic uncer-
tainty inherent in proper nouns, we introduce a fil-
tering mechanism within our retrieval pipeline that
leverages a language model (LM) augmented with
a web-based description retrieval module (This one-
time processing step can be performed prior to the
QA session for faster inference). When a column
predominantly contains proper nouns, direct com-
parison becomes insufficient due to the subjective
and context-dependent nature of these entities. To
mitigate this, the LM first identifies proper nouns
within the column and issues web queries to re-
trieve contextual descriptions. These descriptions
serve as semantic anchors, enabling the LM to per-

form more informed comparisons and select the
top-K most relevant row values. In cases where the
queried proper nouns lack sufficient web presence,
the pipeline gracefully degrades to a lexical-based
filtering strategy.

Lexical Filter we propose a weighted string
matching algorithm designed to robustly handle
various forms of string ambiguity. This method is
particularly effective for proper nouns, where the
order of word occurrence plays a critical role in
semantic interpretation. As illustrated in Tab. 1,
our model demonstrates improved performance in
scenarios involving word-order ambiguity, where
conventional fuzzy matching techniques commonly
employed in retrieval-augmented generation (RAG)
pipelines tend to fail.

The algorithm begins by tokenizing each input
string S; into a sequence of words [wy, we, ...]. It
then computes word-level similarity using a charac-
ter overlap metric and applies a position-sensitive
weighting scheme, which assigns exponentially de-
creasing importance to successive words. Unlike
standard similarity metrics, this approach empha-
sizes early word matches, reflecting the intuition
that leading terms often carry greater semantic
weight in named entities.

For each word wj in the first string .S, we com-
pute an occurrence score O;, defined as the max-
imum normalized length of continuous character
overlap with any word in the second string .So:

e Continuous Overlap(w;, w;) 0
length of w;

The aggregation of the word-level scores for the
overall similarity score is then computed as:

Score(S1, S2) = ZW, -0 = 227“71) -0 (2)
i=1 i=1

Score(Sl,Sz):1~01+%-02+...+2n%-0n 3)

where, W; = 2~ However, since the algo-
rithm is not inherently commutative, we adopt a
bidirectional scoring strategy, computing the match
in both directions and taking the maximum score
as the final similarity value. This modification en-
sures robustness and practical applicability across
a wide range of string comparison tasks involving
non-standard or ambiguous entity representations.
The final expression can be written as:

Score(S1, S2) = max(Score(S1, S2), Score(S2,51))
“

String 1 String 2 Fuzzy matching | Our Matching
Stanford University | Cornell University 0.13 0.057
Stanford University | University of Stanford 0.27 0.94
Stanford University | Stanford California 0.74 0.87

Table 1: Comparison of string matching techniques. Our technique emphasizes the placement and ordering of
words within proper names, leading to more accurate similarity scores. It distinguishes between rephrasings that
preserve meaning and those that alter semantic relevance, unlike traditional fuzzy matching which may overestimate

similarity based on shared tokens alone.

Retrieval and QA agent The retrieval agent
operates on the filtered candidates to select the
most relevant subset, which is then used to re-
trieve corresponding rows. After extracting the
relevant schema and row segments using the fil-
tering mechanisms described earlier, the final step
involves reasoning over the resulting sub-table to
generate an answer. To facilitate this, we employ
a language model (LM) agent, which combines
retrieval-augmented generation with structured ex-
ecution capabilities. The sub-table ¢,, composed
of selected columns C; and filtered rows, is passed
as part of a structured prompt P(¢,) to the LM.
To execute analytical or numerical operations (e.g.,
computing averages, ratios, or identifying maxima),
the QA agent is coupled with a lightweight execu-
tion environment. This design ensures robustness
across diverse question types.

4 Experiments

To evaluate the effectiveness of TabularLens, we
conducted extensive experiments aimed at assess-
ing both retrieval accuracy and question-answering
performance across multiple datasets. Our evalua-
tion focuses particularly on the framework’s ability
to handle large tables with complex structures and
named entities.

4.1 Datasets

Existing TableQA benchmarks such as Tab-
Fact (Chen et al., 2020) and WikiTableQA (Kweon
et al., 2023) primarily feature small to medium-
sized tables that fit within the input limits of most
language models. However, they fall short in re-
flecting the complexities encountered in real-world
marketing analytics—particularly in terms of table
scale, hierarchical attribute structures, and domain-
specific taxonomies. To highlight these limita-
tions and rigorously evaluate model robustness
and reasoning under scale and structure, we eval-
uated the model on two new datasets: AdSpend
and Hierarchical AdSpend (HAdSpend). These

datasets are designed to mimic real world market-
ing datasets with brand names and categories. Both
datasets consist of large tables, with row counts
scaling up to 30,000. These characteristics make
them uniquely suited for benchmarking retrieval-
augmented TableQA agents under complex scenar-
i0s.

4.2 Experimental Setup

Our experiment uses small LMs like GPT-40-mini
for schema extraction and Qwen2.5-7b for descrip-
tion generation. Other agents like Retrieval agent
and QA Agent use larger models like Qwen2.5-
32b and GPT-40. Smaller tasks are equipped with
smaller LLMs and tasks requiring more reasoning
and precision use larger LLLMs. For the top can-
didates selection we opt for a K value of 5. The
parameters that best work for the matching agent
are, temperature of 0.6, top_p of 0.8. All experi-
ments were carried out on an NVIDIA A100 GPU
with a max consumption of 20GB .

4.3 Sub-table Retrieval Performance

To better understand the retrieval quality of Tabu-
larLens compared to baseline approaches, we as-
sessed the recall, precision, and F1 scores for both
column and row retrieval across our datasets, as
shown in Table 2. The ground truths were extracted
from manual annotations of the minimal necessary
columns and rows required to answer each question
accurately.

For column retrieval on the AdSpend dataset,
TabularLens demonstrates superiority, being on par
with GPT-4 and yielding high F1 score. In con-
trast, embedding-based approaches showed lower
precision, suggesting they retrieved more irrelevant
columns. The advantages of TabularLens become
even more evident in row retrieval tasks. Our ap-
proach achieved near-perfect metrics. This signifi-
cant improvement in row retrieval performance can
be attributed to our hybrid approach that effectively
handles both generic and specific columns.

Table 2: Sub-Table Retrieval Metrics (P: Precision, R: Recall, F1: F1 Score). LT - Link Transformer (Arora and
Dell, 2023), SBERT (Devlin et al., 2019).

Model AdSpend HAdSpend
Col Retrieval Row Retrieval Col Retrieval Row Retrieval
P R F1 P R F1 P R F1 P R F1
Fuzzy Dist. - - - 0.617 0.644 0.630 - - - 0.610 0.580 0.594
LT 0.905 0943 0923 | 0960 0.691 0.830 || 0.821 0.845 0.833 | 0.710 0.702 0.706
GPT-4 0.980 1.000 0989 | 0941 0.850 0.893 || 0.930 0.960 0.945 | 0.910 0.730 0.810
SBERT 0.910 0950 0930 | 0941 0.735 0.825 || 0.820 0.860 0.839 | 0.715 0.720 0.720
Ours 0.960 1.000 0979 | 0995 1.000 0.997 || 0930 0940 0.935 | 0981 0.987 0.984
Table 3: Accuracy metrics across Tabular Question Answering datasets
Models AdSpend | HAdSpend | TabFact | WikiTableQA
TableRAG (GPT-3.5-Turbo) (Chen et al., 2024) 63.1 60.6 90.1 57.03
GPT-4 (ReadTable) 51.5 42.4 89.2 52.3
GPT-4 (ReadSchema) 54.5 414 87.5 50.6
GPT-4 (RandRowSampling) 36.4 33.7 86.2 51.9
Ours(GPT-3.5-Turbo) 69.5 65.0 91.7 56.75
Ours 69.7 66.6 91.7 57.0

In summary, this analysis underscores Tabular-
Lens’s efficacy in retrieving essential information
in both column and row aspects, particularly when
dealing with large tables containing named entities
and domain-specific identifiers.

4.4 Question Answering Performance

To evaluate our performance on the TableQA task,
we compared TabularLens across various datasets,
with different table sizes against methods that rely
on different kinds of input used for QA purpose.

Following (Chen et al., 2024), we evaluate our
approach against three established methods for pri-
mary table prompting:

Read Table: This method presents the entire ta-
ble as input to the LLM, allowing complete access
to all tabular data at the cost of increased token
consumption.

Read Schema: This approach provides only the
table schema (column headers and data types) as
input to the LLM. The model is then prompted to
generate code that can selectively retrieve relevant
portions of the table required for reasoning, opti-
mizing token efficiency at the potential expense of
comprehensive data access.

RandRow Sampling: This method is a preva-
lent rule-based sampling approach (Sui et al., 2024)
that randomly selects rows from the table with
equal probabilities. When the total number of
rows exceeds K, we select K rows to form a rep-
resentative sample. This baseline is employed to
underscore the benefits of more targeted retrieval

methods, illustrating how they can provide more
relevant and efficient data selection compared to
random sampling.

These baseline approaches represent the current
standard methodologies against which we bench-
mark our novel contribution.

As shows in Table3 our approach surpasses
other methods across most datasets. Metrics on
publicly available datasets like TabFact and Wik-
iTableQA are on par or slightly better than existing
approaches due to the simple questions and small-
sized tables. Whereas, TabularLens achieves a
greater leap in accuracy when tested against dataset
with real-time complexities and large and complex
table structures.

4.5 Ablation

Since TabularLens employs a multi-stage retrieval
pipeline with several filtering mechanisms oper-
ating in a sequential manner, we conducted com-
prehensive ablation studies to quantify the contri-
bution of each component to the overall system
performance. These experiments serve multiple
purposes: (1) identifying which filtering strategies
are most effective for different data characteristics,
(2) determining the optimal combination of filters
for various table structures, and (3) understanding
the relative importance of schema extraction versus
row retrieval in the end-to-end question answering
process.

We systematically evaluated different configu-
rations of our framework by selectively enabling

or disabling specific components, measuring the
impact on downstream QA accuracy. This analysis
provides insights into the strengths and limitations
of each module, particularly in handling tables with
complex schemas and named entities. Addition-
ally, we investigate how different model choices
and hyperparameter settings affect overall system
performance across our benchmark datasets. All
ablation results were obtained from testing on the
datasets AdSpend and HAdSpend.

Model Variant AdSpend HAdSpend

Single Filter

Only FM 31.5 28.0

Only LF 58.6 56.5

Only Description 65.4 61.3
Dual Filters

FM + Description 66.5 61.3

LF + Description 69.7 66.6

Table 4: Accuracy values for ablation study on different
filters used in TabularLens with the AdSpend and HAd-
Spend datasets. FM - Fuzzy Matching, LF - Lexical
Filter.

4.5.1 Filtering Step

To analyze the influence of each filter that con-
tributes to selecting the top candidates for each
input, we conducted experiments employing dif-
ferent methodological combinations as shown in
Table4. Under the Single Filter configuration, our
evaluation reveals that the description generator
tool, which enables the language model to retrieve
contextual information about named entities, deliv-
ers the strongest performance across both datasets.
This superior performance can be attributed to the
prevalence of domain-specific abbreviations and se-
mantic ambiguities in column values that challenge
traditional string matching approaches.

When examining Dual Filter configurations, we
observe that combining fuzzy matching with de-
scription generation yields only marginal improve-
ments over using description generation alone.
However, the integration of our Lexical Filter with
the description generation module produces a sub-
stantial performance boost across both datasets.
This improvement underscores the complemen-
tary nature of these two approaches—the Lexical
Filter’s position-sensitive weighting scheme effec-
tively captures word-order importance in named

entities, while the description generation module
provides semantic context for ambiguous terms
commonly found in marketing datasets.

4.5.2 Matching Step

The final stage before sub-table querying the QA
Agent involves a language model-based matching
agent that aligns user input with candidate records.
This step is critical, as it governs the accuracy of
the entire pipeline. Effective retrieval of the correct
record from the table is essential to avoid halluci-
nated or semantically incorrect responses. Three
parameters have a significant influence on match-
ing efficacy: (1) the Top-K candidates chosen from
each filter, (2) the Batch size of input passed to
the LM, and (3) the choice of the language model
employed for semantic alignment.

As shown in Table 5, our proposed config-
uration—with K = 5 and a batch size of 1
—yields the highest average row retrieval accuracy

across both the AdSpend and HAdSpend datasets.
Ablation across these hyperparameters reveals
important trends. While larger Top-K values (e.g.,
K = 10) intuitively provide more candidates for
matching, they often introduce noise, particularly
in models with limited contextual discrimination
capabilities. Conversely, smaller K values improve
precision at the cost of potentially excluding
relevant rows.
Interestingly, model-specific behavior also plays a
role. GPT-4 variants demonstrate stability across
input configurations, with minimal degradation
in matching performance as batch size scales
(atmost 3.5%). This robustness is attributed to their
deeper contextual awareness and refined token
prioritization. On the other hand, Qwen2.5-32B
exhibits superior performance in low-input settings
but shows significant performance deterioration
with larger K and batch size (atmost 8%), likely
due to context overflow and overfitting to irrelevant
tokens. DeepSeek-32B, despite excelling in
tasks such as mathematical and philosophical
reasoning, struggles in tasks like table alignment.
Its verbose reasoning output leads to high inference
latency and increased token bloat, both of which
compromise precision and induce erroneous
assumptions.

In conclusion, our ablation confirms that
careful tuning of these parameters, aligned
with model-specific strengths, is imperative for
optimizing retrieval and minimizing semantic drift

Num Input Set GPT-40-mini GPT-40 DeepSeek-32B Ours(Qwen2.5-32B)
K=5|K=10|K=5|K=10| K=5|K=10| K=5|] K=10
1 92.2 90.1 97.5 94.2 89.3 89.1 99.2 96.4
2 92.2 88.5 96.0 94.0 88.5 87.7 97.3 94.2
5 91.5 87.4 95.5 92.5 86.2 85.2 93.2 91.8
8 88.6 87.0 93.6 91.3 84.7 82.4 91.1 88.8

Table 5: Effect of varying Top-K candidates and matching query batch size on matching across different LLMs.
Red represents the model that attains the highest accuracy followed by Blue

in large-scale table-based QA.

5 Conclusion

In this work, we presented TabularLens, a robust
retrieval-augmented framework tailored for scal-
able table-based question answering. By inte-
grating schema-aware column extraction, named-
entity sensitive row filtering, and a hybrid
lexical-semantic matching strategy, TabularLens
demonstrates strong performance across diverse
datasets—particularly excelling in scenarios involv-
ing large, multi-source tables and domain-specific
terminology.

Our experiments confirm that TabularLens not
only improves retrieval fidelity but also leads
to meaningful gains in downstream question-
answering accuracy, even outperforming models
that ingest full tables. The framework’s modular de-
sign, with dedicated components for handling both
common and proper nouns, offers flexibility across
use cases and opens up possibilities for broader
table-centric reasoning applications.

6 Limitations and Future Work

While TabularLens demonstrates strong perfor-
mance and scalability, there remain several avenues
for enhancement and extension. One promising di-
rection is automating schema evolution, enabling
dynamic adaptation to evolving table structures
without manual intervention. Additionally, the
current framework relies on predefined thresholds
and filtering heuristics; integrating learned ranking
models or reinforcement learning-based selection
policies could further optimize retrieval quality.
That said, a few aspects merit further exploration.
While our description-based filtering mechanism
effectively boosts retrieval for named entities, it in-
troduces latency due to web-based lookups during
preprocessing. This can be handled by retreiving
the description prior to passing in the data through
the pipeline, in this way the inference is faster but

demands precomputation of the descriptions. Ad-
ditionally, the performance of our retrieval mod-
ule may vary across domains where external de-
scriptions are scarce or inconsistent. Finally, al-
though the system generalizes well across market-
ing datasets, evaluating its robustness across other
structured domains like healthcare or finance would
further validate its applicability.

We believe addressing these limitations and
expanding TabularLens into broader, domain-
agnostic applications will enhance the reliability
and versatility of retrieval-augmented reasoning
in structured data environments. Overall, Tabu-
larLens moves a step closer to enabling efficient
and interpretable table understanding at scale. We
hope this work encourages further research into
retrieval-based reasoning strategies for structured
data.

References

Abhishek Arora and Melissa Dell. 2023. Link-
transformer: A unified package for record link-
age with transformer language models. Preprint,
arXiv:2309.00789.

Iz Beltagy, Matthew E. Peters, and Arman Cohan.
2020. Longformer: The long-document transformer.
Preprint, arXiv:2004.05150.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann,
Trevor Cai, Eliza Rutherford, Katie Millican, George
van den Driessche, Jean-Baptiste Lespiau, Bogdan
Damoc, Aidan Clark, Diego de Las Casas, Aure-
lia Guy, Jacob Menick, Roman Ring, Tom Henni-
gan, Saffron Huang, Loren Maggiore, Chris Jones,
Albin Cassirer, and 9 others. 2022. Improving lan-
guage models by retrieving from trillions of tokens.
Preprint, arXiv:2112.04426.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, and 12 others. 2020. Lan-
guage models are few-shot learners. Preprint,
arXiv:2005.14165.

Si-An Chen, Lesly Miculicich, Julian Martin Eisen-
schlos, Zifeng Wang, Zilong Wang, Yanfei Chen,
Yasuhisa Fujii, Hsuan-Tien Lin, Chen-Yu Lee, and
Tomas Pfister. 2024. Tablerag: Million-token ta-
ble understanding with language models. Preprint,
arXiv:2410.04739.

Wenhu Chen, Hongmin Wang, Jianshu Chen, Yunkai
Zhang, Hong Wang, Shiyang Li, Xiyou Zhou, and
William Yang Wang. 2020. Tabfact: A large-scale
dataset for table-based fact verification. In Interna-
tional Conference on Learning Representations.

Zhoujun Cheng, Tianbao Xie, Peng Shi, Chengzu
Li, Rahul Nadkarni, Yushi Hu, Caiming Xiong,
Dragomir Radev, Mari Ostendorf, Luke Zettlemoyer,
Noah A. Smith, and Tao Yu. 2023. Binding language
models in symbolic languages. In The Eleventh Inter-
national Conference on Learning Representations.

Peter Christen. 2012. Data Matching: Concepts and
Techniques for Record Linkage, Entity Resolution,
and Duplicate Detection. Springer Publishing Com-
pany, Incorporated.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. Preprint, arXiv:1810.04805.

Julian FEisenschlos, Syrine Krichene, and Thomas
Miiller. 2020. Understanding tables with interme-
diate pre-training. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
281-296, Online. Association for Computational Lin-
guistics.

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun,
Yichen Qian, Bolin Ding, and Jingren Zhou. 2023.
Text-to-sql empowered by large language models: A
benchmark evaluation. Preprint, arXiv:2308.15363.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-
pat, and Ming-Wei Chang. 2020. Realm: retrieval-
augmented language model pre-training. In Proceed-
ings of the 37th International Conference on Machine
Learning, ICML’20. JMLR.org.

Jonathan Herzig, Pawel Krzysztof Nowak, Thomas
Miiller, Francesco Piccinno, and Julian Eisenschlos.
2020. Tapas: Weakly supervised table parsing via
pre-training. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics.
Association for Computational Linguistics.

Gautier Izacard and Edouard Grave. 2021. Lever-
aging passage retrieval with generative models
for open domain question answering. Preprint,
arXiv:2007.01282.

Deyi Ji, Lanyun Zhu, Siqi Gao, Peng Xu, Hongtao Lu,
Jieping Ye, and Feng Zhao. 2024. Tree-of-table: Un-
leashing the power of llms for enhanced large-scale
table understanding. Preprint, arXiv:2411.08516.

Jinhao Jiang, Kun Zhou, Zican Dong, Keming Ye, Xin
Zhao, and Ji-Rong Wen. 2023. StructGPT: A general
framework for large language model to reason over
structured data. In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language
Processing, pages 9237-9251, Singapore. Associa-
tion for Computational Linguistics.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2023. Large
language models are zero-shot reasoners. Preprint,
arXiv:2205.11916.

Sunjun Kweon, Yeonsu Kwon, Seonhee Cho, Yohan Jo,
and Edward Choi. 2023. Open-wikitable: Dataset
for open domain question answering with complex
reasoning over table. Preprint, arXiv:2305.07288.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Kiittler, Mike Lewis, Wen tau Yih, Tim Rock-
taschel, Sebastian Riedel, and Douwe Kiela. 2021.
Retrieval-augmented generation for knowledge-
intensive nlp tasks. Preprint, arXiv:2005.11401.

Weizhe Lin, Rexhina Blloshmi, Bill Byrne, Adria
de Gispert, and Gonzalo Iglesias. 2023. An inner
table retriever for robust table question answering.
In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 9909-9926, Toronto, Canada.
Association for Computational Linguistics.

Matthias Lindemann, Jonas Groschwitz, and Alexander
Koller. 2019. Compositional semantic parsing across
graphbanks. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4576-4585, Florence, Italy. Association for
Computational Linguistics.

https://arxiv.org/abs/2309.00789
https://arxiv.org/abs/2309.00789
https://arxiv.org/abs/2309.00789
https://arxiv.org/abs/2309.00789
https://arxiv.org/abs/2309.00789
https://arxiv.org/abs/2004.05150
https://arxiv.org/abs/2112.04426
https://arxiv.org/abs/2112.04426
https://arxiv.org/abs/2112.04426
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2410.04739
https://arxiv.org/abs/2410.04739
https://arxiv.org/abs/2410.04739
https://openreview.net/forum?id=rkeJRhNYDH
https://openreview.net/forum?id=rkeJRhNYDH
https://openreview.net/forum?id=rkeJRhNYDH
https://openreview.net/forum?id=lH1PV42cbF
https://openreview.net/forum?id=lH1PV42cbF
https://openreview.net/forum?id=lH1PV42cbF
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://doi.org/10.18653/v1/2020.findings-emnlp.27
https://doi.org/10.18653/v1/2020.findings-emnlp.27
https://doi.org/10.18653/v1/2020.findings-emnlp.27
https://arxiv.org/abs/2308.15363
https://arxiv.org/abs/2308.15363
https://arxiv.org/abs/2308.15363
https://doi.org/10.18653/v1/2020.acl-main.398
https://doi.org/10.18653/v1/2020.acl-main.398
https://doi.org/10.18653/v1/2020.acl-main.398
https://arxiv.org/abs/2007.01282
https://arxiv.org/abs/2007.01282
https://arxiv.org/abs/2007.01282
https://arxiv.org/abs/2007.01282
https://arxiv.org/abs/2007.01282
https://arxiv.org/abs/2411.08516
https://arxiv.org/abs/2411.08516
https://arxiv.org/abs/2411.08516
https://arxiv.org/abs/2411.08516
https://arxiv.org/abs/2411.08516
https://doi.org/10.18653/v1/2023.emnlp-main.574
https://doi.org/10.18653/v1/2023.emnlp-main.574
https://doi.org/10.18653/v1/2023.emnlp-main.574
https://doi.org/10.18653/v1/2023.emnlp-main.574
https://doi.org/10.18653/v1/2023.emnlp-main.574
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2305.07288
https://arxiv.org/abs/2305.07288
https://arxiv.org/abs/2305.07288
https://arxiv.org/abs/2305.07288
https://arxiv.org/abs/2305.07288
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401
https://doi.org/10.18653/v1/2023.acl-long.551
https://doi.org/10.18653/v1/2023.acl-long.551
https://doi.org/10.18653/v1/2023.acl-long.551
https://doi.org/10.18653/v1/P19-1450
https://doi.org/10.18653/v1/P19-1450
https://doi.org/10.18653/v1/P19-1450

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2024a. Lost in the middle: How language
models use long contexts. Transactions of the Asso-
ciation for Computational Linguistics, 12:157-173.

Tianyang Liu, Fei Wang, and Muhao Chen. 2024b. Re-
thinking tabular data understanding with large lan-
guage models. In Proceedings of the 2024 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies (Volume 1: Long Papers), pages
450-482, Mexico City, Mexico. Association for Com-
putational Linguistics.

Shashi Narayan, Claire Gardent, Shay B. Cohen, and
Anastasia Shimorina. 2017. Split and rephrase. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages 606—
616, Copenhagen, Denmark. Association for Compu-
tational Linguistics.

Mohammadreza Pourreza and Davood Rafiei. 2023.
Din-sql: Decomposed in-context learning of text-to-
sql with self-correction. Preprint, arXiv:2304.11015.

Mohammadreza Pourreza and Davood Rafiei. 2024.
DTS-SQL: Decomposed text-to-SQL with small
large language models. In Findings of the Associ-
ation for Computational Linguistics: EMNLP 2024,
pages 8212-8220, Miami, Florida, USA. Association
for Computational Linguistics.

Ofir Press, Noah Smith, and Mike Lewis. 2022. Train
short, test long: Attention with linear biases enables
input length extrapolation. In International Confer-
ence on Learning Representations.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2023. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. Preprint, arXiv:1910.10683.

Yuan Sui, Jiaru Zou, Mengyu Zhou, Xinyi He, Lun Du,
Shi Han, and Dongmei Zhang. 2024. Tap4llm: Table
provider on sampling, augmenting, and packing semi-
structured data for large language model reasoning.
Preprint, arXiv:2312.09039.

Ruoxi Sun, Sercan O. Arik, Alex Muzio, Lesly Miculi-
cich, Satya Gundabathula, Pengcheng Yin, Hanjun
Dai, Hootan Nakhost, Rajarishi Sinha, Zifeng Wang,
and Tomas Pfister. 2024. Sql-palm: Improved large
language model adaptation for text-to-sql (extended).
Preprint, arXiv:2306.00739.

Bing Wang, Changyu Ren, Jian Yang, Xinnian Liang, Ji-
aqi Bai, LinZheng Chai, Zhao Yan, Qian-Wen Zhang,
Di Yin, Xing Sun, and Zhoujun Li. 2025a. Mac-sql:
A multi-agent collaborative framework for text-to-sql.
Preprint, arXiv:2312.11242.

Yuxiang Wang, Junhao Gan, and Jianzhong Qi. 2025b.
Tabsd: Large free-form table question answer-
ing with sql-based table decomposition. Preprint,
arXiv:2502.13422.

10

Zilong Wang, Hao Zhang, Chun-Liang Li, Julian Martin
Eisenschlos, Vincent Perot, Zifeng Wang, Lesly Mi-
culicich, Yasuhisa Fujii, Jingbo Shang, Chen-Yu Lee,
and Tomas Pfister. 2024. Chain-of-table: Evolving
tables in the reasoning chain for table understanding.
In The Twelfth International Conference on Learning
Representations.

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M. Dai, and Quoc V. Le. 2022. Finetuned
language models are zero-shot learners. Preprint,
arXiv:2109.01652.

Jingfeng Yang, Aditya Gupta, Shyam Upadhyay,
Luheng He, Rahul Goel, and Shachi Paul. 2022.
TableFormer: Robust transformer modeling for table-
text encoding. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 528-537,
Dublin, Ireland. Association for Computational Lin-
guistics.

Yunhu Ye, Binyuan Hui, Min Yang, Binhua Li, Fei
Huang, and Yongbin Li. 2023. Large language
models are versatile decomposers: Decompose evi-
dence and questions for table-based reasoning. arXiv
preprint arXiv:2301.13808.

Pengcheng Yin, Graham Neubig, Wen tau Yih, and
Sebastian Riedel. 2020. Tabert: Pretraining for joint
understanding of textual and tabular data. Preprint,
arXiv:2005.08314.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries
from natural language using reinforcement learning.
Preprint, arXiv:1709.00103.

https://doi.org/10.1162/tacl_a_00638
https://doi.org/10.1162/tacl_a_00638
https://doi.org/10.1162/tacl_a_00638
https://doi.org/10.18653/v1/2024.naacl-long.26
https://doi.org/10.18653/v1/2024.naacl-long.26
https://doi.org/10.18653/v1/2024.naacl-long.26
https://doi.org/10.18653/v1/2024.naacl-long.26
https://doi.org/10.18653/v1/2024.naacl-long.26
https://doi.org/10.18653/v1/D17-1064
https://arxiv.org/abs/2304.11015
https://arxiv.org/abs/2304.11015
https://arxiv.org/abs/2304.11015
https://doi.org/10.18653/v1/2024.findings-emnlp.481
https://doi.org/10.18653/v1/2024.findings-emnlp.481
https://doi.org/10.18653/v1/2024.findings-emnlp.481
https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=R8sQPpGCv0
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/2312.09039
https://arxiv.org/abs/2312.09039
https://arxiv.org/abs/2312.09039
https://arxiv.org/abs/2312.09039
https://arxiv.org/abs/2312.09039
https://arxiv.org/abs/2306.00739
https://arxiv.org/abs/2306.00739
https://arxiv.org/abs/2306.00739
https://arxiv.org/abs/2312.11242
https://arxiv.org/abs/2312.11242
https://arxiv.org/abs/2312.11242
https://arxiv.org/abs/2502.13422
https://arxiv.org/abs/2502.13422
https://arxiv.org/abs/2502.13422
https://openreview.net/forum?id=4L0xnS4GQM
https://openreview.net/forum?id=4L0xnS4GQM
https://openreview.net/forum?id=4L0xnS4GQM
https://arxiv.org/abs/2109.01652
https://arxiv.org/abs/2109.01652
https://arxiv.org/abs/2109.01652
https://doi.org/10.18653/v1/2022.acl-long.40
https://doi.org/10.18653/v1/2022.acl-long.40
https://doi.org/10.18653/v1/2022.acl-long.40
https://arxiv.org/abs/2005.08314
https://arxiv.org/abs/2005.08314
https://arxiv.org/abs/2005.08314
https://arxiv.org/abs/1709.00103
https://arxiv.org/abs/1709.00103
https://arxiv.org/abs/1709.00103

	Introduction
	Related Works
	TabularLens
	Motivation
	Problem Formulation
	Components of TabularLens

	Experiments
	Datasets
	Experimental Setup
	Sub-table Retrieval Performance
	Question Answering Performance
	Ablation
	Filtering Step
	Matching Step

	Conclusion
	Limitations and Future Work

