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Abstract—This article introduces two contributions: Multi-
band Robust Deconvolution (Multi-RDCP), a regularization ap-
proach for deconvolution in the presence of noise; and Subband-
Normalized Adaptive Kernel Evaluation (SNAKE), a first-order
iterative algorithm designed to efficiently solve the resulting
optimization problem. Multi-RDCP resembles Group LASSO in
that it promotes sparsity across the subband spectrum of the
solution. We prove that SNAKE enjoys fast convergence rates
and numerical simulations illustrate the efficiency of SNAKE for
deconvolving noisy oscillatory signals.

Index Terms—Deconvolution, digital signal processing, gradient
methods, signal reconstruction, sparse approximation.

I. INTRODUCTION

Deconvolution is a well-known inverse problem with numer-
ous applications in signal processing [1], [2]. The (circular)
convolution between two finite sequences x and w in RN is:

(w ∗ x)[n] =
N−1∑
m=0

w[m]x
[
(n−m) mod N

]
. (1)

Reciprocally, (non-blind) deconvolution operators assume the
knowledge of two finite sequences x,y, and seek w such that
w ∗x ≈ y; more precisely, such that a certain cost function F
is minimized. One such function is mean square error (MSE):

f : w ∈ RN 7−→ 1
2

∥∥w ∗ x− y
∥∥2. (2)

If one simply chooses to minimize Equation (2), deconvolution
can be solved directly via the fast Fourier transform (FFT) [3]
by spectral division. Denoting the discrete Fourier transform of
x by F(x) = x̂, the convolution theorem [4] yields, for every
frequency k: F(w ∗ x)[k] = ŵ[k]x̂[k]. Let w∗ = F−1(ŵ∗)
where, for every k, ŵ∗[k] = ŷ[k]/x̂[k] if x̂[k] ̸= 0 and
ŵ∗[k] = 0 otherwise. One may verify that w∗ minimizes the
MSE. Indeed, f is convex and its gradient is zero at w∗ [4].

A different approach is needed for regularized deconvolution
problems, whose cost function writes as F = f + r. Here, f
is a data fidelity term–like MSE–depending on x and y, while
r penalizes a certain notion of “complexity” in the solution.
The practical interest behind these problems lies in the need
to reliably estimate the impulse response of the linear time–
invariant (LTI) system which maps x to y in the presence
of highly noisy observations. The complexity of the solution
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may arguably be quantified in terms of spectral spread, i.e.,
the notion that the entries |ŵ[k]|2 are non-negligible for a
wide range of frequency values k. Narrowband LTI systems
are ubiquitous in applied sciences: formants in phonetics [5]
and Helmholtz resonators in musical acoustics [6] are some
well-known examples.

In this article, we introduce the multiband robust deconvo-
lution problem (Multi-RDCP). The key idea is to employ a
predefined filterbank Ψ to decompose x and y into J > 1
subbands. This decomposition enables the formulation of in-
dividual subproblems and the regularization of the solution
w through a non-squared ℓ2-norm penalty applied to each
subband component, promoting sparsity across subbands, akin
to Group LASSO [7]. Since Multi-RDCP lacks closed-form
solutions and full differentiability, an iterative method such
as proximal gradient descent (PGD) [8] is required. Yet,
we will see that general PGD is impractically slow if x̂
exhibits large variations in magnitude across regions of the
Fourier spectrum. In order to overcome this, we present a
new algorithm: subband-normalized adaptive kernel evaluation
(SNAKE). SNAKE applies PGD over each subband indepen-
dently, with a step size that is adapted to the power spectral
density of x within that band.

Our main theoretical result (Theorem III.6) is that SNAKE
enjoys a global linear convergence rate. We corroborate this re-
sult through numerical experiments, demonstrating significant
convergence speedups compared to classical PGD, along with
an improved robustness to noise.

Note. We write [N ] as a shorthand for {0, . . . , N − 1}. We
denote the time reversal of a finite sequence x ∈ RN by ⃗x.

II. PROXIMAL GRADIENT-BASED DECONVOLUTION

Definition II.1. Given λ > 0 and x,y ∈ RN , the robust
deconvolution problem (RDCP) of y from x minimizes

F : w ∈ RN 7−→ 1
2
∥w ∗ x− y∥22 + λ∥w∥2, (3)

i.e., F = f + r with f is the MSE and r the ℓ2-norm times λ.

Note. We square the ℓ2 norm in f but not in r. This is an
important design choice, which we will discuss in Section III.

A common choice for minimizing the sum of a smooth and
a non-smooth convex function is proximal gradient descent.

Definition II.2 ([9]). The proximal operator of a convex, lower
semi-continuous function g : RN → R is defined as

Proxαg : w ∈ RN 7−→ argmin
v∈RN

{
g(v) + 1

2α
∥v −w∥22

}
.

(4)
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Lemma II.3 ([10], Section 6.5.1). Given α > 0 and λ > 0,
the proximal operator of r : w ∈ RN 7→ λ∥w∥2 is given by

Proxαr : w 7−→ max
(
0, 1− αλ/∥w∥2

)
w. (5)

Definition II.4 ([8]). Given x,y ∈ RN and RDCP (Def. II.1),
an initial guess w(0) ∈ RN and a step size α > 0, proximal
gradient descent (PGD) computes the sequence {w(t)}t∈N
recursively:

w(t+1) = Proxαr

(
w(t) − α∇f(w(t))

)
. (6)

PGD theory has first been developed under the assumption
of strong convexity. More recently, [11] have proved the linear
convergence of PGD under a weaker assumption than strong
convexity, called “proximal Polyak-Łojasiewicz” (Prox-PŁ) in
reference to [12] and [13]. We proceed to establish the same
result under an even weaker assumption than Prox-PŁ.

First we state some results on the MSE f in RDCP.

Definition II.5 ([14]). For a x ∈ RN the associated circulant
matrix Cx ∈ RN×N , such that w ∗ x = Cxw, is given by
Cx[n, n

′] = x[(n− n′) mod N ] for n, n′ ∈ [N ].

Definition II.6. Given x ∈ RN , we denote its smallest nonzero
and largest power spectrum entries by

S+
min(x) = min

k∈[N ]

{
|x̂|2[k]

∣∣∣ |x̂|2[k] > 0
}
, (7)

Smax(x) = max
k∈[N ]

{
|x̂|2[k]

}
, (8)

where x̂ is the discrete Fourier transform of x.

Lemma II.7. Given w,v ∈ RN , Equation (2) satisfies:
f(v) = f(w) + ⟨∇f(w),v −w⟩+ 1

2
∥v ∗ x−w ∗ x∥22 .

Proof. We rewrite f in terms of Cx and expand the norm to
obtain f(v) = 1

2
(∥Cxw−y∥22 +2⟨Cxw−y,Cxv−Cxw⟩

+∥Cxv−Cxw∥22). Since the gradient is given by ∇f(w) =
C⊤
x (Cxw − y

)
, we conclude with shifting the transpose in

⟨∇f(w),w − v⟩ = ⟨Cxw − y,Cxw −Cxv⟩.

Lemma II.8. For v ∈ RN , ∥v ∗ x∥22 ≤ Smax(x) ∥v∥22. For
all w ∈ ker(Cx)

⊥, S+
min(x) ∥w∥22 ≤ ∥w ∗ x∥22.

Proof. The matrix Cx is diagonalized by the discrete Fourier
transform and its singular values are the entries of x̂ [15].

We now introduce a measure of the distance of w to the
set of optimal solutions in terms of function values and we
establish its connection to the iterates of PGD for RDCP.

Definition II.9. The proximal gradient optimality gap of
RDCP (Def. II.1), for w ∈ RN and γ > 0, is given by:

Dr(w, γ) := (9)

−γmin
v∈V

{
⟨∇f(w),v −w⟩+ γ

2
∥v −w∥22 + r(v)− r(w)

}
,

where V = ran(C⊤
x ) is the row space of the matrix Cx.

Note. This definition is similar to [11, Equation 13] except
that we restrict the minimum to V , i.e., a linear subspace of
RN . For v ∈ V , we have ∥v ∗x−w∗x∥22 > 0 unless v = w.
Indeed, V is orthogonal to ker(Cx), along which f is constant.

Lemma II.10. The proximal gradient optimality gap of RDCP
(Def. II.1) is monotonically nondecreasing with respect to its
second argument: ∀w ∈ RN , ∀γ, γ′ > 0:(

γ < γ′) =⇒
(
Dr(w, γ) ≤ Dr(w, γ

′)
)
. (10)

Proof. This can be proven analogously to [11, Appendix E,
Lemma 1] by ensuring that the same arguments apply if the
minimum is taken over V = ran(C⊤

x ) instead of over RN .

Lemma II.11. Given x,y ∈ RN and RDCP (Def. II.1), an
initial guess w(0) ∈ ran(C⊤

x ) and a step size α = 1
L

. Then
the iterates of PGD satisfy w(t) ∈ ran(C⊤

x ) for t ∈ N.
Furthermore, the following holds:

⟨∇f(w(t)),w(t+1) −w(t)⟩+ L
2
∥w(t+1) −w(t)∥22

+ r(w(t+1))− r(w(t)) = − 1
L
Dr(w

(t), L).

Proof. Using Lemma II.3, we verify that, for any given w ∈
ran(C⊤

x ), ∇f(w) and proxαr(w) are both in ran(C⊤
x ). Thus,

starting from w(0) ∈ ran(C⊤
x ), we prove by recurrence that

w(t) ∈ ran(C⊤
x ) for every t ∈ N. Furthermore, due to the

definition of the proximal operator and w(t+1), we have

w(t+1) = argmin
v∈RN

{
r(v) + L

2
∥v −w(t) + 1

L
∇f(w(t))∥22

}
= argmin

v∈RN

{
r(v) + ⟨∇f(w(t)),v −w(t)⟩+ L

2
∥v −w(t)∥22

}
with the omission of 1

L
∥∇f(w(t))∥2, a term which does not

affect the argmin. From Definition II.9, we see that:

− 1
L
Dr(w

(t), L) + r(w(t)) =

min
v∈V

[
r(v) + ⟨∇f(w(t)),v −w(t)⟩+ L

2
∥v −w(t)∥22

]
.

The minimum is reached for v = w(t+1), which we have
proven to be in V; thus concluding the second statement.

Lemma II.12. Given x,y ∈ RN and RDCP (Def. II.1). Then
argminv∈RN F (v) ⊂ ran(C⊤

x ).

Proof. Since F (v) → +∞ if ∥v∥2 → +∞, argminv∈RN F
is nonempty [16]. Let v∗ ∈ argminv∈RN F (v). If v∗ = 0, the
result is trivial. Otherwise, we write the optimality condition:
0 = ∇f(v∗)+∂r(v∗) = C⊤

x (Cxv
∗−y)+(λ/ ∥v∗∥2)v

∗.

Proposition II.13. Given x,y ∈ RN and RDCP (Def. II.1),
for every w ∈ ran(C⊤

x ):

Dr(w, L) ≥ µ
(
F (w)− F ∗), (11)

where µ = S+
min(x), L = Smax(x), and F ∗ = minRN F .

Proof. For v,w ∈ ran(C⊤
x ) = ker(Cx)

⊥, Lemma II.8
yields 1

2
∥v ∗ x−w ∗ x∥22 ≥ µ

2
∥v −w∥22. Plugging this into

Lemma II.7 yields: f(v) ≥ f(w) + ⟨∇f(w),v −w⟩ +
µ
2
∥v −w∥22. We add r(v), take the minimum over all ele-

ments v ∈ ran(C⊤
x ), and recognize Definition II.9:

min
v∈ran(C⊤

x )
F (v) ≥ F (w)− 1

µ
Dr(w, µ).

On the left, we recognize F ∗ (Lemma II.12). On the right, we
use Lemma II.10 to replace Dr(w, µ) by Dr(w, L).



Theorem II.14. Given x,y ∈ RN and RDCP (Def. II.1), an
initial guessw(0) ∈ ran(C⊤

x ) and a step size α = 1/Smax(x),
the iterates {w(t)}t∈N of PGD satisfy:

F
(
w(t)

)
− F ∗

F
(
w(0)

)
− F ∗

≤
(
1− S+

min(x)

Smax(x)

)t

. (12)

Proof. We adapt the proof of [11, Theorem 5]. Applying
Lemma II.7 for v = w(t+1) and w = w(t), and Lemma II.7
for 1

2
∥Cx(w(t+1) −w(t))∥22 ≤ L

2
∥w(t+1) −w(t)∥22 yield:

f(w(t+1)) ≤ f(w(t)) + ⟨∇f(w(t)),w(t+1) −w(t)⟩
+L

2
∥w(t+1) −w(t)∥22.

Combining this with Lemma II.11 and Proposition II.13 yields:

F (w(t+1)) = f(w(t+1)) + r(w(t)) + r(w(t+1))− r(w(t))

≤ F (w(t)) + ⟨∇f(w(t)),w(t+1) −w(t)⟩
+ L

2
∥w(t+1) −w(t)∥22 + r(w(t+1))− r(w(t))

= F (w(t))− 1
L
Dr(w

(t), L)

≤ F (w(t))− µ
L

[
F (w(t))− F ∗].

This gives us F (w(t+1)) − F ∗ ≤ (1 − µ
L
)
[
F (w(t)) − F ∗],

from which we can conclude the statement by recurrence.

Theorem II.14 guarantees that PGD applied to robust decon-
volution of y from x converges in terms of optimal function
value with a rate of

(
1− S+

min(x)/Smax(x)
)t or better.

III. FILTERBANK ANALYSIS AND NORMALIZATION

In many applications, the ratio between the smallest nonzero
and large power spectrum coefficients of x is close to zero,
hence a poor convergence rate guarantee in Equation (12).
Against this issue, we use a filterbank to partition RDCP into
subproblems, each focusing on a subband, i.e., a subset of
frequency components. By assuming that the power spectral
density of x has small relative variations within each subband,
we obtain subband-wise power spectrum ratios which are closer
to one, yielding improved convergence rate guarantees.

Definition III.1. A Parseval filterbank is a collection of finite
sequences ψ0, . . . ,ψJ−1 ∈ RN such that, for every x ∈ RN :

J−1∑
j=0

∥ψj ∗ x∥
2
2 = ∥x∥22. (13)

Theorem III.2 ( [17]). Given w ∈ RN and a Parseval
filterbank (ψ0, . . . ,ψJ−1): w =

∑J−1
j=0 C⊤

ψj
Cψj

w.

Definition III.3. Let Ψ = (ψ0, . . . ,ψJ−1) be a Parseval
filterbank. Choose (λj)

J−1
j=0 and (Lj)

J−1
j=0 such that λj ≥ 0

and Lj > 0 for every j ∈ [J ]. Given x,y ∈ RN , for each
j ∈ [J ], define the data fidelity terms

fj(wj) =
1

2Lj

∥∥∥(wj ∗ψj ∗ x)−
√
Lj(ψj ∗ y)

∥∥∥2
2

(14)

and the regularization terms rj(wj) = λj∥wj∥2. The multi-
band robust deconvolution (Multi-RDCP) cost function at
W = (wj)

J−1
j=0 is given by:

FΨ

(
W
)
=

J−1∑
j=0

fj(wj) + rj(wj). (15)

Note. The double convolutions above, (wj ∗ ψj ∗ x), form
a hybrid filterbank [18]; with dyadic subsampling, it would
resemble a multiresolution neural network (MuReNN) [19].

Note. The term
∑J−1

j=0 λj ∥wj∥2 corresponds to weighted
Group LASSO [7] where the groups are the subbands of Ψ.

In order to synthesize the global w∗ from W, we use the
formula motivated by the following proposition.

Proposition III.4. Given x,y ∈ RN , let W∗ = (w∗
j )

J−1
j=0 be

a global optimum of unregularized Multi-RDCP (Def. III.3),
i.e. λj = 0 for j ∈ [J ]. Then

w∗ =

J−1∑
j=0

1√
Lj

C⊤
ψj

Cψj
w∗

j (16)

is a global optimum for the deconvolution of y from x.

Proof. At the global optimum, one has ∇FΨ

(
W∗) = 0, thus:

Lj∇fj(w
∗
j ) = C⊤

(ψj∗x)
(
C(ψj∗x)w

∗
j −

√
LjC

⊤
ψj
y
)
= 0

for all j ∈ [J ]. The convolution is associative and commutative:

C⊤
(ψj∗x)C(ψj∗x) = C⊤

ψj
C⊤
xCψj

Cx = C⊤
xCxC

⊤
ψj

Cψj
.

Thus, by dividing each identity by
√
Lj and summing over j:

J−1∑
j=0

C⊤
xCx

(
1√
Lj

C⊤
ψj

Cψj
w∗

j

)
=

J−1∑
j=0

C⊤
xC

⊤
ψj

Cψj
y.

We recognize C⊤
xCxw

∗ on the left and C⊤
xy on the right (see

Theorem III.2). Hence: C⊤
x

(
Cxw−y) = 0, i.e., ∇f(w∗) = 0

(see Equation 2). We conclude by convexity of the MSE.

As the objective of Multi-RDCP is separable in (wj)
J−1
j=0 ,

it can be solved with PGD for each wj for j ∈ [J ], since it
corresponds to the cost function of a rescaled RDCP.

Proposition III.5. For j ∈ [J ], Fj = fj + rj is the cost
function of RDCP (Def. II.1) for some given xj ∈ RN and
yj ∈ RN . For an initial guess w(0)

j ∈ ran(C⊤
x ) and the step

size α = Lj/Smax(ψj ∗ x), the iterates {w(t)
j }t∈N of PGD

applied to Fj satisfy for every j ∈ [J ]:

Fj

(
w(t)

)
− F ∗

j

Fj

(
w(0)

)
− F ∗

j

≤
(
1− S+

min(ψj ∗ x)
Smax(ψj ∗ x)

)t

. (17)

Proof. For yj = L
1/2
j (ψj ∗ y) and xj = L

−1/2
j (ψj ∗ x) we

see that fj(wj) =
1

2Lj

∥∥(wj ∗ψj ∗ x)−
√
Lj(ψj ∗ y)

∥∥2
2
=

1
2

∥∥wj ∗ xj − yj

∥∥2
2
. Theorem II.14 concludes this result.

Note. Given the result above, we set Lj = Smax(ψj ∗ x) in
order to have a unit step size of α = 1.

Algorithm 1 summarizes our method: across the different
subbands ψj , we normalize adaptively with respect to the given
signal x and derive kernel estimates wj (SNAKE).

Theorem III.6. Given x,y ∈ RN , a Parseval filterbank
Ψ = (ψ0, . . . ,ψJ−1) and Multi-RDCP (Def. III.3), the
iterates {W (t+1)}t∈N of SNAKE (Algorithm 1) satisfy:

FΨ

(
W(t)

)
− F ∗

Ψ

FΨ

(
W(0)

)
− F ∗

Ψ

≤

(
1− min

j∈[J]

S+
min(ψj ∗ x)

Smax(ψj ∗ x)

)t

. (18)



Algorithm 1 Subband-Normalized Adaptive Kernel Estimation
Given x and y = h ∗ x+ η where η is noise, finds w ≈ h.

Require: (ψj)
J−1
j=0 (Parseval), (λj)

J−1
j=0 positive, T ∈ N

1: for j = 0 : J − 1 do
2: xj = ψj ∗ x
3: Lj = Smax(xj) {see Equation (8)}
4: ∇fj : wj 7→ 1

Lj
(wj ∗ xj −

√
Lj(ψj ∗ y)) ∗ ⃗xj

5: Proxrj : v 7→ max(0, 1− λj/∥v∥2)v
6: w

(0)
j = 0

7: for t = 0 : T − 1 do
8: w

(t+1)
j = Proxrj

(
w

(t)
j −∇fj(w

(t)
j )
)
,

9: return w =
∑J−1

j=0
1√
Lj
w

(T )
j ∗ψj ∗ ⃗ψj

Proof. We write FΨ(W) =
∑J−1

j=0 Fj(wj). Proposition III.5
gives us, for each j ∈ [J ]:

Fj

(
w

(t)
j

)
− F ∗

j ≤

(
1−

S+
min(ψj ∗ x)

Smax(ψj ∗ x)

)t (
Fj

(
w(0))− F ∗

j

)
≤

(
1− min

j∈[J]

S+
min(ψj ∗ x)

Smax(ψj ∗ x)

)t (
Fj

(
w(0))− F ∗

j

)
.

Summing over j ∈ [J ] concludes the result.

This convergence rate does not depend on the ratio
of the smallest to largest positive power spectrum entry
S+
min(x)/S

+
max(x) like PGD for RDCP, but on the ratios within

subbands. This represents an improvement, even with a simple
filterbank, as we will demonstrate in the next section.

IV. NUMERICAL SIMULATION

We consider a kernel h ∈ RN , N = 256 (see Figure 1, left).
The input x is a sample of Brownian noise [20]. We observe
x and y = h∗x+η, where η is an sample of white Gaussian
noise with ∥η∥2 = 1

20
∥x∥2. Note that h is narrowband while

η is broadband. In the absence of regularization, deconvolution
of y from x would yield an estimate w̃ such that w̃ ∗x ≈ y.
Instead, by promoting sparsity across subbands of the filterbank
Ψ, multi-RDCP aims at w∗ such that w∗ ≈ h.

We build a Parseval filterbank Ψ = (ψj)
J−1
j=0 of J = 7 “real

Shannon wavelets” [21]. For every j ∈ [J ] and k ≤ N/2,
ψ̂j [k] = 1 if 2j < k ≤ 2j+1 and 0 elsewhere. For k > N/2,
we complete the construction by Hermitian symmetry.

After a preliminary stage of hyperparameter calibration, we
select λ = 40 ∥x∥2 for RDCP and λj = 150/Lj ∥x∥2 for
Multi-RDCP. We leave the important question of sensitivity to
hyperparameters to future work.

The CPU time per iteration is roughly J = 7 times greater
for SNAKE than for PGD. Yet, this discrepancy is compensated
by the faster convergence guarantee of SNAKE: see Theorem
III.6. Figure 1 illustrates this phenomenon.

To assess the quality of our reconstructions and justify our
choice of regularization, we have employed an oracle bench-
mark based on Ridge Regression, where the optimal solution
w∗ is computed with full knowledge of the ground truth h.
Ridge Regression is defined by the regularizer r(w) = λ ∥w∥22
and since the optimality condition is (w∗x−y)∗ ⃗x+ λ

2
w = 0,

this admits a closed-form solution via the FFT. For each

Figure 1. Plot of relative error to optimal cost function value of F
(as in LHS of (12)) for PGD (green) and of FΨ (as in LHS of (18))
for SNAKE (blue) as a function of CPU time. We report the median
and quartiles across 100 independent samples of x and η.

Figure 2. Left: a narrowband signal h (green) and its unregularized
deconvolution w̃ (gray) given Brownian noise x and y = h ∗w+ η
where η is white noise. Right: typical solutions w∗ or w(T ) from
regularized deconvolutions. For clarity, we have zoomed onto the red
rectangle.

instance of x and η, we test across different λ > 0, to see what
the best possible w∗ achievable by Ridge Regression is, while
measuring the reconstruction error as ∥w∗ − h∥2 / ∥h∥2. Fig-
ure 2 illustrates our results.

Over 100 instances, the best possible Ridge Regression
reconstruction has a median error of 6.7%. In comparison, the
reconstructions of RDCP achieves a median error of 6.7% and
Multi-RDCP attains 2.3%.

V. CONCLUSION

We have presented two contributions: a new regulariza-
tion technique named multiband robust deconvolution (Multi-
RDCP) and a dedicated algorithm named Subband-Normalized
Adaptive Kernel Evaluation (SNAKE). SNAKE benefits from
filterbank analysis in Multi-RDCP to adapt the step size of
subband-wise proximal gradient descents to local spectral char-
acteristics, hence an improved convergence rate. Furthermore,
Multi-RDCP promotes sparsity across the subband spectrum
of the solution, surpassing the best possible reconstruction
performance of Ridge Regression.

Looking ahead, SNAKE’s adaptability opens possibilities for
other regularization schemes, where classical methods struggle
due to high spectral variability. Additionally, exploring adaptive
strategies for selecting the subband regularization parameters
(λj)

J−1
j=0 based on prior knowledge of the target signal holds

promise to further enhance performance.
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