

000 001 002 003 004 005 TR-MERGING: TRAINING-FREE ROUTER FOR 006 MODEL MERGING 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023

ABSTRACT

024 With the rapid advancement of deep learning, a wide variety of open-source mod-
025 els for different tasks have emerged. However, a single fine-tuned model often
026 fails to meet users' diverse requirements. To address this limitation, model merg-
027 ing has been proposed as an effective approach to integrate the capabilities of exist-
028 ing models into a unified one. Among existing approaches, router-based methods
029 have become representative baselines due to their strong performance; however,
030 their reliance on a trainable router compromises the appealing advantage of tradi-
031 tional model merging being completely training-free. In this paper, we propose a
032 training-free router from a similarity-based perspective. Our method achieves per-
033 formance on par with router-based approaches while eliminating the need for any
034 additional training. We demonstrate the effectiveness of TR-Merging across mul-
035 tiple tasks in both computer vision (CV) and natural language processing (NLP),
036 and demonstrate its flexibility in adapting to diverse requirements.
037
038

1 INTRODUCTION

039 With the rapid progress of deep learning, a wide range of model architectures and training strategies
040 have been introduced, substantially enhancing the capabilities of pre-trained models and positioning
041 them as a cornerstone of modern machine learning. Fine-tuning pre-trained models for downstream
042 tasks has become a prevailing paradigm in both NLP (Devlin et al., 2019; Fan et al., 2024; Lu
043 et al., 2024; Su et al., 2024a;b;c; Sun et al., 2023; Touvron et al., 2023) and CV (Paul & Chen,
044 2021; Dodge et al., 2020; Dosovitskiy et al., 2021; Ye et al., 2023) domains, often yielding superior
045 performance even with limited labeled data. The proliferation of open-source repositories, such as
046 Huggingface (Wolf et al., 2020), torchvision (Albardi et al., 2021) and ModelScope (Wang et al.,
047 2023), has further accelerated this trend, resulting in an exponential increase in the number of pre-
048 trained and fine-tuned checkpoints. However, maintaining separate models for diverse tasks leads to
049 prohibitive storage and deployment overheads. Multi-task learning (MTL) offers a partial solution
050 by jointly training models across multiple datasets, but it is hindered by substantial computational
051 overhead and constraints on data availability due to privacy concerns. More recently, model merging
052 has emerged as a promising alternative, integrating models through weight combination rather than
053 additional training, thereby addressing these limitations and demonstrating both theoretical signifi-
054 cance and broad practical potential.

055 A straightforward baseline for model merging is direct weight averaging, yet, this often results in
056 substantial performance degradation. To mitigate this issue, several strategies have been proposed,
057 which can be broadly classified into four categories.

- 058 • Weighted parameter averaging methods, such as Fisher-Merging (Matena & Raffel) and Reg-
059 Mean (Jin et al., 2022), which employ pre-computed Fisher information or inner product matri-
060 ces to determine adaptive averaging coefficients.
- 061 • Task vector-based methods, including Task Arithmetic (Jiang et al., 2024; Ortiz-Jimenez et al.,
062 2023a; Tang et al., 2023; Yang et al., 2023; Ortiz-Jimenez et al., 2023b; Tang et al., 2024),
063 and AdaMerging (Yang et al., 2023). These approaches merge task vectors rather than raw
064 model parameters, where Ties-Merging explicitly addresses interference, while AdaMerging
065 adaptively adjusts merging coefficients.
- 066 • Preprocessing techniques, exemplified by DARE (Yu et al., 2024), which reduces interference
067 by discarding a large portion of task vector elements and rescaling the remaining ones.

054 • Router-based methods, such as Twin-Merging (Yu et al., 2024) and Free-Merging (Xu et al.,
 055 2024), which dynamically route inputs to specialized experts.
 056

057
 058 Among these categories, router-based approaches generally achieve superior performance. Nonethe-
 059 less, they introduce an additional training component-Router, which compromises the training-free
 060 nature traditionally associated with model merging, thereby incurring extra computational, data, and
 061 labor costs in deployment.

062 Therefore, motivated by distance metric theory, we propose a training-free router as an alternative to
 063 conventional training-based routers. Prior approaches typically rely on classifiers trained on domain-
 064 specific data of each expert model, which, during inference, route an input to the top-k experts with
 065 the highest specialization scores. Although they achieve strong performance, such routers require
 066 additional training. In contrast, our method eliminates this requirement by embedding both the input
 067 and the domain data of each expert model into a shared representation space and computing their
 068 pairwise distances. The input is then assigned to the top-k closest domains, and the corresponding
 069 expert models are selected as the most relevant experts for inference.

070 We empirically demonstrate the effectiveness of TR-Merging, as summarized in Figure 1. First, we
 071 merge five Qwen2.5-0.5B-Instruct (Team, 2024) models to validate its performance in the NLP do-
 072 main. Next, we merge ten ViT-Base-Patch16-224 models to confirm its efficacy in computer vision
 073 tasks. To assess scalability, we merge five Qwen2.5-7B-Instruct (Team, 2024) models, illustrating
 074 that the approach can be applied to larger models. Furthermore, by merging a classification
 075 model with a mathematical reasoning model, we show that TR-merging supports cross-domain and
 076 cross-task integration. Finally, evaluation on the out-of-domain MMLU (Hendrycks et al., 2021)
 077 benchmark demonstrates that the merged models exhibit strong generalization and robustness.

078 Our contributions are threefold. First, we introduce TR-Merging, a novel model merging method
 079 that leverages a training-free router to integrate task-specific models into a unified model without
 080 necessitating additional training. Second, we demonstrate the effectiveness of TR-Merging across
 081 a comprehensive suite of both established and newly proposed benchmarks, spanning CV, NLP,
 082 PEFT (Hu et al., 2022; Liu et al., 2022; Pei & Wang, 2023; Pei et al., 2024), and multimodal tasks.
 083 Finally, we provide a theoretical analysis establishing the optimality of the distance metric algorithm
 084 employed by the training-free router within TR-Merging.

085 086 087 2 RELATED WORK

088 This section reviews research on model merging, with a focus on multi-task learning and mixture-
 089 of-experts (MoE) frameworks. The goal of model merging is to consolidate multiple task-specific
 090 fine-tuned models into a single unified multitask model without necessitating additional training.
 091 Initial strategies, such as FisherMerging and RegMean, rely on straightforward weight averaging,
 092 yet they often require extra data and substantial computational resources. Another line of work ex-
 093 plores interpolation between models within a shared low-loss region, grounded in the concept of
 094 linear mode connectivity (LMC) (Draxler et al., 2018; Frankle et al., 2020; Garipov et al., 2018).
 095 To facilitate effective parameter alignment for interpolation, methods like *weight matching* and *optimal
 096 transport* have been introduced, although recent evidence indicates that LMC assumptions
 097 may not consistently apply to fine-tuned models. Task-Arithmetic generalizes simple averaging
 098 by performing more flexible arithmetic operations in parameter space, enabling finer control over
 099 model behavior. Nevertheless, interference among tasks remains a significant challenge. To ad-
 100 dress this, techniques such as Ties-Merging, AdaMerging, and DARE (Yu et al., 2024) have been
 101 developed to mitigate task conflicts by identifying redundant parameters, learning optimal merging
 102 coefficients, and reducing parameter density. Twin-Merging (Yu et al., 2024) further proposes a mod-
 103 ular knowledge composition mechanism that dynamically integrates knowledge modules based on
 104 their relevance. While some approaches exploit task identities at inference time to enhance merging
 105 performance, such assumptions are often unrealistic in practical scenarios where task distributions
 106 are unknown or variable.

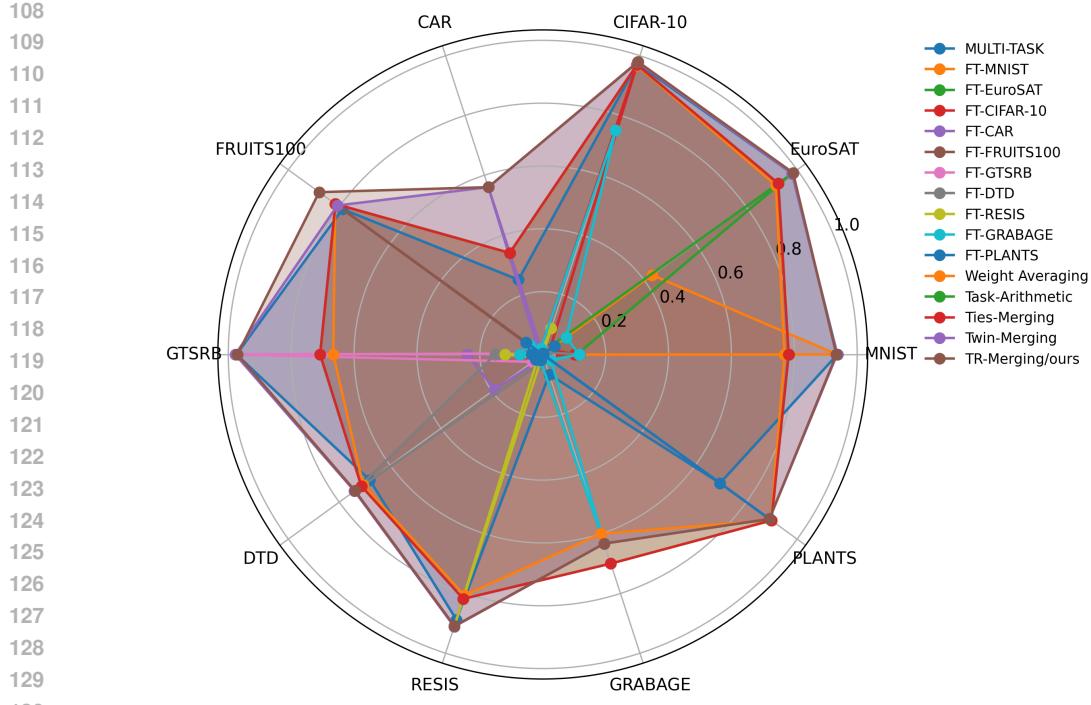


Figure 1: Comparison accuracy (%) with Existing Methods Demonstrating the Superior Effectiveness of Our Approach.

3 METHOD

This chapter outlines the complete workflow of our proposed method. Following the preliminary setup, the approach is structured into two main stages (as illustrated in Figure 2): In Section 3.1, a training-free Router is utilized to generate embeddings, from which similarity scores are computed to derive the weighting coefficients of experts. Section 3.2 then leverages these coefficients to perform model merging. To further substantiate the methodological soundness, Section 3.3 presents the corresponding theoretical foundations.

Task denotes. Given N tasks $[T_1, \dots, T_N]$, the goal of model merging is to obtain a single model suitable for all tasks by using the models $[\theta_1, \dots, \theta_N]$ fine-tuned from the same pretrained model θ_{pre} . Existing methods focus on merging these models into a unified model θ_m . It is important to note that we adopt LoRA as an efficient fine-tuning method, which is more compatible with our approach. Compared with full-parameter fine-tuning, LoRA can reduce memory consumption during inference and improve inference speed.

3.1 EXPERT WEIGHT DERIVATION VIA TRAINING-FREE ROUTER

Task arithmetic has been widely recognized as a fundamental principle in model merging, and it can be formally expressed as:

$$\theta_m = \theta_{pre} + \sum \lambda(\theta_i - \theta_{pre}), \quad (1)$$

Here, $\theta_i - \theta_{pre}$ captures the domain-specific knowledge of each expert, denoted as Δ_i , while λ represents the weighting factor quantifying each expert's contribution to the merged model. During inference, however, the influence of individual experts is task-dependent. To accommodate this, Twin-Merging employs a Router that is trained to adaptively assign expert weights conditioned on the input. Specifically, given an input \mathbf{X} , the Router produces contribution coefficients α_i , yielding the merged model as:

$$\alpha = \text{Router}(\mathbf{X}), \quad \alpha = (\alpha_1, \dots, \alpha_N) \quad (2)$$

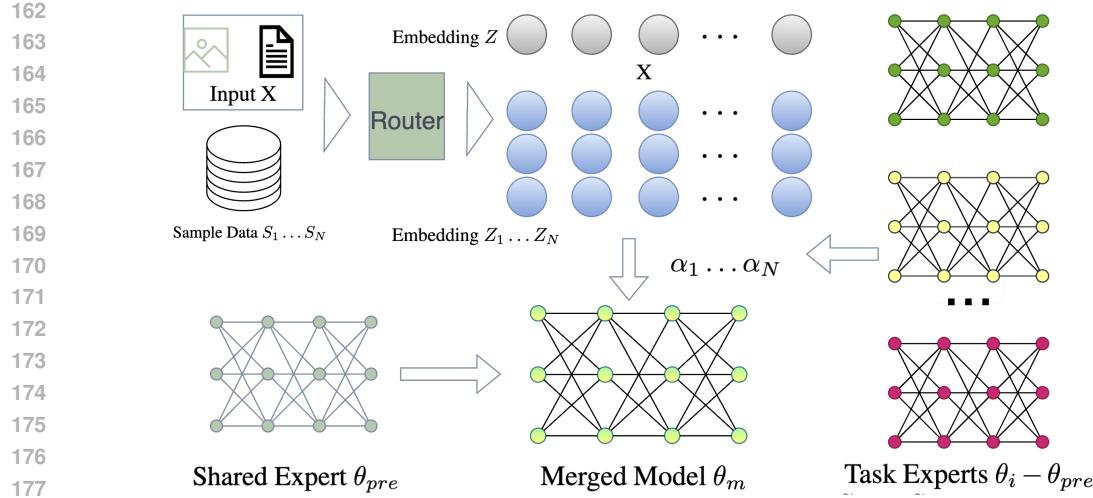


Figure 2: Overview of the proposed method, illustrating its main workflow.

$$\theta_m = \theta_{pre} + \sum \alpha_i (\theta_i - \theta_{pre}), \quad (3)$$

This method indeed achieves excellent performance; however, the introduction of the additional trained component, the Router, breaks the training-free advantage of model merging and further increases deployment costs. Motivated by similarity-based approaches, we propose a **training-free expert routing mechanism based on semantic space correlation**. The central idea is to directly explore the correlation between the semantic space of the model input and the semantic space of the expert models' training data, thereby enabling dynamic expert selection and weighting.

Formally, let the task set be $[T_1, \dots, T_N]$. For each task T_i , we sample a subset of training data $S_i = \{x_i^1, \dots, x_i^M\}$ to represent the semantic distribution of the task. We introduce a pretrained embedding model $\mathcal{R}(\cdot)$ as the Router to encode both the input sample \mathbf{x} and the sampled data from each task:

$$\mathbf{z} = \mathcal{R}(\mathbf{x}), \quad \mathbf{z}_i^j = \mathcal{R}(x_i^j), \quad j = 1, \dots, M. \quad (4)$$

We then compute the cosine similarity between the input representation \mathbf{z} and the set of sampled representations from task T_i :

$$s_i(\mathbf{x}) = \frac{1}{M} \sum_{j=1}^M \frac{\langle \mathbf{z}, \mathbf{z}_i^j \rangle}{\|\mathbf{z}\| \cdot \|\mathbf{z}_i^j\|}. \quad (5)$$

The score $s_i(\mathbf{x})$ characterizes the semantic proximity between the input \mathbf{x} and task T_i . We further normalize the relevance scores across all tasks via a softmax transformation:

$$\alpha_i = \frac{\exp(s_i(\mathbf{x}))}{\sum_{k=1}^N \exp(s_k(\mathbf{x}))}, \quad i = 1, \dots, N. \quad (6)$$

3.2 DYNAMIC MODEL MERGING

In the previous step, we obtained the task relevance weights $\{\alpha_i\}_{i=1}^N$. However, directly using this distribution may lead to insufficient contrast among experts, thereby reducing the discriminative power of expert selection. To address this, we introduce a temperature scaling coefficient $\tau > 0$ to sharpen the distribution, amplifying the weights of highly relevant experts while suppressing those of less relevant ones. Specifically, we first scale the raw weights as:

$$\tilde{\alpha}_i = \frac{\alpha_i}{\tau}, \quad i = 1, \dots, N. \quad (7)$$

216 Then, we apply a softmax normalization over the scaled values to obtain the temperature-adjusted
 217 weights:

$$218 \quad 219 \quad 220 \quad \hat{\alpha}_i = \frac{\exp(\tilde{\alpha}_i)}{\sum_{k=1}^N \exp(\tilde{\alpha}_k)}, \quad i = 1, \dots, N. \quad (8)$$

221 This transformation preserves numerical stability while enhancing the distinction between the input
 222 and its most relevant tasks, making the expert routing more focused on the truly informative experts.

223 On this basis, we select the top- K experts with the highest weights, denoted by $\mathcal{I}_K(\mathbf{x})$, and use them
 224 for the final model merging:

$$225 \quad 226 \quad 227 \quad \boldsymbol{\theta}_m = \boldsymbol{\theta}_{pre} + \sum_{i \in \mathcal{I}_K(\mathbf{x})} \hat{\alpha}_i \cdot (\boldsymbol{\theta}_i - \boldsymbol{\theta}_{pre}). \quad (9)$$

228 By introducing temperature scaling and softmax normalization, our method adaptively amplifies the
 229 influence of salient experts while suppressing the impact of redundant ones, thereby enhancing both
 230 the robustness and representational capacity of the merged model. Crucially, this design preserves
 231 task-level semantic alignment without incurring the additional training cost of a Router, thus retaining
 232 the inherent “training-free” advantage of model merging. Consequently, the approach enables
 233 robust and efficient expert selection as well as effective parameter synthesis.

234 235 3.3 THEORETICAL SUPPORT FROM GAUSSIAN SIMILARITY MODELING

236 To provide a theoretical understanding of the proposed training-free expert routing mechanism, we
 237 analyze the expert selection process from the perspective of Gaussian similarity modeling. We
 238 assume that the embeddings of input data \mathbf{x} and the sampled task-specific representations \mathbf{z}_i^j are
 239 drawn from multivariate Gaussian distributions:

$$240 \quad \mathbf{z} \sim \mathcal{N}(\boldsymbol{\mu}_x, \Sigma_x), \quad \mathbf{z}_i^j \sim \mathcal{N}(\boldsymbol{\mu}_i, \Sigma_i), \quad j = 1, \dots, M, \quad (10)$$

241 where $\boldsymbol{\mu}_x$ and $\boldsymbol{\mu}_i$ denote the mean embedding vectors of the input and the i -th task, and Σ_x and Σ_i
 242 denote their corresponding covariance matrices.

243 We now analyze the statistical properties of the similarity scores under Gaussian assumptions.

244 **Expected Similarity.** The cosine similarity $s_i(\mathbf{x})$ between the input and the sampled representations
 245 from task T_i can be approximated by the inner product of normalized Gaussian means:

$$246 \quad 247 \quad 248 \quad \mathbb{E}[s_i(\mathbf{x})] \approx \frac{\boldsymbol{\mu}_x^\top \boldsymbol{\mu}_i}{\|\boldsymbol{\mu}_x\| \cdot \|\boldsymbol{\mu}_i\|}. \quad (11)$$

249 This approximation holds under the assumption that the embeddings within each task cluster are
 250 tightly concentrated around the mean, i.e., $\text{Tr}(\Sigma_i) \ll \|\boldsymbol{\mu}_i\|^2$.

251 **Concentration Inequality.** By applying Hoeffding’s inequality for bounded random variables, or
 252 equivalently, using standard concentration results for Gaussian variables, the empirical similarity
 253 computed over M samples concentrates around its expectation with high probability:

$$254 \quad 255 \quad 256 \quad \mathbb{P}\left(|s_i(\mathbf{x}) - \mathbb{E}[s_i(\mathbf{x})]| \geq \epsilon\right) \leq 2 \exp\left(-\frac{M\epsilon^2}{2\sigma^2}\right), \quad (12)$$

257 where σ^2 denotes the variance of the pairwise cosine similarities. This result guarantees that with a
 258 sufficiently large M , the estimated α_i reliably reflects the true semantic proximity between the input
 259 and task T_i .

260 **Temperature Scaling Interpretation.** Introducing a temperature $\tau > 0$ in the softmax is equivalent
 261 to sharpening the probability distribution over experts, which increases the likelihood of selecting
 262 experts whose embeddings are closest to the input in the Gaussian sense:

$$263 \quad 264 \quad 265 \quad \hat{\alpha}_i = \frac{\exp(s_i(\mathbf{x})/\tau)}{\sum_{k=1}^N \exp(s_k(\mathbf{x})/\tau)}. \quad (13)$$

266 From an information-theoretic perspective, this transformation increases the KL-divergence between
 267 the selected top- K experts and the uniform distribution over all experts, thus improving the discriminative
 268 power of expert selection.

270 **Top- K Expert Recovery.** Assuming that the task means μ_i are sufficiently separated in the embedding space, i.e.,
 271

$$272 \min_{i \neq j} \frac{\|\mu_i - \mu_j\|}{\max\{\|\mu_i\|, \|\mu_j\|\}} \geq \delta, \quad (14)$$

273 then with high probability, the top- K experts selected via $\hat{\alpha}_i$ correspond to the K most semantically
 274 relevant tasks. This guarantees that the final merged model:
 275

$$276 \theta_m = \theta_{pre} + \sum_{i \in \mathcal{I}_K(\mathbf{x})} \hat{\alpha}_i (\theta_i - \theta_{pre}) \quad (15)$$

277 incorporates the most relevant domain knowledge while avoiding interference from irrelevant ex-
 278 perts.
 279

280 **Robustness Implication.** This robustness guarantee ensures that the merged model remains stable
 281 under small input perturbations, which is essential for reliable deployment in practical applications.
 282 Since the Gaussian assumption implies bounded variance of embeddings, the combination of tem-
 283 perature scaling and top- K selection ensures that the merged parameters θ_m remain stable under
 284 small perturbations of the input \mathbf{x} . Formally, for $\mathbf{x}' = \mathbf{x} + \Delta\mathbf{x}$ with $\|\Delta\mathbf{x}\| \leq \epsilon$, we have
 285

$$286 \|\theta_m(\mathbf{x}') - \theta_m(\mathbf{x})\| \leq C\epsilon, \quad (16)$$

287 where C depends on the sensitivity of the embeddings and the expert weights, ensuring smooth and
 288 robust expert routing.
 289

290 Overall, this Gaussian-based theoretical analysis justifies that the proposed training-free routing
 291 mechanism can reliably select relevant experts, amplify their contributions, and yield a robust
 292 merged model without additional training overhead.
 293

294 4 EXPERIMENT

295 In this section, we conduct a thorough evaluation of the proposed TR-merging framework across
 296 diverse experimental conditions, covering cross-task, cross-domain, heterogeneous training config-
 297urations, as well as domain-shift settings. To assess its effectiveness, we benchmark our approach
 298 against three widely studied baselines: Weight Averaging, Task Arithmetic, Ties-Merging and Twin-
 299 Merging. Specifically, Section 4.1 reports the results of TR-merging on both natural language pro-
 300 cessing benchmarks (Pei et al., 2019) and computer vision datasets, while Section 4.2 investigates
 301 its scalability to a larger pool of models and analyzes its ability to generalize across domains and
 302 tasks.
 303

304 4.1 COMPARATIVE EVALUATION

305 **Setup.** We conduct experiments on five NLP datasets: **RTE**, **MNLI**, **QNLI**, **QQP**, **MRPC** (Wang
 306 et al., 2018), and ten CV datasets: **MNIST** (LeCun et al., 2010), **EuroSAT** (Helber et al., 2019),
 307 **CIFAR-10** (Krizhevsky, 2009), **CarBrands50**, **Fruits100**, **GTSRB** (Stallkamp et al., 2011), **DTD**
 308 (Cimpoi et al., 2014), **RESISC** (Cheng et al., 2017), **GRABAGE**, **PLANTS**.
 309

310 For the NLP experiments, our method along with all baseline approaches is evaluated on the
 311 Qwen2.5-0.5B-Instruct model (Yang et al., 2024; Team, 2024). In the computer vision setting, we
 312 instead utilize the pretrained ViT-Base-Patch16-224 backbone as the reference architecture. Unless
 313 otherwise noted, input images are consistently normalized to a resolution of 224×224 for both
 314 the training and inference phases. To ensure comparability across domains, we employ a unified
 315 evaluation protocol: throughput is reported on a single NVIDIA A100 GPU with batch size fixed
 316 to 32 under FP32 precision; classification accuracy serves as the principal performance indicator;
 317 and efficiency is measured in terms of memory footprint and inference latency. Additional dataset
 318 descriptions and implementation specifics can be found in Appendix C.
 319

320 **Implementation detail** For NLP tasks, we adopt the LoRA fine-tuning framework (Hu et al.,
 321 2022), using a rank of 8 and a scaling factor of 32. Starting from the pretrained ViT (Dosovitskiy
 322 et al., 2020), we fine-tune it on five benchmark datasets RTE, MNLI, QNLI, QQP, and MRPC result-
 323 ing in task-specialized variants denoted as FT-RTE, FT-MNLI, FT-QNLI, FT-QQP, and FT-MRPC.
 324

The optimization is performed using AdamW with a learning rate of 1×10^{-4} . For CV tasks, we similarly follow the LoRA fine-tuning protocol but configure a rank of 16 and a scaling factor of 16. The ViT backbone is pretrained and subsequently adapted on MNIST, EuroSAT, CIFAR-10, CarBrands50, and Fruits100, producing FT-MNIST, FT-EuroSAT, FT-CIFAR-10, FT-CAR, and FT-FRUIT100. The AdamW optimizer is employed with a learning rate of 5×10^{-3} . In **both domains**, LoRA adapters are injected into the MLP layers with a dropout rate of 0.1, while bias parameters remain frozen. Training is stabilized using a warm-up learning rate schedule, and cross-entropy loss is minimized with weight decay set to 0.01. To ensure reproducibility, random seeds are fixed across NumPy, PyTorch, and Python. For merging baselines, we observe that setting the task arithmetic coefficient to 0.3 consistently provides superior results. Inference latency is computed as the average over 100 full-dataset runs to yield stable measurements. All experiments are carried out on a single NVIDIA A100 GPU with CUDA 12.4, cuDNN 9.1.0, and PyTorch 2.1.2.

For **expert routing**, we leverage lightweight embedding encoders to represent inputs and guide expert selection. In the CV setting, we employ CLIP-ViT-B/16, while in NLP we utilize BGE-Small-en-v1.5. These models act as efficient Routers, delivering compact yet informative routing signals for task-aligned expert activation.

Table 1: Comparison of task-specific fine-tuned models, merge baselines, and our method across GLUE tasks.

MODEL	RTE	MNLI	QNLI	QQP	MRPC	AVG	VRAM	TIME
MULTI-TASK	77.4%	81.1%	83.0%	78.0%	76.2%	79.1%	2010M	184s
FT-RTE	77.3%	52.8%	56.0%	61.0%	58.9%	61.2%	2010M	195s
FT-MNLI	71.5%	82.0%	33.4%	62.0%	63.3%	62.4%	2010M	195s
FT-QNLI	62.5%	46.8%	84.0%	65.0%	65.7%	64.8%	2010M	195s
FT-QQP	64.3%	43.2%	64.4%	84.8%	70.4%	65.4%	2010M	195s
FT-MRPC	49.5%	36.8%	56.0%	65.8%	85.3%	58.7%	2010M	195s
Weight Averaging	68.2%	39.6%	67.8%	64.0%	57.1%	59.4%	2010M	195s
Task-Arithmetic	66.8%	65.6%	59.2%	71.6%	74.0%	66.4%	2010M	195s
Ties-Merging	66.4%	65.2%	59.6%	70.4%	67.9%	65.9%	2010M	195s
Twin-Merging	76.9%	81.8%	83.6%	84.8%	85.0%	82.4%	2010M+(N-1)*34.2M	275s
TR-merging/ours	78.3%	82.2%	84.4%	85.0%	85.1%	83.0%	2010M+(N-1)*20M	249s

Results. As reported in Tables 1 and 2, our approach consistently outperforms representative model merging baselines across both NLP and CV benchmarks. Remarkably, it even achieves better single-task performance than individually fine-tuned models, while incurring only negligible additional storage and runtime overhead. These results highlight the capability of our method to effectively mitigate long-standing challenges in model merging, including parameter conflicts and task interference. Unlike many prior approaches that struggle to scale under such conditions, our method demonstrates stronger robustness and scalability, underscoring its potential for broader multi-domain applications.

4.2 COMPARATIVE ANALYSIS

Large-Model Scalability and Out-of-Domain Generalizability. Scaling model merging to larger architectures has emerged as a critical research problem. To assess the scalability of our method, we extended the experiments to Qwen2.5-7B-Instruct under the same training configurations as Qwen2.5-0.5B-Instruct. As shown in Table 4, our approach continues to deliver strong results, even surpassing fine-tuned baselines, demonstrating that its effectiveness is not limited by model size. Another long-standing challenge in model merging lies in out-of-domain (OOD) generalization, as merged models typically integrate only a restricted set of expert competencies. Consequently, performance degradation is often observed when encountering tasks beyond the training domains. Nevertheless, as reported in Table 3 (with detailed results in Table 6), our merged Qwen2.5-7B-Instruct models trained on RTE, MNLI, QNLI, QQP, and MRPC outperform both Weight Averaging and

378
379 Table 2: Comparison of task-specific fine-tuned models, merge baselines, and our method across
380 CV tasks.

MODEL	MNIST	EuroSAT	CIFAR-10	CAR	FRUITS100	GTSRB	DTD	RESIS	GRABAGE	PLANTS	AVG	VRAM	TIME
MULTI-TASK	93.5%	98.1%	97.1%	46.0%	81.6%	98.2%	69.7%	91.2%	66.7%	74.1%	75.6%	805M	158s
FT-MNIST	93.6%	4.3%	0.1%	0.0%	0.1%	0.6%	0.4%	0.2%	0.0%	0.1%	9.9%	805M	158s
FT-EuroSAT	10.9%	98.0%	1.1%	0.0%	0.4%	4.0%	1.2%	2.7%	0.0%	1.1%	11.9%	805M	158s
FT-CIFAR-10	10.2%	2.8%	97.8%	2.0%	2.9%	4.1%	0.7%	2.9%	0.0%	0.6%	12.4%	805M	158s
FT-CAR	0.0%	1.0%	0.1%	56.0%	1.5%	2.4%	1.9%	1.6%	0.0%	0.6%	6.5%	805M	158s
FT-FRUITS100	1.1%	1.9%	0.1%	0.0%	80.7%	0.4%	0.0%	0.2%	0.0%	1.9%	8.6%	805M	158s
FT-GTSRB	2.3%	0.1%	0.6%	0.0%	0.5%	97.8%	0.4%	0.8%	0.0%	0.1%	10.3%	805M	158s
FT-DTD	11.8%	1.2%	1.8%	1.0%	0.1%	1.5%	73.8%	3.2%	0.0%	2.6%	9.7%	805M	158s
FT-RESIS	0.0%	0.0%	8.7%	1.0%	0.4%	1.2%	1.9%	91.1%	0.0%	0.0%	10.4%	805M	158s
FT-GRABAGE	11.6%	9.2%	7.5%	2.0%	5.0%	7.3%	2.2%	2.2%	63.3%	3.3%	11.4%	805M	158s
FT-PLANTS	0.2%	4.6%	0.4%	0.0%	6.5%	3.5%	2.8%	1.9%	0.0%	89.1%	10.9%	805M	158s
Weight Averaging	76.9%	91.6%	96.8%	34.0%	81.6%	66.6%	70.6%	80.6%	60.0%	89.8%	74.8%	805M	158s
Task-Arithmetic	78.2%	92.6%	97.0%	34.0%	81.5%	70.8%	71.3%	81.8%	70.0%	89.9%	76.7%	805M	158s
Ties-Merging	78.2%	92.6%	97.0%	34.0%	81.5%	70.8%	71.3%	81.8%	70.0%	89.9%	76.7%	805M	158s
Twin-Merging	93.6%	98.0%	97.8%	56.0%	80.7%	97.8%	74.0%	91.1%	63.3%	89.1%	84.1%	805M+(N-223s 1)*7M	
TR-merging/ours	93.4%	98.4%	98.0%	56.0%	87.9%	97.1%	73.8%	90.9%	63.3%	89.1%	84.8%	805M+(N-184s 1)*5M	

398
399 Task Arithmetic, and achieve results that are nearly comparable to general-purpose models. This un-
400 expected finding offers compelling evidence that TR-merging preserves strong OOD generalization
401 ability.402
403 Table 3: Average Performance on Out-of-Domain MMLU Benchmark Tasks
404

MMLU Task	Qwen2.5-7B-Instruct	Weight Averaging	Task-Arithmetic	TR-merging/ours
Avg	67.9%	67.3%	63.6%	67.5%

409
410 Table 4: Task-Level Performance of Our Method on Qwen2.5-7B-Instruct Models
411

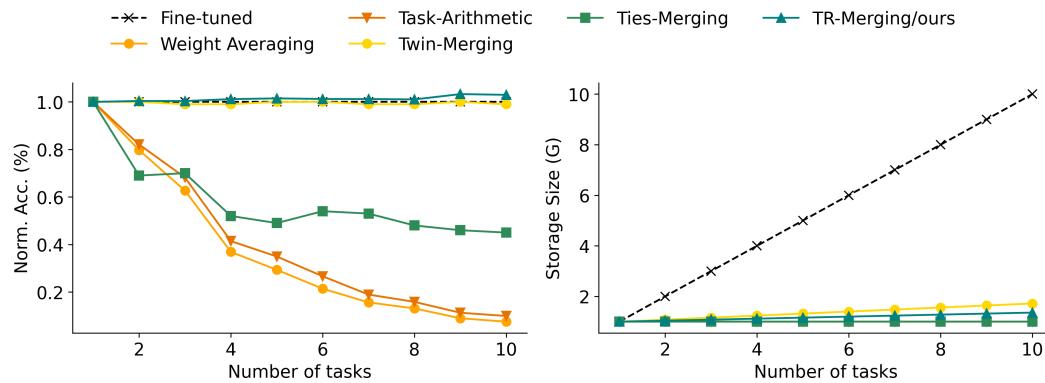
MODEL	MNLI	MRPC	QNLI	QQP	RTE	AVG
Pretrain	53.8%	55.0%	48.0%	51.6%	50.4%	51.8%
MULTI-TASK	84.8%	86.4%	86.4%	88.8%	86.6%	86.6%
Finetune	89.2%	89.0%	92.0%	86.0%	91.7%	89.6%
TR-merging/ours	89.2%	89.3%	92.0%	86.2%	91.7%	89.7%

420
421 **Task Diversity and Span.** As shown in
422 Tables 1–2, our method demonstrates ro-
423 bust performance across both computer
424 vision (CV) and natural language pro-
425 cessing (NLP) tasks, covering a diverse
426 set of classification scenarios such as 2
427 (GARBAGE), 3 (RTE), 10 (EuroSAT), 30
428 (PLANTS), 43 (GTSRB), 45 (RESISC),
429 47 (DTD), 50 (CarBrands50), and 100 (Fruits100). These tasks span a broad range of semantic
430 domains, including digits, remote sensing, general objects, automobiles, fruits, plants, waste, traf-
431 fic signs and various other domains, high lighting the method’s ability to generalize across distinct
432 knowledge areas. Furthermore, as illustrated in Table 5, our approach supports the integration of
433 both generative and discriminative tasks within a unified framework, marking a pioneering effort in434
435 Table 5: Performance Across Different Task Types

Method	Classification	Generation
Funetune	77.3%	49.5%
TR-merging/ours	77.8%	49.9%

432 this direction. Notably, it even outperforms fine-tuned models that are often regarded as the theoretical upper bound. These results collectively underscore the exceptional scalability of our method
 433 across modalities, knowledge domains, and task types.
 434

436 **Scalability to Large-Scale Tasks.** As shown in Tables 1 and 2, our approach achieves consistently
 437 strong results across both computer vision (CV) and natural language processing (NLP) tasks, spanning
 438 diverse classification settings such as 2-way (GARBAGE), 3-way (RTE), 10-way (EuroSAT),
 439 30-way (PLANTS), 43-way (GTSRB), 45-way (RESISC), 47-way (DTD), 50-way (CarBrands50),
 440 and 100-way (Fruits100). These benchmarks encompass a wide spectrum of semantic domains, ranging
 441 from digits and remote sensing to general objects, vehicles, fruits, plants, waste management,
 442 and traffic sign recognition, thereby underscoring the models capacity to generalize across heterogeneous
 443 knowledge sources. Moreover, as reported in Table 5, our method is capable of integrating both discriminative and generative tasks within a unified framework representing one of the first attempts
 444 in this direction. Remarkably, it even surpasses fine-tuned baselines, which are typically considered the theoretical upper bound of task-specific performance. Taken together, these findings
 445 highlight the strong scalability of our approach across modalities, domains, and task paradigms.
 446



461 Figure 3: Scalability analysis of model accuracy and storage footprint as the number of tasks in-
 462 creases.
 463

465 5 CONCLUSION

466 In this work, we have introduced **TR-Merging**, a novel model merging framework that leverages a
 467 *training-free router* to integrate task-specific models into a single unified model without incurring
 468 additional training costs. By exploiting semantic similarity between input data and task domains, our
 469 method adaptively selects and weights the most relevant experts, preserving task-specific knowledge
 470 while mitigating interference from irrelevant tasks. We further incorporated temperature scaling and
 471 top- K selection to enhance the discriminative power and robustness of expert routing. Extensive ex-
 472 periments across NLP and CV tasks, as well as cross-domain and cross-task scenarios, demonstrate
 473 that TR-Merging consistently outperforms existing model merging baselines, including weight av-
 474 eraging, task arithmetic, and router-based methods, both in terms of accuracy and computational
 475 efficiency. Theoretical analysis based on Gaussian similarity modeling provides formal support for
 476 the effectiveness and stability of our training-free routing mechanism. Overall, TR-Merging offers
 477 a practical, scalable, and efficient solution for integrating multiple task-specific models, preserving
 478 the advantages of traditional training-free merging while achieving performance on par with more
 479 complex router-based approaches. We believe that this work paves the way for broader adoption
 480 of training-free expert routing in multi-task and multi-domain model deployment, enabling flexible
 481 adaptation to diverse user requirements without additional computational burden.
 482

483 REFERENCES

484 Feras Albardi, H M Dipu Kabir, Md Mahbub Islam Bhuiyan, Parham M. Kebria, Abbas Khosravi,
 485 and Saeid Nahavandi. A comprehensive study on torchvision pre-trained models for fine-grained

486 inter-species classification, 2021. URL <https://arxiv.org/abs/2110.07097>.
 487

488 Gong Cheng, Junwei Han, and Xiaoqiang Lu. Remote sensing image scene classification: Bench-
 489 mark and state of the art. *Proceedings of the IEEE*, 105(10):1865–1883, 2017.

490 Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. De-
 491 scribing textures in the wild. In *Proceedings of the IEEE conference on computer vision and*
 492 *pattern recognition*, pp. 3606–3613, 2014.

493

494 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
 495 bidirectional transformers for language understanding. In *Proceedings of the 2019 conference of*
 496 *the North American chapter of the association for computational linguistics: human language*
 497 *technologies, volume 1 (long and short papers)*, pp. 4171–4186, 2019.

498 Jesse Dodge, Gabriel Ilharco, Roy Schwartz, Ali Farhadi, Hannaneh Hajishirzi, and Noah Smith.
 499 Fine-tuning pretrained language models: Weight initializations, data orders, and early stopping,
 500 2020. URL <https://arxiv.org/abs/2002.06305>.

501

502 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 503 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
 504 image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint*
 505 *arXiv:2010.11929*, 2020.

506 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 507 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
 508 reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
 509 scale, 2021. URL <https://arxiv.org/abs/2010.11929>.

510 Felix Draxler, Kambis Veschgini, Manfred Salmhofer, and Fred Hamprecht. Essentially no barriers
 511 in neural network energy landscape. In *International conference on machine learning*, pp. 1309–
 512 1318. PMLR, 2018.

513

514 Chenghao Fan, Zhenyi Lu, Wei Wei, Jie Tian, Xiaoye Qu, Dangyang Chen, and Yu Cheng.
 515 On giant’s shoulders: Effortless weak to strong by dynamic logits fusion. *arXiv preprint*
 516 *arXiv:2406.15480*, 2024.

517 Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Linear mode con-
 518 nectivity and the lottery ticket hypothesis. In *International Conference on Machine Learning*, pp.
 519 3259–3269. PMLR, 2020.

520

521 Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry P Vetrov, and Andrew G Wilson. Loss
 522 surfaces, mode connectivity, and fast ensembling of dnns. *Advances in neural information pro-*
 523 *cessing systems*, 31, 2018.

524 Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset
 525 and deep learning benchmark for land use and land cover classification. *IEEE Journal of Selected*
 526 *Topics in Applied Earth Observations and Remote Sensing*, 2019.

527

528 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
 529 Steinhardt. Measuring massive multitask language understanding. *Proceedings of the Interna-*
 530 *tional Conference on Learning Representations (ICLR)*, 2021.

531 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 532 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

533

534 Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris Bam-
 535 ford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
 536 Mixtral of experts. *arXiv preprint arXiv:2401.04088*, 2024.

537 Xisen Jin, Xiang Ren, Daniel Preotiuc-Pietro, and Pengxiang Cheng. Dataless knowledge fusion by
 538 merging weights of language models. *arXiv preprint arXiv:2212.09849*, 2022.

539 Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.

540 Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. *ATT Labs [Online]*.
 541 Available: <http://yann.lecun.com/exdb/mnist>, 2, 2010.
 542

543 Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, and
 544 Colin A Raffel. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context
 545 learning. *Advances in Neural Information Processing Systems*, 35:1950–1965, 2022.

546 Zhenyi Lu, Jie Tian, Wei Wei, Xiaoye Qu, Yu Cheng, Dangyang Chen, et al. Mitigating boundary
 547 ambiguity and inherent bias for text classification in the era of large language models. *arXiv*
 548 preprint [arXiv:2406.07001](https://arxiv.org/abs/2406.07001), 2024.

549 Michael Matena and Colin Raffel. Merging models with fisher-weighted averaging, 2021. *arXiv*
 550 preprint [arXiv:2111.09832](https://arxiv.org/abs/2111.09832).

552 Guillermo Ortiz-Jimenez, Alessandro Favero, and Pascal Frossard. Task arithmetic in the tangent
 553 space: Improved editing of pre-trained models. *Advances in Neural Information Processing Sys-*
 554 *tems*, 36:66727–66754, 2023a.

555 Guillermo Ortiz-Jimenez, Alessandro Favero, and Pascal Frossard. Task arithmetic in the tangent
 556 space: Improved editing of pre-trained models, 2023b. URL <https://arxiv.org/abs/2305.12827>.

559 Sayak Paul and Pin-Yu Chen. Vision transformers are robust learners, 2021. URL <https://arxiv.org/abs/2105.07581>.

561 Zhengqi Pei and Shuhui Wang. Dynamics-inspired neuromorphic visual representation learning. In
 562 *International Conference on Machine Learning*, pp. 27521–27541. PMLR, 2023.

564 Zhengqi Pei, Zhewei Sun, and Yang Xu. Slang detection and identification. In *Proceedings of the*
 565 *23rd Conference on Computational Natural Language Learning (CoNLL)*, pp. 881–889, 2019.

566 Zhengqi Pei, Anran Zhang, Shuhui Wang, Xiangyang Ji, and Qingming Huang. Data-free neural
 567 representation compression with riemannian neural dynamics. In *Forty-first International Confer-*
 568 *ence on Machine Learning*, 2024.

570 Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. The german traffic sign
 571 recognition benchmark: a multi-class classification competition. In *The 2011 international joint*
 572 *conference on neural networks*, pp. 1453–1460. IEEE, 2011.

573 Zhaochen Su, Juntao Li, Jun Zhang, Tong Zhu, Xiaoye Qu, Pan Zhou, Yan Bowen, Yu Cheng, et al.
 574 Living in the moment: Can large language models grasp co-temporal reasoning? *arXiv preprint*
 575 [arXiv:2406.09072](https://arxiv.org/abs/2406.09072), 2024a.

577 Zhaochen Su, Jun Zhang, Xiaoye Qu, Tong Zhu, Yanshu Li, Jiashuo Sun, Juntao Li, Min Zhang,
 578 and Yu Cheng. Conflictbank: A benchmark for evaluating the influence of knowledge conflicts in
 579 llm. *arXiv preprint arXiv:2408.12076*, 2024b.

580 Zhaochen Su, Jun Zhang, Tong Zhu, Xiaoye Qu, Juntao Li, Min Zhang, and Yu Cheng. Timo:
 581 Towards better temporal reasoning for language models. *arXiv preprint arXiv:2406.14192*, 2024c.

582 Xiaofei Sun, Linfeng Dong, Xiaoya Li, Zhen Wan, Shuhe Wang, Tianwei Zhang, Jiwei Li, Fei
 583 Cheng, Lingjuan Lyu, Fei Wu, et al. Pushing the limits of chatgpt on nlp tasks. *arXiv preprint*
 584 [arXiv:2306.09719](https://arxiv.org/abs/2306.09719), 2023.

586 Anke Tang, Li Shen, Yong Luo, Yibing Zhan, Han Hu, Bo Du, Yixin Chen, and Dacheng Tao. Param-
 587 eter efficient multi-task model fusion with partial linearization. *arXiv preprint arXiv:2310.04742*,
 588 2023.

589 Anke Tang, Li Shen, Yong Luo, Yibing Zhan, Han Hu, Bo Du, Yixin Chen, and Dacheng Tao.
 590 Parameter efficient multi-task model fusion with partial linearization, 2024. URL <https://arxiv.org/abs/2310.04742>.

593 Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL <https://qwenlm.github.io/blog/qwen2.5/>.

594 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 595 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 596 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.

597

598 Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. Glue:
 599 A multi-task benchmark and analysis platform for natural language understanding. *arXiv preprint
 600 arXiv:1804.07461*, 2018.

601

602 Jiuniu Wang, Hangjie Yuan, Dayou Chen, Yingya Zhang, Xiang Wang, and Shiwei Zhang.
 603 Modelscope text-to-video technical report, 2023. URL <https://arxiv.org/abs/2308.06571>.

604

605 Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
 606 Pierrick Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
 607 von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
 608 Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Huggingface’s transformers: State-of-
 609 the-art natural language processing, 2020. URL <https://arxiv.org/abs/1910.03771>.

610

611 Zhengqi Xu, Ke Yuan, Huiqiong Wang, Yong Wang, Mingli Song, and Jie Song. Training-free
 612 pretrained model merging. In *Proceedings of the IEEE/CVF Conference on Computer Vision and
 Pattern Recognition*, pp. 5915–5925, 2024.

613

614 An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
 615 Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,
 616 Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin Xu, Jingren Zhou, Jinze Bai,
 617 Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, Mei Li, Mingfeng
 618 Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai
 619 Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan
 620 Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang
 621 Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zhihao Fan. Qwen2
 622 technical report. *arXiv preprint arXiv:2407.10671*, 2024.

623

624 Enneng Yang, Zhenyi Wang, Li Shen, Shiwei Liu, Guibing Guo, Xingwei Wang, and Dacheng Tao.
 625 Adamerging: Adaptive model merging for multi-task learning. *arXiv preprint arXiv:2310.02575*,
 626 2023.

627

628 Peng Ye, Chenyu Huang, Mingzhu Shen, Tao Chen, Yongqi Huang, Yuning Zhang, and Wanli
 629 Ouyang. Merging vision transformers from different tasks and domains, 2023. URL <https://arxiv.org/abs/2312.16240>.

630

631 Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin Li. Language models are super mario: Ab-
 632 sorbing abilities from homologous models as a free lunch. In *Forty-first International Conference
 633 on Machine Learning*, 2024.

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 A MORE RELATIVE RESEARCH

650 **Averaging.** Parameter averaging is a well-established technique in federated learning. Recent
 651 applications have extended its utility to model merging for enhancing robustness against out-of-
 652 distribution data, refining pre-trained models, developing multimodal architectures, and creating
 653 multitask models by combining model capabilities. Parameter averaging is performed by comput-
 654 ing the mean of all expert model weights, without relying on a base model. Formally, this can be
 655 expressed as:

$$656 \quad 657 \quad 658 \quad \mathcal{M}(\{\theta_i\}_{i=1}^N, \theta_{\text{base}}) = \frac{1}{N} \sum_{i=1}^N \theta_i.$$

659 **Fisher Merging.** The method assesses the significance of each parameter when merging models
 660 for task t by computing the Fisher information matrix. The matrix is given by the following formula:
 661

$$662 \quad \hat{F}_t = \mathbb{E}_{x \sim D_t} \mathbb{E}_{y \sim p_{\theta_t}(y|x)} \nabla_{\theta_t} (\log p_{\theta_t}(y|x_t))^2,$$

664 where the model merging is guided by this significance measure.

665 **RegMean.** The method imposes a constraint on the model merging process by minimizing the L_2
 666 distance between the activations of the merged model and those of the individual models. It achieves
 667 this by computing the least-squares solution given by
 668

$$669 \quad 670 \quad 671 \quad \theta_m = \left(\sum_{t=1}^n X_t^T X_t \right)^{-1} \sum_{t=1}^n (X_t^T X_t \theta_t),$$

672 where X_t represents the input activation of the corresponding layer.
 673

674 **Task Arithmetic.** Task Arithmetic introduces a novel concept of *task vectors* for model merging.
 675 For a given task t_i , the corresponding task vector is defined as $\tau_i = \theta_i - \theta_{\text{base}}$, which captures
 676 task-specific knowledge by quantifying the difference between the fine-tuned expert parameters θ_i
 677 and the original base model parameters θ_{base} . A scaling hyperparameter λ governs the contribution
 678 of the aggregated task-specific knowledge to the final model. The merged model is constructed by
 679 linearly combining the base model parameters with a scaled sum of all task vectors. Formally, task
 680 arithmetic is defined as:
 681

$$682 \quad 683 \quad 684 \quad \mathcal{M}(\{\theta_i\}_{i=1}^N, \theta_{\text{base}}; \lambda) = \theta_{\text{base}} + \lambda \cdot \sum_{i=1}^N (\theta_i - \theta_{\text{base}}).$$

685 **AdaMerging.** The method automatically learns a merging coefficient for each layer of each task
 686 vector in Task Arithmetic.
 687

688 **Ties-Merging.** TIES-Merging identifies two major challenges in model merging: Fine-tuned ex-
 689 pert models often accumulate substantial noise in their parameters; Different experts may attempt
 690 to update the same parameter in conflicting directions, causing interference between models. To
 691 address these issues, TIES-Merging introduces a three-step procedure: First, removing redundant
 692 parameters. Second, resolving sign conflicts. Third, aggregating only the non-conflicting parame-
 693 ters. Specifically, for each task i , parameters in the task vector with small magnitudes are zeroed
 694 out to produce the trimmed task vector $\hat{\tau}_i$. Then, for each parameter p , the aggregate sign γ_m^p is
 695 determined by the sign of the sum of corresponding entries across all trimmed task vectors:
 696

$$697 \quad 698 \quad 699 \quad \gamma_m^p = \text{sgn} \left(\sum_{i=1}^N \hat{\tau}_i^p \right).$$

700 Next, only those models whose trimmed task vector entries match the aggregate sign are included
 701 in the merging process. That is, the index set of participating models is defined as $\mathcal{A}^p = \{i \in [N] \mid$
 $\text{sgn}(\hat{\tau}_i^p) = \gamma_m^p\}$.

Finally, the merged task vector is computed by averaging over the selected models, scaled by a hyperparameter λ , and added back to the base model parameters:

$$\theta_m^p = \theta_{\text{base}}^p + \lambda \cdot \frac{1}{|\mathcal{A}^p|} \sum_{i \in \mathcal{A}^p} \hat{\tau}_i^p.$$

Dare Merging. The method effectively reduces parameter redundancy by setting the majority of delta parameters to zero and rescaling the remaining parameters. This is achieved through the transformation given by

$$\theta' = \frac{\theta}{1 - p},$$

where p represents the proportion of delta parameters that are discarded.

Twin-Merging. The method that encompasses two principal stages: modularizing knowledge into shared and exclusive components, with compression to reduce redundancy and enhance efficiency; dynamically merging shared and task specific knowledge based on the input. This approach narrows the performance gap between merged and fine-tuned models and improves adaptability to heterogeneous data.

$$\theta^* = \theta_s + \sum_{t=1}^T w_t * \text{SVD}_r(\theta_t - \theta_s)$$

where θ_s represents the parameter set of the shared expert, which is common across all tasks. The term $\theta_t - \theta_s$ denotes the task expert, capturing the task-specific adjustments to the shared expert parameters. The operation SVD_r refers to the singular value decomposition applied with a rank constraint r , which serves to sparsify the task expert parameters, retaining only the most significant variations.

B THEORETICAL ANALYSIS OF TRAINING-FREE EXPERT ROUTING

To provide a rigorous understanding of the proposed training-free expert routing mechanism, we formalize the analysis using Gaussian similarity modeling.

Lemma B.1 (Expected Similarity). *Assume that the input embedding \mathbf{z} and task-specific embeddings \mathbf{z}_i^j are drawn from multivariate Gaussian distributions:*

$$\mathbf{z} \sim \mathcal{N}(\mu_x, \Sigma_x), \quad \mathbf{z}_i^j \sim \mathcal{N}(\mu_i, \Sigma_i), \quad j = 1, \dots, M. \quad (17)$$

If the embeddings within each task cluster are concentrated around their mean ($\text{Tr}(\Sigma_i) \ll \|\mu_i\|^2$), then the expected cosine similarity between the input and the i -th task is approximated as

$$\mathbb{E}[s_i(\mathbf{x})] \approx \frac{\mu_x^\top \mu_i}{\|\mu_x\| \|\mu_i\|}. \quad (18)$$

Proof. Under the Gaussian assumption, the embeddings \mathbf{z}_i^j concentrate near μ_i . Therefore, the cosine similarity between \mathbf{z} and \mathbf{z}_i^j is dominated by the inner product of the means. By linearity of expectation over M samples, the result follows. \square

Lemma B.2 (Concentration of Empirical Similarity). *Let $s_i(\mathbf{x})$ be the empirical cosine similarity computed over M samples from task T_i . Then, with high probability,*

$$\mathbb{P}\left(|s_i(\mathbf{x}) - \mathbb{E}[s_i(\mathbf{x})]| \geq \epsilon\right) \leq 2 \exp\left(-\frac{M\epsilon^2}{2\sigma^2}\right), \quad (19)$$

where σ^2 denotes the variance of pairwise cosine similarities.

Proof. This follows from Hoeffding's inequality for bounded random variables or standard concentration inequalities for Gaussian variables. As M increases, the empirical average converges to its expectation with high probability. \square

756 **Proposition B.3** (Effect of Temperature Scaling). *Introducing a temperature $\tau > 0$ in the softmax*
 757 *distribution sharpens the selection probability of experts:*

758

$$759 \quad \hat{\alpha}_i = \frac{\exp(s_i(\mathbf{x})/\tau)}{\sum_{k=1}^N \exp(s_k(\mathbf{x})/\tau)}. \quad (20)$$

760

761

762 *Proof.* A smaller τ increases the difference between the highest and lowest similarity scores in the
 763 softmax, effectively amplifying the contribution of highly relevant experts. This can be interpreted
 764 as increasing the KL-divergence between the top- K selected experts and the uniform distribution
 765 over all experts, thereby improving discriminative power. \square

766

767 **Theorem B.4** (Top- K Expert Recovery). *Assume task means μ_i are sufficiently separated:*

768

769

$$770 \quad \min_{i \neq j} \frac{\|\mu_i - \mu_j\|}{\max\{\|\mu_i\|, \|\mu_j\|\}} \geq \delta. \quad (21)$$

771

772 *Then, with high probability, the top- K experts selected via $\hat{\alpha}_i$ correspond to the K most semantically*
 773 *relevant tasks. Consequently, the merged model*

774

$$775 \quad \theta_m = \theta_{\text{pre}} + \sum_{i \in \mathcal{I}_K(\mathbf{x})} \hat{\alpha}_i (\theta_i - \theta_{\text{pre}}) \quad (22)$$

776

777 *integrates the most relevant domain knowledge while minimizing interference from irrelevant ex-*
 778 *perts.*

779

780 *Proof.* Given the sufficient separation between task means and the concentration of embeddings
 781 (Lemmas 1 and 2), the empirical similarity scores reliably reflect the true semantic relevance. The
 782 top- K selection over $\hat{\alpha}_i$ therefore identifies the K tasks closest to the input in semantic space with
 783 high probability. The merged model then combines the most relevant updates while excluding irrel-
 784 evant ones. \square

785 **Corollary B.5** (Robustness under Input Perturbations). *Assuming the embedding function is Lips-*
 786 *chitz continuous, small perturbations $\Delta \mathbf{x}$ in the input yield bounded changes in the merged param-*
 787 *eters:*

788

$$789 \quad \|\theta_m(\mathbf{x} + \Delta \mathbf{x}) - \theta_m(\mathbf{x})\| \leq C \|\Delta \mathbf{x}\|, \quad (23)$$

790

791 *where C depends on the sensitivity of embeddings and expert weights.*

792 **Discussion.**

- **Sample Complexity:** Accurate top- K expert recovery requires $M = O(\delta^{-2} \log(N/\epsilon))$, implying that well-separated embeddings enable reliable routing with few samples.
- **Temperature Selection:** Smaller τ sharpens expert selection, while larger τ improves robustness against noise.
- **Low-rank LoRA Updates:** If $\theta_i - \theta_{\text{pre}}$ are low-rank (as in LoRA), merged parameters inherit additional stability, tightening perturbation bounds.
- **Scalability:** Approximate nearest-neighbor search of task centroids allows scaling to large expert pools without significantly affecting selection accuracy.

808 Overall, this Gaussian-based theoretical framework rigorously justifies that the training-free rout-
 809 ing mechanism can reliably select relevant experts, amplify their contributions, and yield a robust
 810 merged model without additional training overhead.

810
811 C EXPERIMENT DETAILS812
813 C.1 EMPLOYED DATASETS AND ASSOCIATED LICENCES814
815 **Discriminative Tasks.**

816
817
818
819 • **MRPC.** A binary paraphrase detection task from the Microsoft Research Paraphrase Corpus.
816 Each example consists of a pair of sentences, and the model must determine if they are se-
817 mantically equivalent. It has 3,668 training examples, 408 validation examples, and 1,725 test
818 examples.
819

820
821
822 • **QQP.** A paraphrase detection task on Quora Question Pairs. The model must decide whether two
820 questions are semantically identical. The training set contains 363,846 examples, with 40,430 for
821 validation, and 390,965 for testing (test labels are not publicly available).
822

823
824
825 • **MNLI.** A natural language inference (NLI) task with three labels: entailment, neutral, and con-
823 tradiction. The dataset includes multiple genres of text. It contains 392,702 training examples,
824 9,815 matched validation, 9,832 mismatched validation, and 20,000 test examples.
825

826
827
828 • **QNLI.** A binary classification task converted from the Stanford Question Answering Dataset. The
826 model determines whether a given context sentence contains the answer to a question. It consists
827 of 104,743 training examples, 5,463 validation examples, and 5,463 test examples.
828

829
830
831 • **RTE.** A binary entailment task combining data from multiple RTE challenges. The task is to
829 determine if a hypothesis sentence can be inferred from a given premise. The dataset contains
830 2,490 training examples, 277 validation examples, and 3,000 test examples.
831

832 The licenses of QNLI are licensed under CC-BY-SA. QQP is licensed under MIT. MRPC are li-
833 censed under Apache 2.0. MNLI is licensed under OANC. RTE is licensed under CC BY 4.0. Thus,
834 these datasets in GLUE are available for non-commercial research purposes.
835

836
837
838 **Generation and Math Tasks.** We also incorporate a dataset designed for generative tasks, specif-
837
838 ically targeting mathematical reasoning. The **MAWPS** dataset consists of 1,772 examples of math
839 word problems, requiring models to generate the correct mathematical expressions or answers based
840 on natural language descriptions.

841
842 **Vision Tasks.**

843
844
845 • **MNIST.** A benchmark dataset for image classification, containing grayscale images of handwrit-
843 ten digits across 10 classes. The training set has 60,000 images, and the test set has 10,000 images,
844 with a balanced distribution among classes.
845

846
847 • **EuroSAT.** A satellite image classification dataset consisting of 27,000 labeled and geo-referenced
846 images across 10 classes.
847

848
849
850 • **CIFAR-10.** A benchmark for object recognition tasks in computer vision. It consists of 60,000
848 32x32 color images in 10 different classes, with 6,000 images per class. The dataset is divided
849 into 50,000 training images and 10,000 test images.
850

851
852 • **CarBrands50.** A car classification dataset comprising 50 classes. The dataset contains a total of
851 4,500 labeled images, which are partitioned into 4,400 images for training, and 100 for validation.
852

853
854
855 • **FRUITS100.** A fruit classification dataset comprising 100 classes. The dataset contains a total of
853 50,000 labeled images, which are partitioned into 40,000 images for training, 5,000 for validation,
854 and 5,000 for test.
855

856
857 • **GTSRB.** A traffic sign classification dataset containing over 50,000 images across 43 classes of
856 traffic signs.
857

858
859 • **DTD.** A texture classification dataset with 47 classes and a total of 5,640 images, with approxi-
858 mately 120 images per class.
859

860
861 • **RESISC45.** A remote sensing image scene classification dataset with 45 classes and 31,500
860 images, approximately 700 per class.
861

862
863 • **GRABAGE.** A garbage classification dataset. The dataset contains a total of 147,674 labeled
862 images, which are partitioned into 133,038 images for training, and 14,642 for test.
863

864
865
866
867
868
869
870 • **PLANTS.** A plant classification dataset comprising 30 classes. The dataset contains a total of
871 30,000 labeled images, which are partitioned into 24,000 images for training, 3,000 for validation,
872 and 3,000 for testing.

873 C.2 COMPARATIVE EVALUATION DETAILS

874 **Funetune Model.** It means that each task uses the corresponding fine-tuned model, which has
875 no interference between tasks but cannot perform multiple tasks simultaneously. It serves as the
876 upper-bound performance for each specific task.

877 **Multi-task Model.** involving mixing datasets from multiple tasks and training the model jointly,
878 representing one of the earliest solutions for multitask learning.

879 **Merging Model.** This term denotes algorithms aimed at combining multiple models into a uni-
880 fied, consolidated model, including approaches exemplified by methods Weight Averaging, Task-
881 Arithmetic, Twin-Merging, TR-merging and more.

882 C.3 LARGE-MODEL SCALABILITY AND OUT-OF-DOMAIN GENERALIZABILITY DETAILS

883 As shown in Tables 4, we apply our model merging approach to larger models(Qwen2.5-7B-
884 Instruct), demonstrating that our method scales effectively to models of increased size. Furthermore,
885 as shown in Tables 6, we evaluate the merged models on out-of-domain MMLU benchmark tasks,
886 providing evidence that our approach exhibits strong generalization capabilities beyond the training
887 domains.

888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

918
919
920
921
922

Table 6: Detailed Performance on Out-of-Domain MMLU Benchmark Tasks

MMLU Task	Qwen2.5-7B-Instruct	Weight Averaging	Task-Arithmetic	TR-merging/ours
management	78.6%	79.6%	75.7%	80.2%
high_school_world_history	78.9%	78.9%	75.5%	82.0%
college_mathematics	45.0%	46.0%	36.0%	42.6%
high_school_us_history	79.4%	80.4%	77.0%	79.5%
sociology	82.1%	82.1%	77.1%	83.2%
astronomy	77.0%	74.3%	69.1%	76.9%
moral_disputes	67.1%	69.4%	65.9%	66.2%
high_school_government_and_politics	89.1%	88.6%	84.5%	89.2%
medical_genetics	73.0%	71.0%	67.0%	73.6%
high_school_macroeconomics	72.1%	72.8%	70.0%	73.2%
international_law	76.9%	78.5%	72.7%	77.5%
high_school_geography	83.3%	83.8%	80.3%	84.4%
electrical_engineering	63.4%	60.0%	57.9%	63.5%
virology	48.8%	50.0%	47.6%	48.2%
high_school_european_history	74.5%	76.4%	70.3%	77.0%
elementary_mathematics	60.6%	62.2%	56.3%	62.0%
moral_scenarios	22.5%	20.1%	22.0%	23.0%
formal_logic	50.8%	49.2%	42.1%	52.2%
machine_learning	40.2%	44.6%	46.4%	42.6%
us_foreign_policy	86.0%	85.0%	82.0%	85.6%
high_school_psychology	85.7%	85.1%	81.5%	86.3%
high_school_chemistry	61.6%	58.1%	55.7%	63.2%
computer_security	78.0%	76.0%	72.0%	77.6%
college_physics	53.9%	54.9%	50.0%	54.5%
professional_law	45.8%	43.9%	38.9%	46.5%
marketing	89.7%	88.5%	85.9%	90.3%
prehistory	76.5%	76.9%	74.1%	76.5%
college_biology	80.6%	83.3%	78.5%	80.5%
nutrition	70.6%	71.2%	65.4%	72.2%
professional_medicine	78.7%	76.8%	74.6%	77.4%
human_sexuality	75.6%	69.5%	64.9%	75.4%
philosophy	67.2%	69.1%	63.3%	67.8%
high_school_statistics	71.8%	71.8%	66.7%	70.0%
business_ethics	68.0%	72.0%	68.0%	68.6%
professional_accounting	54.3%	52.8%	52.8%	57.1%
high_school_mathematics	45.6%	43.0%	43.0%	47.3%
global_facts	40.0%	32.0%	36.0%	39.6%
miscellaneous	81.4%	81.7%	78.5%	81.7%
anatomy	71.1%	70.4%	70.4%	72.5%
security_studies	67.8%	69.0%	64.5%	69.6%
public_relations	67.3%	65.5%	60.9%	67.0%
clinical_knowledge	76.6%	73.6%	72.8%	77.4%
high_school_physics	57.0%	52.3%	48.3%	58.2%
econometrics	56.1%	54.4%	51.8%	59.4%
conceptual_physics	69.4%	70.6%	66.4%	69.5%
high_school_computer_science	78.0%	76.0%	70.0%	78.6%
college_chemistry	47.0%	46.0%	49.0%	46.6%
high_school_biology	81.6%	81.9%	78.4%	82.2%
world_religions	83.0%	79.5%	75.4%	84.2%
human_aging	69.1%	69.1%	65.9%	70.6%
college_medicine	68.2%	70.5%	64.7%	70.5%
college_computer_science	60.0%	54.0%	47.0%	62.6%
jurisprudence	75.9%	75.0%	71.3%	76.5%
high_school_microeconomics	81.1%	84.5%	74.8%	82.1%
abstract_algebra	49.0%	48.0%	38.0%	51.6%
professional_psychology	70.4%	70.9%	64.4%	71.0%
Avg	67.9%	67.3%	63.6%	67.5%

969
970
971