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ABSTRACT

With the rapid advancement of deep learning, a wide variety of open-source mod-
els for different tasks have emerged. However, a single fine-tuned model often
fails to meet users’ diverse requirements. To address this limitation, model merg-
ing has been proposed as an effective approach to integrate the capabilities of exist-
ing models into a unified one. Among existing approaches, router-based methods
have become representative baselines due to their strong performance; however,
their reliance on a trainable router compromises the appealing advantage of tradi-
tional model mergingbeing completely training-free. In this paper, we propose a
training-free router from a similarity-based perspective. Our method achieves per-
formance on par with router-based approaches while eliminating the need for any
additional training. We demonstrate the effectiveness of TR-Merging across mul-
tiple tasks in both computer vision (CV) and natural language processing (NLP),
and demonstrate its flexibility in adapting to diverse requirements.

1 INTRODUCTION

With the rapid progress of deep learning, a wide range of model architectures and training strategies
have been introduced, substantially enhancing the capabilities of pre-trained models and positioning
them as a cornerstone of modern machine learning. Fine-tuning pre-trained models for downstream
tasks has become a prevailing paradigm in both NLP (Devlin et al., 2019; Fan et al., 2024; Lu
et al., 2024; Su et al., 2024a;b;c; Sun et al., 2023; Touvron et al., 2023) and CV (Paul & Chen,
2021; Dodge et al., 2020; Dosovitskiy et al., 2021; Ye et al., 2023)domains, often yielding superior
performance even with limited labeled data. The proliferation of open-source repositories, such as
Huggingface (Wolf et al., 2020), torchvision (Albardi et al., 2021) and ModelScope (Wang et al.,
2023), has further accelerated this trend, resulting in an exponential increase in the number of pre-
trained and fine-tuned checkpoints. However, maintaining separate models for diverse tasks leads to
prohibitive storage and deployment overheads. Multi-task learning (MTL) offers a partial solution
by jointly training models across multiple datasets, but it is hindered by substantial computational
overhead and constraints on data availability due to privacy concerns. More recently, model merging
has emerged as a promising alternative, integrating models through weight combination rather than
additional training, thereby addressing these limitations and demonstrating both theoretical signifi-
cance and broad practical potential.

A straightforward baseline for model merging is direct weight averaging, yet, this often results in
substantial performance degradation. To mitigate this issue, several strategies have been proposed,
which can be broadly classified into four categories.

• Weighted parameter averaging methods, such as Fisher-Merging (Matena & Raffel) and Reg-
Mean (Jin et al., 2022), which employ pre-computed Fisher information or inner product matri-
ces to determine adaptive averaging coefficients.

• Task vector-based methods, including Task Arithmetic (Jiang et al., 2024; Ortiz-Jimenez et al.,
2023a; Tang et al., 2023; Yang et al., 2023; Ortiz-Jimenez et al., 2023b; Tang et al., 2024),
and AdaMerging (Yang et al., 2023). These approaches merge task vectors rather than raw
model parameters, where Ties-Merging explicitly addresses interference, while AdaMerging
adaptively adjusts merging coefficients.

• Preprocessing techniques, exemplified by DARE (Yu et al., 2024), which reduces interference
by discarding a large portion of task vector elements and rescaling the remaining ones.
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• Router-based methods, such as Twin-Merging (Yu et al., 2024) and Free-Merging (Xu et al.,
2024), which dynamically route inputs to specialized experts.

Among these categories, router-based approaches generally achieve superior performance. Nonethe-
less, they introduce an additional training component-Router, which compromises the training-free
nature traditionally associated with model merging, thereby incurring extra computational, data, and
labor costs in deployment.

Therefore, motivated by distance metric theory, we propose a training-free router as an alternative to
conventional training-based routers.Prior approaches typically rely on classifiers trained on domain-
specific data of each expert model, which, during inference, route an input to the top-k experts with
the highest specialization scores. Although they achieve strong performance, such routers require
additional training. In contrast, our method eliminates this requirement by embedding both the input
and the domain data of each expert model into a shared representation space and computing their
pairwise distances. The input is then assigned to the top-k closest domains, and the corresponding
expert models are selected as the most relevant experts for inference.

We empirically demonstrate the effectiveness of TR-Merging, as summarized in Figure 1 First, we
merge five Qwen2.5-0.5B-Instruct (Team, 2024) models to validate its performance in the NLP do-
main. Next, we merge ten ViT-Base-Patch16-224 models to confirm its efficacy in computer vision
tasks. To assess scalability, we merge five Qwen2.5-7B-Instruct (Team, 2024) models, illustrat-
ing that the approach can be applied to larger models. Furthermore, by merging a classification
model with a mathematical reasoning model, we show that TR-merging supports cross-domain and
cross-task integration. Finally, evaluation on the out-of-domain MMLU (Hendrycks et al., 2021)
benchmark demonstrates that the merged models exhibit strong generalization and robustness.

Our contributions are threefold. First, we introduce TR-Merging, a novel model merging method
that leverages a training-free router to integrate task-specific models into a unified model without
necessitating additional training. Second, we demonstrate the effectiveness of TR-Merging across
a comprehensive suite of both established and newly proposed benchmarks, spanning CV, NLP,
PEFT (Hu et al., 2022; Liu et al., 2022; Pei & Wang, 2023; Pei et al., 2024), and multimodal tasks.
Finally, we provide a theoretical analysis establishing the optimality of the distance metric algorithm
employed by the training-free router within TR-Merging.

2 RELATED WORK

This section reviews research on model merging, with a focus on multi-task learning and mixture-
of-experts (MoE) frameworks. The goal of model merging is to consolidate multiple task-specific
fine-tuned models into a single unified multitask model without necessitating additional training.
Initial strategies, such as FisherMerging and RegMean, rely on straightforward weight averaging,
yet they often require extra data and substantial computational resources. Another line of work ex-
plores interpolation between models within a shared low-loss region, grounded in the concept of
linear mode connectivity (LMC) (Draxler et al., 2018; Frankle et al., 2020; Garipov et al., 2018).
To facilitate effective parameter alignment for interpolation, methods like weight matching and op-
timal transport have been introduced, although recent evidence indicates that LMC assumptions
may not consistently apply to fine-tuned models. Task-Arithmetic generalizes simple averaging
by performing more flexible arithmetic operations in parameter space, enabling finer control over
model behavior. Nevertheless, interference among tasks remains a significant challenge. To ad-
dress this, techniques such as Ties-Merging, AdaMerging, and DARE (Yu et al., 2024) have been
developed to mitigate task conflicts by identifying redundant parameters, learning optimal merging
coefficients, and reducing parameter density. Twin-Merging (Yu et al., 2024) further proposes a mod-
ular knowledge composition mechanism that dynamically integrates knowledge modules based on
their relevance. While some approaches exploit task identities at inference time to enhance merging
performance, such assumptions are often unrealistic in practical scenarios where task distributions
are unknown or variable.
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Figure 1: Comparison accuracy (%) with Existing Methods Demonstrating the Superior Effective-
ness of Our Approach.

3 METHOD

This chapter outlines the complete workflow of our proposed method. Following the preliminary
setup, the approach is structured into two main stages(as illustrated in Figure 2): In Section 3.1, a
training-free Router is utilized to generate embeddings, from which similarity scores are computed
to derive the weighting coefficients of experts. Section 3.2 then leverages these coefficients to per-
form model merging. To further substantiate the methodological soundness, Section 3.3 presents the
corresponding theoretical foundations.

Task denotes. Given N tasks [T1, . . . , TN ], the goal of model merging is to obtain a single model
suitable for all tasks by using the models [θ1, . . . , θN ] fine-tuned from the same pretrained model
θpre. Existing methods focus on merging these models into a unified model θm. It is important
to note that we adopt LoRA as an efficient fine-tuning method, which is more compatible with
our approach. Compared with full-parameter fine-tuning, LoRA can reduce memory consumption
during inference and improve inference speed.

3.1 EXPERT WEIGHT DERIVATION VIA TRAINING-FREE ROUTER

Task arithmetic has been widely recognized as a fundamental principle in model merging, and it can
be formally expressed as:

θm = θpre +
∑

λ(θi − θpre), (1)

Here, θi − θpre captures the domain-specific knowledge of each expert, denoted as ∆i, while λ
represents the weighting factor quantifying each expert’s contribution to the merged model. During
inference, however, the influence of individual experts is task-dependent. To accommodate this,
Twin-Merging employs a Router that is trained to adaptively assign expert weights conditioned on
the input. Specifically, given an input X, the Router produces contribution coefficients αi, yielding
the merged model as:

α = Router(X), α = (α1, . . . , αN ) (2)
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Figure 2: Overview of the proposed method, illustrating its main workflow.

θm = θpre +
∑

αi(θi − θpre), (3)

This method indeed achieves excellent performance; however, the introduction of the additional
trained component, the Router, breaks the training-free advantage of model merging and further
increases deployment costs. Motivated by similarity-based approaches, we propose a training-free
expert routing mechanism based on semantic space correlation. The central idea is to directly
explore the correlation between the semantic space of the model input and the semantic space of the
expert models’ training data, thereby enabling dynamic expert selection and weighting.

Formally, let the task set be [T1, . . . , TN ]. For each task Ti, we sample a subset of training data
Si = {x1

i , . . . , x
M
i } to represent the semantic distribution of the task. We introduce a pretrained

embedding model R(·) as the Router to encode both the input sample x and the sampled data from
each task:

z = R(x), zji = R(xj
i ), j = 1, . . . ,M. (4)

We then compute the cosine similarity between the input representation z and the set of sampled
representations from task Ti:

si(x) =
1

M

M∑
j=1

⟨z, zji ⟩
∥z∥ · ∥zji∥

. (5)

The score si(x) characterizes the semantic proximity between the input x and task Ti. We further
normalize the relevance scores across all tasks via a softmax transformation:

αi =
exp(si(x))∑N

k=1 exp(sk(x))
, i = 1, . . . , N. (6)

3.2 DYNAMIC MODEL MERGING

In the previous step, we obtained the task relevance weights {αi}Ni=1. However, directly using this
distribution may lead to insufficient contrast among experts, thereby reducing the discriminative
power of expert selection. To address this, we introduce a temperature scaling coefficient τ > 0 to
sharpen the distribution, amplifying the weights of highly relevant experts while suppressing those
of less relevant ones. Specifically, we first scale the raw weights as:

α̃i =
αi

τ
, i = 1, . . . , N. (7)
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Then, we apply a softmax normalization over the scaled values to obtain the temperature-adjusted
weights:

α̂i =
exp(α̃i)∑N

k=1 exp(α̃k)
, i = 1, . . . , N. (8)

This transformation preserves numerical stability while enhancing the distinction between the input
and its most relevant tasks, making the expert routing more focused on the truly informative experts.

On this basis, we select the top-K experts with the highest weights, denoted by IK(x), and use them
for the final model merging:

θm = θpre +
∑

i∈IK(x)

α̂i ·
(
θi − θpre

)
. (9)

By introducing temperature scaling and softmax normalization, our method adaptively amplifies the
influence of salient experts while suppressing the impact of redundant ones, thereby enhancing both
the robustness and representational capacity of the merged model. Crucially, this design preserves
task-level semantic alignment without incurring the additional training cost of a Router, thus retain-
ing the inherent “training-free” advantage of model merging. Consequently, the approach enables
robust and efficient expert selection as well as effective parameter synthesis.

3.3 THEORETICAL SUPPORT FROM GAUSSIAN SIMILARITY MODELING

To provide a theoretical understanding of the proposed training-free expert routing mechanism, we
analyze the expert selection process from the perspective of Gaussian similarity modeling. We
assume that the embeddings of input data x and the sampled task-specific representations zji are
drawn from multivariate Gaussian distributions:

z ∼ N (µx,Σx), zji ∼ N (µi,Σi), j = 1, . . . ,M, (10)
where µx and µi denote the mean embedding vectors of the input and the i-th task, and Σx and Σi

denote their corresponding covariance matrices.

We now analyze the statistical properties of the similarity scores under Gaussian assumptions.

Expected Similarity. The cosine similarity si(x) between the input and the sampled representa-
tions from task Ti can be approximated by the inner product of normalized Gaussian means:

E[si(x)] ≈
µ⊤

x µi

∥µx∥ · ∥µi∥
. (11)

This approximation holds under the assumption that the embeddings within each task cluster are
tightly concentrated around the mean, i.e., Tr(Σi) ≪ ∥µi∥2.

Concentration Inequality. By applying Hoeffding’s inequality for bounded random variables, or
equivalently, using standard concentration results for Gaussian variables, the empirical similarity
computed over M samples concentrates around its expectation with high probability:

P
(∣∣si(x)− E[si(x)]

∣∣ ≥ ϵ
)
≤ 2 exp

(
− Mϵ2

2σ2

)
, (12)

where σ2 denotes the variance of the pairwise cosine similarities. This result guarantees that with a
sufficiently large M , the estimated αi reliably reflects the true semantic proximity between the input
and task Ti.

Temperature Scaling Interpretation. Introducing a temperature τ > 0 in the softmax is equiva-
lent to sharpening the probability distribution over experts, which increases the likelihood of select-
ing experts whose embeddings are closest to the input in the Gaussian sense:

α̂i =
exp(si(x)/τ)∑N

k=1 exp(sk(x)/τ)
. (13)

From an information-theoretic perspective, this transformation increases the KL-divergence between
the selected top-K experts and the uniform distribution over all experts, thus improving the discrim-
inative power of expert selection.
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Top-K Expert Recovery. Assuming that the task means µi are sufficiently separated in the em-
bedding space, i.e.,

min
i ̸=j

∥µi − µj∥
max{∥µi∥, ∥µj∥}

≥ δ, (14)

then with high probability, the top-K experts selected via α̂i correspond to the K most semantically
relevant tasks. This guarantees that the final merged model:

θm = θpre +
∑

i∈IK(x)

α̂i(θi − θpre) (15)

incorporates the most relevant domain knowledge while avoiding interference from irrelevant ex-
perts.

Robustness Implication. This robustness guarantee ensures that the merged model remains stable
under small input perturbations, which is essential for reliable deployment in practical applications.
Since the Gaussian assumption implies bounded variance of embeddings, the combination of tem-
perature scaling and top-K selection ensures that the merged parameters θm remain stable under
small perturbations of the input x. Formally, for x′ = x+∆x with ∥∆x∥ ≤ ϵ, we have

∥θm(x′)− θm(x)∥ ≤ Cϵ, (16)

where C depends on the sensitivity of the embeddings and the expert weights, ensuring smooth and
robust expert routing.

Overall, this Gaussian-based theoretical analysis justifies that the proposed training-free routing
mechanism can reliably select relevant experts, amplify their contributions, and yield a robust
merged model without additional training overhead.

4 EXPERIMENT

In this section, we conduct a thorough evaluation of the proposed TR-merging framework across
diverse experimental conditions, covering cross-task, cross-domain, heterogeneous training config-
urations, as well as domain-shift settings. To assess its effectiveness, we benchmark our approach
against three widely studied baselines: Weight Averaging, Task Arithmetic, Ties-Merging and Twin-
Merging. Specifically, Section 4.1 reports the results of TR-merging on both natural language pro-
cessing benchmarks (Pei et al., 2019) and computer vision datasets, while Section 4.2 investigates
its scalability to a larger pool of models and analyzes its ability to generalize across domains and
tasks.

4.1 COMPARATIVE EVALUATION

Setup. We conduct experiments on five NLP datasets: RTE, MNLI, QNLI, QQP, MRPC (Wang
et al., 2018), and ten CV datasets: MNIST (LeCun et al., 2010), EuroSAT (Helber et al., 2019),
CIFAR-10 (Krizhevsky, 2009), CarBrands50, Fruits100, GTSRB (Stallkamp et al., 2011), DTD
(Cimpoi et al., 2014), RESISC (Cheng et al., 2017), GRABAGE, PLANTS.

For the NLP experiments, our method along with all baseline approaches is evaluated on the
Qwen2.5-0.5B-Instruct model (Yang et al., 2024; Team, 2024). In the computer vision setting, we
instead utilize the pretrained ViT-Base-Patch16-224 backbone as the reference architecture. Unless
otherwise noted, input images are consistently normalized to a resolution of 224 × 224 for both
the training and inference phases. To ensure comparability across domains, we employ a unified
evaluation protocol: throughput is reported on a single NVIDIA A100 GPU with batch size fixed
to 32 under FP32 precision; classification accuracy serves as the principal performance indicator;
and efficiency is measured in terms of memory footprint and inference latency. Additional dataset
descriptions and implementation specifics can be found in Appendix C.

Implementation detail For NLP tasks, we adopt the LoRA fine-tuning framework (Hu et al.,
2022), using a rank of 8 and a scaling factor of 32. Starting from the pretrained ViT (Dosovitskiy
et al., 2020), we fine-tune it on five benchmark datasetsRTE, MNLI, QNLI, QQP, and MRPCresult-
ing in task-specialized variants denoted as FT-RTE, FT-MNLI, FT-QNLI, FT-QQP, and FT-MRPC.
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The optimization is performed using AdamW with a learning rate of 1 × 10−4. For CV tasks, we
similarly follow the LoRA fine-tuning protocol but configure a rank of 16 and a scaling factor of
16. The ViT backbone is pretrained and subsequently adapted on MNIST, EuroSAT, CIFAR-10,
CarBrands50, and Fruits100, producing FT-MNIST, FT-EuroSAT, FT-CIFAR-10, FT-CAR, and FT-
FRUITS100. The AdamW optimizer is employed with a learning rate of 5×10−3. In both domains,
LoRA adapters are injected into the MLP layers with a dropout rate of 0.1, while bias parameters
remain frozen. Training is stabilized using a warm-up learning rate schedule, and cross-entropy loss
is minimized with weight decay set to 0.01. To ensure reproducibility, random seeds are fixed across
NumPy, PyTorch, and Python. For merging baselines, we observe that setting the task arithmetic
coefficient to 0.3 consistently provides superior results. Inference latency is computed as the average
over 100 full-dataset runs to yield stable measurements. All experiments are carried out on a single
NVIDIA A100 GPU with CUDA 12.4, cuDNN 9.1.0, and PyTorch 2.1.2.

For expert routing, we leverage lightweight embedding encoders to represent inputs and guide
expert selection. In the CV setting, we employ CLIP-ViT-B/16, while in NLP we utilize BGE-
Small-en-v1.5. These models act as efficient Routers, delivering compact yet informative routing
signals for task-aligned expert activation.

Table 1: Comparison of task-specific fine-tuned models, merge baselines, and our method across
GLUE tasks.

MODEL RTE MNLI QNLI QQP MRPC AVG VRAM TIME

MULTI-TASK 77.4% 81.1% 83.0% 78.0% 76.2% 79.1% 2010M 184s
FT-RTE 77.3% 52.8% 56.0% 61.0% 58.9% 61.2% 2010M 195s
FT-MNLI 71.5% 82.0% 33.4% 62.0% 63.3% 62.4% 2010M 195s
FT-QNLI 62.5% 46.8% 84.0% 65.0% 65.7% 64.8% 2010M 195s
FT-QQP 64.3% 43.2% 64.4% 84.8% 70.4% 65.4% 2010M 195s
FT-MRPC 49.5% 36.8% 56.0% 65.8% 85.3% 58.7% 2010M 195s

Weight Averaging 68.2% 39.6% 67.8% 64.0% 57.1% 59.4% 2010M 195s
Task-Arithmetic 66.8% 65.6% 59.2% 71.6% 74.0% 66.4% 2010M 195s
Ties-Merging 66.4% 65.2% 59.6% 70.4% 67.9% 65.9% 2010M 195s
Twin-Merging 76.9% 81.8% 83.6% 84.8% 85.0% 82.4% 2010M+(N -1)*34.2M 275s
TR-merging/ours 78.3% 82.2% 84.4% 85.0% 85.1% 83.0% 2010M+(N -1)*20M 249s

Results. As reported in Tables 1 and 2, our approach consistently outperforms representative
model merging baselines across both NLP and CV benchmarks. Remarkably, it even achieves
better single-task performance than individually fine-tuned models, while incurring only negligi-
ble additional storage and runtime overhead. These results highlight the capability of our method
to effectively mitigate long-standing challenges in model merging, including parameter conflicts
and task interference. Unlike many prior approaches that struggle to scale under such conditions,
our method demonstrates stronger robustness and scalability, underscoring its potential for broader
multi-domain applications.

4.2 COMPARATIVE ANALYSIS

Large-Model Scalability and Out-of-Domain Generalizability. Scaling model merging to larger
architectures has emerged as a critical research problem. To assess the scalability of our method,
we extended the experiments to Qwen2.5-7B-Instruct under the same training configurations as
Qwen2.5-0.5B-Instruct. As shown in Table 4, our approach continues to deliver strong results, even
surpassing fine-tuned baselines, demonstrating that its effectiveness is not limited by model size.
Another long-standing challenge in model merging lies in out-of-domain (OOD) generalization, as
merged models typically integrate only a restricted set of expert competencies. Consequently, per-
formance degradation is often observed when encountering tasks beyond the training domains. Nev-
ertheless, as reported in Table 3 (with detailed results in Table 6), our merged Qwen2.5-7B-Instruct
models trained on RTE, MNLI, QNLI, QQP, and MRPC outperform both Weight Averaging and
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Table 2: Comparison of task-specific fine-tuned models, merge baselines, and our method across
CV tasks.

MODEL MNIST EuroSAT CIFAR-10 CAR FRUITS100 GTSRB DTD RESIS GRABAGE PLANTS AVG VRAM TIME
MULTI-TASK 93.5% 98.1% 97.1% 46.0% 81.6% 98.2% 69.7% 91.2% 66.7% 74.1% 75.6% 805M 158s
FT-MNIST 93.6% 4.3% 0.1% 0.0% 0.1% 0.6% 0.4% 0.2% 0.0% 0.1% 9.9% 805M 158s
FT-EuroSAT 10.9% 98.0% 1.1% 0.0% 0.4% 4.0% 1.2% 2.7% 0.0% 1.1% 11.9% 805M 158s
FT-CIFAR-10 10.2% 2.8% 97.8% 2.0% 2.9% 4.1% 0.7% 2.9% 0.0% 0.6% 12.4% 805M 158s
FT-CAR 0.0% 1.0% 0.1% 56.0% 1.5% 2.4% 1.9% 1.6% 0.0% 0.6% 6.5% 805M 158s
FT-FRUITS100 1.1% 1.9% 0.1% 0.0% 80.7% 0.4% 0.0% 0.2% 0.0% 1.9% 8.6% 805M 158s
FT-GTSRB 2.3% 0.1% 0.6% 0.0% 0.5% 97.8% 0.4% 0.8% 0.0% 0.1% 10.3% 805M 158s
FT-DTD 11.8% 1.2% 1.8% 1.0% 0.1% 1.5% 73.8% 3.2% 0.0% 2.6% 9.7% 805M 158s
FT-RESIS 0.0% 0.0% 8.7% 1.0% 0.4% 1.2% 1.9% 91.1% 0.0% 0.0% 10.4% 805M 158s
FT-GRABAGE 11.6% 9.2% 7.5% 2.0% 5.0% 7.3% 2.2% 2.2% 63.3% 3.3% 11.4% 805M 158s
FT-PLANTS 0.2% 4.6% 0.4% 0.0% 6.5% 3.5% 2.8% 1.9% 0.0% 89.1% 10.9% 805M 158s

Weight Averaging 76.9% 91.6% 96.8% 34.0% 81.6% 66.6% 70.6% 80.6% 60.0% 89.8% 74.8% 805M 158s
Task-Arithmetic 78.2% 92.6% 97.0% 34.0% 81.5% 70.8% 71.3% 81.8% 70.0% 89.9% 76.7% 805M 158s
Ties-Merging 78.2% 92.6% 97.0% 34.0% 81.5% 70.8% 71.3% 81.8% 70.0% 89.9% 76.7% 805M 158s
Twin-Merging 93.6% 98.0% 97.8% 56.0% 80.7% 97.8% 74.0% 91.1% 63.3% 89.1% 84.1% 805M+(N -

1)*7M
223s

TR-merging/ours 93.4% 98.4% 98.0% 56.0% 87.9% 97.1% 73.8% 90.9% 63.3% 89.1% 84.8% 805M+(N -
1)*5M

184s

Task Arithmetic, and achieve results that are nearly comparable to general-purpose models. This un-
expected finding offers compelling evidence that TR-merging preserves strong OOD generalization
ability.

Table 3: Average Performance on Out-of-Domain MMLU Benchmark Tasks

MMLU Task Qwen2.5-7B-Instruct Weight Averaging Task-Arithmetic TR-merging/ours

Avg 67.9% 67.3% 63.6% 67.5%

Table 4: Task-Level Performance of Our Method on Qwen2.5-7B-Instruct Models

MODEL MNLI MRPC QNLI QQP RTE AVG

Pretrain 53.8% 55.0% 48.0% 51.6% 50.4% 51.8%

MULTI-TASK 84.8% 86.4% 86.4% 88.8% 86.6% 86.6%

Finetune 89.2% 89.0% 92.0% 86.0% 91.7% 89.6%

TR-merging/ours 89.2% 89.3% 92.0% 86.2% 91.7% 89.7%

Table 5: Performance Across Different Task Types

Method Classification Generation
Funetune 77.3% 49.5%

TR-merging/ours 77.8% 49.9%

Task Diversity and Span. As shown in
Tables 1 2, our method demonstrates ro-
bust performance across both computer
vision (CV) and natural language pro-
cessing (NLP) tasks, covering a diverse
set of classification scenarios such as 2
(GARBAGE), 3 (RTE), 10 (EuroSAT), 30
(PLANTS), 43 (GTSRB), 45 (RESISC),
47 (DTD), 50 (CarBrands50), and 100 (Fruits100). These tasks span a broad range of semantic
domains, including digits, remote sensing, general objects, automobiles, fruits, plants, waste, traf-
fic signs and various other domains, high lighting the method’s ability to generalize across distinct
knowledge areas. Furthermore, as illustrated in Table 5, our approach supports the integration of
both generative and discriminative tasks within a unified framework, marking a pioneering effort in
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this direction. Notably, it even outperforms fine-tuned models that are often regarded as the theo-
retical upper bound. These results collectively underscore the exceptional scalability of our method
across modalities, knowledge domains, and task types.

Scalability to Large-Scale Tasks. As shown in Tables 1 and 2, our approach achieves consistently
strong results across both computer vision (CV) and natural language processing (NLP) tasks, span-
ning diverse classification settings such as 2-way (GARBAGE), 3-way (RTE), 10-way (EuroSAT),
30-way (PLANTS), 43-way (GTSRB), 45-way (RESISC), 47-way (DTD), 50-way (CarBrands50),
and 100-way (Fruits100). These benchmarks encompass a wide spectrum of semantic domains, rang-
ing from digits and remote sensing to general objects, vehicles, fruits, plants, waste management,
and traffic sign recognition, thereby underscoring the models capacity to generalize across hetero-
geneous knowledge sources. Moreover, as reported in Table 5, our method is capable of integrating
both discriminative and generative tasks within a unified frameworkrepresenting one of the first at-
tempts in this direction. Remarkably, it even surpasses fine-tuned baselines, which are typically
considered the theoretical upper bound of task-specific performance. Taken together, these findings
highlight the strong scalability of our approach across modalities, domains, and task paradigms.

Figure 3: Scalability analysis of model accuracy and storage footprint as the number of tasks in-
creases.

5 CONCLUSION

In this work, we have introduced TR-Merging, a novel model merging framework that leverages a
training-free router to integrate task-specific models into a single unified model without incurring
additional training costs. By exploiting semantic similarity between input data and task domains, our
method adaptively selects and weights the most relevant experts, preserving task-specific knowledge
while mitigating interference from irrelevant tasks. We further incorporated temperature scaling and
top-K selection to enhance the discriminative power and robustness of expert routing. Extensive ex-
periments across NLP and CV tasks, as well as cross-domain and cross-task scenarios, demonstrate
that TR-Merging consistently outperforms existing model merging baselines, including weight av-
eraging, task arithmetic, and router-based methods, both in terms of accuracy and computational
efficiency. Theoretical analysis based on Gaussian similarity modeling provides formal support for
the effectiveness and stability of our training-free routing mechanism. Overall, TR-Merging offers
a practical, scalable, and efficient solution for integrating multiple task-specific models, preserving
the advantages of traditional training-free merging while achieving performance on par with more
complex router-based approaches. We believe that this work paves the way for broader adoption
of training-free expert routing in multi-task and multi-domain model deployment, enabling flexible
adaptation to diverse user requirements without additional computational burden.
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A MORE RELATIVE RESEARCH

Averaging. Parameter averaging is a well-established technique in federated learning Recent
applications have extended its utility to model merging for enhancing robustness against out-of-
distribution data, refining pre-trained models, developing multimodal architectures, and creating
multitask models by combining model capabilities. Parameter averaging is performed by comput-
ing the mean of all expert model weights, without relying on a base model. Formally, this can be
expressed as:

M({θi}Ni=1, θbase) =
1

N

N∑
i=1

θi.

Fisher Merging. The method assesses the significance of each parameter when merging models
for task t by computing the Fisher information matrix. The matrix is given by the following formula:

F̂t = Ex∼DtEy∼pθt (y|x)∇θt(log pθt(y|xt))
2,

where the model merging is guided by this significance measure.

RegMean. The method imposes a constraint on the model merging process by minimizing the L2

distance between the activations of the merged model and those of the individual models. It achieves
this by computing the least-squares solution given by

θm =

(
n∑

t=1

XT
t Xt

)−1 n∑
t=1

(XT
t Xtθt),

where Xt represents the input activation of the corresponding layer.

Task Arithmetic. Task Arithmetic introduces a novel concept of task vectors for model merging.
For a given task ti, the corresponding task vector is defined as τi = θi − θbase, which captures
task-specific knowledge by quantifying the difference between the fine-tuned expert parameters θi
and the original base model parameters θbase. A scaling hyperparameter λ governs the contribution
of the aggregated task-specific knowledge to the final model. The merged model is constructed by
linearly combining the base model parameters with a scaled sum of all task vectors. Formally, task
arithmetic is defined as:

M({θi}Ni=1,θbase;λ) = θbase + λ ·
N∑
i=1

(θi − θbase).

AdaMerging. The method automatically learns a merging coefficient for each layer of each task
vector in Task Arithmetic.

Ties-Merging. TIES-Merging identifies two major challenges in model merging: Fine-tuned ex-
pert models often accumulate substantial noise in their parameters;Different experts may attempt
to update the same parameter in conflicting directions, causing interference between models. To
address these issues, TIES-Merging introduces a three-step procedure: First, removing redundant
parameters. Second, resolving sign conflicts. Third, aggregating only the non-conflicting parame-
ters. Specifically, for each task i, parameters in the task vector with small magnitudes are zeroed
out to produce the trimmed task vector τ̂i. Then, for each parameter p, the aggregate sign γp

m is
determined by the sign of the sum of corresponding entries across all trimmed task vectors:

γp
m = sgn

(
N∑
i=1

τ̂pi

)
.

Next, only those models whose trimmed task vector entries match the aggregate sign are included
in the merging process. That is, the index set of participating models is defined as Ap = {i ∈ [N ] |
sgn(τ̂pi ) = γp

m}.
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Finally, the merged task vector is computed by averaging over the selected models, scaled by a
hyperparameter λ, and added back to the base model parameters:

θp
m = θp

base + λ · 1

|Ap|
∑
i∈Ap

τ̂pi .

Dare Merging. The method effectively reduces parameter redundancy by setting the majority of
delta parameters to zero and rescaling the remaining parameters. This is achieved through the trans-
formation given by

θ′ =
θ

1− p
,

where p represents the proportion of delta parameters that are discarded.

Twin-Merging. The method that encompasses two principal stages: modularizing knowledge into
shared and exclusive components, with compression to reduce redundancy and enhance efficiency;
dynamically merging shared and task specific knowledge based on the input. This approach narrows
the performance gap between merged and fine-tuned models and improves adaptability to heteroge-
neous data.

θ∗ = θs +

T∑
t=1

wt ∗ SVDr(θt − θs)

where θs represents the parameter set of the shared expert, which is common across all tasks. The
term θt − θs denotes the task expert, capturing the task-specific adjustments to the shared expert
parameters. The operation SVDr refers to the singular value decomposition applied with a rank
constraint r, which serves to sparsify the task expert parameters, retaining only the most significant
variations.

B THEORETICAL ANALYSIS OF TRAINING-FREE EXPERT ROUTING

To provide a rigorous understanding of the proposed training-free expert routing mechanism, we
formalize the analysis using Gaussian similarity modeling.
Lemma B.1 (Expected Similarity). Assume that the input embedding z and task-specific embed-
dings zji are drawn from multivariate Gaussian distributions:

z ∼ N (µx,Σx), zji ∼ N (µi,Σi), j = 1, . . . ,M. (17)

If the embeddings within each task cluster are concentrated around their mean (Tr(Σi) ≪ ∥µi∥2),
then the expected cosine similarity between the input and the i-th task is approximated as

E[si(x)] ≈
µ⊤
x µi

∥µx∥ ∥µi∥
. (18)

Proof. Under the Gaussian assumption, the embeddings zji concentrate near µi. Therefore, the
cosine similarity between z and zji is dominated by the inner product of the means. By linearity of
expectation over M samples, the result follows.

Lemma B.2 (Concentration of Empirical Similarity). Let si(x) be the empirical cosine similarity
computed over M samples from task Ti. Then, with high probability,

P
(∣∣si(x)− E[si(x)]

∣∣ ≥ ϵ
)
≤ 2 exp

(
− Mϵ2

2σ2

)
, (19)

where σ2 denotes the variance of pairwise cosine similarities.

Proof. This follows from Hoeffding’s inequality for bounded random variables or standard concen-
tration inequalities for Gaussian variables. As M increases, the empirical average converges to its
expectation with high probability.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Proposition B.3 (Effect of Temperature Scaling). Introducing a temperature τ > 0 in the softmax
distribution sharpens the selection probability of experts:

α̂i =
exp(si(x)/τ)∑N

k=1 exp(sk(x)/τ)
. (20)

Proof. A smaller τ increases the difference between the highest and lowest similarity scores in the
softmax, effectively amplifying the contribution of highly relevant experts. This can be interpreted
as increasing the KL-divergence between the top-K selected experts and the uniform distribution
over all experts, thereby improving discriminative power.

Theorem B.4 (Top-K Expert Recovery). Assume task means µi are sufficiently separated:

min
i ̸=j

∥µi − µj∥
max{∥µi∥, ∥µj∥}

≥ δ. (21)

Then, with high probability, the top-K experts selected via α̂i correspond to the K most semantically
relevant tasks. Consequently, the merged model

θm = θpre +
∑

i∈IK(x)

α̂i(θi − θpre) (22)

integrates the most relevant domain knowledge while minimizing interference from irrelevant ex-
perts.

Proof. Given the sufficient separation between task means and the concentration of embeddings
(Lemmas 1 and 2), the empirical similarity scores reliably reflect the true semantic relevance. The
top-K selection over α̂i therefore identifies the K tasks closest to the input in semantic space with
high probability. The merged model then combines the most relevant updates while excluding irrel-
evant ones.

Corollary B.5 (Robustness under Input Perturbations). Assuming the embedding function is Lips-
chitz continuous, small perturbations ∆x in the input yield bounded changes in the merged param-
eters:

∥θm(x+∆x)− θm(x)∥ ≤ C∥∆x∥, (23)

where C depends on the sensitivity of embeddings and expert weights.

Proof. By the Lipschitz continuity of embeddings and the bounded effect of temperature-scaled
softmax weights, any small perturbation in the input results in a proportionally bounded change in
θm. This ensures smooth and robust expert routing.

Discussion.

• Sample Complexity: Accurate top-K expert recovery requires M = O(δ−2 log(N/ϵ)),
implying that well-separated embeddings enable reliable routing with few samples.

• Temperature Selection: Smaller τ sharpens expert selection, while larger τ improves
robustness against noise.

• Low-rank LoRA Updates: If θi − θpre are low-rank (as in LoRA), merged parameters
inherit additional stability, tightening perturbation bounds.

• Scalability: Approximate nearest-neighbor search of task centroids allows scaling to large
expert pools without significantly affecting selection accuracy.

Overall, this Gaussian-based theoretical framework rigorously justifies that the training-free rout-
ing mechanism can reliably select relevant experts, amplify their contributions, and yield a robust
merged model without additional training overhead.
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C EXPERIMENT DETAILS

C.1 EMPLOYED DATASETS AND ASSOCIATED LICENCES

Discriminative Tasks.

• MRPC. A binary paraphrase detection task from the Microsoft Research Paraphrase Corpus.
Each example consists of a pair of sentences, and the model must determine if they are se-
mantically equivalent. It has 3,668 training examples, 408 validation examples, and 1,725 test
examples.

• QQP. A paraphrase detection task on Quora Question Pairs. The model must decide whether two
questions are semantically identical. The training set contains 363,846 examples, with 40,430 for
validation, and 390,965 for testing (test labels are not publicly available).

• MNLI. A natural language inference (NLI) task with three labels: entailment, neutral, and con-
tradiction. The dataset includes multiple genres of text. It contains 392,702 training examples,
9,815 matched validation, 9,832 mismatched validation, and 20,000 test examples.

• QNLI. A binary classification task converted from the Stanford Question Answering Dataset. The
model determines whether a given context sentence contains the answer to a question. It consists
of 104,743 training examples, 5,463 validation examples, and 5,463 test examples.

• RTE. A binary entailment task combining data from multiple RTE challenges. The task is to
determine if a hypothesis sentence can be inferred from a given premise. The dataset contains
2,490 training examples, 277 validation examples, and 3,000 test examples.

The licenses of QNLI are licensed under CC-BY-SA. QQP is licensed under MIT. MRPC are li-
censed under Apache 2.0. MNLI is licensed under OANC. RTE is licensed under CC BY 4.0. Thus,
these datasets in GLUE are available for non-commercial research purposes.

Generation and Math Tasks. We also incorporate a dataset designed for generative tasks, specif-
ically targeting mathematical reasoning. The MAWPS dataset consists of 1,772 examples of math
word problems, requiring models to generate the correct mathematical expressions or answers based
on natural language descriptions.

Vision Tasks.

• MNIST. A benchmark dataset for image classification, containing grayscale images of handwrit-
ten digits across 10 classes. The training set has 60,000 images, and the test set has 10,000 images,
with a balanced distribution among classes.

• EuroSAT. A satellite image classification dataset consisting of 27,000 labeled and geo-referenced
images across 10 classes.

• CIFAR-10. A benchmark for object recognition tasks in computer vision. It consists of 60,000
32x32 color images in 10 different classes, with 6,000 images per class. The dataset is divided
into 50,000 training images and 10,000 test images.

• CarBrands50. A car classification dataset comprising 50 classes. The dataset contains a total of
4,500 labeled images, which are partitioned into 4,400 images for training, and 100 for validation.

• FRUITS100. A fruit classification dataset comprising 100 classes. The dataset contains a total of
50,000 labeled images, which are partitioned into 40,000 images for training, 5,000 for validation,
and 5,000 for test.

• GTSRB. A traffic sign classification dataset containing over 50,000 images across 43 classes of
traffic signs.

• DTD. A texture classification dataset with 47 classes and a total of 5,640 images, with approxi-
mately 120 images per class.

• RESISC45. A remote sensing image scene classification dataset with 45 classes and 31,500
images, approximately 700 per class.

• GRABAGE. A grabage classification dataset. The dataset contains a total of 147,674 labeled
images, which are partitioned into 133,038 images for training, and 14,642 for test.
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• PLANTS. A plant classification dataset comprising 30 classes. The dataset contains a total of
30,000 labeled images, which are partitioned into 24,000 images for training, 3,000 for validation,
and 3,000 for testing.

C.2 COMPARATIVE EVALUATION DETAILS

Funetune Model. It means that each task uses the corresponding fine-tuned model, which has
no interference between tasks but cannot perform multiple tasks simultaneously. It serves as the
upper-bound performance for each specific task.

Multi-task Model. involving mixing datasets from multiple tasks and training the model jointly,
representing one of the earliest solutions for multitask learning.

Merging Model. This term denotes algorithms aimed at combining multiple models into a uni-
fied, consolidated model, including approaches exemplified by methods Weight Averaging, Task-
Arithmetic, Twin-Merging, TR-merging and more.

C.3 LARGE-MODEL SCALABILITY AND OUT-OF-DOMAIN GENERALIZABILITY DETAILS

As shown in Tables 4, we apply our model merging approach to larger models(Qwen2.5-7B-
Instruct), demonstrating that our method scales effectively to models of increased size. Furthermore,
as shown in Tables 6, we evaluate the merged models on out-of-domain MMLU benchmark tasks,
providing evidence that our approach exhibits strong generalization capabilities beyond the training
domains.
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Table 6: Detailed Performance on Out-of-Domain MMLU Benchmark Tasks

MMLU Task Qwen2.5-7B-Instruct Weight Averaging Task-Arithmetic TR-merging/ours

management 78.6% 79.6% 75.7% 80.2%
high_school_world_history 78.9% 78.9% 75.5% 82.0%
college_mathematics 45.0% 46.0% 36.0% 42.6%
high_school_us_history 79.4% 80.4% 77.0% 79.5%
sociology 82.1% 82.1% 77.1% 83.2%
astronomy 77.0% 74.3% 69.1% 76.9%
moral_disputes 67.1% 69.4% 65.9% 66.2%
high_school_government_and_politics 89.1% 88.6% 84.5% 89.2%
medical_genetics 73.0% 71.0% 67.0% 73.6%
high_school_macroeconomics 72.1% 72.8% 70.0% 73.2%
international_law 76.9% 78.5% 72.7% 77.5%
high_school_geography 83.3% 83.8% 80.3% 84.4%
electrical_engineering 63.4% 60.0% 57.9% 63.5%
virology 48.8% 50.0% 47.6% 48.2%
high_school_european_history 74.5% 76.4% 70.3% 77.0%
elementary_mathematics 60.6% 62.2% 56.3% 62.0%
moral_scenarios 22.5% 20.1% 22.0% 23.0%
formal_logic 50.8% 49.2% 42.1% 52.2%
machine_learning 40.2% 44.6% 46.4% 42.6%
us_foreign_policy 86.0% 85.0% 82.0% 85.6%
high_school_psychology 85.7% 85.1% 81.5% 86.3%
high_school_chemistry 61.6% 58.1% 55.7% 63.2%
computer_security 78.0% 76.0% 72.0% 77.6%
college_physics 53.9% 54.9% 50.0% 54.5%
professional_law 45.8% 43.9% 38.9% 46.5%
marketing 89.7% 88.5% 85.9% 90.3%
prehistory 76.5% 76.9% 74.1% 76.5%
college_biology 80.6% 83.3% 78.5% 80.5%
nutrition 70.6% 71.2% 65.4% 72.2%
professional_medicine 78.7% 76.8% 74.6% 77.4%
human_sexuality 75.6% 69.5% 64.9% 75.4%
philosophy 67.2% 69.1% 63.3% 67.8%
high_school_statistics 71.8% 71.8% 66.7% 70.0%
business_ethics 68.0% 72.0% 68.0% 68.6%
professional_accounting 54.3% 52.8% 52.8% 57.1%
high_school_mathematics 45.6% 43.0% 43.0% 47.3%
global_facts 40.0% 32.0% 36.0% 39.6%
miscellaneous 81.4% 81.7% 78.5% 81.7%
anatomy 71.1% 70.4% 70.4% 72.5%
security_studies 67.8% 69.0% 64.5% 69.6%
public_relations 67.3% 65.5% 60.9% 67.0%
clinical_knowledge 76.6% 73.6% 72.8% 77.4%
high_school_physics 57.0% 52.3% 48.3% 58.2%
econometrics 56.1% 54.4% 51.8% 59.4%
conceptual_physics 69.4% 70.6% 66.4% 69.5%
high_school_computer_science 78.0% 76.0% 70.0% 78.6%
college_chemistry 47.0% 46.0% 49.0% 46.6%
high_school_biology 81.6% 81.9% 78.4% 82.2%
world_religions 83.0% 79.5% 75.4% 84.2%
human_aging 69.1% 69.1% 65.9% 70.6%
college_medicine 68.2% 70.5% 64.7% 70.5%
college_computer_science 60.0% 54.0% 47.0% 62.6%
jurisprudence 75.9% 75.0% 71.3% 76.5%
high_school_microeconomics 81.1% 84.5% 74.8% 82.1%
abstract_algebra 49.0% 48.0% 38.0% 51.6%
professional_psychology 70.4% 70.9% 64.4% 71.0%

Avg 67.9% 67.3% 63.6% 67.5%
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