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Abstract
Mathematical language in scientific communi-001
cations and educational scenarios is important002
yet relatively understudied compared to natural003
languages. Recent works on mathematical lan-004
guage focus either on representing stand-alone005
mathematical expressions, especially in their006
natural tree format, or mathematical reasoning007
in pre-trained natural language models. Ex-008
isting works on jointly modeling and generat-009
ing natural and mathematical languages simply010
treat mathematical expressions as text, without011
accounting for the rigid structural properties012
of mathematical expressions. In this paper, we013
propose a series of modifications to existing014
language models to jointly represent and gen-015
erate text and math: representing mathemati-016
cal expressions as sequences of node tokens017
in their operator tree format, using math sym-018
bol and tree position embeddings to preserve019
the semantic and structural properties of math-020
ematical expressions, and using a constrained021
decoding method to generate mathematically022
valid expressions. We ground our modifica-023
tions in GPT-2, resulting in a model MathGPT,024
and demonstrate that it outperforms baselines025
on mathematical expression generation tasks.026

1 Introduction027

A part of human communication is performed in028

rigorous mathematical language rather than more029

flexible natural language, which often occurs in sce-030

narios such as scientific communication and educa-031

tion. While pre-trained large language models such032

as BERT (Devlin et al., 2018) and GPT-3 (Brown033

et al., 2020) have enjoyed many successes in repre-034

senting and generating natural language, there is a035

need for models that are effective in representing036

and generating principled mathematical language037

as well. While existing work focuses on various038

aspects of mathematical language representation or039

generation, combining mathematical language with040

the aforementioned models for natural language re-041

mains a challenging problem.042

Mathematical and natural language are funda- 043

mentally different in many ways. While natural 044

language consists of large sets of words and phrases 045

that often have their meaning grounded in context, 046

mathematical language consists of different sym- 047

bols: a small set of mathematical operators with 048

precise meaning, variables, and numbers that exist 049

in a continuous space. Furthermore, mathematical 050

language follows rules that are much more strict 051

and rigorous than natural language. For example, 052

the multiplication operation acts on exactly two 053

operands, while an integral operates on a single 054

operand but with upper and lower limit arguments. 055

Operands are either variables, numbers, or the re- 056

sult of applying other operations. Given its hier- 057

archical property, mathematical language is natu- 058

rally represented with operator trees (OPTs), which 059

are directed tree graphs where non-leaf nodes are 060

operators and leaf nodes are variables or numbers 061

(Zanibbi et al., 2016a; Mansouri et al., 2019). OPTs 062

are effective at capturing both the semantic and 063

structural properties of mathematical expressions. 064

Existing work primarily focuses on two separate 065

approaches to modeling mathematical language: 066

representation and mathematical reasoning. A line 067

of work focuses on learning meaningful representa- 068

tions of mathematical expressions (often formulas), 069

such as Wang et al. (2021); Davila and Zanibbi 070

(2017), motivated by the task of retrieving similar 071

expressions, which is especially relevant in infor- 072

mation search and retrieval. Although these meth- 073

ods produce dense representations of expressions in 074

their natural tree form, they cannot be directly con- 075

nected to natural language. Some works employ 076

BERT-like models to jointly represent natural and 077

mathematical language (Liang et al., 2022; Peng 078

et al., 2021; Shen et al., 2021). However, these 079

methods are not well suited for generation tasks. 080

Another line of work focuses on mathematical 081

reasoning, motivated by the task of mathematical 082

problem solving that is especially relevant in educa- 083
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tional applications. These works treat problem solv-084

ing as a sequence-to-sequence task (Saxton et al.,085

2019a) and have found success on solving word086

problems (Huang et al., 2018; Zou and Lu, 2019).087

State-of-the-art methods use pre-trained large lan-088

guage models (Cobbe et al., 2021; Lewkowycz089

et al., 2022) and can even generate meaningful090

step-by-step solutions (Wei et al., 2022). However,091

these works do not take the principled structure of092

math into account and treat mathematical expres-093

sions as sequences of math LaTeX tokens in the094

same way as text tokens (Taylor et al., 2022).095

1.1 Contributions096

In this paper, we introduce a series of novel modifi-097

cations to language models for the joint represen-098

tation and generation of natural and mathematical099

languages. We apply these modifications to the pub-100

licly available GPT-2 model as a proof-of-concept,101

although we believe that these modifications ap-102

ply to many autoregressive language models. Our103

contributions can be summarized as follows:104

• We develop a set of embeddings that preserve105

both the semantic and structural properties of106

mathematical expressions and connect them107

to natural language token embeddings used in108

language models. Our embeddings couple the109

semantic meaning of math tokens with their110

textual counterparts and explicitly capture the111

position of nodes in the OPT of an expression.112

• We develop a parallelizeable constrained de-113

coding procedure that generates mathemati-114

cally valid expressions via a set of rules.115

• We apply these modifications to GPT-2 and116

pre-train it on math Wikipedia articles, result-117

ing in a model we call MathGPT.1 We demon-118

strate that it outperforms GPT-2 (and other119

baselines) on downstream generative tasks, es-120

pecially on generating math expressions, and121

analyze how it captures the semantic and struc-122

tural properties of math expressions using its123

semantic and position embeddings.124

2 Methodology125

We now detail our proposed modifications126

grounded in our model MathGPT, visualized in Fig-127

ure 1. First, we detail how natural and mathemati-128

cal language are represented jointly by the model.129

Second, we detail how we provide the model with130

1Code will be released publicly after the review process.

Figure 1: We represent text and math regions differ-
ently, with tree position embeddings added to the math
token embeddings. The predicted token probability dis-
tribution is shown for the next token, 2; text tokens are
masked out by decoding constraints.

token-level tree position information, followed by 131

how we represent math token embeddings via a 132

learnable transformation on text token embeddings. 133

Third, we detail our rules for constrained decoding 134

and tree structure inference at test time. 135

2.1 Sequence Representation 136

We consider sequences that contain sep- 137

arable regions of text and math, i.e., 138

S = (T1, F
s,M1, F

e, T2, F
s,M2, F

e, . . .), 139

where Tn = (t1, . . . , tN ) is a sequence of text 140

tokens, Mn = (m1, . . . ,mN ) is a sequence 141

of math tokens, F s indicates the start of a 142

mathematical expression, and F e indicates the 143

end of an expression. To leverage the structural 144

information of the expressions, we convert each 145

Mn into its corresponding OPT, M tree
n . In M tree

n , 146

each token mi is assigned a node in the tree, and 147

each mi ∈ {O,V,N , E}, where O is the set of all 148

operators, V is the set of all variables, N is the set 149

of all numbers, and E is a special end node. In 150

the tree, operators become parent nodes and their 151

children are either variables, numbers, or other 152

operators. After this initial conversion, we make 153

several modifications to the tree to assist the model 154

with mathematical understanding. First, we add 155

an E node as the last child of every operator node 156

to indicate the end of its list of children. Second, 157

we convert each number into a sub-tree where the 158

head is a special operator ON and its children are 159

the digits of the number, including the decimal 160

point. Third, since we use a fixed-size vocabulary 161

for math tokens, any out-of-vocabulary token mi 162

is converted into a sub-tree where the head is a 163

special operator OU and its children are the text 164
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tokens of mi. Then, we convert M tree
n back to a165

linear sequence, M lin
n , by traversing and adding166

nodes in depth-first order, resulting in the sequence167

S′ = (T1, F
s,M lin

1 , F e, T2, F
s,M lin

2 , F e, . . .).168

See Supplementary Material E for an illustration of169

this process along with other data processing steps.170

To convert each token si ∈ S′ to its embedding171

si as input to a language model, GPT-2 follows172

si = embtok(si) + embsp(i),173

where embtok(si) is the token embedding for si,174

and embsp(i) is the position embedding at index i.175

Our key innovation in MathGPT is a set of mod-176

ified position embeddings that explicitly provide177

the model with OPT structure information:178

si =embtok(si) + embsp(i)179

+embtp(pi) + embtype(si),180

where embtype(si) is the symbol type embedding181

(text, operator, variable, etc.) of si and embtp(pi)182

is the tree position embedding of si. Our approach183

explicitly captures the tree position and role of each184

math symbol in the context of the entire mathemat-185

ical expression to preserve both semantic and struc-186

tural properties. We also use different semantic187

embeddings embtok(si) for text and math tokens,188

which we detail below.189

2.2 Tree Position Encoding190

For tree position embeddings, we first define pi, a191

unique position vector for node mi, and then use192

a function embtp to transform pi to a vector with193

the same dimensionality as the token embeddings.194

We encode tree positions similar to the approach in195

(Wang et al., 2021): pi is a vector where the entry196

at each index, pji , represents mj’s index in its list197

of siblings. By following the indices in pi from198

the tree root, node mi will eventually be reached,199

and its index is the last entry in the vector. We then200

convert pi to a vectorized version of the binary rep-201

resentation of each of its entries and finally project202

the resulting vector using a learnable transforma-203

tion. The whole process is defined as204

bin(pji ) = concat(onehot(b1j ), . . . , onehot(b
K
j ))205

bin(pi) = concat(bin(p1i ), . . . , bin(p
|pi|
i ))206

embtp(pi) = Wbin(pi),207

where bkj is the kth digit of pji ’s binary representa-208

tion, onehot returns a one-hot 2-vector, and W is209

a learnable projection matrix.210

2.3 Math Token Embeddings 211

We construct our semantic embeddings for the 212

math symbols by linking them with the correspond- 213

ing text tokens in GPT-2’s pre-trained vocabulary. 214

Specifically, let the text representation of a math 215

symbol si be ti. We tokenize ti with the GPT-2 216

tokenizer to produce a corresponding sequence of 217

text tokens, (t1i , . . . , t
K
i ). The embedding of si is 218

then given by 219

ti =
∑K

k=1 embtok(t
k
i )/K 220

embtok(si) = ti + ϕp(ti), 221

where ϕp is a fully-connected neural network with 222

a single hidden layer, and we initialize the weights 223

to be small such that embtok(si) is initially very 224

close to ti. With this formulation, we leverage 225

the pre-trained information in GPT-2 while up- 226

dating text token representations during training 227

through MathGPT’s tree-structured representations 228

for mathematical expressions. For math symbols 229

that have no corresponding text representations, 230

such as F s, F e, ON , and OU , we learn their se- 231

mantic embeddings from scratch. 232

2.4 Sequence Generation 233

In addition to modifying GPT-2’s input format, we 234

also make several changes to the output process 235

to enable MathGPT to generate mathematically 236

meaningful expressions. We create a new linear 237

predictor head for math tokens, including special 238

control tokens (F s, F e, etc.), ϕmath. We concate- 239

nate the output of this projection to those of the 240

pre-trained text prediction head, ϕtext, to get a full 241

token probability vector, ai, at each time step. 242

To ensure that MathGPT generates mathemat- 243

ically valid expressions, we employ constrained 244

decoding by applying a mask to ai that prohibits 245

certain tokens from being generated after si. We 246

apply the following constraints: First, text tokens 247

must be followed by text tokens or F s. Second, F s 248

must be followed by operator, variable, or number 249

tokens. Third, F e must be followed by text tokens. 250

Fourth, operator, variable, number, and E tokens 251

must be followed by other operator, variable, num- 252

ber, or E tokens. The exception is when a tree has 253

been fully generated, in which case they must be 254

followed by F e. Fifth, trees have limited depth and 255

width, so we prevent operator nodes from being 256

generated at the maximum depth level and cap the 257

maximum number of children for each node. Fi- 258

nally, OU must be followed by text tokens, which 259
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can be followed by other text tokens or E, and ON260

must similarly be followed by number tokens.261

During training, we minimize the cross-entropy262

loss using the masked version of token probabili-263

ties ai to update the GPT-2 parameters along with264

the MathGPT-specific parameters, including ϕmath,265

ϕp, W, and embeddings of the special tokens.266

During testing (generation), we infer the tree po-267

sition of the next node directly from the position268

of the previous node from depth-first ordering, ac-269

cording to the following rules: If si ∈ O, then si+1270

will be its first child. Thus pi+1 will be a copy of271

pi with a 0 added to the end. If si ∈ {V,N}, then272

si+1 will be its next sibling. Thus pi+1 will be a273

copy of pi where the last value is incremented by274

1. If si = E, then si+1 will be its parent’s sibling.275

Thus pi+1 will be a copy of pi without the last276

value and the preceding value incremented by 1.277

3 Experimental Setup278

We now detail a series of experiments to vali-279

date the effectiveness of MathGPT. We perform280

pre-training on a large corpus of math-focused281

Wikipedia articles and then use the model on var-282

ious generative downstream tasks involving both283

natural and mathematical languages.284

3.1 Data Pre-Processing285

In the pre-training and downstream task datasets,286

the mathematical expressions are initially rep-287

resented as plain text or HTML, occasionally288

wrapped in text-based F s and F e tokens, and pre-289

converted to MathML in the pre-training dataset.290

To convert them to their OPT representations,291

we introduce the following data pre-processing292

pipeline. First, we convert all HTML math-specific293

symbols, including variables, numbers, and oper-294

ators, to their LaTeX equivalents, and remove re-295

maining HTML tags. Second, we find all expres-296

sions in each text sequence and wrap them with F s297

and F e tokens. Third, we process each sequence298

with LaTeXML 2, which converts each expression299

to a tree-like MathML representation. Finally, we300

process each MathML expression with code from301

Tangent-CFT (Mansouri et al., 2019) to obtain its302

standard OPT representation.303

We note that LaTeXML introduces several un-304

desirable distortions on mathematical expressions.305

For example, it is often unable to differentiate be-306

2https://math.nist.gov/~BMiller/
LaTeXML/

tween function calls and multiplications with paren- 307

theses, multi-character names and multiplications 308

between single character variables, numbers con- 309

taining commas and comma-delimited lists of num- 310

bers, etc. However, we found that in the majority 311

of cases it is accurate enough. 312

3.2 Pre-Training 313

We use a pre-trained GPT-2 model to initialize the 314

shared parameters in MathGPT, which enables us 315

to leverage GPT-2’s existing representations and 316

capabilities. We then pre-train MathGPT on a large 317

corpus of math-centered Wikipedia articles from 318

the 2016 NTCIR-12 MathIR Task (Zanibbi et al., 319

2016b), which enables the model to learn the pa- 320

rameters that are unique from GPT-2. We reserve 321

5% of the articles for validation and pre-train for 322

50 epochs, which we found to be sufficient for the 323

model to perform reasonably well on downstream 324

tasks. Additional hyperparameters and model de- 325

tails are listed in Supplementary Material A. 326

3.3 Downstream Tasks 327

We evaluate MathGPT on the following down- 328

stream generative tasks, which together capture 329

a wide range of mathematical reasoning capabili- 330

ties. Additional details on the datasets can be found 331

in Supplementary Material D. 332

Headline Generation We evaluate on the task 333

of math headline generation using the EXEQ-300k 334

dataset (Yuan et al., 2020), which contains pairs of 335

user-authored questions and headlines from Mathe- 336

matics Stack Exchange. The content in this dataset 337

is generally on college-level math and science top- 338

ics, containing complex formulas with a large va- 339

riety of symbols. This task measures the model’s 340

ability to extract key information from the question 341

and generate a short summary. Due to reasons we 342

detail below in Section 3.4, we additionally con- 343

sider two sub-tasks: next mathematical expression 344

prediction and next text region prediction. For next 345

mathematical expression prediction, we consider 346

each expression in the headline to be a generation 347

target, while we use both the question and the por- 348

tion of the headline up to that expression as input. 349

Similarly, for next text region prediction, we con- 350

sider each text region that follows a mathematical 351

expression to be a generation target, while we use 352

both the question and the portion of the headline 353

up to that text region as input. 354
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Equation Extraction We evaluate on the task355

of generating equations in math word problems356

on a version of the Math23K (Wang et al., 2017)357

dataset converted to English using Google Trans-358

late. While the translations are not perfect, we do359

see that they largely retain the necessary mathe-360

matical information. The dataset contains pairs361

of middle school-level math word problems and362

single-variable equations that represent an execu-363

tion plan to solve the problem. This task measures364

the model’s ability to infer mathematical operations365

and expression structure from unstructured text.366

Student Action Prediction We evaluate on the367

task of predicting how students act based on feed-368

back while solving math problems in a step-by-step369

setting. We use a dataset 3 from the Cognitive Tu-370

tor system. At each step, the student chooses an371

action (add, subtract, multiply, etc.) and enters a372

corresponding input (a mathematical expression)373

to perform on the problem’s equation. If the ac-374

tion is incorrect, the system will provide feedback375

to the student and let them retry. Our task is to376

predict exactly what actions students make after377

receiving feedback after incorrect steps, using the378

equation being solved, a series of steps the student379

made, sequential updates to the equation, and a380

feedback message as input to generate the follow-381

ing student action, input, and outcome as output.382

This task measures the model’s ability to predict383

which action a student will take based on their pre-384

vious actions, which involves knowing what the385

appropriate next step is for solving an equation.386

3.4 Evaluation Metrics387

Since we evaluate MathGPT on a variety of tasks388

with different objectives, we similarly measure per-389

formance using a wide set of task-specific metrics.390

For headline generation, where we measure the391

quality of both generated math and natural lan-392

guage, we use text similarity metrics including393

BLEU-4 (Papineni et al., 2002), ROUGE-L (Lin,394

2004), and METEOR (Banerjee and Lavie, 2005).395

However, since MathGPT outputs mathematical ex-396

pressions as OPTs while the baselines output them397

as a sequence of LaTeX tokens, we convert Math-398

GPT’s expression output back to LaTeX using a399

custom tree parser before computing these metrics.400

We compare the generated output for MathGPT401

and baselines to a modified version of the ground402

3https://pslcdatashop.web.cmu.edu/
DatasetInfo?datasetId=660

truth, where the expressions are converted to OPTs 403

via LaTeXML and then converted back to text via 404

the parser. This conversion is necessary since La- 405

TeXML can change the semantics of an expression. 406

However, these metrics are insufficient since 407

they do not consider the structural integrity of math 408

expressions; for MathGPT, the expressions are gen- 409

erated as trees yet evaluated as text token sequences. 410

To the best of our knowledge, there is no auto- 411

mated metric that can effectively evaluate natural 412

and mathematical languages jointly. Additionally, 413

while human evaluation can be valuable, designing 414

such an experiment is challenging since we need 415

to account for individual text and math properties 416

as well as cohesion between them. We leave both 417

of these aspects for future work. In the current pa- 418

per, we circumvent this roadblock by including two 419

new evaluation tasks that evaluate text and math 420

separately. On math expressions, we use tree edit 421

distance (TED) to evaluate their structural integrity. 422

We use pre-defined train/validation/test splits on 423

the headline generation dataset, and report mean 424

and standard deviation for each metric on the test 425

set over 5 random initializations. For other down- 426

stream datasets where pre-defined splits are not 427

available, we perform a 5-fold cross-validation, 428

where the train/test sets are rotated and 10% of 429

the remaining train set is reserved for validation. 430

We similarly report the mean and and standard de- 431

viation of each metric on the test set over the 5 432

folds. In all cases, we perform early stopping on 433

per-token loss on the validation set. In all result 434

tables, we place a * next to a metric value for Math- 435

GPT if it outperforms baselines with statistical sig- 436

nificance, i.e., p < 0.05 from the Student’s t-test 437

for cross-validation and Welch’s t-test otherwise. 438

3.5 Baselines 439

Since the key innovation in MathGPT is a struc- 440

tural modification on top of the original GPT-2 441

model, our goal is to show that MathGPT outper- 442

forms GPT-2 in terms of representing and gener- 443

ating mathematical content. Therefore, we use i) 444

standard GPT-2 and ii) GPT-2 pre-trained on the 445

math-centric Wikipedia articles as our baselines. 446

Moreover, for some of the downstream tasks, we 447

also report state-of-the-art results as an additional 448

baseline. For a fair comparison with MathGPT 449

on text-based metrics, for the headline generation 450

task, we train and evaluate GPT-2 on a version of 451

the dataset where the mathematical expressions are 452
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Model BLEU-4 ROUGE-L METEOR
MathBERT 49.4 57.7 34.7
MathSum 52.0 54.8 37.5

GPT-2 55.3± 1.1 62.1± 0.0 43.7± 0.3
GPT-2 Wiki 56.1± 0.6 62.2± 0.1 43.7± 0.3

MathGPT 56.5± 0.5 62.2± 0.1 43.8± 0.3

Table 1: Results on headline generation.

converted to OPTs via the processing pipeline and453

then back to LaTeX using the tree parser. For all454

other tasks, we train GPT-2 on the original dataset.455

4 Experimental Results456

We now detail quantitative experimental results to457

validate the effectiveness of MathGPT in jointly458

modeling natural and mathematical languages.459

4.1 Headline Generation460

Table 1 shows results on overall headline genera-461

tion on the EXEQ-300k dataset; see Supplementary462

Material B.1 for results on the smaller OFEQ-10k463

dataset. Table 2 shows results on the next math464

expression and text region prediction sub-tasks.465

We emphasize that when evaluated on text and466

math regions separately, MathGPT significantly467

outperforms GPT-2, especially on TED, which cap-468

tures the structural integrity of math expressions,469

although part of the reason for GPT-2’s high TED470

numbers can be attributed to occasional parsing471

errors in LaTeXML. Interestingly, MathGPT also472

significantly outperforms both GPT-2 models in473

next text region prediction on all metrics, which474

suggests that trees are highly effective at conveying475

the underlying meaning of math expressions, which476

are reflected in the text regions of the headlines.477

However, when we evaluate text and math re-478

gions jointly on existing text-based metrics, Math-479

GPT’s advantage over GPT-2 is minimal and not480

statistically significant. This result can be attributed481

to the lack of existing metrics that consider the482

structural properties of math expressions while483

combining them with text. Both MathGPT and484

GPT-2 significantly outperform prior state-of-the-485

art: MathSum, a sequence-to-sequence method486

and MathBERT (Peng et al., 2021), a BERT-based487

method that leverages tree information and adapted488

to this task. These results show that the GPT family489

of language models are well-suited to generation490

tasks on math content even without task-specific491

architectures such as the copying mechanism.492

4.2 Underlying Equation Extraction 493

Table 3 shows results on the equation extraction 494

task. We also include two task-specific metrics: the 495

percentage of cases where the generated equation 496

and the true equation have the same exact same 497

OPT (Tree Match), and the percentage of cases 498

where both evaluate to the same numerical value 499

(Solve Rate). We see that MathGPT outperforms 500

both GPT-2 models significantly on all metrics, 501

which implies that MathGPT is effective at both 502

extracting mathematical information from textual 503

problem statements and generating equations as the 504

solution. We observe that MathGPT’s advantage 505

over GPT-2 on TED is less than that on the other 506

metrics, due to GPT-2 sometimes generating trees 507

that are similar to the ground truth but containing a 508

few key errors such as using an incorrect operator. 509

We also observe that Solve Rate is higher than Tree 510

Match for all models, since models often generate 511

equations that evaluate to the correct numerical 512

value but have slightly different trees. 513

4.3 Student Action Prediction 514

Table 4 shows results on the student action predic- 515

tion task where we only report the prediction Accu- 516

racy on each (outcome, action, input) triple. We ob- 517

serve that MathGPT outperforms both GPT-2 mod- 518

els. More specifically, when students are correct, 519

MathGPT predicts the action and input correctly 520

63.5% of the time, whereas GPT-2 and GPT-2 with 521

math Wikipedia pre-training are correct 61.2% and 522

61.5% of the time, respectively. However, when 523

students are incorrect, these numbers significantly 524

decrease to 6.6%, 6.4%, and 6.8%. This observa- 525

tion implies that MathGPT outperforms GPT-2 on 526

mathematical reasoning but not on predicting stu- 527

dent errors, which is expected since these models 528

do not account for variation in student knowledge. 529

4.4 Ablation Study 530

We examine the impact of various components of 531

MathGPT on its downstream performance via an 532

ablation study. Specifically, we create several ver- 533

sions of the model: with no tree position embed- 534

dings (TPE), with no math symbol type embed- 535

dings (TE), learning unique math token embed- 536

dings instead of linking with text token embeddings 537

(SE), and treating most frequent numbers as their 538

own token instead of as subtrees (NT). We note 539

that it is difficult to ablate on constrained decoding 540

since it is central to MathGPT; without these con- 541
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Next Mathematical Expression Next Text Region
Model BLEU-4 ROUGE-L METEOR TED BLEU-4 ROUGE-L METEOR
GPT-2 77.4± 0.2 83.1± 0.0 56.1± 0.1 4.125± 0.035 42.5± 0.2 58.1± 0.3 38.3± 0.2
GPT-2 Wiki 77.4± 0.2 83.5± 0.1 56.2± 0.0 4.079± 0.045 43.8± 0.5 54.5± 0.2 40.6± 0.0

MathGPT 77.6± 0.2 *83.7± 0.1 *56.4± 0.1 *2.656± 0.023 *46.2± 0.1 *63.3± 0.1 *42.2± 0.1

Table 2: Results on next mathematical expression (left) and next text region (right) prediction.

Model Tree Match Solve Rate TED
GPT-2 47.8± 1.0 54.6± 1.1 2.669± 0.099
GPT-2 Wiki 47.2± 0.7 54.0± 0.8 2.595± 0.024

MathGPT *52.4± 1.1 *60.3± 1.3 2.449± 0.098

Table 3: Results on equation extraction.

Model Accuracy
GPT-2 40.0± 0.8
GPT-2 Wiki 40.3± 1.2

MathGPT *41.8± 1.0

Table 4: Results on student action prediction.

straints, we may generate unparseable sequences542

that cannot be interpreted as trees, making some543

evaluation metrics invalid (e.g., TED). We pre-train544

all models in the ablation study for 25 epochs and545

evaluate on the equation extraction task.546

Table 5 shows results for the ablation study. We547

see that all components, except for type embedding,548

are critical to downstream task performance. Tree549

position embeddings have a higher impact on ac-550

curacy than TED, likely due to these embeddings551

helping place nodes in correct positions. Remov-552

ing numeric sub-trees hurts accuracy, likely since553

it makes it harder for the model to differentiate be-554

tween multi-token numbers. It also reduces TED,555

as expected, since number mismatches have a lower556

overall penalty. Finally, MathGPT pre-trained for557

25 epochs outperforms 50 epochs, which implies558

the model overfits on the Wikipedia data. This559

observation suggests a more diverse pre-training560

dataset would help, which we leave for future work.561

TPE TE SE NT Tree Match TED Solve Rate
Pre-trained for 50 epochs

52.4± 1.1 2.449± 0.098 60.3± 1.3

Pre-trained for 25 epochs
53.1± 0.9 2.367± 0.060 61.2± 1.0

✕ 52.6± 0.5 2.371± 0.038 60.3± 0.8
✕ 53.0± 0.4 2.362± 0.021 61.0± 0.7

✕ 51.0± 0.4 2.464± 0.037 58.6± 0.6
✕ 49.4± 0.8 1.734± 0.026 57.1± 1.0

Table 5: Results of ablation on equation extraction.

Figure 2: MathGPT operator token embeddings.

Figure 3: GPT-2 operator token embeddings.

5 Qualitative Analysis 562

We now qualitatively investigate how MathGPT 563

represents the semantic and structural aspects of 564

mathematical language differently than GPT-2 fine- 565

tuned on the same math Wikipedia articles. 566

5.1 Math Token Embeddings 567

Figures 2 and 3 show the semantic embeddings 568

of the top 100 most frequent mathematical op- 569

erator tokens for MathGPT and GPT-2, respec- 570

tively, visualized in 2D using t-SNE (Van der 571

Maaten and Hinton, 2008). For MathGPT we show 572

embtok(si)+embtype(si), and for GPT-2 we show 573

the average token embeddings of an operator’s La- 574

TeX symbol. We see a few key differences. First, 575

MathGPT seems to group symbols together based 576

on mathematical semantic similarity, whereas GPT- 577

2 seems to group symbols together that may appear 578

in similar contexts. For example, MathGPT groups 579

= and inequalities together and keeps +, −, and ± 580

in a separate group. GPT-2 groups = with algebraic 581
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Figure 4: Position embeddings for MathGPT (left) and
GPT-2 (right).

operators and other symbols and keeps inequalities582

in a separate group. Second, MathGPT separates583

several pairs of symbols that are grouped together584

by GPT-2 such as (min, max) and (
⋃

,
⋂

). This585

observation shows that MathGPT places high im-586

portance on an operator’s effect on other symbols587

in addition to its category. We note that different588

initializations of t-SNE result in different visualiza-589

tions; see Supplementary Material C.1 for details.590

5.2 Tree Position Representations591

Figure 4 shows the learned (tree) positional embed-592

dings for MathGPT, i.e., embsp(i) + embtp(pi),593

and for GPT-2, i.e., embsp(i), visualized in 2D us-594

ing t-SNE, for the mathematical expression x =595

280/(1−(2/5)−(1/3)). We see that the MathGPT596

embeddings clearly show a tree structure, where597

nodes that are deeper in the tree are further from598

nodes high in the tree and sibling and cousin nodes599

are close together. For GPT-2, while nodes that600

appear later in the expression are far from those601

that appear early, the mathematical structure of the602

expression is not clearly reflected. While these603

results are expected, they show that MathGPT’s po-604

sition embeddings explicitly capture the structural605

properties of mathematical expressions.606

6 Related Work607

Representations of mathematical language Exist-608

ing work on studying the representations of mathe-609

matical language is mainly motivated by informa-610

tion retrieval, i.e., retrieving a semantically and/or611

structurally relevant mathematical expression (of-612

ten formula) given a query (Zanibbi et al., 2016a;613

Davila and Zanibbi, 2017). Both representations614

based on expert-crafted rules (Zhong and Zanibbi,615

2019; Zhong et al., 2020) and those learned from616

large-scale scientific formula data (Mansouri et al.,617

2019; Wang et al., 2021) have been shown to be618

highly effective at this task. However, most of 619

these works do not consider the important textual 620

context around expressions. Several recent works 621

jointly model text and math: TopicEq (Yasunaga 622

and Lafferty, 2019) learns topic keywords associ- 623

ated with expressions, MathSum (Yuan et al., 2020) 624

generates headlines for mathematical discussion 625

forum posts, and one of the MathBERT models 626

(Shen et al., 2021) learns how to grade students’ 627

open-ended math responses. However, none of 628

these works leverage the tree structure of math ex- 629

pressions. Another MathBERT model (Peng et al., 630

2021) and a recent work (Mansouri et al., 2022) 631

jointly represent textual tokens and expressions in 632

their tree format. However, neither is naturally 633

suited for generation tasks. 634

Mathematical reasoning in language models Ex- 635

isting work on studying the mathematical reason- 636

ing ability of language models (Lample and Char- 637

ton, 2020; Saxton et al., 2019b) is mainly moti- 638

vated by the math problem solving task. Despite 639

evidence that pre-trained neural language models 640

have limited mathematical reasoning ability (Sax- 641

ton et al., 2019a; Jin et al., 2021), they are able to 642

solve simple math word problems accurately using 643

techniques such as verifiers (Cobbe et al., 2021) 644

and chain-of-thought prompting (Wei et al., 2022). 645

However, these models do not take the tree struc- 646

ture of mathematical expressions into account and 647

simply represent them as LaTeX token sequences. 648

7 Conclusions and Future Work 649

In this paper, we proposed a series of modifica- 650

tions to common language models to represent and 651

generate text and math jointly. We applied these 652

modifications to GPT-2, resulting in the MathGPT 653

model, which excels at capturing the semantic and 654

structural properties of mathematical expressions in 655

generative tasks. There are many avenues of future 656

work, including i) expand the pre-training dataset 657

for MathGPT to cover a wider range of mathe- 658

matical topics and complexity levels, ii) develop 659

representations of expressions that are invariant un- 660

der structural transformations that do not change 661

their semantic meaning, iii) conduct human evalua- 662

tion to further validate the quality of the generated 663

mathematical expressions in multiple aspects and 664

iv) develop similarity metrics for mathematical lan- 665

guage (such as CodeBLEU (Ren et al., 2020) for 666

code) and validate these metrics with evaluations 667

from human experts. 668
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Limitations669

There are several limitations to MathGPT, both670

practical and fundamental. First, the model de-671

pends on an external method for converting math-672

ematical expressions to OPTs, currently being673

LaTeXML. The conversion method is imperfect,674

which limits MathGPT’s capabilities as it will be675

presented with many distorted expressions during676

training and at test time. Furthermore, the conver-677

sion process is slow and requires dataset-specific678

engineering to accommodate, making it difficult679

to deploy the model across many datasets. Sec-680

ond, because MathGPT outputs trees rather than681

sequences, it is fundamentally difficult to evaluate682

and utilize in text-based settings without a highly683

accurate tree-to-text converter. The tree-to-text684

converter is yet another imperfect process in the685

pipeline, although it could be improved to a rea-686

sonable degree with significant engineering effort.687

Third, because MathGPT has additional compo-688

nents and requires more information per token than689

GPT-2, it has higher space and time requirements690

that make training more expensive. Finally, be-691

cause MathGPT is pre-trained on highly formal and692

structured mathematical content, it may struggle to693

generalize to student-generated mathematical lan-694

guage, which is often error-prone and may exhibit695

very different patterns.696

Ethics Statement697

All large language models are prone to reflecting698

biases seen in their training data. Since Math-699

GPT would likely find its greatest use in an ed-700

ucational setting, extensive care would have to be701

taken to identify and mitigate bias against students702

across demographics and backgrounds if deployed703

in these settings. It is also possible that differ-704

ent patterns exist in mathematical language written705

by students across demographic groups, such as706

the choice of variable names or structural choices707

that reflect different educational backgrounds. Be-708

fore being deployed in an educational setting, stud-709

ies should be performed to ensure that the model710

would not “prefer” any patterns that tend to be ex-711

hibited by certain groups of students. It would712

also be necessary to examine the impact of bias713

mitigation strategies on removing such preferences714

and on the effectiveness of the model overall. We715

did not perform any such studies as part of this716

work since we did not use any student-generated717

datasets that contained demographic information,718

though we welcome such studies and consider it an 719

important part of the future of this line of work. 720

References 721

Satanjeev Banerjee and Alon Lavie. 2005. Meteor: An 722
automatic metric for mt evaluation with improved cor- 723
relation with human judgments. In Proceedings of 724
the acl workshop on intrinsic and extrinsic evaluation 725
measures for machine translation and/or summariza- 726
tion, pages 65–72. 727

Tom Brown, Benjamin Mann, Nick Ryder, Melanie 728
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind 729
Neelakantan, Pranav Shyam, Girish Sastry, Amanda 730
Askell, et al. 2020. Language models are few-shot 731
learners. Advances in neural information processing 732
systems, 33:1877–1901. 733

Karl Cobbe, Vineet Kosaraju, Mohammad Bavar- 734
ian, Jacob Hilton, Reiichiro Nakano, Christopher 735
Hesse, and John Schulman. 2021. Training veri- 736
fiers to solve math word problems. arXiv preprint 737
arXiv:2110.14168. 738

Kenny Davila and Richard Zanibbi. 2017. Layout and 739
semantics: Combining representations for mathemat- 740
ical formula search. In Prof. Intl. ACM SIGIR Conf. 741
Res. Develop. Info. Retrieval, page 1165–1168. 742

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 743
Kristina N. Toutanova. 2018. Bert: Pre-training of 744
deep bidirectional transformers for language under- 745
standing. 746

John A Erickson, Anthony F Botelho, Steven McA- 747
teer, Ashvini Varatharaj, and Neil T Heffernan. 2020. 748
The automated grading of student open responses in 749
mathematics. In Proceedings of the Tenth Interna- 750
tional Conference on Learning Analytics & Knowl- 751
edge, pages 615–624. 752

Danqing Huang, Jing Liu, Chin-Yew Lin, and Jian Yin. 753
2018. Neural math word problem solver with re- 754
inforcement learning. In Proceedings of the 27th 755
International Conference on Computational Linguis- 756
tics, pages 213–223, Santa Fe, New Mexico, USA. 757
Association for Computational Linguistics. 758

J. D. Hunter. 2007. Matplotlib: A 2d graphics environ- 759
ment. Computing in Science & Engineering, 9(3):90– 760
95. 761

Zhihua Jin, Xin Jiang, Xingbo Wang, Qun Liu, Yong 762
Wang, Xiaozhe Ren, and Huamin Qu. 2021. Numgpt: 763
Improving numeracy ability of generative pre-trained 764
models. arXiv preprint arXiv:2109.03137. 765

Guillaume Lample and François Charton. 2020. Deep 766
learning for symbolic mathematics. In Proc. Intl. 767
Conf. Learn. Representations. 768

Aitor Lewkowycz, Anders Andreassen, David Dohan, 769
Ethan Dyer, Henryk Michalewski, Vinay Ramasesh, 770

9

https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://aclanthology.org/C18-1018
https://aclanthology.org/C18-1018
https://aclanthology.org/C18-1018
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55


Ambrose Slone, Cem Anil, Imanol Schlag, Theo771
Gutman-Solo, et al. 2022. Solving quantitative772
reasoning problems with language models. arXiv773
preprint arXiv:2206.14858.774

Zhenwen Liang, Jipeng Zhang, Lei Wang, Wei Qin,775
Yunshi Lan, Jie Shao, and Xiangliang Zhang. 2022.776
MWP-BERT: Numeracy-augmented pre-training for777
math word problem solving. In Findings of the Asso-778
ciation for Computational Linguistics: NAACL 2022,779
pages 997–1009, Seattle, United States. Association780
for Computational Linguistics.781

Chin-Yew Lin. 2004. Rouge: A package for automatic782
evaluation of summaries. In Text summarization783
branches out, pages 74–81.784

Behrooz Mansouri, Douglas W. Oard, and Richard785
Zanibbi. 2022. Contextualized formula search using786
math abstract meaning representation. In Proceed-787
ings of the 31st ACM International Conference on788
Information & Knowledge Management, CIKM ’22,789
page 4329–4333, New York, NY, USA. Association790
for Computing Machinery.791

Behrooz Mansouri, Shaurya Rohatgi, Douglas W. Oard,792
Jian Wu, C. Lee Giles, and Richard Zanibbi. 2019.793
Tangent-cft: An embedding model for mathematical794
formulas. In Proceedings of the 2019 ACM SIGIR795
International Conference on Theory of Information796
Retrieval, ICTIR ’19, page 11–18, New York, NY,797
USA. Association for Computing Machinery.798

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-799
Jing Zhu. 2002. Bleu: a method for automatic evalu-800
ation of machine translation. In Proceedings of the801
40th annual meeting of the Association for Computa-802
tional Linguistics, pages 311–318.803

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,804
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,805
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,806
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-807
esnay. 2011. Scikit-learn: Machine learning in808
Python. Journal of Machine Learning Research,809
12:2825–2830.810

Shuai Peng, Ke Yuan, Liangcai Gao, and Zhi Tang.811
2021. Mathbert: A pre-trained model for math-812
ematical formula understanding. arXiv preprint813
arXiv:2105.00377.814

Alec Radford, Jeff Wu, Rewon Child, David Luan,815
Dario Amodei, and Ilya Sutskever. 2019. Language816
models are unsupervised multitask learners.817

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu,818
Duyu Tang, Neel Sundaresan, Ming Zhou, Ambrosio819
Blanco, and Shuai Ma. 2020. CodeBLEU: a Method820
for Automatic Evaluation of Code Synthesis. arXiv821
e-prints, page arXiv:2009.10297.822

David Saxton, Edward Grefenstette, Felix Hill, and823
Pushmeet Kohli. 2019a. Analysing mathematical824
reasoning abilities of neural models. arXiv preprint825
arXiv:1904.01557.826

David Saxton, Edward Grefenstette, Felix Hill, and 827
Pushmeet Kohli. 2019b. Analysing mathematical 828
reasoning abilities of neural models. In Proc. Intl. 829
Conf. Learn. Representations. 830

Shikhar Sharma, Layla El Asri, Hannes Schulz, and 831
Jeremie Zumer. 2017. Relevance of unsupervised 832
metrics in task-oriented dialogue for evaluating natu- 833
ral language generation. CoRR, abs/1706.09799. 834

Jia Tracy Shen, Michiharu Yamashita, Ethan Prihar, Neil 835
Heffernan, Xintao Wu, Ben Graff, and Dongwon Lee. 836
2021. Mathbert: A pre-trained language model for 837
general nlp tasks in mathematics education. arXiv 838
preprint arXiv:2106.07340. 839

Ross Taylor, Marcin Kardas, Guillem Cucurull, Thomas 840
Scialom, Anthony Hartshorn, Elvis Saravia, Andrew 841
Poulton, Viktor Kerkez, and Robert Stojnic. 2022. 842
Galactica: A large language model for science. arXiv 843
preprint arXiv:2211.09085. 844

Laurens Van der Maaten and Geoffrey Hinton. 2008. 845
Visualizing data using t-sne. Journal of machine 846
learning research, 9(11):2579–2605. 847

Yan Wang, Xiaojiang Liu, and Shuming Shi. 2017. 848
Deep neural solver for math word problems. In Pro- 849
ceedings of the 2017 Conference on Empirical Meth- 850
ods in Natural Language Processing, pages 845–854. 851

Zichao Wang, Mengxue Zhang, Richard G. Baraniuk, 852
and Andrew S. Lan. 2021. Scientific formula re- 853
trieval via tree embeddings. In 2021 IEEE Interna- 854
tional Conference on Big Data (Big Data), pages 855
1493–1503. 856

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 857
Bosma, Ed Chi, Quoc Le, and Denny Zhou. 2022. 858
Chain of thought prompting elicits reasoning in large 859
language models. arXiv preprint arXiv:2201.11903. 860

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien 861
Chaumond, Clement Delangue, Anthony Moi, Pier- 862
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow- 863
icz, Joe Davison, Sam Shleifer, Patrick von Platen, 864
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, 865
Teven Le Scao, Sylvain Gugger, Mariama Drame, 866
Quentin Lhoest, and Alexander Rush. 2020. Trans- 867
formers: State-of-the-art natural language processing. 868
In Proceedings of the 2020 Conference on Empirical 869
Methods in Natural Language Processing: System 870
Demonstrations, pages 38–45, Online. Association 871
for Computational Linguistics. 872

Michihiro Yasunaga and John Lafferty. 2019. TopicEq: 873
A Joint Topic and Mathematical Equation Model for 874
Scientific Texts. In Proc. AAAI conf. Artificial Intell. 875

Ke Yuan, Dafang He, Zhuoren Jiang, Liangcai Gao, Zhi 876
Tang, and C Lee Giles. 2020. Automatic generation 877
of headlines for online math questions. In Proceed- 878
ings of the AAAI Conference on Artificial Intelligence, 879
volume 34, pages 9490–9497. 880

10

https://doi.org/10.18653/v1/2022.findings-naacl.74
https://doi.org/10.18653/v1/2022.findings-naacl.74
https://doi.org/10.18653/v1/2022.findings-naacl.74
https://doi.org/10.1145/3511808.3557567
https://doi.org/10.1145/3511808.3557567
https://doi.org/10.1145/3511808.3557567
https://doi.org/10.1145/3341981.3344235
https://doi.org/10.1145/3341981.3344235
https://doi.org/10.1145/3341981.3344235
http://arxiv.org/abs/2009.10297
http://arxiv.org/abs/2009.10297
http://arxiv.org/abs/2009.10297
http://arxiv.org/abs/1706.09799
http://arxiv.org/abs/1706.09799
http://arxiv.org/abs/1706.09799
http://arxiv.org/abs/1706.09799
http://arxiv.org/abs/1706.09799
https://doi.org/10.1109/BigData52589.2021.9671942
https://doi.org/10.1109/BigData52589.2021.9671942
https://doi.org/10.1109/BigData52589.2021.9671942
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6


Richard Zanibbi, Akiko Aizawa, Michael Kohlhase,881
Iadh Ounis, Goran Topic, and Kenny Davila. 2016a.882
Ntcir-12 mathir task overview. In Proc. NTCIR Conf.883
Eval. Info. Access.884

Richard Zanibbi, Akiko Aizawa, Michael Kohlhase,885
Iadh Ounis, Goran Topic, and Kenny Davila. 2016b.886
Ntcir-12 mathir task overview. In NTCIR.887

Mengxue Zhang, Sami Baral, Neil Heffernan, and An-888
drew Lan. 2022. Automatic short math answer grad-889
ing via in-context meta-learning. arXiv preprint890
arXiv:2205.15219.891

Wei Zhong, Shaurya Rohatgi, Jian Wu, C. Lee Giles,892
and Richard Zanibbi. 2020. Accelerating substruc-893
ture similarity search for formula retrieval. In Proc.894
European Conf. Info. Retrieval, pages 714–727.895

Wei Zhong and Richard Zanibbi. 2019. Structural sim-896
ilarity search for formulas using leaf-root paths in897
operator subtrees. In Proc. Intl. Conf. Neural Info.898
Process. Syst., pages 116–129.899

Yanyan Zou and Wei Lu. 2019. Text2Math: End-to-end900
parsing text into math expressions. In Proceedings of901
the 2019 Conference on Empirical Methods in Natu-902
ral Language Processing and the 9th International903
Joint Conference on Natural Language Processing904
(EMNLP-IJCNLP), pages 5327–5337, Hong Kong,905
China. Association for Computational Linguistics.906

A Hyperparameters and Implementation907

Details908

MathGPT is implemented in PyTorch, using the909

pre-trained small OpenAI GPT-2 model (Radford910

et al., 2019) from the HuggingFace Transformers911

library (Wolf et al., 2020) as a base. For both pre-912

training and fine-tuning, we use sequence lengths913

of 1,024, and we limit OPTs to a depth of 32 and914

a per-node child count of 64. While multi-digit915

numbers are converted to sub-trees, we use individ-916

ual nodes to represent single-digit numbers. We917

use the AdamW optimizer with a learning rate of918

1e-5, a weight decay of 1e-2, and a batch size of919

4, accumulating gradients every 4 batches. At test920

time, we generate sequences using beam search921

with a width of 3. These hyperparameters were922

chosen based on exploratory evaluations and are923

mostly the defaults, and no substantive hyperpa-924

rameter search was performed. We use the same925

hyperparameters for training MathGPT and GPT-2.926

All models were trained on NVIDIA Quadro RTX927

8000 or NVIDIA Tesla V100 GPUs.928

For t-SNE, we use the scikit-learn (Pedregosa929

et al., 2011) implementation with a perplexity of930

10 and the remaining hyperparameters at their de-931

fault values. We manually chose random seeds to932

produce the most visually clear images. We plot 933

data using matplotlib (Hunter, 2007). We compute 934

text similarity metrics using the nlg-eval (Sharma 935

et al., 2017) library, and compute tree edit distance 936

using the zss 4 library. 937

We note that all software used in the develop- 938

ment of this work is either in the public domain, 939

open source, or does not specify a license. 940

B Additional Downstream Tasks 941

B.1 Headline Generation - OFEQ-10k 942

We examine the performance of MathGPT and 943

GPT-2 on the headline generation task using the 944

OFEQ-10k dataset (Yuan et al., 2020). We show 945

the overall task results in Table 6, the expression- 946

only task results in Table 7, and the text-only task 947

results in Table 8. We see surprisingly different 948

results than on the EXEQ-300k dataset. We ob- 949

serve that MathGPT performs worse on the task 950

overall than GPT-2 and GPT-2 Wiki, although it 951

still outperforms them on the expression-only and 952

text-only tasks. We also observe that, counterin- 953

tuitively, GPT-2 Wiki performs slightly worse on 954

the overall task than GPT-2, although it performs 955

higher on the expression-only and text-only tasks. 956

The negative impact of the Wikipedia pre-training, 957

along with the fact that the trends are reversed when 958

compared to the much larger EXEQ-300k dataset, 959

lead us to believe that pre-training on a larger and 960

more diverse dataset would improve performance 961

on OFEQ-10k. We leave this investigation for fu- 962

ture work. 963

B.2 Student Answer Scoring 964

We evaluate on the task of scoring student solutions 965

to open-ended math problems from the ASSIST- 966

ments system. This task helps assess the model’s 967

ability to apply mathematical reasoning to student 968

data, as well as generalize to a classification setting. 969

We use the same cleaned dataset and in-context 970

meta-learning method as (Zhang et al., 2022). We 971

also compare to the results from this work, which 972

used a BERT model, and is the current state of 973

the art on this dataset. Since this is a multi-label 974

classification task we use a different set of met- 975

rics, specifically Accuracy, F1, macro-averaged 976

area under the receiver operating characteristic 977

curve (AUC), root mean squared error (RMSE) 978

4https://github.com/timtadh/
zhang-shasha
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Model BLEU-4 ROUGE-L METEOR
MathSum 29.4 39.0 26.8

GPT-2 34.8± 0.6 46.9± 0.5 33.2± 0.3
GPT-2 Wiki 34.5± 0.6 46.4± 0.2 32.8± 0.3

MathGPT 34.2± 0.9 47.2± 0.4 32.6± 0.5

Table 6: Results on headline generation for OFEQ-10k dataset.

Model BLEU-4 ROUGE-L METEOR TED
GPT-2 58.1± 1.4 74.0± 0.3 47.0± 0.6 3.806± 0.066
GPT-2 Wiki 60.0± 1.4 76.2± 0.3 48.1± 0.6 3.444± 0.092

MathGPT *62.2± 0.8 *76.8± 0.1 *49.1± 0.3 *2.862± 0.031

Table 7: Results on next expression prediction for OFEQ-10k dataset.

and Cohen’s Kappa. We show the results of cross-979

validation on the task in Table 9. We observe that980

there is no significant difference between MathGPT981

and GPT-2 on this task. This is possibly due to the982

fact that many of the samples in the dataset either983

do not contain math expressions or contain only984

small ones, minimizing the effect of MathGPT’s985

representations. The results may also imply that986

MathGPT sees most of its benefits in a generative987

rather than classification setting, although more ex-988

periments would need to be run to confirm this. We989

did not evaluate this task on GPT-2 Wiki. We note990

that the improvement over BERT is likely due to991

additional data processing we performed and small992

differences in our training setup.993

C Additional Qualitative Analysis994

C.1 Additional Math Token Representations995

We examine the effects of different random seeds996

for t-SNE initialization on operator token repre-997

sentations. We show two such visualizations for998

MathGPT in Figure 5 and two such visualizations999

for GPT-2 (fine-tuned on math Wikipedia articles)1000

in Figure 6. We observe that while most clusters1001

stay the same across initializations, a few tokens1002

tend to float around, in particular log, ln, and exp.1003

We also show the representations of the 50 most1004

common variable tokens, for both MathGPT and1005

GPT-2, in Figure 7. For both models, we observe1006

that lower- and upper-case versions of the same let-1007

ter are close together, and that Greek letters are dis-1008

tant from the English letters. Interestingly, in con-1009

trast to operator tokens, there is very little change in1010

variable token relationships across the models. This1011

may be because the semantic meaning of variables1012

is highly context-sensitive, preventing MathGPT1013

from making generalizations at the token-level.1014

D Additional Dataset Details 1015

For completeness and transparency, we list the 1016

statistics and other details of all datasets used in 1017

this work. We list licenses when they are available, 1018

and privacy details when they are relevant. 1019

The math Wikipedia articles used for pre- 1020

training are provided under a Creative Commons 1021

BY-SA license. We exclusively use the MathTagAr- 1022

ticles portion of the dataset, which contains 31,839 1023

articles. 1024

The EXEQ-300k and OFEQ-10k datasets consist 1025

of (train, validation, test) splits of sizes (261,341, 1026

14,564, 14,574) and (10,301, 1,124, 1,123), respec- 1027

tively. Due to processing errors in a small portion 1028

of samples, the EXEQ-300k test set was reduced 1029

to a size of 14,474. However, we believe that this 1030

reduction is small enough (∼ 0.7%) to not have a 1031

significant impact on reported results. 1032

The Math23k dataset consists of 23,162 math 1033

word problems originally in Chinese and translated 1034

to English for use in this work. We chose to not 1035

use the publicly available test split for this dataset 1036

because it is very small compared to the size of the 1037

dataset (1000 samples), so cross-validation would 1038

provide a better measure of performance. 1039

The Cognitive Tutor dataset consists of 8,298 1040

unique problems and 95 students. All student iden- 1041

tities are anonymized. Since student responses are 1042

constrained by the software, it is unlikely that they 1043

contain personally identifying information. 1044

The version of the student answer scoring dataset 1045

we use consists of 1,333 unique problems and 1046

130,940 responses, with each assigned a score from 1047

1 to 5. The original dataset was introduced by 1048

(Erickson et al., 2020). While student identities 1049

are anonymized, it is possible that personally iden- 1050

tifying information is present in the open-ended 1051
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Model BLEU-4 ROUGE-L METEOR
GPT-2 15.1± 0.5 40.4± 0.5 20.2± 0.5
GPT-2 Wiki 20.5± 0.2 38.3± 0.4 25.0± 0.3

MathGPT 20.6± 0.5 *43.7± 0.2 *26.6± 0.3

Table 8: Results on next text region prediction for OFEQ-10k dataset.

Model Accuracy F1 AUC RMSE Kappa
BERT – – 73.3± 0.6 1.077± 0.002 58.9± 0.4

GPT-2 82.4± 0.2 61.8± 0.5 94.3± 0.2 0.933± 0.007 63.6± 0.4

MathGPT 82.2± 0.3 61.8± 0.7 94.2± 0.1 0.935± 0.014 63.7± 0.5

Table 9: Results on student answer scoring task.

Figure 5: MathGPT operator token embeddings with different t-SNE random seeds.

Figure 6: GPT-2 operator token embeddings with different t-SNE random seeds.

Figure 7: Variable token embeddings for MathGPT (left) and GPT-2 (right).
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student responses, and as such the dataset is not1052

publicly available.1053

E Data Pipeline Illustration1054

In Figure 8, we show the full data processing1055

pipeline for a single expression.1056
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Figure 8: Data processing pipeline for the expression newvelocity = 9.8t. The expression is initially converted to
Content MathML format by LaTeXML, and is stored as HTML. It is then converted to a recursive operator tree
format by TangentCFT, and is stored as JSON. Each node is represented by a 3-tuple, storing the TangentCFT
type, followed by the node’s name, followed by the list of children or null if there are none. The expression is
then sent through the post-processing pipeline, which tokenizes nodes, converts nodes out of the vocabulary to
GPT-2-tokenized sub-trees, converts numbers to sub-trees, adds end nodes, and computes tree position vectors
(shown to the upper right of each node). This representation can be converted to a depth-first traversal of the tokens
in order to be processed by MathGPT. It may also be converted back to human-readable text as LaTeX.
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