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Abstract

Backgrounds in images play a major role in contributing to spurious correlations among
different data points. Owing to aesthetic preferences of humans capturing the images, datasets
can exhibit positional (location of the object within a given frame) and size (region-of-interest
to image ratio) biases for different classes. In this paper, we show that these biases can impact
how much a model relies on spurious features in the background to make its predictions.
To better illustrate our findings, we propose a synthetic dataset derived from ImageNet1k,
Hard-Spurious-ImageNet, which contains images with various backgrounds, object positions,
and object sizes. By evaluating the dataset on different pretrained models, we find that most
models rely heavily on spurious features in the background when the region-of-interest (ROI)
to image ratio is small and the object is far from the center of the image. Moreover, we also
show that current methods that aim to mitigate harmful spurious features, do not take into
account these factors, hence fail to achieve considerable performance gains for worst-group
accuracies when the size and location of core features in an image change.

1 Introduction

Spurious features are defined as features that are predictive of the class label without being directly related to
it. Such features are usually helpful for object recognition when the object is placed in a perfect environment
or context. An example of that would be a sea lion near a body of water. This is because most models
learn to associate water with sea lions and vice versa. On the contrary, spurious features can be extremely
harmful when the object or the "core" features are observed in an unusual environment or against a spurious
background. This scenario can happen when the model is deployed in the wild. Deep neural networks can
be fooled easily to predict the label from the spurious cues in the background without relying on "object"
or "core" features in the image itself. Recently, a plethora of techniques have been proposed to mitigate
the reliance on unnecessary cues for image classification. Sagawa et al. (2019) introduced a distributionally
robust optimization technique which, coupled with strong regularization, helped in achieving high accuracies
for data groups that have strong spurious feature reliance. Similarly, Kirichenko et al. (2022) address this
problem by retraining the last layer of a DNN using equal data points from different groups with core and
spurious backgrounds. These methods are helpful when the test set exhibits similar biases as the training
data, yet they fail to achieve similar performance gains when these biases are explicitly removed.

Biases in datasets can hugely impact a deep neural network’s performance. Earlier works have proven that
convolutional neural networks are not entirely translation invariant and have the capacity to learn location
information about objects Biscione & Bowers (2021). Some studies have found that models perform poorly
on untrained locations Biscione & Bowers (2020). Similarly, object size within an input frame can lead to
models performing badly when the sizes differ at inference time. The deep learning community has tried
to mitigate the effect of these biases by proposing different data augmentation techniques that ensure that
models are robust to changes in size and locations of the objects. However, the impact of the aforementioned
factors in the presence of spurious features remains less explored.
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b)  Zucchini c) Goldfish d) Sea Liona) Tench

Figure 1: Gradcam visualizations for Pre-trained ConvNext-Base. a) Model predicts core class "Tench" when
the object is located in the center of the image, b) Spurious class "Zucchini" is predicted when the "core"
class moves away from the center, c) Class "GoldFish" is predicted when the size of the core object is large
(112 × 112), d) Spurious class "Sea Lion" is predicted when size of core object reduces to 84 × 84.

In this work, we try to answer the questions: In the absence of biases mentioned above, namely position and
size of objects, how much do pre-trained models rely on spurious backgrounds to make their predictions, and
are the current techniques that mitigate harmful spurious features, enough to tackle this problem? Specifically,
the contributions of our work are as follows:

• We calculate centeredness and size scores of different classes in ImageNet Deng et al. (2009), and
analyze their relation with the level of spuriousity present in that class.

• We derive a dataset from ImageNet1k, called Hard-Spurious-ImageNet, containing objects against
spurious backgrounds with varying sizes and positions. The code to generate the dataset will be
provided.

• With the help of experimentation and ablation, we conclude that the size and location of the object
should be taken into account when trying to mitigate harmful spurious correlations in the dataset.

2 Related Work

2.1 Spurious Features

Moayeri et al. (2022a) show that adversarial training increases model reliance on spurious features. They
also show that increased spurious feature reliance occurs when the perturbations added to core features
are too small to break spurious correlations. Murali et al. (2023) show that spurious features are related
with a model’s learning dynamics. Specifically, "easier" features learnt in the start of model training can
hurt generalization. Neuhaus et al. (2023) proposed a method to identify spurious features in the ImageNet
dataset and introduced a fix to mitigate a model’s dependence on these features without requiring additional
labels. While the proposed methods to mitigate spurious feature reliance are helpful in many cases, their
efficacy is less known when factors such as size and location of core features in an image change.

2.2 Existing Datasets

Xiao et al. (2020) present an analysis of model’s performance as a function of varying backgrounds and
foregrounds for ImageNet. They conclude that more accurate models have less reliance on backgrounds.They
also a propose a dataset called ImageNet-9 with mixed foregrounds and backgrounds. Moayeri et al. (2022b)
propose a dataset derived from ImageNet with segmentation masks for a subset of images. These masks
label entire objects and various visual attributes. They name this dataset RIVAL10 and also test different
models’ sensitivity to noise in backgrounds and foregrounds. Moayeri et al. (2022c) propose a dataset with
segmentation masks for images in 15 classes of ImageNet1k. These images have high spurious features. They
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Figure 2: Left: ImageNet classes and their center and size scores. Toyshop has largest center and size scores,
whereas Volleyball has smallest center score and Balance Beam has smallest size score. Other classes are
sampled randomly for visualization. Right: Counts in log scale of relative centers of ground truth bounding
boxes containing the object corresponding to the image class (ImageNet1k validation set). Most object centers
are concentrated around the image center, while some are present along the main axes. Objects of interest
are rarely present in image corners.

attribute this to objects being small and less centered in these images. Singla & Feizi (2021) label spurious
and core features for ImageNet samples. They achieve this by making use of activation maps as soft masks.
Moayeri et al. (2023) rank images in ImageNet dataset based on spurious cues present. They show that
spurious feature reliance is influenced more by the data a model is trained on rather than how a model
is trained. Lynch et al. (2023) propose a photo-realistic dataset with many-to-many spurious correlations
between different groups of spurious attributes and classes. One work closely related to ours is that of Yung
et al. (2021). They do a fine-grained analysis of the robustness of different models by varying factors such
as object size, location, and rotation. Our technical contributions differ from theirs because we take into
account the spuriousity level of backgrounds and correlate it with the above factors as well.
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Figure 3: Correlation between the validation accuracy on inpainted ImageNet and, from left to right, center
scores, size scores, and their product, respectively. Jointly considering center and size score shows strongest
negative correlation with the accuracy.

2.3 Biases in Datasets

While capturing images through a camera, humans often tend to place the region of interest in the center.
Due to this, there often exists a bias in classification datasets where objects are mostly located in the center
of images and away from the boundary of the image. Exploiting the center bias in ImageNet, resizing and
center cropping has been usually used for testing image classification models. Taesiri et al. (2024) show
that there exists a strong center bias in out-of-distribution benchmarks such as ImageNet-A and ObjectNet
by using resize and center crop operations only. They resize the image to multiple scales and patchify it,
followed by a center crop operation at every patch. Doing this, they end up with different zoomed-in versions
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Figure 4: Histograms showing distribution of scores in different classes of ImageNet1k dataset.

of the input images. The computed accuracy of the center crop is maximum showing the presence of a strong
center bias in the dataset. In this paper, we do an in-depth analysis of the presence of center and size bias in
every class of ImageNet by computing distinct scores, The detailed explanation of these scores are given in
following sections.

3 Biases in ImageNet

In this section, we quantitatively analyze positional and size biases present in ImageNet1k. To get a better
sense of these biases, we propose centeredness and size scores.

3.1 Centeredness Score

In the majority of images in ImageNet1k, the objects of interest are located in the image’s center (see Figure 1).
Hence, in this paper, we use "positional" and "center" as synonyms. To understand the extent of center bias
prevalent in ImageNet1k, we propose a Center Score defined as

Cc = 1
M

1
N

M∑
i=1

N∑
j=1

1 − (∥Ii,c − Oi,j,c∥∞), (1)

where Cc is the centeredness score for class c, M is total number of images in the class, N is total number of
objects within a frame, I is image center, and O is object center. The distance between image center and
object center is calculated by the ℓ∞ norm. It is subtracted from 1 to establish a direct relationship between
the score and center bias prevalent in the class c.

3.2 Size Score

To measure the average sizes of objects within images, we define a size score as

Sc = 1
M

1
N

M∑
i=1

N∑
j=1

hjwj

HiWi
, (2)

where Sc is the size score for class c, h and w refer to the height and width of object j in image i. H and
W are the height and width of the image itself. Figure 2 (left) shows the center and size scores of different
classes, with Toyshop having the maximum center and size scores. The histograms in Figure 4 show the
distribution of center and size scores of all the classes in the ImageNet1k validation data. It can be seen that
the majority of the classes in ImageNet1k are highly centered with objects of interest occupying half of the
image pixels on average. These scores are calculated by using Ground Truth bounding boxes of ImageNet.
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Figure 5: Different samples from Hard-Spurious-ImageNet. Image size remains same in all images i.e.
224 × 224, whereas object size changes. Label of every image is same as foreground object.

3.3 Relationship with the Level of Spuriosity

To establish a correlation between centeredness and size scores of every class to spurious feature reliance in
ImageNet, we first calculate the validation accuracies of different classes in ImageNet with object information
removed. We achieve this by using Inpaint-Anything Yu et al. (2023) with the goal of creating a more
realistic effect when the region of interest is removed from the image. The input to Inpaint Anything are
the object bounding boxes and it makes use of Segment Anything Kirillov et al. (2023) to predict masks
for objects within these bounding boxes. These predicted masks are then input to the inpainting model
LaMa Suvorov et al. (2021) which fills the masked region predicted by SAM. Finally, we resize the inpainted
images to 224 × 224. We use ConvNext-Base Liu et al. (2022) pre-trained on ImageNet22k and fine-tuned on
ImageNet1k, to compute the validation accuracies for the inpainted dataset. Classes with higher validation
accuracies indicate higher spurious feature reliance, since the model has learnt to associate the class label
not just with the core object, but also with the background information. In order to assess the correlation
present between center and size scores and the level of spuriousity present in different classes of ImageNet,
we use Kendall’s τ coefficient and Spearman’s correlation coefficient. The negative correlation values (see
Figure 3) depict that there is an inverse relationship between both inpainted data’s accuracy and the different
considered scores, which validates the hypothesis that a higher spurious feature reliance is observed in case of
non-centered large object sizes. The correlation is overall rather weak, which is to be expected since different
classes are differently hard to classify, even from their core features.

4 Dataset

Similar to the waterbirds dataset Sagawa et al. (2019), we say that every datapoint (x, y) has an attribute
a(x) ∈ A which is spuriously correlated with label y. We conjecture that the strength of the correlation
between attribute a(x) and label y is controlled by two factors: size s and position p of the core features
in the input image. To this end, we propose Hard-Spurious-ImageNet, a synthetic dataset to illustrate
the problem of spurious feature reliance in the presence of varying object bounding box sizes, locations, and
backgrounds. The prime motivation of creating the dataset is to have precise control over these factors and
help the community build robust models against stronger spurious cues.

We consider the image content within the provided ground truth object bounding boxes for ImageNet as core
features and the features outside the bounding box as the background. In ImageNet, bounding boxes are
available for all images in the validation data, yet only a subset of images in training data are annotated.
The images are annotated and verified through Amazon Mechanical Turk. We rely on these annotations to
provide us an estimate of the location of core features in any image. As a first step, we want to disentangle
core features from the rest of the image. We achieve this by cropping out the core objects from the images
and inpainting the resulting image, as explained in the previous section. Next, we resize core object bounding
boxes to different sizes, and place them in two different locations against inpainted backgrounds. The size
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Figure 6: Benchmarking results of different models. Performance for our Hard-Spurious-ImageNet-v2 is the
worst across all groups.

and location of core objects and the kind of background chosen, gives rise to different groups in the data. To
efficiently gauge the performance of these different groups, we categorize them as follows:

• Group CeO: Core object in the Center of image against its Original inpainted background.

• Group CoO: Core object in the top right Corner of image against its Original inpainted background.

• Group CeR: Core object in the Center of image against Random inpainted background.

• Group CoR: Core object in the top right Corner of image against Random inpainted background.

We consider three core object sizes: 56 × 56, 84 × 84, and 112 × 112. It is important to note that all the
inpainted backgrounds have already been resized to 224 × 224, so the core object sizes mentioned above
represent 4

64 th, 9
64 th, and 16

64 th of the whole image. We also experimented with object masks obtained from
the Segment Anything Kirillov et al. (2023) model rather than the provided bounding boxes as foreground
objects (see Table 7 in supplementary). We observed that the mask quality for some objects was not good
enough, hence, we used provided bounding boxes for this work.

4.1 Hard-Spurious-ImageNet-v2

Randomly chosen backgrounds have varying levels of spuriousity based on the classes they are taken from.
We derive a variant of the proposed dataset where, instead of choosing backgrounds in a random fashion,
they are chosen based on the level of spurious features present in them. To achieve this, we first analyze the
level of spuriousity present in every class. We give inpainted images without the core objects, as input to the
pretrained ConvNext-Base model , and record the accuracies of every class. The classes where accuracies are
high indicate that the model has learnt to predict the class label without the presence of core objects. On the
contrary, classes for which the accuracy is low are highly reliant on core features to make predictions. We
choose 10 classes that are highly spurious, namely: snorkel, bobsled, maypole, potter’s wheel, gondola, bearskin,
volleyball, basketball, canoe, geyser, and yellow lady’s slipper as backgrounds. For foreground objects, we
choose 10 classes with high core features such as: bluetick, box turtle, Chihuahua, Japanese spaniel, Maltese
dog, Shih-Tzu, Blenheim spaniel, papillon, Rhodesian ridgeback, and basset. We combine the above-mentioned
foregrounds and backgrounds to create a dataset with 10 classes of foreground objects and highly spurious
backgrounds. Similar to before, for every class, the chosen background class remains same for all images
belonging to that class, but the backgrounds can differ from one image to another. Finally, we create four
groups for the dataset as before and test on pre-trained models.

5 Experimental Results

We test the robustness of different models with the two proposed two variants of Hard-Spurious-ImageNet.
The images are already resized to 224 × 224, so no additional resizing is applied to the images when giving as
input to the pre-trained models. Images are normalized with mean and standard deviation of the ImageNet
dataset. We use HuggingFace PyTorch models to test the dataset.
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Model Clean Accuracy
ConvNext-Base 85.86

ResNet50 80.20
CoAtNet 83.59

Table 1: Clean accuracies of standard ImageNet
validation data with different pre-trained models.

Figure 6 shows test accuracies of the proposed data
and its variant on three pretrained models. We
consider ConvNext-Base trained on ImageNet22k
and fine-tuned with ImageNet1k, ResNet50 He et al.
(2016) and CoAtNet Dai et al. (2021) pretrained
on ImageNet1k to test the performance of proposed
dataset. ConvNext Base performs best across all
groups and datasets. This can be attributed to the
fact that the data augmentation pipeline of ConvNext-Base consists of rigorous steps, which ensures it stays
robust to varying object sizes and locations. The difference in accuracy between groups CeR and CoR, when
the core object size is 112 × 112 is less across all the models. This indicates that the core feature size is big
enough for the model to ignore changes in location. Moreover, 1

4 th of the number of pixels in the image are
occupied by core features in this case, so backgrounds are less exposed as compared to when the core object
size is even less. Another interesting observation is that the impact of size change is far stronger on model
performance than the location of core features. We also see that Hard-Spurious-ImageNet-v2 has far worse
performance on groups CeR and CoR across all architectures and sizes. This indicates that the strength of
spurious backgrounds is far greater than that of core features when the size of core features starts to decrease.
We also observe that in almost all the groups, there is significant drop in performance compared with clean
accuracies on standard validation dataset (see Figure 1).

Based on the above observations, we divide all the 12 groups consisting of different core feature sizes and
locations into three distinct categories: Easy: This set consists of Groups CeO and CoO for larger core
feature sizes, i.e. 84 × 84 and 112 × 112, as these groups seem to be doing considerably better than the rest.
Hard: Groups CeR and CoR are the worst performing across all architecture for core feature sizes 56 × 56
and 84 × 84. We categorize them as Hard group. The remaining groups, i.e. groups CeO and CoO for size
56 × 56, and groups CeR and CoR for size 112 × 112 seem to be performing moderately, we put them in
Medium category.

Following the analysis done earlier (see Figure 4), we find that most of the images in ImageNet are centered
with an estimated size score of ≈ 0.5, indicating that on average, the core features in an image occupy half
the number of pixels of the entire image. Keeping this in mind, we create the training data of Hard-Spurious-
ImageNet consisting of majority and minority groups, where the number of images belonging to majority
groups are far more than in minority groups. This is done to replicate the long-tailed distribution nature
of the ImageNet dataset in terms of hardness. For the training data, we consider 80 images per group in
the Easy category and 10 images from groups in Medium and Hard categories. This brings the total to 400
images per class in the training data. Out of the 400 images, 320 images belong to the Easy group and
80 to the Medium and Hard groups. For the validation set, we use a balanced dataset having equal data
points from every group. We use 20 images per group, resulting in 240 images per class. Both training and
validation set of Hard-Spurious-ImageNet are derived from training data of ImageNet, whereas the test set is
derived from the validation data. The test set is also balanced, comprising 50 images per group, totaling 600
images in every class.

5.1 Effects of Data Augmentation and Self-Supervised Models

To measure the effect of data augmentations, we compared vanilla ResNet-50 trained without any augmenta-
tions on ImageNet1K with an advanced training recipe involving auto-augment, random erase, mixup, and
cutmix. The results (shown in Table 2) indicate that while data augmentation increases accuracy across
groups CeO, CoO, and CeR, the performance decreases in case of group CoR for all sizes. This indicates that
standard data augmentation approaches do not take into account the presence of spurious features in the
data while augmenting, hence, may end up highlighting them instead. Moreover, the gap in performance still
persists across all four groups for a given core object size. This hints that mere data augmentation strategies
are insufficient to deal with this problem. In the supplementary materials provided (see Table 5 and Table 6),
we test the model on Hiera-Base with Masked Autoencoder which has been trained in a self-supervised manner.
The results follow a similar trend across groups as other methods shown in the paper, although the Group
CoR for size shows the worst performance when compared with all the other architectures. Moreover, we also
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Model Clean
Accuracy

Object
Resolution

Group Accuracies
CeO CoO CeR CoR

ResNet-50 (Baseline) 76.13
562 38.62 32.53 8.71 7.03
842 56.46 52.47 28.44 27.37
1122 65.87 64.16 46.58 46.57

ResNet-50 (Data Augmentations) 80.33
562 49.14 38.47 13.19 4.49
842 65.74 58.48 33.30 20.01
1122 72.93 68.19 45.12 36.40

ViT Base 81.92
562 44.78 39.37 7.15 5.57
842 63.65 58.83 28.56 25.46
1122 71.31 70.46 46.43 47.93

Table 2: The first two rows show the impact of data augmentation on the proposed dataset. Performance
across group CoR becomes worse, indicating that just augmenting the data might not be enough to deal
with spurious correlations. The third row shows the performance on ViT-Base pre-trained using CLIP and
fine-tuned on IN-1K, highlighting similar trends observed earlier.

Methods Easy Medium Hard Average

Pretrained 65.39 48.50 16.54 43.48
ERM 74.84 66.67 57.56 65.94
JTT 60.90 53.09 46.49 53.50
DFR 72.47 65.65 59.79 65.97

Table 3: Test Performance of different methods on Easy, Medium, and Hard categories in Hard-Spurious-
ImageNet. Average accuracy is the average test performance of all the groups combined.

computed the performance of different groups in the proposed dataset on a ViT pretrained on WIT-400M
image-text pairs by OpenAI using CLIP and fine-tuned on ImageNet1k. The results are given in Table 2 and
show similar trends as reported earlier.

5.2 Group Robustness Methods

We measure the performance of the proposed dataset using simple fine-tuning and two state-of-the-art group
robustness methods. Empirical Risk Minimization or ERM Vapnik (1991) is conventional training to optimize
average training accuracy without specialized methods for optimizing worst-group accuracy. Deep Feature
Reweighting or DFR Kirichenko et al. (2022) tackles the problem of spurious correlations by retraining the
last layer of a pre-trained model with equal data points from different groups present in the training data.
Just Train Twice or JTT Liu et al. (2021) upsamples the training images which were wrongly predicted by
the ERM trained model by a certain factor λup, and trains the classifier again. We experiment with different
variations of the above methods.

Size CeO CoO CeR CoR

562 62.25 60.8 54.56 54.45
842 73.35 72.60 69.76 69.96
1122 77.19 77.13 75.34 75.48

Table 4: Breakdown of test accuracies with
ERMall model. The network architecture is
ResNet50.
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Figure 7: The effect of training epochs of ERM model on the
performance of DFR. ERM model trained with 20 epochs
gives the highest performance for DFR. (right) ERMall
narrows the gap between easy, medium, and hard groups.
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Figure 8: Gradcam visualizations showing regions of the image the model pays attention to in order to make
the classification decision. Labels in red show false predictions and labels in green indicate correct prediction.

5.3 Implementation Details

We use pretrained Resnet50 trained on ImageNet1k for our experiments. The Base model is fine-tuned with
batch size 256, constant learning rate of 0.001 for 20 epochs. The input images are randomly cropped with
an aspect ratio in the bounds (0.75,1.33) and finally resized to 224 × 224. Horizontal flipping is applied
afterward. A momentum of 0.9 and weight decay of 0.001 is used. For DFR, we normalize the embeddings
using mean and standard deviation of validation data used to train the last layer, and use the same statistics
to normalize embeddings of test data. We re-train the last layer for 1000 epochs, learning rate of 1, cosine
learning rate scheduler and SGD optimizer with full-batch. We use ℓ2 regularization with λ set to 100.
These hyperparamters are similar to the ones set by Kirichenko et al. (2022) for optimizing the last layer for
ImageNet-9 dataset Xiao et al. (2020). Since, the data distribution in the proposed dataset and ImageNet-9
is similar, we assumed the same hyperparameters. In case of JTT, models have the same hyperparameters as
the ERM trained model. λup is set to 50.

5.4 Results

The results in Table 3 show that pretrained ImageNet models perform worst on the hard group. This could
be attributed to the fact that the model has very little exposure to small core features against spurious
backgrounds in the training data. The ERM model does better across easy, medium and hard groups, but
there still exists a disparity in performance among the three groups. DFR is able to perform slightly better
in the Hard group by sacrificing some accuracy in Easy and Medium groups. The average test accuracy is
similar for ERM and DFR. The performance with JTT also decreases, which hints that the task of learning
data has become difficult for the model in the presence of upsampled images. Since the embeddings in DFR
are dependent on the ERM-trained model, we also analyze how the number of training epochs the ERM
model is trained for, impacts the DFR performance. The epochs for retraining the last layer remain fixed to
1000, all other hyperparameters also remain the same for DFR models trained with different ERM-trained
embeddings. The left plot in Figure 7 indicates that, when the base model is fine-tuned for 20 epochs, the
performance of DFR on the test set increases. As the training time increases for ERM, performance by DFR
decreases, whereas the ERM model continues to improve.

In case of ERM, we also analyze the effect of the percentage of training data in minority groups i.e. easy
and hard groups on model’s test performance. We refer to ERMeasy as the model that has been fine-tuned
with data from the majority group only i.e. 0% of data from medium and hard group. Conversely, we refer
to ERMall as the model that has been fine-tuned with equal data points from all the groups, and ERM as
the standard training data consisting of 20% of data from minority groups. The results are depicted in the
right plot in Figure 7. We see that training with the Easy group has worst performance on the Hard group.
ERMall seems to narrow the gap between all groups. The accuracy of the Easy group remains similar across
the three models.

Table 4 shows the breakdown of accuracies for all the sub-groups for ERMall model. As compared to accuracies
shown in Figure 6, there is a considerable improvement in case of CoR and CeR for size 56 × 56 and 84 × 84.
The closest to clean accuracy for ResNet50 is observed in case of size 112 × 112 and group CeO.
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5.5 Analysing Classifications with Saliency Maps

56x56
Mushroom Goldfish

112x112

Figure 9: Effect of core feature size on model
performance. Both the predictions are for the
ERMall model.

We use Gradcam to visualize the predictions on the
Resnet50 model. Figure 8 shows the visualizations on the
ImageNet pretrained model and two variations of ERM:
ERMall which is fine-tuned with equal data points from
all the groups and ERMeasy which is fine-tuned only with
images from the Easy category, consisting of subgroups
CeO and CoO for size 54 × 54 and 112 × 112 respectively.
The images on the left side of Figure 8 show a stick insect
of size 56 × 56 placed in the center against an outdoor
environment. The pre-trained and ERMeasy model make
their predictions by picking up cues from the backgrounds
and predicting class Whiptail and Partridge respectively.
Upon inspection, we find that most of the images in these classes are set in similar environments, hence the
model has learnt to associate the given outdoor environment with these classes and are ignoring the core
features. ERMall, however, is more robust to changes in environment and makes the correct prediction of
class Stick Insect. The images on the right show that, while the pre-trained model is confused by the spurious
cues in the background, ERMeasy makes the wrong predictions based on the cues in the core features and
the background together. However, ERMall makes the correct prediction by mostly relying on core features.
Figure 9 highlights the effect of the size of core features on the ability of the ERMall model to make correct
predictions. Having a smaller core feature size results in the model making incorrect prediction of class
Goldfish.

6 Challenges and Future Work

The dataset variants of Hard-Spurious-ImageNet are proposed to understand the extent of background reliance
as a function of size and location of core features. One of the limitations of the datasets is that they rely on
ground truth bounding boxes of objects. In case of images where core features are not labeled by bounding
boxes, no inpainting is performed on them, subsequently leading to core features in background and foreground
occurring simultaneously. Moreover, the presence of secondary objects and clutter in the background makes
it difficult for the models to learn small core feature sizes. The lack of segmentation bounding boxes for
all images in ImageNet restricted us to using object bounding boxes instead of masks. Currently, we have
only experimented with one location per core object. For future work, we plan to experiment with different
locations of core objects in the images and analyze the impact of using different network architectures with
the dataset. Moreover, it would be interesting to extend this analysis to other datasets and models trained in
different ways such as with contrastive learning, and various data augmentation techniques.

7 Conclusion

In this paper, we propose a variant of ImageNet, Hard-Spurious-ImageNet, to help the deep learning
community to better understand spurious feature reliance. We show that ImageNet is center-biased and
exhibits a bias towards large object sizes. We also provide an analysis showing that there exists a negative
correlation between size and location of core features in an image and the strength of spurious cues in the
background. We experiment with different group robustness methods and highlight the need for specialized
methods to solve this problem.
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A Benchmark Results

The results for Hard-Spurios-ImageNet and its variant are given in Tables 5 and 6 respectively. We test
the performance of the datasets on 5 different pre-trained architectures: ConvNext-Base Liu et al. (2022)
trained on ImageNet21k and fine-tuned on ImageNet1k, ResNet-50 He et al. (2016), CoATNet Dai et al.
(2021), Hiera-Base with MAE Ryali et al. (2023), and MVit2-small Li et al. (2022). Except for ConvNext,
these models are pretrained on ImageNet1k only. Across all models, the performance on Group CoR for size
56 × 56 is the worst. Benchmark results for different groups along with clean accuracies are given in Tables 5
and 6. Clean accuracies in Table 6 are for 10 Hard-Spurious-ImageNet-v2 classes only.

Model Clean
Accuracy

Object
Resolution

Group Accuracies
CeO CoO CeR CoR

Convnext-Base 85.86
562 59.62 50.14 20.15 14.98
842 74.42 70.05 50.81 46.47
1122 79.82 76.54 67.43 60.92

ResNet-50 80.20
562 45.79 36.74 11.83 6.78
842 62.19 56.80 23.37 24.19
1122 72.43 70.22 55.85 55.62

CoATNet 83.59
562 40.79 35.78 5.27 3.28
842 66.58 50.14 25.92 17.02
1122 72.70 72.51 45.45 44.44

Hiera 84.48
562 49.45 34.34 4.61 1.31
842 67.64 55.09 21.81 12.49
1122 74.07 69.32 47.26 37.82

MVitv2 83.77
562 41.44 31.38 5.41 1.38
842 67.38 51.12 29.53 14.17
1122 70.51 64.86 48.00 37.81

Table 5: Test Accuracies on Hard-Spurious-ImageNet.

B Biases in ImageNet

Figure 11 shows the distribution of center and size scores for different classes in the training data of ImageNet.
We calculate these scores using the available bounding boxes for ImageNet training data. Figure 4 refers to
the distribution for the validation data.

C Inpaint Anything

The predicted masks from Segment Anything are dilated by a kernel size of 15 to avoid edge effects when the
"hole" is filled by LaMa. Some examples of the inpainted data are given in Figure 10.

D True Objects in Background

Ensuring that the backgrounds do not contain true objects depends on the fidelity of provided ImageNet
annotations. We perform an additional analysis with a foundation model, Grounding DINO Liu et al.
(2024), to extract bounding boxes from the images. We consider similarity scores between Grounding DINO
predictions and the ImageNet annotations to analyze the correctness of ImageNet annotations. For ImageNet
validation data, we get an overall mIOU of 0.8675 across all classes between both sets of bounding boxes
with 139 classes having mIOU value less than 0.8 (see Figure 11 for a histogram by mIOU). This shows that
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Model Clean
Accuracy

Object
Resolution

Group Accuracies
CeO CoO CeR CoR

Convnext-Base 85.8
562 57.4 38.6 8.2 1.0
842 79.0 71.0 27.0 11.4
1122 83.2 79.8 45.4 17.0

ResNet-50 82.2
562 45.00 29.6 6.4 0.0
842 70.8 58.4 17.0 9.8
1122 79.4 78.6 35.6 28.6

CoATNet 83.4
562 20.9 21.8 0.8 0.0
842 71.8 49.0 11.0 4.0
1122 75.40 80.8 18.2 23.0

Hiera 85.8
562 46.8 22.8 1.0 0.0
842 75.6 55.6 4.0 1.8
1122 78.6 74.6 16.0 10.6

MVitv2 86.6
562 29.0 15.0 0.4 0.0
842 72.6 47.8 11.2 1.2
1122 72.4 66.0 18.4 12.6

Table 6: Test Accuracies on Hard-Spurious-ImageNet-v2 with highly spurious backgrounds.

Core: Japanese Spaniel
Bg: Snorkel

Core: Maltese Dog
Bg: Potter’s Wheel

Core: Shih-Tzu
Bg: Busby Hat

Figure 10: left: Original images with their resized inpainted versions. right: Despite inpainting, the
background (Bg) consists of cues that help the model predict the background label.
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Avg. Center Score = 0.783 Avg. Size Score = 0.462
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Figure 11: (left): Class-wise mIOU scores between Grounding DINO predictions and ImageNet annotations
on the validation set. Averaged mIOU is 0.875. (right): Histograms showing distribution of scores in different
classes of train data in ImageNet1k dataset

Model Clean
Accuracy

Object
Resolution

Group Accuracies
CeO CoO CeR CoR

Convnext-Base 85.8
562 46.07 36.07 13.86 6.21
842 61.18 53.92 31.04 22.30
1122 67.78 64.69 42.91 13.84

ResNet-50 82.2
562 29.33 24.34 6.68 4.36
842 45.17 40.63 19.09 16.24
1122 55.24 52.56 31.34 29.87

CoATNet 83.4
562 30.57 27.61 7.91 3.93
842 50.94 44.66 21.03 15.63
1122 60.60 56.73 33.00 29.30

MVit2 85.8
562 37.94 25.88 9.08 2.92
842 54.89 44.73 24.74 15.15
1122 63.73 57.94 36.80 30.60

Hiera 86.6
562 39.88 27.06 10.34 3.198
842 56.36 46.18 25.13 15.72
1122 66.14 60.38 39.15 31.63

Table 7: Test Accuracies on Hard-Spurious-ImageNet with SAM Masks.

the majority of the classes in ImageNet data have correct bounding boxes and the amount of objects from
the foreground class in the background is negligible.

E Hard-Spurious-ImageNet with SAM

We also experiment with using the Segment Anything Kirillov et al. (2023) model to obtain masks for the
objects inside a bounding box and resize it to 3 different sizes (56, 84, and 112). The resized masks are
then placed in the center and corner of the inpainted image, similar to the setting described in the main
paper. At the moment, we only consider one object per image. Since we have access to ImageNet-annotated
bounding boxes, we use them as prompts to be given to SAM. The results are shown in Table 7. Compared
to the results in Table 5, the results with SAM are worse, mainly because the resized SAM object masks are
not entirely accurate in cases where objects are small and thin, such as insects, etc. Hence, we preferred
human-annotated ImageNet bounding boxes.
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Methods Easy Medium Hard Average

Pretrained 71.14 54.93 29.21 51.75
ERM 76.91 70.63 63.48 70.34

ERMeasy 77.82 68.33 51.39 65.85
DFR 74.82 68.66 61.68 68.39

Table 8: Test Performance of different methods on Easy, Medium, and Hard categories in Hard-Spurious-
ImageNet. Average accuracy is the average test performance of all the groups combined. The model is
Convnext-tiny.

F Group Robustness Methods

We use pretrained ResNet-50 trained on ImageNet1k for our experiments. The Base model is fine-tuned
with batch size 256, constant learning rate of 0.001 for 20 epochs. The input images are randomly cropped
with an aspect ratio in the bounds (0.75,1.33) and finally resized to 224 × 224. Horizontal flipping is applied
afterward. A momentum of 0.9 and weight decay of 0.001 is used. For DFR, we normalize the embeddings
using mean and standard deviation of validation data used to train the last layer, and use the same statistics
to normalize embeddings of test data. We re-train the last layer for 1000 epochs, learning rate of 1, cosine
learning rate scheduler and SGD optimizer with full-batch. We use ℓ2 regularization with λ set to 100.
These hyperparamters are similar to the ones set by Kirichenko et al. (2022) for optimizing the last layer for
ImageNet-9 dataset Xiao et al. (2020). Since, the data distribution in the proposed dataset and ImageNet-9
is similar, we assumed the same hyperparamteres. In case of JTT, models have the same hyperparameters as
the ERM trained model. λup is set to 50.
After extracting the embeddings from the pre-trained ERM model, the embeddings are normalized using
fit_transform() and transform() functions of sklearn.preprocessing.StandardScaler for val and
test data, respectively. For the JTT model, the images are applied with random resized cropping followed
by horizontal flipping. No additional data augmentation is applied afterward. We also experimented with
ConvNext-tiny pre-trained on ImageNet-22k and fine-tuned on ImageNet1k. We fine-tune the pre-trained
model on the proposed data under various settings. ERM is trained by replicating the long-tailed distribution
of the data, while ERMeasy is trained only with the easy group. ERMall is trained with equal data points
from all groups. DFR is trained by extracting embeddings from ERM, and re-training the last layer only.
The number of train and test images is similar to the data setting described in the main paper.
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