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Abstract001

Quantization offers a practical solution to002
deploy LLMs in resource-constraint environ-003
ments. However, its impact on internal repre-004
sentations remains understudied, raising ques-005
tions about the reliability of quantized mod-006
els. In this study, we employ a range of inter-007
pretability techniques to investigate how quan-008
tization affects model and neuron behavior. We009
analyze multiple LLMs under 4-bit and 8-bit010
quantization. Our findings reveal that the im-011
pact of quantization on model calibration is012
generally minor. Analysis of neuron activa-013
tions indicates that the number of dead neu-014
rons, i.e., those with activation values close to015
0 across the dataset, remains consistent regard-016
less of quantization. In terms of neuron contri-017
bution to predictions, we observe that smaller018
full precision models exhibit fewer salient neu-019
rons, whereas larger models tend to have more,020
with the exception of Llama-2-7B. The effect021
of quantization on neuron redundancy varies022
across models. Overall, our findings suggest023
that effect of quantization may vary by model024
and tasks, however, we did not observe any025
drastic change which may discourage the use026
of quantization as a reliable model compression027
technique.028

1 Introduction029

The last decade has seen a tremendous amount of030

work done in language modeling, specifically in031

large language models (LLMs) (Devlin et al., 2019;032

Liu et al., 2023a; Touvron et al., 2023). There is a033

common trend to increase the number of parame-034

ters in LLMs to improve performance. However,035

this approach exacerbates the challenge of resource036

requirements, including computational and energy037

costs (Patterson et al., 2021). Quantization is a038

model compression technique that is widely used039

because of its effectiveness and simplicity (Bon-040

darenko et al., 2024; Dettmers et al., 2022; Wu041

et al., 2023). Quantization reduces the model size042

by using lower precision weights and/or activations, 043

which can improve its inference speed while using 044

less storage space. The effect of quantization is 045

generally measured by comparing a model’s perfor- 046

mance on downstream NLP tasks (Li et al., 2024; 047

Kurtić et al., 2024). 048

While performance on downstream tasks is cru- 049

cial to understand the end-to-end impact, the evalu- 050

ation is limited to a set of downstream tasks used 051

for evaluation. In other words, it does not provide 052

complete insights into the effect of quantization on 053

the knowledge learned by models. In this work, 054

we argue that the interpretation serves as an addi- 055

tional metric and evidence to analyze the effect of 056

quantization on the model. For instance, it may 057

reveal which types of knowledge or relationships 058

are preserved or degraded by quantization, giving 059

a deeper understanding of whether essential pat- 060

terns remain intact. This is especially important for 061

safety-critical applications such as finance, law, and 062

healthcare (Hassan et al., 2024) where reliability 063

of a model is necessary. 064

In this research, we study the effect of quantiza- 065

tion, specifically LLMs quantized in 4-bit and 8-bit, 066

to investigate its effect on the model’s behavior and 067

internal representations. To the best of our knowl- 068

edge, this is first work that interpret the effect of 069

quantization across various dimensions. Specifi- 070

cally, to explore the behavior of the model and its 071

neurons from multiple perspectives, we address the 072

following key questions: 073

1. What is the effect of quantization on a model’s 074

confidence and calibration? 075

2. Does quantization influence the contribution 076

of neurons to model predictions? 077

3. How does quantization affect the number of 078

“dead neurons”? 079

4. Does quantization affect the redundancy of 080

neurons? In other words, does it result in 081

more neurons learning identical information? 082
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We analyze multiple open-source models, under083

two quantization settings: 4-bit (Dettmers et al.,084

2023) and 8-bit (Dettmers et al., 2022) and compare085

them with the full-precision float-16 weight model.086

Our findings indicate that, while quantization087

does not cause drastic changes, its effects can vary088

depending on the specific context. A dataset and089

model interpretation might be necessary for reliably090

assessing the impact of quantization in practical091

settings. We summarize our notable findings as092

follows:093

1. Quantization does not lead to any substantial094

change in model confidence and calibration.095

2. Based on neuron activations, quantization096

does not have a major effect, i.e., the number097

of dead neurons remains largely unchanged.098

3. Attribution-based analysis shows that full-099

precision models have fewer salient neurons100

in smaller LLMs and more in larger ones.101

4. Neuron redundancy differs between the sub-102

ject models. In Phi-2, the full-precision model103

exhibits a higher number of correlated neuron104

pairs, indicating greater redundancy, whereas105

in Llama-2-7B, quantization causes only a mi-106

nor difference in redundancy.107

2 Methodology108

We study the model confidence and calibration,109

neuron activations, redundancy and attributions110

with respect to quantization.111

2.1 Confidence Analysis112

Confidence analysis aims to find the average con-113

fidence of a model in its predictions (Abdar et al.,114

2021). We calculate the average confidence of the115

model using the following equation:116

Average Confidence =
1

N

N∑
i=1

maxP (yi)117

Here, N is the total number of data points in the118

dataset, and P (yi) represents the softmax probabil-119

ity of the output label yi with the highest probabil-120

ity for the i-th prediction. The term max
(
P (yi)

)
121

indicates the confidence of the model in its selected122

prediction for each datapoint.123

2.2 Calibration Analysis124

Calibration can be defined as the degree to which125

a model’s predicted probabilities reflect the actual126

frequencies of those outcomes (Nixon et al., 2020).127

Despite high accuracy, deep neural networks often 128

suffer from miscalibration (Guo et al., 2017). 129

We use the Adaptive Calibration Error (ACE) 130

metric (Nixon et al., 2020), which adjusts its assess- 131

ment based on the actual distribution of confidence 132

values, enabling a more flexible and precise evalua- 133

tion of calibration. ACE is calculated as follows: 134

ACE =
1

KR

K∑
k=1

R∑
r=1

|acc(r, k)− conf(r, k)| 135

Here, K is the number of classes., R is the num- 136

ber of adaptive calibration ranges, acc(r, k) and 137

conf(r, k) are the accuracy and confidence values 138

for the adaptive range r for class k, respectively. 139

The calibration range r is determined by dividing 140

the predictions into R equally populated intervals 141

based on sorted confidence scores. This way, each 142

range contains approximately ⌊N/R⌋ predictions, 143

where N is the total number of data points. 144

2.3 Neuron’s Attribution 145

A neuron’s attribution refers to its role and signif- 146

icance in a model’s predictions, as determined by 147

attribution methods such as integrated gradient (IG) 148

(Sundararajan et al., 2017). To evaluate the impact 149

of quantization on neuron attributions, we analyze 150

the number of salient neurons that contribute sig- 151

nificantly to the model’s predictions. This analysis 152

shows quantization effects on the model’s ability 153

to identify and rely on the important features. 154

Using Layer IG, we obtain attribution scores for 155

each input token for a given layer as: 156

IG([x1, x2, . . . , xn]) = {a1, a2, . . . , an} 157

Here, xi represents each input token and ai is 158

the attribution score for the token xi. 159

The attribution score ai is calculated as the sum 160

of the contributions from neurons in a layer as: 161

ai =
N∑
j=1

nj 162

where N is the total neurons in the given layer, 163

and nj is the attribution score of neuron j. 164

Selection of Top Contributing Neurons: The 165

input to the model consists of a sequence of to- 166

kens. We propose two separate methods to select 167

the salient neuron with respect to the prediction. 168

Specifically, we select most salient neurons based 169
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on 1) the most salient input token and 2) the input170

sequence and combine them. Each technique high-171

lights neurons with varying levels of granularity172

and context sensitivity.173

Most attributed token-based: In this technique,174

we only consider the most attributed token’s (i.e.,175

input token with max attribution score) represen-176

tation and select neurons that have a normalized177

attribution score > 0.8. This identifies neurons178

that are most important in determining the model’s179

predictions for the specific context of the selected180

token. Given as:181

xbest = argmax
i

{ai}182

183

nsalient
j = {nj |

nj

max(nj)
> 0.8}, ∀j ∈ Layer184

Here, ai is the attribution score for token xi and nj185

is the attribution score of neuron j for xbest.186

Input sequence-based: To identify neurons that187

are salient in the context of the input sequence, we188

calculate the total attribution over the entire input189

sequence by summing the attributions across all190

input tokens. We select the neurons that have an191

attribution score > 0.8 after normalization. This192

approach ensures that the selected neurons reflect193

their contributions to the overall meaning of the in-194

put, rather than being limited to the most attributed195

token only. Given as:196

sj =

n∑
i=1

aij197

198

nsalient
j = {nj |

sj
max(sj)

> 0.8}, ∀j ∈ Layer199

Here, aij is the attribution of neuron j for token200

xi, and sj is the total attribution score of neuron j201

summed over all tokens.202

Token-agnostic: Here, we select the attribution203

score of a neuron based on its maximum attribution204

over all tokens in the input sequence. This selec-205

tion emphasizes neurons important for any part of206

the input sequence, regardless of specific tokens.207

Given as:208

mj = max
i

{aij}209

210

nsalient
j = {nj |

mj

max(mj)
> 0.8},∀j ∈ Layer211

Here, aij is the attribution score of neuron j for212

token xi, and mj is the maximum attribution score213

for neuron j over all tokens.214

Using all the strategies outlined above, we iden- 215

tify the most important neurons contributing to a 216

single datapoint prediction and collate it over the 217

dataset. Although the same neurons may be se- 218

lected under different strategies, we consider only 219

one occurrence of each selected neuron. 220

2.4 Neuron’s Activations 221

Since quantization reduces weight precision, it may 222

increase the number of insignificant neurons. To 223

identify them, we follow Voita et al. (2023), defin- 224

ing dead neurons as those whose activations remain 225

consistently near zero across the dataset. 226

2.4.1 Dead/Insignificant Neurons 227

Voita et al. (2023) observed that the number of dead 228

neurons increases with the growth of a model’s size. 229

Their analysis of the OPT language model family, 230

which uses the ReLU activation function, shows 231

that over 70% of neurons in some layers are dead. 232

We hypothesize that quantization, by reducing the 233

precision of weights, may contribute to an increase 234

in the number of dead neurons in the network. 235

Apart from ReLU, other activation functions 236

such as GELU (Hendrycks and Gimpel, 2016) and 237

SiLU (Elfwing et al., 2017) may not produce acti- 238

vation values that are exactly zero. To generalize 239

the concept of dead neurons for these activation 240

functions, we define a threshold of −0.1 to 0.1, 241

categorizing neurons as dead if their activation val- 242

ues consistently remain within this range across 243

the dataset. For different activation functions, we 244

define dead neurons as follows: 245

ndead
j (ReLU) = {nj | aj,d = 0,

∀d ∈ dataset}
(1) 246

ndead
j (OtherActivations) = {nj |

−0.1 ≤ aj,d ≤ 0.1,

∀d ∈ dataset}
(2) 247

Here, aj,d represents the activation of neuron nj 248

for a given data point d in the dataset. 249

2.5 Correlation Analysis 250

We hypothesize that a low-precision quantization 251

may cause more neurons to represent identical in- 252

formation, i.e., as precision is reduced, high pre- 253

cision neuron values may map to the same low 254

precision value. Similar to Dalvi et al. (2020), we 255
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calculate the Pearson correlation of neurons at a256

layer to identify neurons representing similar infor-257

mation. The Pearson correlation is given by:258

r =

∑n
i=1(xi − µx)(yi − µy)√∑n

i=1(xi − µx)2 ·
√∑n

i=1(yi − µy)2
259

Here, x and y are activation arrays for the se-260

lected neuron pair. µx and µy are the means of261

x and y, respectively, and n is the number of262

elements in the arrays.
√∑n

i=1(xi − µx)2 and263 √∑n
i=1(yi − µy)2 are standard deviation for x and264

y respectively. The value of r ranges between -1265

and 1, where r = 1 indicates perfect positive cor-266

relation, r = −1 indicates perfect negative correla-267

tion, and r = 0 indicates no linear correlation.268

In this study, we use the absolute values of corre-269

lation to focus solely on the strength of the relation-270

ship. We consider a neuron pair to be redundant if271

their correlation score r > 0.8.272

3 Experiment Setup273

3.1 Datasets274

We consider five datasets in this study: BoolQ275

(Clark et al., 2019), the Jigsaw Toxicity dataset276

(cjadams et al., 2017), Physical Interaction: Ques-277

tion Answering (PIQA) (Bisk et al., 2020), Hel-278

laswag (Zellers et al., 2019) and IMDB sentiment279

classification (Maas et al., 2011). We select a ran-280

dom subset of the each dataset for our experiment.281

More specifically, we used 10k samples from a282

combination of train and validation sets of BoolQ,283

9k samples from the Toxicity train set, 1,838 vali-284

dation samples from PIQA, 5,000 validation sam-285

ples from Hellaswag, and the IMDB training set.286

Instruction-tuned samples for datasets is available287

in Appendix A.288

These datasets test different capabilities of mod-289

els: (1) question answering involving reading com-290

prehension (BoolQ), (2) toxic language detection291

and social bias understanding (Toxicity), (3) physi-292

cal commonsense reasoning (PIQA), (4) common-293

sense reasoning (Hellaswag), and (5) sentiment294

analysis and opinion understanding (IMDB).295

3.2 Models296

The primary models analyzed in our study are Phi-2297

(Javaheripi and Bubeck, 2023), Llama-2 7B (Tou-298

vron et al., 2023), Qwen 2.5 3B and 7B (Qwen299

et al., 2025), and Mistral-7B (Jiang et al., 2023).300

To examine the internal representations within301

these models, we focus on the output of the first302

Hyperparameter Value
8-bit Quantization

load_in_8bit True
bnb_8bit_compute_dtype torch.float16
bnb_8bit_use_double_quant True

4-bit Quantization
load_in_4bit True
bnb_4bit_quant_type nf4
bnb_4bit_use_double_quant True
bnb_4bit_compute_dtype torch.float16

Table 1: Quantization Hyperparameters

feed-forward layer in the multi-layer perceptron 303

(MLP) block, post-activation. We select this layer 304

as our analysis on dead neurons expects output 305

from the activation function. For computational 306

efficiency, we conduct experiments using the first, 307

middle and last decoder blocks of each model. 308

Since our subject models employ GELU (Phi- 309

2) and SiLU (Llama, Qwen, Mistral) as activation 310

functions, which do not produce exact zero acti- 311

vations, we include the OPT-6.7B model from the 312

OPT family (Zhang et al., 2022) to assess the be- 313

havior of ReLU activations for comparison. This 314

model utilizes a decoder-only architecture similar 315

to other subject models. 316

During generation, the seed is set to 42, 317

and default arguments from the Huggingface 318

transformers library are used. 319

3.3 Quantization Configurations 320

To perform comparative analysis across models un- 321

der different quantization settings, we employed 322

two widely-used quantization techniques: 4-bit 323

(Dettmers et al., 2023) and 8-bit (Dettmers et al., 324

2022). Models are quantized using bitsandbytes 325

config through Huggingface transformers. Table 1 326

shows the hyperparameters used for quantization. 327

3.4 Attribution Technique 328

We use Integrated Gradients (Sundararajan et al., 329

2017) using Captum (Kokhlikyan et al., 2020) to 330

find salient neurons in a network. 331

4 Findings 332

In the following, we first report the accuracy of 333

each model settings and then present our interpre- 334

tation analysis. 335

4.1 Accuracy 336

We calculate accuracy to ensure that the models 337

under observation have comparable performance 338

under quantization. Since all the datasets require 339
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Figure 1: Accuracy of subject models within different quantizations.

output to be a single word, we constrain model340

generation to a single token.341

Figure 1 presents a bar chart depicting the ac-342

curacy of subject models across various levels of343

quantization. The x-axis represents different quan-344

tization levels, while accuracy is displayed on the y-345

axis. In most cases, quantization results in minimal346

degradation of model accuracy, typically within a347

range of 1–4%. However, 4-bit quantization leads348

to substantial performance degradation for Llama-349

2-7B on the Toxicity (-14%) and Qwen-3B on Hel-350

laswag (-7%). Similarly, the 8-bit quantized Phi-2351

model shows reduced accuracy on PIQA (-5%) and352

IMDB Sentiment (-17%).353

4.2 Effect on Confidence and Calibration354

In this analysis, we observe the effect of quantiza-355

tion on the model’s confidence and calibration.356

4.2.1 Confidence Analysis357

Figure 2 presents the average confidence of the358

evaluated models across various datasets. Broadly,359

the impact of quantization on model confidence360

appears limited, with only minor fluctuations ob-361

served. However, a trend emerges wherein 4-bit362

quantized models tend to exhibit slightly reduced363

confidence relative to their full-precision counter-364

parts in most cases.365

Notably, certain model-dataset pairs demonstrate366

more pronounced drops, suggesting that quantiza-367

tion may disproportionately affect specific tasks or368

models. For instance, the 4-bit quantized LLaMA-369

2-7B shows a reduction in confidence on the Toxic-370

ity and PIQA datasets, with decreases of 13% and371

11%, respectively. Similarly, the 4-bit quantized372

Mistral-7B displays a 10% confidence drop on Hel-373

laswag, while the 4-bit quantized Qwen-7B shows374

a 6% reduction on Sentiment Analysis.375

These cases highlight the importance of task sen-376

sitivity when applying low-bit quantization. While377

average confidence remains relatively stable in gen- 378

eral, targeted evaluation is essential to identify 379

scenarios where confidence degradation may have 380

downstream implications on reliability. 381

Interestingly, when comparing the average con- 382

fidence to the corresponding accuracy results dis- 383

cussed earlier, we observe a notable disconnect: 384

higher confidence does not consistently correlate 385

with higher accuracy. This decoupling suggests 386

that model confidence may not be a reliable proxy. 387

Such a discrepancy motivates a deeper investiga- 388

tion into the calibration of these models, prompting 389

our subsequent analysis on calibration to assess the 390

alignment between confidence and correctness. 391

4.2.2 Calibration Analysis 392

Figure 3 illustrates the Adaptive Calibration Er- 393

ror (ACE) for the evaluated models under vary- 394

ing levels of quantization. We observe that the 395

effect of quantization on calibration is neither uni- 396

form across models nor consistent across datasets, 397

indicating a strong dependency on both architec- 398

tural and task specific factors. For instance, 4-bit 399

quantization leads to mixed outcomes for Llama-2- 400

7b, where calibration error fluctuates, being higher 401

for some tasks and lower for others—showing no 402

clear pattern. In contrast, the Phi-2 model demon- 403

strates more stable behavior under 4-bit quantiza- 404

tion, with calibration error remaining similar or 405

even improving in some cases. Interestingly, this 406

pattern is reversed when models are quantized to 8- 407

bit: Llama-2-7b exhibits consistently better calibra- 408

tion, whereas Phi-2 begins to show erratic changes 409

in ACE across datasets. 410

Looking at the Qwen model family, both the 411

3B and 7B variants show increased or equivalent 412

calibration error when quantized to lower bits, sug- 413

gesting a reduced robustness in their confidence es- 414

timates under compression. Conversely, the Mistral 415

models despite sharing same number of parameters 416
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Figure 2: Average confidence of subject models under different quantizations.

Figure 3: Adaptive Calibration Error (ACE) for subject models within different quantizations (lower is better).

with Qwen-7B, including same activation functions417

tend to exhibit improved calibration at lower bit.418

The seemingly random fluctuations in ACE419

scores, particularly for certain model, dataset or420

weight precision combinations, could stem from421

several underlying factors. Differences in model422

pretraining objectives or tokenization strategies423

may contribute to how calibration responds to quan-424

tization. Although quantization may introduce fluc-425

tuations in ACE, the difference is not substantial to426

undermine it’s reliability, even often yielding im-427

proved calibration relative to full-precision variant.428

4.3 Effect on the Contribution of Neurons to429

Model Predictions430

Table 2 shows the count of salient neurons for sub-431

ject models within different quantization, divided432

by layers. Given the high computational cost asso-433

ciated with computing attributions, we restricted434

this experiment to the BoolQ dataset.435

We observe distinct trends in the number of436

salient neurons across quantization and model sizes.437

For smaller models such as Phi-2 and Qwen-3B,438

the full-precision model have fewer salient neurons439

compared to their quantized counterparts. This sug-440

gests that in these models, full precision enables441

more generalized neurons, where only a subset of442

neurons significantly contribute to the final pre-443

diction. In contrast, quantization introduces per-444

Model Quant. First Mid. Last Total

Phi-2
4-bit 65 1004 35 1104
8-bit 61 1048 45 1154
16-bit 57 868 41 966

Llama-2-7B
4-bit 39 1334 20 1393
8-bit 52 1209 18 1279
16-bit 66 1198 16 1280

Qwen-3B
4-bit 1283 3627 32 4942
8-bit 1104 3975 21 5100
16-bit 960 3708 25 4693

Qwen-7B
4-bit 700 3036 29 3765
8-bit 439 3394 45 3878
16-bit 816 3261 34 4111

Mistral-7B
4-bit 142 951 20 1113
8-bit 444 993 42 1479
16-bit 513 936 38 1487

Table 2: Number of salient neurons for subject models
across quantizations (Quant.) within different layers.

turbations, likely increasing representational noise 445

affecting generalization. As a result, more neurons 446

become involved in the prediction process, com- 447

pensating for the reduced expressivity of neurons. 448

This trend is reversed for some larger models. In 449

Qwen-7B and Mistral-7B, we observe more salient 450

neurons in the full-precision compared to the quan- 451
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Model Quant. F (%) M (%) L (%)

OPT-6.7B
4-bit 23.43 0.35 0.12
8-bit 23.45 0.26 0.15
16-bit 23.35 0.24 0.14

Phi-2
4-bit 21.46 0.00 0.01
8-bit 21.52 0.00 0.01
16-bit 21.51 0.00 0.01

Llama-2-7B
4-bit 0.05 0.00 0.00
8-bit 0.04 0.00 0.00
16-bit 0.05 0.00 0.00

Qwen-3B & 7B
4-bit 0.00 0.00 0.00
8-bit 0.00 0.00 0.00
16-bit 0.00 0.00 0.00

Mistral-7B
4-bit 0.02 0.00 0.00
8-bit 0.01 0.00 0.00
16-bit 0.02 0.00 0.00

Table 3: Percentage of dead neurons across models and
quantizations (Quant.) within different layers (F: First,
M: Middle, L: Last).

tized variant. This may reflect the ability of larger452

models in full precision to utilize richer, more dis-453

tributed representations, which are partially sup-454

pressed or sparsified under quantization.455

Interestingly, Llama-2-7B does not follow the456

trend and aligns more closely with smaller mod-457

els such as Phi-2. It has fewer salient neurons in458

full precision than in its 4-bit quantized version but459

similar to 8-bit. This divergence may stem from ar-460

chitectural differences, particularly in hidden layer461

size as 11,008 (same as Qwen-3B), compared to462

18,944 in Qwen-7B and 14,336 in Mistral-7B.463

Overall, the number of salient neurons serves464

as a proxy for how distributed or localized the465

decision-making process is within the network466

(Dalvi et al., 2020). Full precision models tend467

to use fewer, neurons when they are smaller. In468

contrast, in larger models, full precision can enable469

richer and more distributed neuron contribution.470

4.4 Effect on the number of “dead neurons”471

As shown in Table 3, quantization causes only a472

minor change in the count of dead neurons. The473

trend across quantization seems to be consistent, as474

the number of dead neurons remains almost similar475

between quantized and full-precision models.476

The pattern of higher neurons in initial layer477

in Phi-2 and OPT-6.7B likely reflects the role of478

initial layers in learning sparse, low-level features,479

while later layers capture higher-level contextual 480

features (Dalvi et al., 2022; Voita et al., 2023). We 481

hypothesize that the consistently low count of dead 482

neurons among Llama, Qwen and Mistral is due to 483

the use of the SiLU activation function. 484

4.5 Effect on the Redundancy of Neurons 485

As identified in the works of Dalvi et al. (2020) 486

language models can maintain 97% of accuracy 487

while using only 10% of the neurons. This find- 488

ing is valuable for model pruning. We investigate 489

whether quantization leads to higher redundancy. 490

Due to the substantial computational requirements, 491

our analysis was limited to the Phi-2 and Llama-2- 492

7B models, using activations from BoolQ. 493

4.5.1 Correlation Analysis 494

Figures 4 shows neuron pairs count correspond- 495

ing to correlation scores for 4-bit, 8-bit and full- 496

precision variants of Phi-2 and Llama-2-7B. The 497

X-axis highlights the different correlation score 498

bins ranging from 0.3-0.4 to 0.9-1.0. This binning 499

process helps to clearly observe the redundant neu- 500

ron pairs count across all the layers. The Y-axis 501

shows the count of neuron pairs that fall in that 502

bin. Notice that the count is given for neuron pairs 503

across all the layers, as our main focus is to observe 504

the effect on redundancy of neurons within quanti- 505

zations. For clarity in visualizing highly correlated 506

neuron pairs, we excluded the 0.0–0.1, 0.1–0.2, and 507

0.2–0.3 correlation bins from the bar graph, since 508

these bins contained similar numbers of uncorre- 509

lated neurons across different quantizations. 510

Considering highly correlated neurons, i.e., bins 511

having correlation score >=0.8, Phi-2 in full preci- 512

sion shows the highest redundancy, with 907,352 513

correlated neuron pairs, compared to 781,583 in 514

the 4-bit and 748,867 in the 8-bit configurations. 515

This points to Phi-2 in full-precision having higher 516

redundancy compared to quantized models. 517

In Llama-2-7B, the 8-bit model has the highest 518

redundancy with 24,124 correlated neuron pairs, 519

which is slightly better in 4-bit with 23,315 pairs. 520

unlike Phi-2, the full-precision Llama-2-7B has the 521

fewest correlated pairs (21,644), indicating lower 522

redundancy compared to its quantized versions. 523

However, the difference between neuron pairs in 524

quantized versions is not as substantial as Phi-2. 525

5 Related Work 526

This section reviews the relevant literature in quan- 527

tization techniques and their analysis. 528
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Figure 4: Neurons pair count based on correlation for Phi-2 and Llama-2-7B.

Quantization Techniques. Quantization (Gray529

and Neuhoff, 1998) is used to reduce the memory530

requirement by reducing the size of weight and/or531

activation and increasing the inference time of a532

model (Jacob et al., 2017; Gholami et al., 2021).533

Quantization-aware training (QAT) is costly and534

uses re-training of a model on a dataset to main-535

tain accuracy (Liu et al., 2023b; Du et al., 2024;536

Dettmers et al., 2023; Kim et al., 2023).537

Post-training quantization quantizes models538

without any additional finetuning of the model with539

a limited dataset, but also suffers from performance540

issues (Banner et al., 2019; Cai et al., 2020). In541

case of LLM’s Post Training Quantization can be542

of 3 types: i) Weight-Only Quantization (Park et al.,543

2024; Frantar et al., 2023; Chee et al., 2024; Lin544

et al., 2024), ii) Weight-Activation Quantization545

(Yao et al., 2022; Yuan et al., 2023; Guo et al.,546

2023; Wei et al., 2023), and iii) KV Cache Quanti-547

zation (Hooper et al., 2024; Yue et al., 2024).548

Quantization Analysis and Interpretation.549

Xia et al. (2021) explores confidence and calibra-550

tion relation between quantized and full-precision551

model by using symmetric quantization. Prosku-552

rina et al. (2024) shows quantization improves cal-553

ibration in LLMs using GPTQ. Some literature554

exlores interpretation withing quantized model for555

vision model (Norrenbrock et al., 2024; Arazo et al.,556

2024; Maleki et al., 2024; Rezabeyk et al., 2024; 557

Amine KERKOURI et al., 2024). 558

6 Conclusion 559

In this study, we have investigated the impact of 560

quantization on internal representations of LLMs. 561

Confidence and Calibration analysis reveal that cal- 562

ibration remains mostly stable across quantization. 563

Neuron’s attributions highlights even while num- 564

ber of salient neurons change with quantization 565

i.e. effect is reversed for smaller models and larger 566

models, the quantization seems to maintain the 567

generalization ability of neurons. In terms of ac- 568

tivations, there is no major change in number of 569

dead neurons. In terms of redundancy, Phi-2 and 570

Llama-2-7B exhibit different patterns. As in the 571

case of Phi-2 in full-precision had a higher number 572

of neurons learning similar information, while in 573

Llama-2-7B, there was a minor difference between 574

highly correlation neuron pairs. 575

The effect of quantization vary across datasets. 576

A dataset level interpretation is often needed to 577

reliably measure the effect of quantization. 578

Overall, the results suggest that the effect of 579

quantization could be dependent on the task and 580

model’s architecture. However, we don’t see any 581

major effect that could discourage the use of quanti- 582

zation as a reliable approach for model deployment. 583
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7 Limitations584

This study has certain limitations that should be585

considered when interpreting the results. Due to586

computational constraints, our experiments were587

limited to specific quantization configurations,588

model sizes, and datasets, which may not fully589

capture the impact of quantization across all LLMs590

or in varied deployment settings. Extreme quan-591

tizations such as 2-bit and 3-bit can be added to592

explore the effects within these quantizations. Cur-593

rently we investigated with tasks which required594

single token output, generative tasks such as cod-595

ing, summarization etc. can be explored.596
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Prompt Gold
Respond with True or False only.
do iran and afghanistan speak the same language
Answer:

True

Respond with True or False only.
do good samaritan laws protect those who help at an accident
Answer:

True

Respond with True or False only.
is windows movie maker part of windows essentials
Answer:

True

Respond with True or False only.
is confectionary sugar the same as powdered sugar
Answer:

True

Respond with True or False only.
is elder scrolls online the same as skyrim
Answer:

False

Table 4: Samples from BoolQ dataset

Prompt Gold
Given a sentence, respond with only ‘True’ if the sentence is toxic or else ‘False’.
Sentence: ‘Red herrings to continue to excuse Breivik. Go away, nasty person.’
Answer:

True

Given a sentence, respond with only ‘True’ if the sentence is toxic or else ‘False’.
Sentence: ‘That is just plain BS, forgive the wording....if you look at that rule, it is meant for
“empty" sites that redirect to a site with content. The original URL is to a site with content.
User:kalimantan’
Answer:

False

Given a sentence, respond with only ‘True’ if the sentence is toxic or else ‘False’.
Sentence: ‘Iori Furukawa There’s a name warrior at Iori Furukawa, thought you should check it
out since you moved it. Thanks,’
Answer:

False

Given a sentence, respond with only ‘True’ if the sentence is toxic or else ‘False’.
Sentence: ‘YOU’RE BLOCKED FOR 700 DAYS. SHUSHING COW’
Answer:

True

Given a sentence, respond with only ‘True’ if the sentence is toxic or else ‘False’.
Sentence: ‘Bautista’s Bat Flip Do you think it should be added in this article or in 2015 Toronto
Blue Jays season article? If it should be added, then an image of the bat flip should be added as
well. What do you think?’
Answer:

False

Table 5: Samples from Jigsaw Toxicity dataset
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Prompt Gold
Respond with only the correct label (A or B) that best describes the appropriate steps for
completing the task. Do not include any additional text or explanation, only respond with one
letter.
Task: How do I ready a guinea pig cage for it’s new occupants?
Options:
A: Provide the guinea pig with a cage full of a few inches of bedding made of ripped paper strips,
you will also need to supply it with a water bottle and a food dish.
B: Provide the guinea pig with a cage full of a few inches of bedding made of ripped jeans
material, you will also need to supply it with a water bottle and a food dish.
Answer:

A

Respond with only the correct label (A or B) that best describes the appropriate steps for
completing the task. Do not include any additional text or explanation, only respond with one
letter.
Task: dresser
Options:
A: replace drawer with bobby pin
B: finish, woodgrain with bobby pin
Answer:

B

Respond with only the correct label (A or B) that best describes the appropriate steps for
completing the task. Do not include any additional text or explanation, only respond with one
letter.
Task: To fight Ivan Drago in Rocky for sega master system.
Options:
A: Drago isn’t in this game because it was released before Rocky IV.
B: You have to defeat Apollo Creed and Clubber Lang first.
Answer:

B

Respond with only the correct label (A or B) that best describes the appropriate steps for
completing the task. Do not include any additional text or explanation, only respond with one
letter.
Task: Make outdoor pillow.
Options:
A: Blow into tin can and tie with rubber band.
B: Blow into trash bag and tie with rubber band.
Answer:

B

Respond with only the correct label (A or B) that best describes the appropriate steps for
completing the task. Do not include any additional text or explanation, only respond with one
letter.
Task: ice box
Options:
A: will turn into a cooler if you add water to it
B: will turn into a cooler if you add soda to it
Answer:

A

Table 6: Samples from PIQA
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Prompt Gold
A man is sitting on a roof. he
Choose the most appropriate continuation:
0. is using wrap to wrap a pair of skis.
1. is ripping level tiles off.
2. is holding a rubik’s cube.
3. starts pulling up roofing on a roof.
Answer with only the number.
Answer:

3

A lady walks to a barbell. She bends down and grabs the pole. the lady
Choose the most appropriate continuation:
0. swings and lands in her arms.
1. pulls the barbell forward.
2. pulls a rope attached to the barbell.
3. stands and lifts the weight over her head.
Answer with only the number.
Answer:

3

Two women in a child are shown in a canoe while a man pulls the canoe while standing in the
water, with other individuals visible in the background. the child and a different man
Choose the most appropriate continuation:
0. are then shown paddling down a river in a boat while a woman talks.
1. are driving the canoe, they go down the river flowing side to side.
2. sit in a canoe while the man paddles.
3. walking go down the rapids, while the man in his helicopter almost falls and goes out of
canoehood.
Answer with only the number.
Answer:

2

A boy is running down a track. the boy
Choose the most appropriate continuation:
0. runs into a car.
1. gets in a mat.
2. lifts his body above the height of a pole.
3. stands on his hands and springs.
Answer with only the number.
Answer:

2

The boy lifts his body above the height of a pole. The boy lands on his back on to a red mat. the
boy
Choose the most appropriate continuation:
0. turns his body around on the mat.
1. gets up from the mat.
2. continues to lift his body over the pole.
3. wiggles out of the mat.
Answer with only the number.
Answer:

1

Table 7: Samples from Hellaswag
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Prompt Gold
Review:
A wonderful little production. The filming technique is very unassuming- very old-time-BBC
fashion and gives a comforting, and sometimes discomforting, sense of realism to the entire
piece. The actors are extremely well chosen- Michael Sheen not only "has got all the polari" ....
What is the sentiment of this review? Answer with only one word: positive or negative.
Answer:

positive

Review:
I thought this was a wonderful way to spend time on a too hot summer weekend, sitting in the air
conditioned theater and watching a light-hearted comedy. The plot is simplistic, but the dialogue
is witty and the characters are likable (even the well bread suspected serial killer). ...
What is the sentiment of this review? Answer with only one word: positive or negative.
Answer:

positive

Review:
Basically there’s a family where a little boy (Jake) thinks there’s a zombie in his closet & his
parents are fighting all the time. This movie is slower than a soap opera... and suddenly, Jake
decides to become Rambo and kill the zombie. OK, first of all when you’re going to....
What is the sentiment of this review? Answer with only one word: positive or negative.
Answer:

negative

Review:
Petter Mattei’s "Love in the Time of Money" is a visually stunning film to watch. Mr. Mattei
offers us a vivid portrait about human relations. This is a movie that seems to be telling us what
money, power and success do to people in the different situations we encounter. This being a
variation on....
What is the sentiment of this review? Answer with only one word: positive or negative.
Answer:

positive

Review:
Probably my all-time favorite movie, a story of selflessness, sacrifice and dedication to a noble
cause, but it’s not preachy or boring. It just never gets old, despite my having seen it some 15 or
more times in the last 25 years....
What is the sentiment of this review? Answer with only one word: positive or negative.
Answer:

positive

Table 8: Samples from IMDB Sentiment dataset
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