
Steering Pretrained Drafters during Speculative
Decoding

Frédéric Berdoz
ETH Zürich

fberdoz@ethz.ch

Peer Rheinboldt
ETH Zürich

prheinboldt@ethz.ch

Roger Wattenhofer
ETH Zürich

wattenhofer@ethz.ch

Abstract

Speculative decoding accelerates language model inference by separating genera-
tion into fast drafting and parallel verification. Its main limitation is drafter–verifier
misalignment, which limits token acceptance and reduces overall effectiveness.
While small drafting heads trained from scratch compensate with speed, they strug-
gle when verification dominates latency or when inputs are out of distribution.
In contrast, pretrained drafters, though slower, achieve higher acceptance rates
thanks to stronger standalone generation capabilities, making them competitive
when drafting latency is negligible relative to verification or communication over-
head. In this work, we aim to improve the acceptance rates of pretrained drafters
by introducing a lightweight dynamic alignment mechanism: a steering vector
computed from the verifier’s hidden states and injected into the pretrained drafter.
Compared to existing offline alignment methods such as distillation, our approach
boosts the number of accepted tokens by up to 35% under standard sampling and
22% under greedy sampling, all while incurring negligible computational overhead.
Importantly, our approach can be retrofitted to existing architectures and pretrained
models, enabling rapid adoption.

1 Introduction

The auto-regressive nature of transformer-based large language models (LLMs) [44] inherently limits
their inference speed. This limitation is further amplified by the rapid growth in model size among
frontier LLMs [1, 15, 25, 46]. Numerous approaches have been proposed to reduce latency, including
weight quantization [9], model pruning [16], and distillation [17], but these often come at the expense
of generated text quality. A paradigm that escapes this trade-off is speculative decoding [21, 45, 6],
which follows the general principle of speculative execution [3]. This method employs a lightweight
drafter to propose the next k tokens, which are then verified in parallel using a single forward pass
of the larger base model, commonly referred to as the verifier. In essence, speculative decoding
leverages the underutilization of accelerator hardware in classic auto-regressive decoding by using
batched verification to amortize the costly transfer of model parameters between off-chip memory
and on-chip cache. Two main families of approaches have emerged for speculative decoding [18].
The first uses an independent drafter [45], typically a compact LLM trained independently on similar
data as the verifier. Since these drafters are capable language models in their own right, they can
generalize reasonably well, even without task-specific tuning or dynamic steering. The second family
of approach employs small dependent speculative heads mounted directly on top of the verifier and
trained from scratch [39, 4, 2, 22]. At inference, these methods rely mostly on dynamic steering to
keep the drafter aligned with the verifier despite its limited capacity. Although such drafters often
produce shorter accepted blocks, their low latency allows them to rapidly generate many candidate
sequences. Combined with efficient batch evaluation [30], this makes them competitive in settings
where the cost of verification is relatively low, such as in controlled research environments. However,

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Structured Probabilistic
Inference & Generative Modeling.

Independent Drafting SD2 (Ours)

Verifier Pretrained
Drafter Verifier

Pretrained
Drafter

w/ steering

Dependent Drafting (EAGLE-3)

Verifier
EAGLE3

Embedding EmbeddingVerifier Embedding

Figure 1: Overview of different drafting paradigms: Independent drafting uses a smaller model from
the same family as the verifier, with no access to its internal state. Dependent drafting (e.g., EAGLE-3)
uses lightweight heads trained to read the verifier’s hidden states, sharing input embeddings and using
concatenated features for guidance. SD2 strikes a middle ground, leveraging verifier features for
steering while retaining the generalization capabilities of independent drafters.

in real-world scenarios where verification latency fluctuates or dominates total runtime, e.g., when
the verifier is remote [32], deployed on slower hardware, shared across several drafters, or simply
frontier-scale with 600B+ parameters [25], the block efficiency becomes the key driver of efficacy,
as it dictates the number of verification steps. While independent drafters tend to perform better in
that regard, due to their ability to generate coherent sequences, they can only rely on their offline
alignment with the verifier. Building on the observation that LLMs (verifiers in our case) implicitly
encode information about upcoming tokens in their intermediate representations [35], we propose
Steering pretrained Drafters during Speculative Decoding (SD2), a lightweight guiding mechanism
that extracts this latent signal to dynamically steer drafters at inference.

Our key contributions include:

• We introduce a lightweight dynamic steering mechanism for pretrained drafters during
speculative decoding.

• We show that our steering mechanism improves the number of drafted tokens accepted by
up to 35% and has up to 22% higher throughput compared to independent drafters across a
variety of tasks and models.

• We motivate our design choices with several ablations.

2 Related Work

2.1 Speculative Decoding

Speculative decoding (SD) originates from the speculative execution paradigm [3]. While early
variants only supported greedy decoding acceleration [39, 40, 14, 45], the concurrent works of
Leviathan et al. [21] and Chen et al. [6] introduced speculative sampling, extending speculative
decoding to non-deterministic decoding algorithms. This sparked a long line of work focused on
improving the efficiency of such methods, typically evaluated by token throughput (wall-clock
speedup) in controlled environments. We refer to Hu et al. [18] for a comprehensive survey and
detailed taxonomy of speculative decoding.

Dependent Drafters. The first drafters consisted of several decoding heads that independently
drafted tokens to form a sequence, taking the verifier’s last hidden state as input [39, 4]. While fast
(thanks to parallel token drafting), these methods suffer from the lack of dependency between the
drafted tokens, strongly limiting the token acceptance rate. Recognizing this limitation, Li et al. [22]
propose to use auto-regressive drafters on the hidden states, and Ankner et al. [2] improves by taking
the embeddings of the previously drafted tokens as input to the autoregressive drafter. Instead of
only using the last hidden representations of the drafter, Zimmer et al. [51] and Du et al. [11] use the
KV values of the verifiers during drafting. Zhang et al. [48] and Li et al. [24] further improve the
acceptance rates by training the drafter to use its hidden features to close the gap between training

2

Blocks

to

Blocks

 to

Blocks

to

Blocks

to

Verifier

 Block

Attention

Blocks

 to

Blocks

 to

Drafter

Figure 2: The steering mechanism in SD2 works by concatenating the verifier’s high-, medium-, and
low-level hidden features and passing them through a linear projection to produce a steering vector.
This embedding is transformed by another linear layer into a set of biases, which are added to all
MLP hidden states in the drafter just before the activation function, as detailed in Eq. 1 and Eq. 2.

and inference. Although our study centers on independent drafters, we also report the block efficiency
of EAGLE-3 [24] in a chain decoding setting (i.e., only one proposed sequence, excluding its tree
decoding component) to provide a reference point for the improvements achievable by independent
drafters.

Independent Drafters. Independent auto-regressive drafters were first introduced by Xia et al.
[45]. Building on this, Huang et al. [19] proposed an enhanced version where the candidate length is
determined on the fly via an acceptance prediction head. Zhou et al. [50] note that the acceptance rate
of the drafted token is theoretically bounded by the divergence between the drafter and verifier, and
therefore propose to distill the verifier into the drafter. Alternatively, [26] propose online speculative
decoding, where drafters are continuously retrained on new user inputs, and Fu et al. [13] propose a
drafter-free version using intermediate Jacobi iterations as drafted sequences.

Verification. Sun et al. [41, 42] frame the verification phase as an optimal transport problem to
improve batch and block verification, respectively. Spector and Re [38] and Miao et al. [30] introduce
tree-based speculative inference, where many drafted sequences are arranged in a tree and verified in
parallel. Building on this idea, Li et al. [23] introduce dynamic drafting trees. Lastly, [47] explore the
theoretical limits of speculative decoding.

2.2 Dynamic Steering of LLMs

The technique of activation steering, first proposed by Turner et al. [43], allows for the control of
LLM behavior by directly modifying model activations during inference. It is primarily motivated by
the linear representation hypothesis [33], suggesting that a model’s intent or behavior is encoded
along specific, steerable directions. Subsequently, Rimsky et al. [34] introduced a method to compute
steering vectors by averaging the activation differences between sets of positive and negative examples.
More recently, Chalnev et al. [5] introduce a method to predict a steering vector’s impact on internal
sparse autoencoder (SAE) features [20]. However, these approaches focus on static, interpre steering
and remain largely unexplored in the dynamic context of speculative decoding.

3 Methodology

Steered speculative decoding (SD2) follows the standard speculative decoding paradigm of drafting a
candidate sequence and verifying each token in parallel [21, 6]. The key addition is that, in addition

3

...

...

()... ... ()... ...

Figure 3: The training process of SD2 aligns the drafter’s (πD) probability distribution to the verifier’s
(πV). To achieve this, we randomly choose an offset δ ∈ [1, k] to simulate drafting the δ’th token of
a block. After extracting g from on the verifier’s activations, we compute πD(xt|x1:t−1, gt−δ) and
use the Kullback-Leibler divergence DKL(πV (·|x1:t−1)∥πD(·|x1:t−1, gt−δ)) as loss. In addition to
Ws (see Figure 2), both Whml and πD are trained. The verifier πV stays frozen throughout training.

to the rejection of candidate tokens, the verification step also produces a steering vector, which is
used to guide the drafter in the next generation phase. Our method is motivated by the observation
that auto-regressive models implicitly encode information about future tokens beyond the immediate
next token, even without being explicitly trained to do so [35]. We aim to extract this predictive
information from the verifier’s hidden representations and inject it into the drafter to dynamically
guide generation. Ablations justifying this mechanism can be found in Appendix A.4.

3.1 Verification

In SD2, the verification of candidate tokens remains unchanged to the regular speculative decoding
framework, where we compute πV (x̂t+i | x1:t, x̂t+1:t+i−1) for all i ∈ [1, k] in parallel, and then
compare with the drafter’s predicted outputs to accept or reject the token using rejection sampling,
which has been proven to be optimal [21, 47]. We further enhance this step with the generation of a
steering vector gt to further condition πD. This steering vector is generated based on the verifier’s
hidden states at the position of the first rejected token, i.e, the last token returned. Similar to EAGLE-3
[24] we use a linear layer, which is applied on the concatenation of ht,mt, lt, which are the high,
middle and low activations of the verifier from three different layers, to generate steering vector
gt = Whml[ht,mt, lt]

⊤.

3.2 Drafting

The drafting process of candidate tokens follows the standard auto-regressive decoding of regular
LLMs, except that in SD2 the probability distributions πD(x̂t+i | x1:t, gt, x̂t+1:t+i−1) is further
conditioned on the steering vector gt. To steer the drafter, we incorporate a linear mapping of gt as a
bias in all MLP layers l = 1, ..., LD of πD by changing the SwiGLU [37] computation from

a
(l)
t+i 7→ Wd(Wua

(l)
t+i ⊙ σ(Wga

(l)
t+i)), (1)

to

a
(l)
t+i,gt 7→ Wd((Wua

(l)
t+i +Wsgt)⊙ σ(Wga

(l)
t+i)). (2)

This ensures that the added overhead is negligible compared to the latency of the transformer, while
allowing for a large amount of control in all layers of the drafter, as now the MLP is not solely
conditioned on the hidden state, but also the steering vector. As Wsgt is invariant to drafting
position i, we can compute it once at the beginning of each drafting stage. Note that the steering
vector also influences the keys/ values in the attention mechanism, meaning the computation of
πD(x̂t+i | x1:t, gt, x̂t+1:t+i−1) is not only conditioned on gt, but also all prior steering vectors gt′
used in prior tokens.

4

Table 1: Block efficiency and speedup across a variety of tasks for k = 8 and T = 1 (See App. A.7 for
T = 0), where UltraChat serves as the held-out validation set of training data for SD2 and distilled.
We report the block efficiency τ (± denotes standard deviation over three independent evaluation
runs; we further discuss statistical significance in App. A.5) and speedup α over pretrained drafters
for each verifier/drafter combination, ordered by decreasing drafter-to-verifier size ratio. Particularly
for smaller pretrained drafters, as in the example of Vicuna 1.3, incorporating steering mechanisms
significantly enhances throughput, achieving on average 61% greater throughput and a 57% increase
in block efficiency compared to its pretrained counterpart under standard sampling. Llama 3.1’s
pretrained drafter already demonstrates higher block efficiency overall (0.94 higher block efficiency
than Qwen3 8B & Qwen3 0.6B on average), suggesting a naturally strong alignment between drafter
and verifier. While distillation generally degrades performance across tasks not seen during training,
SD2 consistently preserves it. For Qwen and Llama models, both distillation and SD2 fail to improve
over pretrained drafters that are already well-aligned on GSM8K and HumanEval datasets. Notably,
SD2 always achieves higher block efficiency than its distilled counterpart and consistently also
achieves greater throughput.
Method UltraChat HumanEval XSum Alpaca GSM8K Mean

τ α τ α τ α τ α τ α τ α

Vicuna 1.3 13B & Llama 160M
Pretrained 1.93±0.02 1.00 1.68±0.02 1.00 2.08±0.03 1.00 1.83±0.02 1.00 1.90±0.02 1.00 1.88±0.02 1.00
Distilled 2.90±0.04 1.53 2.50±0.00 1.53 2.13±0.04 0.97 2.50±0.03 1.39 2.22±0.01 1.19 2.45±0.02 1.32
SD² 3.45±0.06 1.83 3.19±0.08 1.96 2.46±0.02 1.14 2.99±0.03 1.67 2.72±0.03 1.46 2.96±0.04 1.61

Qwen3 14B & Qwen3 0.6B
Pretrained 3.09±0.03 1.00 4.89±0.07 1.00 3.14±0.04 1.00 2.86±0.04 1.00 5.33±0.08 1.00 3.86±0.05 1.00
Distilled 3.59±0.05 1.20 4.88±0.06 1.01 3.09±0.07 1.02 3.14±0.05 1.12 5.16±0.09 0.98 3.97±0.06 1.05
SD² 3.87±0.02 1.28 5.25±0.14 1.08 3.39±0.03 1.10 3.39±0.05 1.19 5.40±0.07 1.01 4.26±0.06 1.11

Qwen3 8B & Qwen3 0.6B
Pretrained 3.17±0.07 1.00 5.18±0.09 1.00 3.19±0.03 1.00 3.02±0.04 1.00 5.30±0.01 1.00 3.97±0.05 1.00
Distilled 3.71±0.04 1.18 5.10±0.14 0.99 3.16±0.02 0.98 3.20±0.03 1.06 5.16±0.06 0.98 4.07±0.06 1.03
SD² 3.96±0.05 1.24 5.18±0.07 0.99 3.40±0.02 1.05 3.54±0.07 1.16 5.31±0.11 0.99 4.28±0.06 1.06

Llama 3.1 8B & Llama 3.2 1B
Pretrained 4.44±0.03 1.00 6.43±0.07 1.00 3.96±0.05 1.00 4.11±0.16 1.00 5.62±0.08 1.00 4.91±0.08 1.00
Distilled 4.58±0.03 1.03 6.25±0.07 0.97 3.76±0.02 0.94 4.07±0.02 0.99 5.22±0.05 0.93 4.78±0.04 0.97
SD² 4.79±0.09 1.07 6.49±0.11 0.99 4.07±0.05 1.02 4.22±0.08 1.02 5.44±0.06 0.95 5.00±0.08 1.00

3.3 Training

To train SD2 we utilize synthetic data generated by πV and use the probability distribution
πV (xt|x1:t−1) as targets. Similar to Zhou et al. [50], we use a synthetic dataset, as they have
shown better alignment improvements compared to ground truth data, as it better reflects the veri-
fier’s behavior at inference. To train the steering mechanism, we utilize a uniformly random offset
δ ∈ [1, k] and compute πD(xt|x1:t−1, gt−δ). This ensures that the steering mechanism uniformly
receives gradients for all drafting positions and hence must learn to encode information about the
upcoming k tokens. In addition to the steering mechanism, we also fully fine-tune the drafter, while
the verifier remains frozen throughout training to ensure lossless acceleration. This step is critical
to the performance improvement of SD2, as observed in our ablation presented in Appendix A.4.
Leviathan et al. [21] showed that total variational distance (DTVD) is equivalent to the rejection rate,
making it the natural choice as a criterion. However, Zhou et al. [50] showed that the choice of
loss is more nuanced and showed that Kullback–Leibler divergence (DKL), which we adopt, often
outperforms DTVD as a criterion. The initialization of the steering mechanism is crucial, as too much
interference by the untrained mechanism can lead to the model diverging. We initialize Ws = 0 and
Whml such that Whml[ht,mt, lt]

⊤ = ht +mt + lt.

5

16 32 48 64 80 96 112

1.0

1.5

2.0

2.5

Av
g.

 N
r.

Of
 A

cc
ep

te
d

To
ke

ns

Vicuna 1.3

16 32 48 64 80 96 112

1.5

2.0

2.5

3.0

Qwen3 14B

16 32 48 64 80 96 112

1.5

2.0

2.5

3.0

Qwen3 8B

16 32 48 64 80 96 112

1.5

2.0

2.5

3.0

3.5

4.0
Llama 3.1

SD²
Distilled
Pretrained
EAGLE-3*

Figure 4: Number of tokens accepted per block at different positions. We compare how different
drafter/verifier pairs fare at different positions throughout the generation process: A point at position
x means the average number of accepted tokens per block for blocks with the last generated token
having position x± 8. As can be seen, large pretrained drafters can leverage their vast training data
to maintain strong drafting performance with increased sequence length. SD2 minimally interferes
with this behavior.

4 Experiments

Baselines. We evaluate the efficacy of our method against several drafting strategies: Pretrained,
which employs speculative decoding with the unchanged drafter and Distilled [50], which first aligns
the drafter to the verifier at training time. Additionally, we evaluate EAGLE-3* [24], a state-of-the-art
dependent drafter used as a baseline for block efficiency. The asterisk indicates that we restrict
EAGLE-3 to chain drafting mode to ensure a fair comparison and consistency with the other models.
For SD2 we set the l,m, h layers to 3, L

2 , L− 2 inspired by EAGLE-3.

Model Configurations. To assess the performance of SD2, we use 4 different open source verifier-
drafter pairs: Vicuna 1.3 13B with Llama 160M, Qwen3 14B and Qwen3 0.6B, Qwen3 8B and
Qwen3 0.6B, and Llama 3.1 8B-Instruct and Llama 3.2 1B-Instruct. [49, 30, 46, 28, 29] These
configurations were selected to represent a range of verifier–drafter capacity gaps and model families.
For EAGLE-3*, we use the publicly released weights trained on UltraChat and ShareGPT datasets
[24].

Tasks. We run experiments on 96 samples from 5 different datasets: The held-out validation split of
UltraChat_200k [10] for dialogue, HumanEval [7] for code generation, XSum [31] for summarization,
Alpaca [12] for instruction-following, and GSM8K [8] for reasoning. These common datasets provide
coverage across core capabilities such as reasoning, summarization, and interaction. From this list,
UltraChat_200k is the only dataset that the distilled and SD2 drafters have seen during training.

Decoding Parameters. We fix the drafter’s draft length to k = 8 tokens, yielding speculation
blocks of size k + 1 = 9. All decoding is performed using the chain drafting strategy. We consider
two sampling regimes: full sampling with temperature T = 1, and greedy decoding with T = 0. We
use batched speculative decoding with a batch size of 12 and generate up to 128 output tokens per
example. To ensure statistical reliability under stochastic sampling, we generate outputs at T = 1
across three distinct random seeds and report their mean and standard deviation. Due to memory
limitations, we limit the total number of tokens computed (including rejected ones) to 512 tokens.
For Vicuna 1.3, we relax this constraint by reducing the batch size and disabling the maximum token
count, due to the low acceptance rate of the pretrained model.

Metrics. Since speculative decoding preserves the base model’s probability distribution, this study
focuses solely on efficiency metrics: Block efficiency (τ) and speedup compared to the pretrained
independent drafter (α). Block efficiency refers to the tokens generated per block, and is a driving
factor in the efficacy of speculative decoding. This metric can be derived from the number of accepted
tokens per block, and adding 1 for the token generated from the joint drafter-verifier distribution
after rejection. We measure speedup as the increase in tokens generated per second compared to the

6

independent pretrained drafter. Note that speedup is hardware-dependent, unlike hardware-agnostic
metrics such as τ .

Training Details. The distilled and SD2 drafters are initialized from the pretrained drafter and
finetuned for 6 epochs on synthetic data generated by the verifier with temperature T = 1, using
prompts sourced from UltraChat_200k [10], limited to a total sequence length of 256. Training is
conducted with an effective batch size of 24 using the AdamW [27] optimizer. Refer to Appendix A.3
for more info. After training on UltraChat, we fine-tune each drafter for one additional epoch on
synthetic samples derived from the ShareGPT dataset [36]. Experiments are all performed on one
NVIDIA A100 GPU with 80GB of memory. We release our code in Appendix A.2.

4.1 Results

Vicuna 1.3 Qwen3 14B Qwen3 8B Llama 3.1

0

1

2

3

4

Av
g.

 N
r.

of
 A

cc
ep

te
d

To
ke

ns EAGLE-3*
Pretrained

Distilled
SD²

Figure 5: The average number of accepted tokens per
Block for the different speculative decoding setups (Left
to right: EAGLE-3*, Pretrained, Distilled, SD2) aver-
aged across all tasks. Solid bars correspond to T = 1
(sampling), and the hashed bars to T = 0 (greedy). One
can see that SD2 consistently achieves higher accep-
tance rates compared to both the Distilled and Pretrained
drafter. In Vicuna 1.3, the number of active parameters
for the drafter (Llama 160M) is less than half as many
as the respective EAGLE-3* model. At such small sizes,
pretrained drafters lose their competitiveness to depen-
dent heads; however, SD2 can bridge this gap.

Block Efficiency Table 1, Appendix A.7
and Fig. 5 summarize the results across all
configurations. SD2 consistently yields a
higher block efficiency compared to both
distilled and pretrained approaches. This
improvement is particularly pronounced on
UltraChat, the evaluation set from the train-
ing distribution, where SD2 shows clear
advantages. Across all datasets, SD2 either
matches or surpasses the performance of
the pretrained model. As can be seen in
Fig. 5, the Qwen and especially the Llama
pretrained drafters already achieve high ac-
ceptance rates. This is particularly true in
GSM8K and HumanEval, as can be seen
in Table 1, where the distilled drafter is
consistently outmatched by the pretrained
drafter. This suggests that the distilled ver-
sion has overfit to tasks in the style of Ultra-
Chat dialogue. While SD2 also degrades
in performance on these tasks compared
to UltraChat or similar tasks, it can con-
sistently match or beat both pretrained and
distilled drafters. In the case of Vicuna 1.3,
the pretrained drafter is not closely aligned
to the model. This is to be expected, as
in comparison to the other drafter-verifier
pairs, these models have been trained on different data distributions and have a significantly larger
capacity gap. In that setting, as observed in Table 1, both distillation and SD2 significantly increase
the block efficiency. For instance, with T=1 sampling, the distilled drafter achieves an average block
efficiency improvement of 0.57 over the pretrained baseline across all tasks, while SD2 further adds
0.51 accepted tokens per block. As seen in Fig. 5, both distilled and SD2 perform reliably under both
T = 0 (greedy decoding) and T = 1 (sampling), demonstrating robustness to different decoding
regimes. Overall, the integration of steering leads to an average increase of 21% on the number of
tokens accepted per block (τ − 1) compared to distilled drafters and 31% compared to pretrained
drafters

Performance in Long Sequence Drafting. A key advantage of using pretrained drafters is their
exposure to large-scale datasets and long-context training, which equips them with strong generation
capabilities over extended sequences. As demonstrated in Fig. 4, both distilled and SD2 maintain this
capability. SD2 consistently has more accepted tokens, and therefore also higher block efficiency,
compared to both the pretrained and the distilled drafter across a range of token positions. Moreover,
as evident by Fig. 4, SD2 maintains a relatively constant advantage over distillation across all token
positions, showing that steering works well with increasing sequence length. A continuation of the
example in Table 2 is available in Appendix A.6.

7

Table 2: Qualitative example of speculative decoding with different drafting methods. Green tokens
are accepted, red tokens are rejected, and the blue token is the final token per block sampled from the
joint drafter-verifier distribution. Note that the symbol [?] refers to tokens outside of the English
alphabet, highlighting the inherent risk of hidden state intervention. Continuation and more examples
can be found in Appendix A.6

Pretrained Distilled SD2 (ours)

Here is the implemented Python
function ‘has To solve this problem,
we need to ** determine if there
exists at least two elements in **
any pair of numbers in a list is two
numbers in a list** are **clo ** ...

Here’s the implemented Python func-
tion ‘has To solve this problem, you
need to :\n\n determine whether
there exists any two numbers in the
** any pair of numbers in a list is
two numbers in the list** differ...

To solve the problem, we need to of
determining whether any two num-
bers in a list are closer to each other
than a given ‘threshold ‘, we can
use a **hash map approach it as
follows:\n\n### [?][?] Approach...

Speedup over Pretrained. Table 1 shows that, despite adding a small amount of computational
latency to the drafting operation, SD2 can speed up pretrained models by up to +83% on training
data, while distilled models achieve an improvement of up to +53% over baseline. As evidenced
by Tables 1 and Appendix A.7, across all tasks in Vicuna 1.3, SD2 achieves a speedup of +61%
under regular sampling and +43% under greedy sampling. On average, SD2 provides a speedup of
+19.5% for T = 0 (See Appendix A.7) and +16.3% for T = 1 compared to its pretrained counterpart.
Crucially, SD2 achieves roughly twice the additive speedup compared to distilled drafting under
standard sampling and roughly 75% more additive speedup with greedy sampling. Furthermore, for
Qwen3 8B on HumanEval with T=1, we observe that the steered method incurs only a 1% slowdown
while matching the block efficiency of independent drafting, confirming the mechanism’s minimal
overhead.

5 Limitations and Future Work

The performance of SD2, much like distillation-based approaches, is highly dependent on the
composition and quality of the training data. Although SD2 often matches the pretrained drafter on
out-of-domain tasks, its effectiveness remains strongest on data similar to its training distribution, as
shown in Table 1. This highlights the importance of either training on a comprehensive and diverse
dataset or limiting the drafter to a singular domain. Furthermore, while achieving higher block
efficiency, it provides little to no speedup over an already well-aligned drafter, such as Llama 3.1.
Moreover, changing hidden representations in transformer networks is a delicate matter, as small
changes in the wrong direction, as evidenced in Table 2, can lead the model to produce nonsensical
output. Additionally, while speculative decoding with pretrained drafters can isolate the verifier in a
black box, SD2 requires access to the verifier’s hidden states. This can be challenging in applications
involving external remote verifiers. While we demonstrate that steering can be retrofitted onto existing
drafters, we do not explore the training of new drafters explicitly designed for dynamic steering,
which we leave as an open direction for future work. Furthermore, we do not compare SD2 ’s
steering to more invasive methods like EAGLE’s concatenation of verifier states. However, SD2 ’s
key advantage is its modularity, as steering can be added post hoc without requiring verifier signals
during pretraining. All models in this study use SwiGLU [37] in their feedforward layers. While our
steering mechanism should generalize to other gated activations, this remains to be validated in future
work. Finally, extending SD2 to more complex speculative decoding paradigms, such as dynamic tree
verification, remains an open problem, with application-specific studies needed to assess its practical
viability and competitiveness against other speculative decoding paradigms.

6 Conclusion

This study presents a method to dynamically steer pretrained drafters during speculative decoding,
achieving substantial performance improvements compared to baselines and across a wide range
of drafter and verifier configurations. In addition to improving acceptance rates, our system ex-
hibits greater robustness on out-of-distribution tasks, suggesting that steering mechanisms are less
susceptible to over-fitting on the training task.

8

References
[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,

Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4 Technical Report,
2023.

[2] Zachary Ankner, Rishab Parthasarathy, Aniruddha Nrusimha, Christopher Rinard, Jonathan Ragan-Kelley,
and William Brandon. Hydra: Sequentially-Dependent Draft Heads for Medusa Decoding. In Proceedings
of the Conference on Language Modeling (CoLM), 2024.

[3] F. Warren Burton. Speculative Computation, Parallelism, and Functional Programming. IEEE Transactions
on Computers, 100(12):1190–1193, 2012.

[4] Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D. Lee, Deming Chen, and Tri Dao.
MEDUSA: Simple LLM Inference Acceleration Framework with Multiple Decoding Heads. In Proceedings
of the International Conference on Machine Learning (ICML), 2024.

[5] Sviatoslav Chalnev, Matthew Siu, and Arthur Conmy. Improving Steering Vectors by Targeting Sparse
Autoencoder Features, 2024.

[6] Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John Jumper.
Accelerating Large Language Model Decoding with Speculative Sampling, 2023.

[7] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating Large Language Models
Trained on Code, 2021.

[8] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training Verifiers to Solve Math Word
Problems, 2021.

[9] Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. GPT3.int8(): 8-bit Matrix Multipli-
cation for Transformers at Scale. In Proceedings of the Conference on Neural Information Processing
Systems (NeurIPS), 2022.

[10] Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Shengding Hu, Zhiyuan Liu, Maosong Sun, and Bowen Zhou.
Enhancing Chat Language Models by Scaling High-Quality Instructional Conversations. In Proceedings of
the Conference on Empirical Methods in Natural Language Processing (EMNLP), 2023.

[11] Cunxiao Du, Jing Jiang, Yuanchen Xu, Jiawei Wu, Sicheng Yu, Yongqi Li, Shenggui Li, Kai Xu, Liqiang
Nie, Zhaopeng Tu, et al. GliDe with a CaPE: A Low-Hassle Method to Accelerate Speculative Decoding.
In Proceedings of the International Conference on Machine Learning (ICML), 2024.

[12] Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B. Hashimoto. Length-Controlled AlpacaEval:
A Simple Way to Debias Automatic Evaluators, 2024.

[13] Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang. Break the Sequential Dependency of LLM Inference
Using Lookahead Decoding. In Proceedings of the International Conference on Machine Learning (ICML),
2024.

[14] Tao Ge, Heming Xia, Xin Sun, Si-Qing Chen, and Furu Wei. Lossless Acceleration for Seq2seq Generation
with Aggressive Decoding, 2022.

[15] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The Llama 3 Herd of Models,
2024.

[16] Song Han, Huizi Mao, and William J. Dally. Deep Compression: Compressing Deep Neural Network with
Pruning, Trained Quantization and Huffman Coding. In Proceedings of the International Conference on
Learning Representations (ICLR), 2016.

[17] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the Knowledge in a Neural Network, 2015.

[18] Yunhai Hu, Zining Liu, Zhenyuan Dong, Tianfan Peng, Bradley McDanel, and Sai Qian Zhang. Speculative
Decoding and Beyond: An In-Depth Survey of Techniques, 2025.

[19] Kaixuan Huang, Xudong Guo, and Mengdi Wang. SpecDec++: Boosting Speculative Decoding via
Adaptive Candidate Lengths, 2024.

9

[20] Robert Huben, Hoagy Cunningham, Logan Riggs Smith, Aidan Ewart, and Lee Sharkey. Sparse Au-
toencoders Find Highly Interpretable Features in Language Models. In Proceedings of the International
Conference on Learning Representations (ICLR), 2024.

[21] Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast Inference from Transformers via Speculative
Decoding. In Proceedings of the International Conference on Machine Learning (ICML), 2023.

[22] Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. EAGLE: Speculative Sampling Requires
Rethinking Feature Uncertainty. In Proceedings of the International Conference on Machine Learning
(ICML), 2024.

[23] Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. EAGLE-2: Faster Inference of Language
Models with Dynamic Draft Trees. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing (EMNLP), 2024.

[24] Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. EAGLE-3: Scaling Up Inference Acceleration
of Large Language Models via Training-Time Test, 2025.

[25] Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi
Deng, Chenyu Zhang, Chong Ruan, et al. DeepSeek-V3 Technical Report, 2024.

[26] Xiaoxuan Liu, Lanxiang Hu, Peter Bailis, Alvin Cheung, Zhijie Deng, Ion Stoica, and Hao Zhang. Online
Speculative Decoding. In Proceedings of the International Conference on Machine Learning (ICML),
2024.

[27] Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization. In Proceedings of the
International Conference on Learning Representations (ICLR), 2019.

[28] Meta AI. Introducing Llama 3.1: Our Most Capable Models to Date. https://ai.meta.com/blog/
meta-llama-3-1/, 2024. Accessed: 2025-07-29.

[29] Meta AI. Llama 3.2: Revolutionizing Edge AI and Vision with Open, Customizable Models. https:
//ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/, 2024. Ac-
cessed: 2025-07-29.

[30] Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Zhengxin Zhang, Rae Ying Yee
Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, et al. SpecInfer: Accelerating Large Language Model Serving
with Tree-Based Speculative Inference and Verification. In Proceedings of the International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS), 2024.

[31] Shashi Narayan, Shay B. Cohen, and Mirella Lapata. Don’t Give Me the Details, Just the Summary! Topic-
Aware Convolutional Neural Networks for Extreme Summarization. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing (EMNLP), 2018.

[32] OpenAI. Predicted Outputs Guide. https://platform.openai.com/docs/guides/
predicted-outputs, 2024. Accessed: 2025-07-29.

[33] Kiho Park, Yo Joong Choe, and Victor Veitch. The Linear Representation Hypothesis and the Geometry of
Large Language Models. In Proceedings of the International Conference on Machine Learning (ICML),
2024.

[34] Nina Rimsky, Nick Gabrieli, Julian Schulz, Meg Tong, Evan Hubinger, and Alexander Turner. Steering
Llama 2 via Contrastive Activation Addition. In Proceedings of the Annual Meeting of the Association for
Computational Linguistics (ACL), 2024.

[35] Mohammad Samragh, Arnav Kundu, David Harrison, Kumari Nishu, Devang Naik, Minsik Cho, and
Mehrdad Farajtabar. Your LLM Knows the Future: Uncovering Its Multi-Token Prediction Potential, 2025.

[36] ShareGPT. ShareGPT. https://huggingface.co/datasets/Aeala/ShareGPT_Vicuna_
unfiltered, 2023. Accessed: 2025-07-29.

[37] Noam Shazeer. GLU Variants Improve Transformer, 2020.

[38] Benjamin Frederick Spector and Christopher Re. Accelerating LLM Inference with Staged Speculative
Decoding, 2023.

[39] Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit. Blockwise Parallel Decoding for Deep Autoregressive
Models. In Proceedings of the Conference on Neural Information Processing Systems (NeurIPS), 2018.

10

https://ai.meta.com/blog/meta-llama-3-1/
https://ai.meta.com/blog/meta-llama-3-1/
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://platform.openai.com/docs/guides/predicted-outputs
https://platform.openai.com/docs/guides/predicted-outputs
https://huggingface.co/datasets/Aeala/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/Aeala/ShareGPT_Vicuna_unfiltered

[40] Xin Sun, Tao Ge, Furu Wei, and Houfeng Wang. Instantaneous Grammatical Error Correction with
Shallow Aggressive Decoding. In Proceedings of the Annual Meeting of the Association for Computational
Linguistics (ACL), 2021.

[41] Ziteng Sun, Ananda Theertha Suresh, Jae Hun Ro, Ahmad Beirami, Himanshu Jain, and Felix Yu. SpecTr:
Fast Speculative Decoding via Optimal Transport. In Proceedings of the Conference on Neural Information
Processing Systems (NeurIPS), 2023.

[42] Ziteng Sun, Uri Mendlovic, Yaniv Leviathan, Asaf Aharoni, Ahmad Beirami, Jae Hun Ro, and
Ananda Theertha Suresh. Block Verification Accelerates Speculative Decoding, 2024.

[43] Alexander Matt Turner, Lisa Thiergart, Gavin Leech, David Udell, Juan J. Vazquez, Ulisse Mini, and
Monte MacDiarmid. Steering Language Models with Activation Engineering, 2023.

[44] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention Is All You Need. In Proceedings of the Conference on Neural
Information Processing Systems (NeurIPS), 2017.

[45] Heming Xia, Tao Ge, Peiyi Wang, Si-Qing Chen, Furu Wei, and Zhifang Sui. Speculative Decoding:
Exploiting Speculative Execution for Accelerating Seq2seq Generation. In Proceedings of the Conference
on Empirical Methods in Natural Language Processing (EMNLP), 2023.

[46] An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao,
Chengen Huang, Chenxu Lv, et al. Qwen3 Technical Report, 2025.

[47] Ming Yin, Minshuo Chen, Kaixuan Huang, and Mengdi Wang. A Theoretical Perspective for Speculative
Decoding Algorithm. In Proceedings of the Conference on Neural Information Processing Systems
(NeurIPS), 2024.

[48] Lefan Zhang, Xiaodan Wang, Yanhua Huang, and Ruiwen Xu. Learning Harmonized Representations
for Speculative Sampling. In Proceedings of the International Conference on Learning Representations
(ICLR), 2025.

[49] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging LLM-as-a-Judge with MT-Bench and Chatbot Arena.
In Proceedings of the Conference on Neural Information Processing Systems (NeurIPS), 2023.

[50] Yongchao Zhou, Kaifeng Lyu, Ankit Singh Rawat, Aditya Krishna Menon, Afshin Rostamizadeh, Sanjiv
Kumar, Jean-François Kagy, and Rishabh Agarwal. DistillSpec: Improving Speculative Decoding via
Knowledge Distillation. In Proceedings of the International Conference on Learning Representations
(ICLR), 2024.

[51] Matthieu Zimmer, Milan Gritta, Gerasimos Lampouras, Haitham Bou Ammar, and Jun Wang. Mixture
of Attentions for Speculative Decoding. In Proceedings of the International Conference on Learning
Representations (ICLR), 2025.

11

A Technical Appendix

A.1 Notation

• πV : Verifier model (also referred to as the base model).
• πD: Drafter model.
• k: Number of tokens generated (drafted) per step.
• τ : Block efficiency metric.
• α: Speed up in throughput compared to using the pretrained drafter.
• xi:j := {xk | i ≤ k ≤ j}: Token subsequence from position i to j, inclusive.
• gt: Steering vector generated by πV at timestep t.
• ht,mt, lt: High-, middle-, and low-level hidden states from πV at timestep t.

• f
(l)
t : Hidden state at timestep t after the l-th layer.

• T = 0, T = 1: Sampling temperatures; T = 1 corresponds to standard sampling, and T = 0
to greedy sampling.

• [a, b] := {i ∈ N | a ≤ i ≤ b}: Closed interval over natural numbers from a to b.

A.2 Code

We release our code to support full reproducibility and to facilitate further research.

https://github.com/ETH-DISCO/SD-square

A.3 Training Details

Training was done on 1xA100-80GB with BF-16 precision. The drafter was stored in full precision
throughout training. We use a cosine learning rate scheduler with 1000 warm-up steps starting and
ending at 1/10th the learning rate. We employ gradient-norm clipping with a value of 0.5 to ensure
stability. For AdamW we set β1 = 0.9, β2 = 0.999, and model-specific learning rates (5e-5 for
Vicuna 1.3, 1e-5 for Llama 3.1 and 2e-5 for Qwen3 8B & 14B).

A.4 Ablation Studies

We justify the design of the steering mechanism and training in SD2 with ablation studies on Vicuna-
1.3 7B and Llama 160M. We investigate three key SD2 design choices: The steering mechanism,
unfreezing the drafter, and the offsets used during training.

What steering mechanism is most effective? The choice of a steering mechanism, i.e, how we
modify the behavior of the drafter conditioned on the steering vector gt, is critical for the effectiveness
of SD2. We aim to design an optimal steering mechanism that (i) is latency-lightweight, (ii) remains
compatible with other acceleration techniques like KV-Caching, and (iii) provides precise control
over the drafter’s behavior. We evaluated three options that differ in the number of parameters and
expressiveness. The simplest method adds a bias Wsgt right after the MLP for all hidden layers,
so f̃

(l)
t+i := f

(l)
t+i +Wsgt for all i ∈ [1, k]. Note that Wsgt only has to be computed once, as it is

invariant of draft position i. The second approach, which we ultimately adopt in SD2 (see Eq. 2),
modifies this by instead conditioning the existing MLP on gt for all layers by adding Wsgt to the
up-projection, right before gating. The last approach modifies all layers by adding a 2-layer MLP
with input f (l−1)

t and gt, which computes the bias, which in turn is then used inside the MLP as in
the second approach. As seen in Fig. 6, SD2 consistently scores the highest block efficiency.

Should one fine-tune the drafter? In SD2, we fine-tune both the steering mechanism and the
drafter parameters. To isolate the effect of steering, we also evaluate a frozen-drafter variant where
only the steering is trained. As inferrable from Fig. 6, steering alone can increase the number of tokens
accepted by +100% over the unaligned pretrained’s baseline of 1.0 , indicating that the verifier’s
hidden states convey valuable guidance and can meaningfully influence the drafter’s output. However,
as Fig. 6 shows, unfreezing the drafter consistently yields better results.

12

https://github.com/ETH-DISCO/SD-square

2500 5000 7500 10000 12500 15000
Step

1.8

2.0

2.2

2.4

2.6

Av
g.

 N
r.

Of
 A

cc
ep

te
d

To
ke

ns SD²
w/ Cond. Bias in MLP
w/ Inv. after MLP
w/ Frozen Drafter
w/ Blocked Offsets

Figure 6: Number of tokens accepted for ablation experiments throughout training for 2 epochs on
Vicuna 1.3 7B (πV) and Llama 160M (πD). We omit step 0, where every experiment has the value
of the pretrained drafter, of 1.0. SD2 utilizes a bias in the MLP, right after the up-projection, and
unfreezes the drafter. Inv. Bias after MLP simplifies the steering mechanism of SD2 by adding
the bias right after the MLP, while Cond. Bias in MLP increases the modeling capability of the
steering mechanism by instead calculating the bias based on not only gt, but also f

(l−1)
t+i . We also

test keeping the drafter frozen throughout training. Finally, in the Blocked Offsets experiment, we
change the training mechanism to mimic offsets seen during inference by using gt for the prediction
of tokens xt+1:t+k (instead of using gt−δ for the prediction of xt with a random δ). SD2 consistently
outperforms the other variants, justifying our design choices.

Should one model the offsets used in training after inference? During training, our method
samples a random offset δ ∈ [1, k] and uses the steering vector gt to predict the distribution of x̂t+δ .
This differs from inference, where gt conditions the prediction of all tokens x̂t+1:t+k. To better
simulate inference behavior during training, we instead apply a blocked offset strategy: gt is used as
the steering vector for the entire prediction block ŷt+1:t+k, where tmod k = δ − 1. As can be seen
in Fig. 6, these two methods only differ slightly, with SD2 having the slight edge.

A.5 Statistical Significance

We evaluate the statistical significance of our results using a pair-wise Welch’s t-test across datasets
and drafter-verifier pairs. Refer to Table 3

A.6 Example of speculative decoding

See Table 4 for a continuation of the example in Table 2.

A.7 Performance under Greedy Sampling

See Table 5 for the results under the greedy sampling paradigm.

13

Table 3: Pairwise t-tests on block efficiency across datasets and models for T = 1 across 3 distinct
seeds. We evaluate the statistical significance of each of the results by considering a pair-wise t-test
between the pretrained baseline and the distilled version or SD2. t corresponds to Welch’s t-statistic,
which measures the standardized difference. A positive t-statistic indicates an improvement over
the pretrained drafter. p corresponds to the probability of the null hypothesis, i.e., that there is no
difference between the two distributions. We marked all p ≤ 0.05 in bold. As is evident, both
distilled and SD2 make improvements over the pretrained drafter on the held-out validation data
from the training dataset UltraChat_200k. Meanwhile, especially for Llama 3.1, the difference in
block efficiency between SD2 and pretrained drafters is less clear as the two models tend to perform
similarly on out-of-training-data evaluations. For Vicuna, one can see that SD2 performs better over
the pretrained baseline with very high probability

Method UltraChat HumanEval XSum Alpaca GSM8K
t p t p t p t p t p

Vicuna 1.3 13B & Llama 160M
Distilled 40.15 0.00 72.90 0.00 1.82 0.16 35.19 0.00 32.51 0.00
SD² 43.70 0.00 32.96 0.00 18.65 0.00 54.96 0.00 47.49 0.00

Qwen3 14B Qwen3 0.6B
Distilled 13.91 0.00 -0.26 0.81 -1.04 0.37 8.19 0.00 -2.41 0.07
SD² 35.40 0.00 3.88 0.03 9.20 0.00 14.56 0.00 1.19 0.30

Qwen3 8B Qwen3 0.6B
Distilled 11.43 0.00 -0.83 0.46 -1.54 0.20 6.12 0.00 -4.03 0.05
SD² 15.99 0.00 -0.05 0.96 9.80 0.00 11.94 0.00 0.24 0.83

Llama 3.1 8B Llama 3.2 1B
Distilled 6.35 0.00 -3.14 0.03 -6.28 0.02 -0.48 0.68 -7.60 0.00
SD² 6.55 0.01 0.85 0.45 2.56 0.06 1.06 0.37 -3.25 0.04

14

Table 4: Continuation of qualitative example Table 2 of speculative decoding with different drafting
methods using T = 1 sampling and the Qwen3 14B verifier/drafter setup. Green tokens are accepted,
red tokens are rejected, and the blue token is the final token per block sampled from the joint
drafter-verifier distribution.

Pretrained Distilled SD2 (ours)

Here is the implemented Python
function ‘has To solve this problem,
we need to ** determine if there
exists at least two elements in **
any pair of numbers in a list is two
numbers in a list** are **clo ** in
the list ‘numbers‘ are ** given list
of floating-point numbers are **clo
are closer to each other than a spec-
ified ** ** closer to each other than
the given threshold **.\n\n###
[?][?] Type hints (Strategy :\n\n-
** Check all pairs** of Sort the
list** of numbers .\n- ** first .\n-
Check adjacent pairs in . \n-
**Iterate through the sorted When
sorted, two numbers that are close
to the list is sorted, the closest el-
ements to numbers between two
elements are at the **ends will be
near the ends of the list.\n ** ad-
jacent** in the list, and .\n - Use
a **linear scan** to Then , check
if any pair of **adj iterate through
the sorted list and compare each
pair ** each number with the previ-
ous one** to pair of adjacent num-
bers** with the threshold.\n .\n - If
any such pair has elements that the
difference between them is **less
than the ** difference between
two consecutive elements is less
than absolute difference between
any two adjacent numbers** is **
between any two adjacent numbers
**less than is **less than the thresh-
old**, return ‘ True ‘.\n- If no such
pair is found after

Here’s the implemented Python
function ‘has To solve this prob-
lem, you need to :\n\n determine
whether there exists any two num-
bers in the ** any pair of num-
bers in a list is two numbers in the
list** differ by ** ** in the list
are **closer than to each other than
the given threshold**. This is
a **common problem** found in
can be done in a few key steps:\n\n
efficiently using a **hash map
(dictionary)** by checking all pos-
sible pairs of elements (i ** finding
the minimum distance** between
any two sorting the list**, and then
checking for elements the pairs
later based on their element and
its ** distance between neighbor-
ing elements**, since saying that
difference between each pair of
consecutive elements**.\n\n ###
Key Steps:\n\n1. **Sort the list **
so that the smallest number comes
first – This helps in easily finding
neighboring elements.\n Sorting
the array allows us to easily iterate
through makes it easier to analyze
consecutive elements.\n2 check for
adjacent elements, because the list
becomes closest elements will be
next to each other .\n in the sorted
list.\n\n2. **Iter a sorted list.\n2.
**Check adjacent elements ** –
For each adjacent pair in the sorted
list (i.e., ‘sorted_numbers , com-
pute the absolute difference be-
tween the two.\n . If any of these
differences **less than difference
is less than the given threshold, re-
turn threshold , return ‘True‘.\n3.
** Return

To solve the problem , we need
to of determining whether any
two numbers in a list are closer
to each other than a given ‘
threshold ‘, we can use a **hash
map approach it as follows:\n\n###
[?][?] Approach systematically
.\n\nThe idea is to:\n\n1. key idea
is that we can:\n\n1. :\n\n - Com-
pare **all** pairs of distinct Sort
the list of numbers in ascending
order.\n , which helps in efficiently
comparing all pairs (because after
sorting, the indices of elements that
closest values to each other (i.e.,
pair will always be the second
and second-to of numbers will
be consecutive elements in the
sorted adjacent in the original
list.\n- Traverse the .\n - For each
element in the sorted list Then ,
iterate through the sorted list and
check if the difference between
the current number and the any two
adjacent numbers is less than the
given ‘ threshold‘.\n\nHere’s the
implementation in Python of the
function you provided, with a bit
with the correct ‘threshold‘, using
‘typing logic :\n\n“‘python\nfrom
typing import List \n\n def
has_close_elements(numbers:
List[float], threshold: float)
->bool:\n """ Check if in given
list of numbers, any two num-
bers are closer to each other\n

than given threshold.\n \n
»>ha the given threshold.\n\n
»>has_close_elements ([than
given threshold.\n \n »>ha float
’given threshold.\n »>has_clos \n

15

Table 5: Block efficiency and speedup across a variety of tasks for k = 8 and T = 0. We report the
block efficiency τ and speedup α over the pretrained drafters throughput for each verifier/drafter
combination, ordered by decreasing drafter-to-verifier size ratio. Both distilled drafters and SD2

respond well to T = 0 sampling and gain more benefit compared to T = 1 sampling (See Table 1).
Under T = 0, SD2 has 3.7% higher block efficiency then the Llama 3.2 pretrained drafter, compared
to 1.8% under T = 1 sampling. Further more, SD2 has the highest block efficiency for all tasks and
models.

Method UltraChat HumanEval XSum Alpaca GSM8K Mean
τ α τ α τ α τ α τ α τ α

Vicuna 1.3 13B & Llama 160M
Pretrained 2.47 1.00 2.08 1.00 2.58 1.00 2.26 1.00 2.40 1.00 2.36 1.00
Distilled 3.35 1.39 3.01 1.48 2.45 0.92 2.86 1.30 2.64 1.12 2.86 1.24
SD² 3.83 1.59 3.63 1.80 2.62 0.99 3.26 1.48 3.03 1.28 3.27 1.43

Qwen3 14B & Qwen3 0.6B
Pretrained 3.13 1.00 5.17 1.00 3.30 1.00 2.98 1.00 5.57 1.00 4.03 1.00
Distilled 3.82 1.26 5.12 1.00 3.30 1.03 3.35 1.14 5.45 0.98 4.21 1.06
SD² 4.05 1.33 5.47 1.05 3.61 1.11 3.64 1.23 5.66 1.01 4.49 1.12

Qwen3 8B & Qwen3 0.6B
Pretrained 3.24 1.00 5.35 1.00 3.38 1.00 3.20 1.00 5.41 1.00 4.12 1.00
Distilled 3.93 1.23 5.44 1.02 3.46 1.03 3.55 1.12 5.47 1.01 4.37 1.07
SD² 4.15 1.28 5.51 1.02 3.71 1.09 3.73 1.16 5.58 1.02 4.54 1.09

Llama 3.1 8B & Llama 3.2 1B
Pretrained 4.51 1.00 6.73 1.00 4.11 1.00 4.41 1.00 5.86 1.00 5.12 1.00
Distilled 4.89 1.10 6.68 1.00 4.06 1.00 4.33 0.98 5.82 0.99 5.16 1.01
SD² 5.04 1.11 6.78 0.99 4.24 1.03 4.55 1.01 5.93 0.99 5.31 1.02

16

	Introduction
	Related Work
	Speculative Decoding
	Dynamic Steering of LLMs

	Methodology
	Verification
	Drafting
	Training

	Experiments
	Results

	Limitations and Future Work
	Conclusion
	Technical Appendix
	Notation
	Code
	Training Details
	Ablation Studies
	Statistical Significance
	Example of speculative decoding
	Performance under Greedy Sampling

