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A B S T R A C T

Sports video captioning in real application scenarios requires both entities and specific scenes. However, it
is difficult to extract this fine-grained information solely from the video content. This paper introduces an
Explicit & Implicit Knowledge-Augmented Network for Entity-Aware Sports Video Captioning (EIKA), which
leverages both explicit game-related knowledge (i.e., the set of involved player entities) and implicit visual
scene knowledge extracted from the training set. Our innovative Entity-Video Interaction Module (EVIM) and
Video-Knowledge Interaction Module (VKIM) are instrumental in enhancing the extraction of entity-related and
scene-specific video features, respectively. The spatiotemporal information in video is encoded by introducing
the Spatial-Temporal Modeling Module (STMM). And the designed Scene-To-Entity (STE) decoder fully utilizes
the two kinds of knowledge to generate informative captions with the distributed decoding approach. Extensive
evaluations on the VC-NBA-2022, Goal and NSVA datasets demonstrate that our method has the leading
performance compared with existing methods.
1. Introduction

Sports video captioning aims to generate a sentence that describes
the main content of the sports video, which has potential applications
in various real-world scenarios, such as live text broadcast (Xi et al.,
2025) and commentary generation (Cook & Karakuş, 2024; Gautam
et al., 2024; Mkhallati, Cioppa, Giancola, et al., 2023; Qi, Yu, Tu, et al.,
2023; Zhang, Gao and Yuan, 2024). It tends to be challenging because
videos usually involve complex scenes depicting the interactions among
multiple player entities.

Traditional methods (Aafaq, Akhtar, Liu, et al., 2019; Lin, Li, Lin,
et al., 2022; Pan, Cai, Huang, et al., 2020; Tang, Wang, Liu, et al.,
2021; Xu, Yao, Zhang, et al., 2017; Yao, Torabi, & Cho, 2015; Ye, Li,
Qi, et al., 2022; Zhang, Qi, Yuan, et al., 2021) aggregate a fixed set of
video frames features into a video representation via an encoder, and
employ a language decoder operates on top of the video representation
to learn visual-textual alignment for caption generation. Although these
methods achieve promising results in open domains, they tend to
provide rough descriptions of the video content, overlooking key details
that audiences are genuinely interested in, such as player entity names
and specific scenes (Fig. 1(a)).

Recently, some methods have attempted to enhance entity aware-
ness by incorporating explicit information, which refers to information
that can be directly obtained from existing resources and databases (Qi
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et al., 2023; Xi et al., 2025), or visible visual information acquired
through external tools (Kim & Choi, 2020; Wu, Zhao, Bao, et al.,
2022). For example, Qi et al. (2023) extract game-related informa-
tion from existing sports platforms, such as game news and player
statistics, helping the model obtain player-related information from
explicit sources to generate sports commentary with player identities.
However, despite these augmentations, the quality of the captions
remains suboptimal due to two primary reasons. (1) External explicit
knowledge is independent of the video content, failing to provide
semantic or visual cues about the current scene. This limits the model’s
ability to recognize different game scenarios, resulting in less accurate
scene classifications in the generated descriptions. (2) The common
practice of merely concatenating external explicit information with
visual features before processing them through the encoder leads to
inefficient utilization of information. This approach results in poor data
integration and oversimplifies the complex relationships between ex-
ternal explicit information and visual features, thereby preventing the
decoder from forming a comprehensive understanding of the combined
inputs. These reasons lead to inaccurate descriptions of this type of
method (Fig. 1(b)).

In fact, with the principle of analogical reasoning in Cognitive
Psychology (Smith & Kosslyn, 2007), humans search their long-term
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Fig. 1. Existing methods for sports video captioning VS. our proposed method. The
different player entity names are marked blue and red. The specific scenes are marked
pink and cyan.

memory for existing knowledge to match and understand current obser-
vations. For example, when encountering a new video, people retrieve
previously formed visual scene concepts from their minds and compare
the new video with these concepts to determine its category. Moreover,
different videos in the identical scene category may share the certain
paradigm or subtle associations of that scene. Such knowledge of visual
scene concepts is implied within the video data. If the model could
incorporate this implicit knowledge as the scene concept that defines
and delineates different scenes, it would be possible to enhance the
scene recognition capability of the model and consequently further
improve the quality of the descriptions.

Motivated by the above insights, this paper focuses on mining the
implicit visual scene knowledge from the video data to help the model
distinguish different sports scenes and designing a framework that
effectively integrates explicit and implicit knowledge to achieve a more
comprehensive understanding of video content (Fig. 1(c)). Specifically,
we average all video features within the same scene category in the
training set to obtain visual feature centers. Each center serves as a rep-
resentative description for each scene category. It is highly abstract and
implicitly represents the scene knowledge, which defines the certain
paradigm of one scene and also delineates the boundaries with other
scenes. This implicit knowledge can guide the model in distinguishing
different visual scenes. Moreover, we employ a set of player entities
involved in each game as the explicit game knowledge (Xi et al., 2025)
to assist model in generating descriptions with entity names. The scene
and entity statistics of the training sets for the VC-NBA-2022 (Xi et al.,
2025), Goal (Qi et al., 2023), and NSVA (Wu et al., 2022) datasets are
shown in Fig. 2.

To effectively utilize and integrate these two kinds of knowledge, we
design the Explicit & Implicit Knowledge-Augmented (EIKA) network
for entity-aware sports video captioning. Specifically, our innovative
video-knowledge interaction module utilizes the learnable query vec-
tors to adaptively capture the scene-related video features with the
2 
guidance of scene knowledge, which significantly improves the depth
of scene understanding. The proposed entity-video interaction mod-
ule applies the attention mechanism on the game knowledge and
scene-related video features to deeply analyze the interactions be-
tween players and scenes, yielding the entity-related video features. To
optimally leverage both scene-related and entity-related features, we
design a decoder that employs a scene-to-entity approach. It first de-
codes scene-related features, then decodes captions that include player
names within the scene. It enhances the accuracy and coherence of
generated captions by providing contextual understanding, which en-
ables more precise alignment of scene-related entities. Additionally,
the spatial–temporal modeling module is introduced to encode the
spatiotemporal dynamic information by capturing both temporal and
spatial relationships among video frames.

The key contributions of this paper are as follows:

• We provide an in-depth analysis to illustrate the necessity of the
implicit knowledge for entity-aware sports video captioning task,
and mine the scene knowledge inside the videos by a simple yet
effective way.

• An Explicit & Implicit Knowledge-Augmented (EIKA) network
is proposed for entity-aware sports video captioning. Our EIKA
enhances the accuracy of captions by combining explicit knowl-
edge (player names) obtained from an external knowledge graph
and implicit knowledge (scene patterns) mined from the video
data. Explicit knowledge provides direct entity information, while
implicit knowledge helps the model gain a deeper understanding
of complex scenes.

• To validate the performance of EIKA, we conduct extensive ex-
periments on VC-NBA-2022 (Xi et al., 2025), Goal (Qi et al.,
2023) and NSVA (Wu et al., 2022). Experimental results validate
the effectiveness of combining the two types of knowledge and
demonstrate the superior performance of EIKA.

2. Related works

2.1. Video captioning

Video captioning task requires the model to understand the spatial–
temporal dynamics in video and bridge visual and textual elements
to generate long sequences of output words. Recent research focuses
mainly on sequence-learning generation process methods. These meth-
ods (Aafaq et al., 2019; Khan, Hussain, Ullah Khan, Ahmad Khan, &
Baik, 2024; Li, Wang, Zhao, Xu, & Song, 2025; Lin et al., 2022; Pan
et al., 2020; Shen et al., 2023; Tang et al., 2021; Wang et al., 2024; Wu,
Song, Wang, & Zhang, 2024; Xiong et al., 2025; Ye et al., 2022; Zhang,
Liu and Wu, 2024) employ a visual encoder to extract useful visual
information from the given sports video, and its decoder generates the
caption sequentially. Researchers have attempted to employ various
visual encoders, including ResNet (He, Zhang, Ren, et al., 2016), Vi-
sion Transformer (ViT) (Dosovitskiy, Beyer, Kolesnikov, et al., 2020),
SlowFast (Feichtenhofer, Fan, Malik, et al., 2019), and S3D (Miech,
Alayrac, Smaira, et al., 2020), to extract different 2D/3D video features.
Some efforts (Ayyubi, Liu, Nagrani, et al., 2023; Chen & Jiang, 2021;
Hou, Wu, Zhang, et al., 2020; Zhang, Shi, Yuan, et al., 2020) enrich
video features by capturing fine-grained static objects in videos using
additional detectors. And some efforts (Ayyubi et al., 2023; Fei, Jiang,
& Mao, 2021; Gu, Chen, Wang, et al., 2023; Xu, Huang, Hou, et al.,
2024; Yang, Cao, & Zou, 2023; Zhang et al., 2021) also utilize retrieval
augmentation, enriching video features by retrieving relevant visual or
textual information from external databases to generate more accurate
descriptions. Recently, large-scale pre-trained language-image models
like CLIP (Radford, Kim, Hallacy, et al., 2021) have demonstrated
remarkable multimodal understanding capabilities, leading to their
gradual integration into the video domain. Clip4caption (Tang et al.,
2021), Clip-DCD (Yang, Zhang, & Zou, 2022) and CroCaps (Xu et al.,
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Fig. 2. Fine-grained statistics of scenes and entities in the VC-NBA-2022, Goal, and NSVA Datasets. The entity statistics refer to the average number of entities associated with
ach video.
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2025) utilize CLIP for obtaining visual-text representations, markedly
nhancing video captioning performance.

In this work, our EIKA employs the encoder–decoder framework
and integrates the visual encoder from the pre-trained model CLIP4clip
(Luo, Ji, Zhong, et al., 2022). Unlike most methods (Aafaq et al.,
2019; Du, Zhu, Xiong, et al., 2023; Nabati & Behrad, 2023; Ye et al.,
2022; Zeng, Wang, Liao, et al., 2024; Zhang et al., 2021) that use
LSTM (Hochreiter & Schmidhuber, 1997) or GRU (Cho, Van Mer-
iënboer, Gulcehre, et al., 2014) as the text decoder, we employ a
ransformer (Vaswani, Shazeer, Parmar, et al., 2017) structure as the

decoder to effectively capture long-range visual and textual dependen-
cies.

2.2. Sports video captioning

Sports video captioning is a challenging task because it involves
describing multiple events including player-object (e.g., player and bas-
etball) interactions and player-player interactions. Numerous works
ave been proposed across various sports domains. Yu, Cheng, Ni, et al.

(2018) utilize a graph neural network to model the relationships among
layers, accurately mapping these complex interactions into detailed
escriptions. Qi, Wang, Li, et al. (2019) design a model that generates

descriptions of dynamic player/team movements and interactions in
volleyball games, capturing player pose, trajectory, and group relation-
ship features simultaneously. Zhang, Gao et al. (2024) propose a large
asketball highlight commentary dataset and employ a simple yet ef-
ective real-time strategy to enhance multimodal feature interaction for
enerating emotional and descriptive commentary. The above methods
ocus on fine-grained actions but use macroscopic vocabularies (e.g., a
an or a player) instead of player names, making it impossible to link
layers to the game scene.

Kim and Choi (2020) integrate information detected by various
etectors with the domain ontology knowledge of baseball to generate

descriptions that focus on player categories (e.g., batter) rather than
their identities. Rao, Wu, Liu, Wang and Xie (2024) introduce the
3 
MatchTime dataset, derived from the anonymous soccer commentary
ataset Soccer-Net Caption (Mkhallati et al., 2023), which exhibits

strong alignment between textual and visual content. Subsequently,
Rao, Wu, Jiang, Zhang and Xie (2024) propose the SoccerNetReplay-
1988, the largest multimodal soccer dataset to date. In these soccer
atasets, captions replace entities with special tokens like [PLAYER]
nd [TEAM], but all three methods fail to generate accurate role names.
he above methods we mentioned consider entities, but still do not take

nto account the specific identities of entities, which leaves a certain
istance from meeting practical applications.

Wu et al. (2022) integrate the visual information detected for play-
rs, basket, basketball, and the three-point line, generating accurate

entity-aware captions. This method does not have any operation on
entity recognition, but only uses the parameter memory learned from
he training data. Qi et al. (2023) incorporate all pre-match and player-

team information without a selection mechanism. This indiscriminate
inclusion could introduce noise, affecting caption accuracy. Xi et al.
(2025) introduce the extra game information (the candidate player
list) to generate descriptions with player identities. These methods
can extract player identity-related information from external explicit
knowledge to generate entity-aware descriptions. However, explicit
knowledge does not provide scene-related information, limiting the
model’s ability to distinguish different scenes and resulting in less
accurate descriptions. In this work, we consider not only the generation
of entity names but also the model’s ability to distinguish different
scenes, enabling the generation of higher-quality descriptions for sports
videos.

2.3. Computer vision with knowledge

The introduction of knowledge enhances the model’s cognitive un-
erstanding capability. Current approaches can typically be divided

into two distinct types. The first type (Fang, Wang, Zhuo, et al., 2022;
Gu et al., 2023; Li, Xu, Liu, et al., 2020; Zhuo, Zhu, Cui, et al.,
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2022) focuses on enriching video features by extracting explicit knowl-
dge from external knowledge bases. For example, to understand the

causal relationships and social interactions underlying video content,
orks (Fang, Gokhale, Banerjee, et al., 2020; Shao, Fang, & Yang,

2022; Yu, Liang, Ji, et al., 2021) utilize the everyday commonsense
reasoning database ATOMIC (Sap, Le Bras, Allaway, et al., 2019) to
ssist models in generating relevant commonsense descriptions. These
ethods acquire useful explicit knowledge from external knowledge

base to help the model generate descriptions with fine-grained details.
Inspired by this approach, to further generate fine-grained descriptions
f sports videos, several methods (Qi et al., 2023; Xi et al., 2025) that
ncorporate game-related explicit knowledge from the knowledge graph
nto traditional video captioning models have brought video captioning
 step closer to practical application.

The other type focuses on mining the implicit knowledge from
odel parameters (Ayyubi et al., 2023; Yuan, Jia, & Bao, 2023; Zhang

t al., 2020) or databases (Huang, Wang, Zeng, & Wang, 2022; Ma et al.,
2024; Zeng, Zhang, Gao, et al., 2023) to improve model performance.
For example, Yuan et al. (2023) propose a knowledge guided network
ased on GPT-2 (Radford, Wu, Child, et al., 2019) for video-based com-

monsense captioning. This network leverages GPT-2 to enrich dataset
knowledge, enabling models to learn commonsense not present in
videos. To improve category detection accuracy, Du et al. (2025)
ropose a multimodal knowledge transfer method that incorporates
ross-modal semantic information to learn the semantic relationships
etween categories. Zhou, Luo, and He (2025) propose a dynamic col-

laborative method based on heterogeneous knowledge transfer, where
experts with different specializations work together to make predictions
for long-tailed visual recognition tasks. Motivated by the fact that the
uman brain can well correlate arbitrary images with texts, Huang et al.

(2022) calculate the average of image features associated with one
onceptual word to obtain its visual semantic representation, dealing
ith unpaired image-text matching.

Contrastingly, inspired by the principle that humans retrieve pre-
viously formed scene concepts from memory and compare the new
cene with these concepts to determine its category, our method utilizes
he mean features of videos from different scenes as implicit scene
nowledge which implies the definition and boundaries of the scene.
t helps the model compare new video features with pre-defined scene
nowledge to recognize different scenes. Furthermore, we utilize the
ultimodal information of players involved in the game as explicit

nowledge to assist the model in generating descriptions with player
ames. The integration of explicit and implicit knowledge enhances the
odel’s ability to recognize entities and scenes.

3. Method

3.1. Architecture overview

As shown in Fig. 3, the proposed EIKA mainly consists of 6 com-
onents: (1) Scene knowledge extraction (SKE) module. (2) Game
nowledge extraction (GKE) module. (3) Spatial–temporal modeling
odule (STMM). (4) Video-knowledge interaction module (VKIM). (5)
ntity-video interaction module (EVIM). (6) Scene-to-entity decoder
STE). We employ the CLIP (ViT-B/32) (Radford et al., 2021) as the vi-

sual encoder, which is pre-trained using large-scale video-text dataset in
CLIP4clip. This well pre-trained visual encoder bridges the gap between
video and text modalities, facilitating multimodal tasks such as video
caption generation. The text encoder used in EIKA is identical to the
one in CLIP4clip. STE and GKE provide implicit visual scene knowledge
and explicit game knowledge for the model, respectively. VKIM utilizes
the learnable query vectors to adaptively learn the scene-related fea-
tures based on the scene knowledge and spatiotemporal video features.
And EVIM combine the scene-related features and game knowledge to
obtain the entity-related features, associating players with the video
content. To fully utilize both scene and entity information, the STE
4 
decoder employs a scene-to-entity decoding strategy. First, the scene-
related information is integrated by scene cross-attention, decoding
scene-related textual features. Then, entity-related information is in-
tegrated through entity cross-attention, decoding entity-related textual
features. In the following subsections, we will describe each component
in the proposed EIKA in detail.

3.2. Scene Knowledge Extraction (SKE)

When viewing a video, people usually compare it with other videos
that have similar scenes to obtain a more accurate understanding, and
use similar videos to compensate for possible missing visual details
in the source video. However, online retrieval of relevant information
from external databases to enhance video features can increase compu-
tational costs. We explore the scene knowledge within the videos in a
simple way. This implicit knowledge can not only provide complemen-
tary visual information, but also enhance the model’s discrimination
and understanding of visual scenes. Specifically, we utilize the visual
ncoder to extract the global features 𝑉 𝑔

𝑎𝑙 𝑙 ∈ R𝑁𝑡×1×𝐷𝑣 of all videos
in training set, where 𝐷𝑣 is the hidden size of visual encoder and 𝑁𝑡
denotes the number of videos in the training set. We group the video
features based on the labels annotated in the training set. The central
features for various types of scenes are obtained by averaging the video
eatures for each label. Formally,

𝐶𝑟 =
1
𝐾

∑

𝑣𝑗∈𝑉
𝑔
𝑟

𝑣𝑗 , (1)

where 𝑉 𝑔
𝑟 is the set of video features with the label 𝑟. 𝐾 is the number

of features in this set, which corresponds to the number of videos with
he label 𝑟. 𝐶𝑟 denotes the central feature of label 𝑟.

Ultimately, the central features for 𝑅 scenes are denoted as 𝐶 =
{

𝐶1, 𝐶2,… , 𝐶𝑅
}

, 𝐶 ∈ R𝑅×𝐷𝑣 . 𝐶 is defined as the scene knowledge,
which assists the model in distinguishing among different visual scenes
and supplementing information deficiencies in the source video.

3.3. Game Knowledge Extraction (GKE)

In live sports broadcasting, commentators are typically provided
ith game-related information, such as the competing teams and the

dentities of each team’s players. If the model has access to such ex-
plicit game-related knowledge, it would be better equipped to generate
escriptions that include players’ names.

In the basketball knowledge graph (Xi et al., 2025), each event
(e.g., B. Ingram makes the 2-pt jump shot from 19 ft) is associated
with a video clip and linked to a specific game. For each game, the
players from both teams who participated are combined to form a
candidate entity list, representing the game-related knowledge. Thus,
each video clip has a corresponding player list. During the training
r inference stage, the multimodal features of each player entity is
btained by combining their name features with their image features.
pecifically, the global image features 𝐸𝑝 ∈ R𝑁𝑒×𝐷𝑣 and global name
eatures 𝐸𝑛 ∈ R𝑁𝑒×𝐷𝑡 of all player entities in the candidate entity list
re extracted by the visual encoder and text encoder, respectively. 𝑁𝑒
s the number of entities in candidate entity list and 𝐷𝑡 is the hidden
ize of text encoder. The image features and name features are added
ccording to their corresponding positions to obtain the multimodal
eatures 𝐸𝑚 ∈ R𝑁𝑒×𝐷𝑡 .

𝐸𝑚 = 𝐸𝑝 + 𝐸𝑛𝑊1, (2)

where 𝑊1 ∈ R𝐷𝑣×𝐷𝑡 is the learnable matrix, which maps the visual
feature to textual space.
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Fig. 3. Overview of the proposed Explicit & Implicit Knowledge-Augmented Network for Entity-Aware Sports Video Captioning (EIKA). The visual scene knowledge mined in the
training set is utilized in both training and reasoning stage.
3.4. Spatial–temporal Modeling Module (STMM)

Videos contain not only spatial information from static frames but
also dynamic behaviors and events that evolve over time, all of which
are expressed through spatiotemporal features. Understanding these
spatiotemporal dynamics is essential for accurately identifying objects,
actions and the overall significance of scenes in videos. In this work,
we design STMM to generate spatiotemporal features from a video clip
𝑉 ∈ R𝑇×𝐻×𝑊 ×𝐶 with 𝑇 frames.

The visual encoder encodes 𝑇 frames to visual embeddings 𝑉𝑒 ∈
R𝑇×ℎ×𝑤×𝐷𝑣 , where ℎ = 𝐻∕𝑃 , 𝑤 = 𝑊 ∕𝑃 . 𝑃 is the patch size (i.e., 32 for
ViT-B/32). Visual embeddings 𝑉𝑒 are then flatten to 𝑉𝑓 ∈ R𝑇×𝑁𝑝×𝐷𝑣 ,
where 𝑁𝑝 = ℎ×𝑤. Visual embeddings 𝑉𝑓 are averaged along the spatial
dimension to obtain the spatial feature 𝑉𝑠 ∈ R𝑇×𝐷𝑣 . Similarly, the visual
embeddings 𝑉𝑓 are averaged along the temporal dimension to obtain
the temporal feature 𝑉𝑡 ∈ R𝑁𝑝×𝐷𝑣 . The spatial feature and temporal
feature are concatenated to yield the spatiotemporal feature 𝑉𝑠𝑡 of the
given video:

𝑉𝑠𝑡 =
[

𝑉𝑠, 𝑉𝑡
]

∈ R
(

𝑇+𝑁𝑝
)

×𝐷𝑣 , (3)

where [, ] denotes the concatenate function in Python.

3.5. Video-knowledge Interaction Module (VKIM)

The video-knowledge interaction module (VKIM) aims to learn the
scene-related video feature 𝑉𝑠𝑐 𝑒𝑛𝑒 ∈ R𝑁𝑞×𝐷𝑣 . As shown in Fig. 3, we
randomly initialize 𝑁 learnable query vectors 𝛩 ∈ R𝑁𝑞×𝐷𝑣 . Due to
𝑞

5 
the abundance of redundant information in a video, directly interacting
knowledge with the video would introduce a significant amount of
noise features. Therefore, we adopt a learnable approach to adap-
tively capture key information. The learnable query vectors inter-
act with scene knowledge 𝐶 ∈ R𝑅×𝐷𝑣 and spatiotemporal feature
𝑉𝑠𝑡 ∈ R

(

𝑇+𝑁𝑝
)

×𝐷𝑣 in sequence to obtain scene-related video feature .
We employ the multi-head cross-attention mechanism to perform the
video-knowledge interaction as follow:

𝑉 ′
𝑖 = 𝛿

(

𝛩 𝑊 𝑄1
𝑖 ⋅

(

𝐶 𝑊 𝐾1
𝑖

)T

√

𝐷𝑣

)

⋅ 𝐶 𝑊 𝑉 1
𝑖 , (4)

𝑉 ′ = 𝐹 1
𝑐
([

𝑉 ′
1 , 𝑉 ′

2 ,… , 𝑉 ′
𝑖
])

, (5)

𝑉 ′′
𝑖 = 𝛿

(

𝑉 ′𝑊 𝑄2
𝑖 ⋅

(

𝑉𝑠𝑡𝑊 𝐾2
𝑖

)T

√

𝐷𝑣

)

⋅ 𝑉𝑠𝑡𝑊
𝑉 2
𝑖 , (6)

𝑉 ′′
𝑖 = 𝐹 𝐹 𝑁 (

𝐹 2
𝑐
([

𝑉 ′′
1 , 𝑉 ′′

2 ,… , 𝑉 ′′
𝑖
]))

, (7)

where 𝑊 𝑄1
𝑖 ∈ R𝐷𝑣×𝐷𝑣 , 𝑊 𝐾1

𝑖 ∈ R𝐷𝑣×𝐷𝑣 , 𝑊 𝑉 1
𝑖 ∈ R𝐷𝑣×𝐷𝑣 , 𝑊 𝑄2

𝑖 ∈ R𝐷𝑣×𝐷𝑣 ,
𝑊 𝐾2

𝑖 ∈ R𝐷𝑣×𝐷𝑣 and 𝑊 𝑉 2
𝑖 ∈ R𝐷𝑣×𝐷𝑣 are learnable matrices, 𝑖 is the

number of attention heads. 𝛿 (⋅) denotes the softmax function. The
outputs of all attention heads are integrated and fused through the
fully-connected layer 𝐹𝑐 (⋅). 𝐹 𝐹 𝑁 (⋅) is the feed-forward network.

We stack 𝑁𝑣𝑘𝑖𝑚 VKIM blocks to obtain a more refined scene-related
video feature, and take the output of the last VKIM block as the final
scene-related video feature 𝑉 .
𝑠𝑐 𝑒𝑛𝑒
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3.6. Entity-video Interaction Module (EVIM)

The entity-video interaction module (EVIM) based on the attention
mechanism can learn entity-related video feature 𝑉𝑒𝑛𝑡𝑖𝑡𝑦 ∈ R𝑁𝑒×𝐷𝑣 . We
tilize the scaled dot-product attention function to associate the entities
ith a specific scene. The residual connection operation is utilized to

enhance the feature representation.

𝑉𝑒𝑛𝑡𝑖𝑡𝑦 = 𝛿

(

𝐸𝑚𝑊2 ⋅
(

𝑉𝑠𝑐 𝑒𝑛𝑒𝑊3
)T

√

𝐷𝑡

)

⋅ 𝑉𝑠𝑐 𝑒𝑛𝑒𝑊4 + 𝐸𝑚𝑊2, (8)

where 𝑊2 ∈ R𝐷𝑡×𝐷𝑣 , 𝑊3 ∈ R𝐷𝑣×𝐷𝑣 and 𝑊4 ∈ R𝐷𝑣×𝐷𝑣 are learnable
matrices.

3.7. Scene-to-entity (STE) decoder

We design the scene-to-entity decoder that can first decode scene-
related textual features and then decode textual features with entity
information, fully taking advantage of both scene and entity informa-
tion. As shown in Fig. 3, scene cross-attention is employed to generate
scene-related features 𝑠𝑙1∶𝑡:

𝑠𝑙1∶𝑡 = 𝓁
(

𝑆−𝐴𝑡𝑡
(

𝑚𝑙
1∶𝑡, 𝑉𝑠𝑐 𝑒𝑛𝑒, 𝑉𝑠𝑐 𝑒𝑛𝑒

)

+ 𝑚𝑙
1∶𝑡

)

, (9)

𝑚𝑙
1∶𝑡 = 𝓁

(

𝑠𝑒𝑙 𝑓
(

𝑓 𝑙−1
1∶𝑡 , 𝑓 𝑙−1

1∶𝑡 , 𝑓 𝑙−1
1∶𝑡

)

+ 𝑓 𝑙−1
1∶𝑡

)

, (10)

where 𝓁 (⋅) denotes the Layer Normalization and 𝑙 denotes the cur-
rent decoder layer. 𝑡 is the decoding time and 𝑚𝑙

1∶𝑡 is the sentence
feature of last self-attention module 𝑠𝑒𝑙 𝑓 (⋅) layer’s output. 𝑆−𝐴𝑡𝑡 (⋅)
denotes the scene cross-attention module. The 𝑓 0

1∶𝑡 for the first layer is
formulated as:

𝑓 0
1∶𝑡 = 𝜏𝑝𝑒

(

𝜖
(

𝑤0∶𝑡−1
))

, (11)

where 𝜖 (⋅) denotes the word embedding layer applied to the tokenized
token 𝑤 and 𝜏𝑝𝑒 (⋅) denotes the trigonometric positional embedding.

To generate entity-aware descriptions, the entity cross-attention
is employed to incorporate entity information into textual features
with scene context. The residual connection operation and the feed-
forward network are employed to enhance the feature representation,
and output the entity-related features 𝑒𝑙1∶𝑡:

𝑒𝑙1∶𝑡 = 𝐹 𝐹 𝑁 (

𝓁
(

𝐸−𝐴𝑡𝑡
(

𝑆𝑙
1∶𝑡, 𝑉𝑒𝑛𝑡𝑖𝑡𝑦, 𝑉𝑒𝑛𝑡𝑖𝑡𝑦

)

+ 𝑆𝑙
1∶𝑡

))

, (12)

where 𝐸−𝐴𝑡𝑡 (⋅) denotes the entity cross-attention module. We stack
𝐿 decoder layer blocks to obtain the final the decoder’s output 𝑒𝐿𝑡 . The
decoder combines probabilities and the word dictionary to decode the
corresponding words. Output probabilities are obtained by 𝑀 𝐿𝑃 layer
and softmax function as follow:

𝑂𝑝 = 𝛿
(

𝑀 𝐿𝑃 (

𝑒𝐿𝑡
))

. (13)

Following the standard training pattern for caption generation, we
utilize cross-entropy loss to optimize our model:

𝛷 = −
𝑁𝑔
∑

𝑡=1
log

(

P
(

𝑤∗
𝑡 |𝑤

∗
0∶𝑡−1, 𝑉𝑠𝑐 𝑒𝑛𝑒, 𝑉𝑒𝑛𝑡𝑖𝑡𝑦;𝛷

))

, (14)

where
{

𝑤∗
0 , 𝑤∗

1 ,… , 𝑤∗
𝑁𝑔

}

is the set of ground-truth tokenized tokens.
𝑁𝑔 denotes the number of tokens. And 𝛷 denotes the optimized pa-
ameters.

4. Experiments

To evaluate the performance of our designed model, EIKA is com-
ared with the existing video captioning methods on three entity-
ware sports video captioning datasets VC-NBA-2022 (Xi et al., 2025),

Goal (Qi et al., 2023) and NSVA (Wu et al., 2022). We further carry out
blation studies to assess the impact and contribution of each individual
omponent within EIKA.
6 
4.1. Implementation details

The hidden size 𝐷𝑣 of visual encoder is 768. And the hidden size
𝐷𝑡 of text encoder is 512. The training epoch is set to 100 for both
VC-NBA-2022 and Goal datasets. And the training epoch is set to 20
for NSVA dataset. Each video in VC-NBA-2022 and Goal datasets has
𝑇 frames, which are sampled by using segment-based method (Wang,
Xiong, Wang, et al., 2016). 𝑇 is set to 18. Each frame size and entity
picture size are 224 × 224. It is worth to note that the number 𝑁𝑒 of
candidate entities corresponding to each video is not fixed. We stack
4 video-knowledge interaction module blocks and 3 decoder layers for
EIKA. And the number of learnable query vectors of video-knowledge
interaction module is 18. Each of the learnable query vectors is ran-
domly initialized. The number of heads in VKIM’s multi-head cross
attention is 8. During the training stage, the parameters of EIKA are
optimized by BertAdam (Devlin, Chang, Lee, et al., 2018) with the
learning rate of 3e–5 and weight decay of 1e–2. Moreover, the pa-
rameters of visual encoder and text encoder for candidate player list
re frozen during training, and the visual encoder for video feature
xtraction is learnable. For reference stage, the beam size of beam
earch operation is set to 5.

4.2. Datasets

VC-NBA-2022 (Xi et al., 2025) is an entity-aware basketball video
captioning dataset, which is collected from a NBA website and covers
25 games. It includes 9 types of fine-grained shooting events, knowl-
edge of 286 players (i.e., images and names), and over 3.9k videos.

he training set contains 3162 videos and the testing set contains 786
videos. Each video clip has one English description with entity names
and a candidate player list. In this work, we utilize the candidate player
ist as the explicit knowledge and extract the implicit knowledge from
he training set.
Goal (Qi et al., 2023) is a knowledge-grounded video captioning

dataset for soccer commentary generation. It contains 20 full-game
soccer videos, over 8.9k video clips, 22k sentences and 42k knowledge
triples. Each video clip has one English description which is converted
from commentator’s audio speeches and the description is colloquial.
In this work, we modify the format of the dataset to be the same as
VC-NBA-2022. The training set has 5448 videos and the testing set has
661 videos. In addition, we save the names of teams and players in the
dataset as the candidate entity list for providing explicit knowledge.
When extracting implicit scene knowledge, we filter out several rare
scenes, such as ‘‘Penalty’’, ‘‘Red card’’, and ‘‘Yellow->Red card’’. After
adjustments, the training set contains 5434 videos.

NSVA (Wu et al., 2022) is a large-scale NBA dataset for sports
video analysis, which is built on web data and covers 132 games. This
dataset consists of 32 019 video clips for fine-grained video captioning,
ction recognition and player identification. For captioning, it contains
3 804 training videos and 768 testing videos. The caption contains the
istance between the ball and the basket, which brings great challenges
o the generation performance of the model. Although this dataset is
ntity-aware, the player names in the descriptions appear in the form
f ID number, such as ‘‘Player1629028’’. In this work, we collect the
layers involved in each game to form a candidate player list, serving
s explicit knowledge. When extracting implicit scene knowledge, we
ilter out several rare scenes, such as ‘‘Ejection’’ and ‘‘Violation’’. After
djustments, the training set contains 23 790 videos.

We provide word-cloud based statistics in Fig. 4 to highlight the
thematic focus and coverage of each dataset. Dataset VC-NBA-2022
(Fig. 4(a)) primarily focuses on various fine-grained shot and rebound
vents in basketball and the top-4 words in this dataset are ‘‘jump’’,
‘shot’’, ‘‘3pt’’ and ‘‘defensive’’. Dataset Goal (Fig. 4(b)) is dedicated to
real-time commentary in soccer games, containing a substantial amount
of background knowledge and colloquial expressions. Compared to
VC-NBA-2022, dataset NSVA (Fig. 4(c)) covers a broader range of
basketball events (e.g., foul and turnover) and is more extensive in size.
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Fig. 4. Word cloud of VC-NBA-2022, Goal and NSVA datasets. The bigger the font, the more percentage it occupies.
Table 1
Quantitative comparison results on VC-NBA-2022 dataset. * denotes that the model is equipped with explicit game-related knowledge. ** denotes
that the model is equipped with explicit game-related knowledge and implicit scene knowledge. Note that KEA* denotes that KEA is equipped
with implicit scene knowledge. Numbers in bold denote the best performance.

Model Year CIDEr METEOR Rouge-L BLEU-1 BLEU-2 BLEU-3 BLEU-4

V2C 2020 13.7 18.7 45.9 50.1 39.5 27.0 14.9

C4C 2021 70.4 26.7 51.2 49.1 42.5 35.4 28.8
C4C* 2025 117.2 27.5 52.0 50.5 43.7 37.0 29.4
C4C** 2025 124.2 27.8 52.8 51.0 43.9 37.4 30.2

SwB 2022 69.1 26.5 49.0 47.8 41.4 34.5 28.4
SwB* 2025 120.1 27.9 52.1 51.3 43.9 37.4 30.3
SwB** 2025 128.0 28.3 52.8 51.7 44.2 37.8 30.9

CCP 2023 70.5 27.4 50.7 49.8 42.3 35.6 28.9
CCP* 2025 122.3 28.3 52.9 52.2 44.6 38.0 30.3
CCP** 2025 129.5 28.8 53.4 52.9 45.0 38.4 31.6

OVD 2024 71.2 27.5 50.7 49.7 42.4 36.5 29.2
OVD* 2025 125.2 28.6 53.3 52.5 45.2 38.7 30.5
OVD** 2025 130.8 29.0 56.0 53.7 46.6 39.7 32.6

KEA 2025 138.5 28.0 54.9 53.1 46.4 38.8 32.4
KEA* 2025 144.6 28.7 56.1 54.5 47.6 40.2 34.4

Ours 2025 140.7 29.5 56.8 57.1 50.3 43.1 36.7
,

4.3. Evaluation metrics

We employ the standard captioning evaluation metrics, including
BLEU (B) (Papineni, Roukos, Ward, et al., 2002), Rouge-L (R) (Lin,
2004), METEOR (M) (Banerjee & Lavie, 2005) and CIDEr (C) (Vedantam
Lawrence Zitnick, & Parikh, 2015). BLEU primarily evaluates text qual-
ity by comparing the overlap of n-grams between generated text and
reference text. Rouge-L focuses on measuring the overlap between auto-
matically generated text and reference text using the longest common
subsequence method. METEOR combines precision, recall, and word
order in its evaluation, closer to human evaluation. CIDEr evaluates the
quality of generated text by considering the uniqueness of words and
the consensus of sentences, reflecting the informativeness and accuracy
of the text. Within these evaluation metrics, CIDEr is specially designed
for captioning task evaluation, whereas BLEU, ROUGEL and METEOR
are adapted from conventional machine translation. Following Qi et al.
(2023), we only report the comparative results for metrics CIDEr,
METEOR, Rouge-L and BLEU-1 on Goal dataset.

4.4. Compared methods

In this section, we provide the brief descriptions of the methods
compared in our experiments:

• V2C (Fang et al., 2020): V2C utilizes a CNN-based video en-
coder to extract global features of the given video. A cross-
modal self-attention module is employed to encode the joint
visual-textual features and a transformer decoder is employed to
generate captions.
7 
• Clip4Caption (C4C) (Tang et al., 2021): C4C enhances video
captioning by utilizing a CLIP-augmented video-text alignment
network and employs a transformer decoder to generate captions.

• SwinBERT (SwB) (Lin et al., 2022): SwB is an end-to-end
transformer-based video captioning network. It utilizes VidSwin
(Liu et al., 2022) to extract spatiotemporal features from video
and generate captions through a sequence-to-sequence mecha-
nism.

• CoCap (CCP) (Shen et al., 2023): CoCap combines the motion
vector, residual, and video features through the action encoder.
The fused features are then passed to the decoder to generate
video captions.

• OmniViD (OVD) (Wang et al., 2024): OmniViD is a unified
generative framework designed to address various video tasks, in-
cluding action recognition, captioning, video question answering,
dense video captioning, and visual object tracking.

• KEANet (KEA) (Xi et al., 2025): KEA utilizes the candidate player
list as the game-related knowledge to generate captions with
player names.

• MP-LSTM (Venugopalan et al., 2014): MP-LSTM utilizes LSTM
(Hochreiter & Schmidhuber, 1997) to generate captions based on
the video features.

• TA (Yao et al., 2015): TA improves video captioning by intro-
ducing a temporal attention module to exploit global temporal
structure, enhancing the correlation between each frame and the
words generated at the previous moment.

• T2T (Sharma, Ding, Goodman, & Soricut, 2018): T2T utilizes the
transformer-based structure to achieve the conceptual captioning.

• UniVL (Luo et al., 2020): UniVL is a unified video-language pre-
training model that employs an encoder–decoder architecture,
featuring separate unimodal encoders and a cross-modal encoder.
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Fig. 5. Qualitative comparison results of our model and five video captioning models on VC-NBA-2022 dataset. GT, V2C, C4C, SwB, CCP, OVD and KEA denote ground truth
caption, Video2Commonsense, Clip4Caption, SwinBERT, CoCap, OmniViD and KEANet, respectively. Different entity names are marked red and blue. And the specific visual scenes
are marked green.
Table 2
Quantitative comparison results on Goal dataset. * denotes that the model is equipped
with explicit game-related knowledge. ** denotes that the model is equipped with
explicit game-related knowledge and implicit scene knowledge. Note that KEA* denotes
that KEA is equipped with implicit scene knowledge. Numbers in bold denote the best
performance.

Model Year CIDEr METEOR Rouge-L BLEU-1

V2C 2020 0.1 2.1 3.4 3.4

C4C 2021 2.2 5.0 5.5 5.7
C4C* 2025 2.5 5.2 5.8 5.9
C4C** 2025 2.7 5.5 6.0 6.2

SwB 2022 2.2 5.1 5.3 5.7
SwB* 2025 2.6 5.5 6.0 5.9
SwB** 2025 2.7 5.7 6.1 6.1

CCP 2023 2.3 5.0 5.3 5.5
CCP* 2025 2.5 5.3 5.8 5.9
CCP** 2025 2.7 5.9 6.0 6.2

OVD 2024 3.0 5.9 9.1 10.7
OVD* 2025 3.9 6.4 10.6 14.4
OVD** 2025 4.2 6.5 11.0 15.4

KEA 2025 3.7 6.4 10.5 14.9
KEA* 2025 4.0 6.6 10.8 15.2

Ours 2025 4.1 6.6 11.2 15.3

It is trained to learn joint video-text representations through
various objectives, such as video-text alignment and masked
modeling, enabling strong performance across multimodal tasks
like video captioning and video retrieval.

• NSVA (Wu et al., 2022): NSVA improves upon UniVL by jointly
utilizing video, basketball, basket, player, and court features to
perform player identity-aware video captioning.

Since the compared methods are traditional video captioning mod-
els not specifically designed for entity-aware sports video captioning,
we equip each with explicit and implicit knowledge to transform them
into entity-aware models for a fair comparison.

4.5. Performance comparison

Comparison on VC-NBA-2022. Our EIKA model is compared with
V2C (Fang et al., 2020), C4C (Tang et al., 2021), SwB (Lin et al.,
2022), CCP (Shen et al., 2023), OVD (Wang et al., 2024) and KEA (Xi
et al., 2025) on VC-NBA-2022 dataset. V2C, C4C, SwB and OVD take
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only videos as input. CCP takes the motion vector, residual, and video
features as input. KEA takes the explicit game-related knowledge and
video as input. As shown in Table 1, compared with the baseline C4C,
EIKA gains 70.3% and 7.9% absolute improvements on the metrics
CIDEr and BLEU-4, respectively. EIKA outperforms CCP by 70.2% and
7.8% on CIDEr and BLEU-4, respectively. And EIKA outperforms OVD
by 70.2% and 7.5% on CIDEr and BLEU-4, respectively.

Compared to KEA, our EIKA surpasses the single explicit knowledge-
guided model on all metrics. This validates that EIKA can generate
more accurate captions with entity names. This is because we intro-
duce scene knowledge to guide the model in distinguishing different
visual scenes, generating accurate scene categories. EIKA gradually
generates detailed descriptions, moving from scenes to entities. With
the addition of implicit scene knowledge, the KEA* model shows im-
provement across all metrics. It achieves a higher CIDEr score than
our EIKA. This is because KEA* employs a more complex T5 large
language model (Raffel et al., 2020) as its decoder, while our model
only utilizes a 3-layer Transformer as the decoder. The T5 model
significantly enhances KEA*’s generation capabilities, particularly in
generating fine-grained information such as player names. Addition-
ally, KEA* processes video frames at the resolution of 1280 × 720,
much higher than our input of 224 × 224, enabling more accurate
visual feature extraction and scene understanding. The CIDEr metric,
designed for captioning tasks, is particularly sensitive to rare terms
(such as proper nouns and infrequent words), assigning especially
high weight to player names. Given KEA*’s higher-resolution input
and more powerful decoder, its video understanding capability is fur-
ther enhanced after integrating implicit scene knowledge, resulting in
more pronounced CIDEr score differences on this task. In contrast,
other metrics (e.g., METEOR, ROUGE-L, BLEU) focus more on n-gram
matching and semantic alignment, with less dependency on rare terms,
indicating that our generated captions maintain high syntactic and
semantic similarity. Notably, KEA* achieves a higher CIDEr score only
after integrating our proposed implicit scene knowledge. This indirectly
confirms the positive impact of implicit scene knowledge on description
generation, further validating its effectiveness. Moreover, when the
model is equipped with both explicit and implicit knowledge, its perfor-
mance is further improved. For example, compared to OVD, OVD** has
improved by 59.6% and 3.4% on evaluation metrics CIDEr and BLEU-4,
respectively. This further validates the effectiveness of combining the
two types of knowledge.

Fig. 5 shows the qualitative results on VC-NBA-2022 dataset. Since
V2C does not have any tokenizer tools, it cannot encode and decode
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Fig. 6. Qualitative comparison results of our model and five video captioning models on Goal dataset. GT, V2C, C4C, SwB, CCP, OVD and KEA denote ground truth caption,
Video2Commonsense, Clip4Caption, SwinBERT, CoCap, OmniViD and KEANet, respectively. Different entity names are marked red and blue. And the specific visual scenes are
marked green.
Table 3
Quantitative comparison results on NSVA dataset. S3D and T denote the S3D feature and Timesformer feature, respectively. ‘‘(full)’’ denotes
the method jointly utilize video, basketball, basket, player, and court features. ‘‘list’’ and ‘‘scene’’ denote the explicit knowledge and implicit
knowledge, respectively. NSVA* is the improved method that incorporates knowledge.

Model Feature Year CIDEr METEOR Rouge-L BLEU-1 BLEU-2 BLEU-3 BLEU-4

MP-LSTM S3D 2014 50.0 15.3 33.2 32.5 23.6 16.7 12.1
TA S3D 2015 54.6 15.6 34.0 33.1 24.2 17.5 12.8
T2T S3D 2018 57.2 16.1 35.7 34.6 25.4 18.1 13.1
UniVL S3D 2020 71.7 19.2 40.1 44.1 30.9 22.6 16.9

NSVA
S3D(full) 2022 98.6 22.7 46.6 47.9 37.1 28.1 21.6
T 2022 95.6 21.7 46.8 46.7 36.3 27.4 20.9
T(full) 2022 113.9 24.3 50.8 52.2 41.0 31.4 24.3

NSVA*

S3D+list 2025 75.3 20.4 43.1 45.7 32.2 24.5 17.9
S3D+list+scene 2025 78.2 22.5 46.5 46.9 35.6 27.3 21.2
T+list 2025 97.2 23.1 48.7 49.5 37.4 29.2 21.8
T+list+scene 2025 99.7 24.6 50.3 50.9 39.5 31.8 23.1
S3D(full)+list 2025 99.8 23.5 47.2 48.3 37.9 29.2 22.3
S3D(full)+list+scene 2025 101.5 24.2 48.4 48.8 38.6 30.3 23.4
T(full)+list 2025 115.2 24.8 51.7 52.8 41.8 32.5 25.3
T(full)+list+scene 2025 117.4 25.6 52.7 53.5 42.4 33.5 26.1
Table 4
Ablation study on VC-NBA-2022 dataset. GK, EVIM, SK, VKIM and STMM denote game knowledge and entity-video interaction module,
scene knowledge, video-knowledge interaction module and spatial–temporal modeling module, respectively. Numbers in bold denote the best
performance.

Model GK EVIM SK VKIM STMM CIDEr METEOR Rouge-L BLEU-4

A 70.4 26.7 51.2 28.8
B ✓ 117.2 27.5 52.0 29.4
C ✓ ✓ 125.1 28.0 53.2 31.6
D ✓ 88.7 26.9 51.4 29.0
E ✓ ✓ 92.2 27.2 51.7 30.5
F ✓ 75.6 27.1 51.6 29.1
G ✓ ✓ ✓ 127.4 28.5 54.0 32.0
H ✓ ✓ ✓ 95.2 27.4 52.7 31.0
I ✓ ✓ ✓ ✓ 137.1 29.0 55.3 33.8
J ✓ ✓ ✓ ✓ 135.0 28.8 55.4 33.9
K ✓ ✓ ✓ ✓ ✓ 140.7 29.5 56.8 36.7
entity names. So entity names are directly replaced with the special
token <UNK>. C4C, SwB, CCP and OVD struggle to accurately generate
entity names and fine-grained scene categories. In contrast, under the
guidance of knowledge, the generation performance of KEA and EIKA is
improved. In the comparison between KEA and EIKA, it can be seen that
EIKA can recognize more accurate visual scenes. This benefits from the
guiding role of scene knowledge. The above results indicate that EIKA
is more closely aligned with practical applications.
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Comparison on Goal. EIKA is compared with V2C, C4C, SwB, CCP,
OVD and KEA on Goal dataset. As shown in Table 2, EIKA outperforms
the baseline C4C by 1.9% and 9.6% on CIDEr and BLEU-1, respec-
tively. EIKA outperforms the previous state-of-the-art model KEA on
all metrics. When the model combines explicit and implicit knowledge,
its performance is further improved. Notably, the decoder of OVD is
the BART large langugae model (Lewis, 2019), which excels in gen-
erating long and coherent text with accurate contextual dependency.
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Fig. 7. Qualitative comparison results with different knowledge for different model settings on NSVA dataset. Different entity names are marked red, blue and orange. And the
specific visual scenes are marked green.
When equipped with implicit scene knowledge, OVD** demonstrates
a stronger understanding of video content, producing long-form cap-
tions with more accurate player names and scene types. Consequently,
OVD** achieves higher CIDEr and BLEU-1 scores than our EIKA. Ad-
ditionally, after integrating implicit scene knowledge, KEA* achieves
METEOR scores comparable to ours. Overall, both KEA* and OVD** ex-
hibit performance improvements, validating the effectiveness of jointly
utilizing both types of knowledge.

Fig. 6 shows the qualitative results on Goal dataset. Both KEA and
EIKA can generate partial correct entity names and scenes. However,
EIKA can identify more accurate visual scenes. The results above indi-
cate that, with the guidance of explicit game-related and implicit scene
knowledge, the model can identify entity names and specific scenes in
the challenging task of sports commentary.

Comparison on NSVA. Since NSVA does not provide raw video data
but instead offers features extracted using Timesformer (Bertasius,
Wang, & Torresani, 2021), we incorporate both explicit and implicit
knowledge as additional modules to UniVL (Luo et al., 2020) and
NSVA (Wu et al., 2022) for a fair comparison. This approach explores
the effectiveness of the two types of knowledge across different models.

As shown in Table 3, models in the NSVA* category exhibit per-
formance improvements over UniVL and NSVA when combined with
different types of knowledge. For example, NSVA*(S3D + list) and
NSVA*(S3D + list + scene) improve the CIDEr score of UniVL by 3.6%
and 6.5%, respectively. NSVA*(T(full) + list) and NSVA*(T(full) + list
+ scene) improve the CIDEr score of NSVA(T(full)) by 1.3% and 3.5%,
respectively.

Since the NSVA dataset is constructed with the principle that each
team’s game appears at least once in the training set (Wu et al.,
2022), the model can leverage parameter memory to predict player
identities during testing. As a result, the performance gains from adding
the list knowledge (explicit game knowledge) are relatively small.
Additionally, the dataset’s captions include references to the distance
between shooting positions and the basket, presenting a challenge
for the generation task. However, the introduction of multiple types
of knowledge still yields noticeable performance improvements. As
illustrated in Fig. 7, incorporating the list knowledge (explicit game
knowledge) leads to more accurate predictions of player identities
within the text. Furthermore, adding scene knowledge (implicit scene
knowledge) makes scene category generation more accurate.

4.6. Ablation study

Effectiveness of each component. We conduct a series of ablation
experiments on VC-NBA-2022 with the metrics of CIDEr, METEOR,
10 
Table 5
Comparison results of model performance guided by different types of decoder on VC-
NBA-2022 dataset. Numbers in bold denote the best performance.

Model E SCE ETS STE CIDEr METEOR Rouge-L BLEU-4

#1 ✓ 125.5 27.6 53.4 31.1
#2 ✓ 131.2 28.5 54.2 31.8
#3 ✓ 138.4 28.8 55.1 32.2
#4 ✓ 140.7 29.5 56.8 36.7

Rouge-L and BLEU-4. Table 4 shows the results of the ablation ex-
periments. Model A is the baseline Clip4Caption. Model B introduces
explicit game-related knowledge on the basis of Model A, greatly
improving performance. Model A can generate descriptions with entity
names based solely on the memory of trained parameters. However,
when the player entities in the video do not appear in the training
data, model A predicts incorrectly, and the names might belong to
other games. By utilizing game knowledge, the model can obtain
entities information from a limited range and improve the accuracy of
names prediction. Model C introduces entity-video interaction module
(EVIM) on the basis of Model B, helping the model focus on video-
related entities. Model D introduces scene knowledge into Model A,
leading 18.3% and 0.2% improvement in CIDEr and BLEU-4 scores,
respectively. This is attributed to scene knowledge, which contains the
definitions of various visual scenes and the boundaries among scenes.
With the help of video-knowledge interaction module (VKIM), Model
E adaptively captures knowledge-related video information. The CIDEr
score is increased by 3.5% and the BLEU-4 score is increased by 0.5%.
From the comparison results of (H, E), (G, C), and (F, A), it can be found
that better visual features are beneficial for the model to recognize
specific scenes and entities. This is because spatial–temporal modeling
module (STMM) can capture dynamics and contextual information in
video, improving the model’s understanding of video content. The
comparison results of (G, I) and (H, J) validate the effectiveness of
the two types of knowledge. Model K achieves optimal performance
by adding all components to Model A. Model K outperforms Model A
by 70.3%, 2.8%, 5.6% and 7.9% on the metrics of CIDEr, METEOR,
Rouge-L and BLEU-4, respectively. The above results demonstrate the
effectiveness of all components.

Impact of different decoding methods. As shown in Fig. 8, there
are 4 types of decoding methods. The first method only sends entity-
related video feature 𝑉𝑒𝑛𝑡𝑖𝑡𝑦 into the decoder. The second method is
to concatenate scene-related video features and entity-related video
features (Scene-concatenate-entity, SCE), and then feed them into the
decoder. The third method is to first feed entity-related features into the



Z. Xi et al. Expert Systems With Applications 274 (2025) 126906 
Fig. 8. Decoder variants for different decoding methods.
Fig. 9. Decoder variants for different cross-attention configurations.
decoder, and then feed scene-related features into the decoder (Entity-
to-scene, ETS). The fourth method is opposite to the second method
(Scene-to-entity, STE).

As shown in Table 5, the model has the lowest performance with
only entity-related video feature (#1). And it can be seen that the
performance of distributed decoding is better than that of cascading.
The second cascading feature (#2) decoding method may lead to a
decrease in text quality due to potential interference between feature
information. Directly concatenating scene-related video features and
entity-related video features may hinder effective information fusion,
making it challenging for the decoder to understand the complex
relationships between explicit external information and visual features,
as well as decode multiple fine-grained details simultaneously. To
alleviate these issues, the STE decoder employs a scene-first, entity-later
decoding strategy. First, the scene-related information is integrated by
scene cross-attention, decoding scene-related textual features. Then,
entity-related information is integrated through entity cross-attention,
decoding entity-related textual features. This approach fully leverages
both scene and entity information. The step-by-step decoding strategy
alleviates the difficulty of decoding multiple fine-grained details at
once, improving the accuracy of text generation. Compared with the
third method (#3), the fourth method (#4) of defining the scene
first and then adding entity features can better utilize the contextual
information provided by the scene for entity behavior and generate
more logical and coherent descriptions.

Different cross-attention configurations of decoder. As shown in
Fig. 9, there are 4 types of cross-attention configurations in the decoder.
The first type does not utilize either scene cross-attention or entity
cross-attention. The second type utilizes only scene cross-attention,
while the third type utilizes only entity cross-attention. The fourth type
has both scene cross-attention and entity cross-attention.

As shown in Table 6, when neither scene nor entity cross-attention
is applied, the decoder relies solely on video content without incorpo-
rating any scene- or entity-related information, resulting in the poorest
11 
performance. When the decoder is equipped with either scene or en-
tity cross-attention, it integrates scene-level contextual information
or entity-specific semantic features, leading to performance improve-
ments. The CIDEr score increases from 75.6% to 95.2% and 127.4%,
respectively. And these results indicate that entity-related informa-
tion contributes more significantly to performance gains. When both
scene and entity cross-attention layers are applied simultaneously, the
model achieves the best performance, with CIDEr and BLEU-4 scores
improving by 65.1% and 7.6%, respectively. This further validates the
effectiveness of jointly leveraging both explicit and implicit knowledge.

Impact of different approaches for obtaining implicit scene knowl-
edge. We investigate the impact of 3 different approaches for obtaining
scene knowledge on model performance. The first approach (A1) is the
K-means algorithm. It directly clusters the training video features to
9 centers. The second approach (A2) is also a clustering algorithm. It
clusters the video features in each category to yield one center. The
third approach (A3) averages the features of videos for each category.
As shown in Table 7, model ① does not use any scene knowledge.
Model ② utilizes the scene knowledge obtained by the first approach,
but its performance declines. This is because live sports videos contain
many visually similar scenes, and the K-means algorithm incorrectly
treats visual features from different scenes as one category. Both the
second and third approaches involve mining scene knowledge of certain
scenes within the same label, which avoids the issue of visual features
confusion. Model ④ performs better than model ③. This is because
the third approach of mining scene knowledge directly reflects the
average features of each category and can better capture the com-
monalities within categories. However, the second approach relies on
the operation of the K-means algorithm, which can be affected by
the choice of initial centers, internal category variability, and other
factors, resulting in the final cluster centers not necessarily being the
optimal representatives of the categories. Therefore, we choose the
scene knowledge obtained by the third approach to guide the model
in recognizing different visual scenes.
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Fig. 10. Impact of the hyper-parameters in VKIM. Ablation studies of different query vector number for VKIM.
Fig. 11. Impact of the hyper-parameters in VKIM. Ablation studies of different layer number for VKIM.
Table 6
Comparison results of model performance with different cross-attention configura-
tions of decoder layer on VC-NBA-2022 dataset. Numbers in bold denote the best
performance.

Model Scene Entity C M R B-4

a 75.6 27.1 51.6 29.1
b ✓ 95.2 27.4 52.7 31.0
c ✓ 127.4 28.5 54.0 32.0
d ✓ ✓ 140.7 29.5 56.8 36.7

Table 7
Comparison results of model performance guided by scene knowledge obtained by
different approaches on VC-NBA-2022 dataset. Numbers in bold denote the best
performance.

Model A1 A2 A3 C M R B-4

① 127.4 28.5 54.0 32.0
② ✓ 120.3 27.3 52.4 30.1
③ ✓ 138.9 28.9 55.2 36.2
④ ✓ 140.7 29.5 56.8 36.7

Impact of the hyper-parameters in VKIM. We exploit how the num-
ber of query vector in VKIM affects the performance of EIKA. As shown
in Fig. 10, when the number is set to 18, the model performs the best.
When the number is less than 18 or greater than 18, the performance
of the model declines. A smaller number results in capturing less
knowledge-related video information, while a larger number leads to
the introduction of redundant video information. The number of query
vectors for VKIM is ultimately set to 18. Different layers of VKIM
also affect the performance of the model. As shown in Fig. 11, when
the number of layers is 4, the performance of the model is optimal.
Excessive layers not only increase the computational complexity of
the model, but also make it difficult to fit the model to the optimal
performance during training. Therefore, the number of layers for VKIM
is set to 4.

Qualitative analysis on scene knowledge. To explore the similarity
between scene knowledge and all videos, we evaluate the similarity
between the scene knowledge of each category and videos from differ-
ent categories. The similarity scores for different groups (e.g., S1-V1,
S1-V8 and so on) are then averaged. As shown in Fig. 12, most scene
12 
Fig. 12. Visualization of average similarity scores between scene knowledge and
video features. The scene labels from S1 to S9 represent ‘‘2p-succ.’’, ‘‘2p-fail-off.’’,
‘‘2p-fail-def.’’, ‘‘2p-layup-succ.’’, ‘‘2p-layup-fail-off.’’, ‘‘2p-layup-fail-def.’’, ‘‘3p-succ.’’,
‘‘3p-fail-off.’’, and ‘‘3p-fail-def’’. And the video labels from V1 to V9 represent
‘‘2p-succ.’’, ‘‘2p-fail-off.’’, ‘‘2p-fail-def.’’, ‘‘2p-layup-succ.’’, ‘‘2p-layup-fail-off.’’, ‘‘2p-
layup-fail-def.’’, ‘‘3p-succ.’’, ‘‘3p-fail-off.’’, and ‘‘3p-fail-def’’. The x-axis represents the
categories of scene knowledge, and the y-axis represents the labels of different video
categories.

knowledge demonstrates the highest similarity with video features in
the same categories, indicating that this knowledge effectively rep-
resents the scene concepts of those video categories. However, the
similarity between scene knowledge S2 (‘‘2p-fail-off.’’) and videos of
the same category is lower than that with V4 (‘‘2pt-layup-succ.’’).
The similarity between scene knowledge S5 (‘‘2p-layup-fail-off.’’) and
videos of the same category is lower than that with V1 (‘‘2pt-succ.’’)
and V2 (‘‘2p-fail-off.’’). One possible reason is the limited number of
videos for these two scenes in the dataset, resulting in less accurate
conceptual knowledge. Another reason is that these labels have similar
scenarios, such as all having a two-point shot and all being within
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Fig. 13. Visualization of the similarity score between scene knowledge and two kinds
of video features.

the three-point line. These visualization results demonstrate that our
scene knowledge not only connects with videos corresponding to the
same scene but also distinguishes features of most different videos.
This aligns with the principle of category-based reasoning in human
cognitive psychology. Our scene knowledge serves as conceptual scene
representations, enabling the model to compare new concepts more
effectively and thereby achieve more accurate scene recognition.

To intuitively evaluate the effectiveness of scene knowledge, we
visualize the similarity scores between scene knowledge with 9 cen-
ter features and two kinds of video features (source spatiotemporal
video feature and scene-related video feature). As shown in Fig. 13,
we present 3 groups of comparison results. S1-S9 are center features
of 9 specific scenes. The ground truth scenes for the 3 groups of
videos are S2, S1, and S9, respectively. Taking the first group as an
example, the spatiotemporal feature of source video shows the highest
similarity with scene S5. Under the guidance of visual scene knowledge,
the scene-related video features learned by VKIM exhibit the highest
similarity with scene S2. These 3 groups of visualization comparison
results demonstrate that scene knowledge can assist the model in
distinguishing different visual scenes, thereby enabling the generation
of more accurate visual scene categories.

We further provide the t-SNE (Van der Maaten & Hinton, 2008)
visualization results of source spatiotemporal video feature and scene-
related video feature (Fig. 14). Under the guidance of scene knowledge,
the categories of each scene are easier to distinguish. This further
confirms that mining implicit knowledge within videos helps the model
distinguish different scenes.

5. Conclusion, limitation and future work

In this paper, we mine the implicit visual scene knowledge from the
training set by a simple way. And we propose an Explicit & Implicit
Knowledge-Augmented Network for Entity-Aware Sports Video Cap-
tioning (EIKA), which effectively incorporates explicit game knowledge
and implicit scene knowledge to generate descriptions with specific
entity names. Our proposed EIKA achieves advanced performance on
multiple entity-aware datasets. Extensive ablation studies and qual-
itative results have demonstrated the effectiveness of two types of
knowledge and each component in EIKA.

Although our method performs well on dataset with neatly for-
matted descriptions (e.g., VC-NBA-2022), it shows lower performance
on dataset with more casual and random text styles (e.g., Goal). This
indicates that the knowledge we currently utilize is insufficient. In
13 
Fig. 14. t-SNE (Van der Maaten & Hinton, 2008) visualization results of source
spatiotemporal video feature and scene-related video feature.

the future, we will try to acquire more comprehensive and informa-
tive knowledge from sports-related knowledge graphs and leverage
the powerful generative capabilities of large models to achieve more
complex sports video captioning tasks. Furthermore, while using the
average features serves as an approximate representation of knowl-
edge, its limitation lies in ignoring higher-order statistical information
within the data distribution. Future work could incorporate variance
or other distributional features to more comprehensively characterize
scene knowledge, thereby enhancing the accuracy and robustness of the
method.

CRediT authorship contribution statement

Zeyu Xi: Conceptualization, Methodology, Software, Investigation,
Writing – review & editing, Visualization, Data curation. Ge Shi: Con-
ceptualization, Writing – review. Haoying Sun: Data curation, Formal
analysis. Bowen Zhang: Data curation, Validation. Shuyi Li: Con-
ceptualization, Formal analysis. Lifang Wu: Conceptualization, Writ-
ing – review & editing, Supervision, Project administration, Funding
acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work was supported in part by the Natural Science Foundation
of China under Grant 62236010, 62106010, 62306021; in part by the
Beijing Natural Science Foundation under grant L233008.

Data availability

Data will be made available on request.

References

Aafaq, N., Akhtar, N., Liu, W., et al. (2019). Spatio-temporal dynamics and semantic
attribute enriched visual encoding for video captioning. In Proceedings of the IEEE
conference on computer vision and pattern recognition CVPR, (pp. 12487–12496).

Ayyubi, H. A., Liu, T., Nagrani, A., et al. (2023). Video summarization: Towards
entity-aware captions. arXiv preprint arXiv:2312.02188.

Banerjee, S., & Lavie, A. (2005). METEOR: An automatic metric for MT evaluation with
improved correlation with human judgments. In Proceedings of annual meeting of the
association for computational linguistics ACL, (pp. 65–72).

Bertasius, G., Wang, H., & Torresani, L. (2021). Is space-time attention all you need
for video understanding? vol. 2, In ICML (p. 4).

Chen, S., & Jiang, Y.-G. (2021). Motion guided region message passing for video
captioning. In Proceedings of the IEEE conference on computer vision and pattern
recognition ICCV, (pp. 1543–1552).

http://refhub.elsevier.com/S0957-4174(25)00528-7/sb1
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb1
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb1
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb1
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb1
http://arxiv.org/abs/2312.02188
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb3
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb3
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb3
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb3
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb3
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb4
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb4
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb4
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb5
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb5
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb5
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb5
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb5


Z. Xi et al. Expert Systems With Applications 274 (2025) 126906 
Cho, K., Van Merriënboer, B., Gulcehre, C., et al. (2014). Learning phrase representa-
tions using RNN encoder-decoder for statistical machine translation. arXiv preprint
arXiv:1406.1078.

Cook, A., & Karakuş, O. (2024). LLM-Commentator: Novel fine-tuning strategies of large
language models for automatic commentary generation using football event data.
Knowledge-Based Systems, 300, Article 112219.

Devlin, J., Chang, M.-W., Lee, K., et al. (2018). Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., et al. (2020). An image is worth 16x16 words:
Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929.

Du, Y., Liu, F., Jiao, L., Li, S., Hao, Z., Li, P., et al. (2025). Text generation and
multi-modal knowledge transfer for few-shot object detection. Pattern Recognition,
161, Article 111283.

Du, S., Zhu, H., Xiong, G., et al. (2023). Semantic similarity information discrimination
for video captioning. Expert Systems with Applications, 213, Article 118985. http:
//dx.doi.org/10.1016/j.eswa.2022.118985, URL https://www.sciencedirect.com/
science/article/pii/S0957417422020036.

Fang, Z., Gokhale, T., Banerjee, P., et al. (2020). Video2commonsense: Generating
commonsense descriptions to enrich video captioning. arXiv preprint arXiv:2003.
05162.

Fang, S., Wang, S., Zhuo, J., et al. (2022). Concept propagation via attentional
knowledge graph reasoning for video-text retrieval. In Proceedings of the 30th ACM
international conference on multimedia (pp. 4789–4800).

Fei, M., Jiang, W., & Mao, W. (2021). Learning user interest with improved triplet
deep ranking and web-image priors for topic-related video summarization. Expert
Systems with Applications, 166, Article 114036.

Feichtenhofer, C., Fan, H., Malik, J., et al. (2019). Slowfast networks for video
recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition ICCV, (pp. 6202–6211).

Gautam, S., Sarkhoosh, M. H., Held, J., Midoglu, C., Cioppa, A., Giancola, S., et al.
(2024). SoccerNet-Echoes: A Soccer game audio commentary dataset. arXiv preprint
arXiv:2405.07354.

Gu, X., Chen, G., Wang, Y., et al. (2023). Text with knowledge graph augmented
transformer for video captioning. In Proceedings of the IEEE conference on computer
vision and pattern recognition CVPR, (pp. 18941–18951).

He, K., Zhang, X., Ren, S., et al. (2016). Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition CVPR,
(pp. 770–778).

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation,
9(8), 1735–1780.

Hou, J., Wu, X., Zhang, X., et al. (2020). Joint commonsense and relation reasoning
for image and video captioning. In Proceedings of the AAAI conference on artificial
intelligence (pp. 10973–10980).

Huang, Y., Wang, Y., Zeng, Y., & Wang, L. (2022). MACK: multimodal aligned concep-
tual knowledge for unpaired image-text matching. Advances in Neural Information
Processing Systems, 35, 7892–7904.

Khan, H., Hussain, T., Ullah Khan, S., Ahmad Khan, Z., & Baik, S. W. (2024). Deep
multi-scale pyramidal features network for supervised video summarization. Expert
Systems with Applications, 237, Article 121288.

Kim, B. J., & Choi, Y. S. (2020). Automatic baseball commentary generation using deep
learning. In Proceedings of the 35th annual ACM symposium on applied computing (pp.
1056–1065).

Lewis, M. (2019). Bart: Denoising sequence-to-sequence pre-training for natural lan-
guage generation, translation, and comprehension. arXiv preprint arXiv:1910.
13461.

Li, P., Wang, T., Zhao, X., Xu, X., & Song, M. (2025). Pseudo-labeling with keyword
refining for few-supervised video captioning. Pattern Recognition, 159, Article
111176.

Li, Y.-L., Xu, L., Liu, X., et al. (2020). Pastanet: Toward human activity knowledge
engine. In Proceedings of the IEEE conference on computer vision and pattern recognition
CVPR, (pp. 382–391).

Lin, C.-Y. (2004). Rouge: A package for automatic evaluation of summaries. In Text
summarization branches out (pp. 74–81).

Lin, K., Li, L., Lin, C.-C., et al. (2022). Swinbert: End-to-end transformers with sparse
attention for video captioning. In Proceedings of the IEEE conference on computer
vision and pattern recognition CVPR, (pp. 17949–17958).

Liu, Z., Ning, J., Cao, Y., Wei, Y., Zhang, Z., Lin, S., et al. (2022). Video swin
transformer. In Proceedings of the IEEE conference on computer vision and pattern
recognition CVPR, (pp. 3202–3211).

Luo, H., Ji, L., Shi, B., Huang, H., Duan, N., Li, T., et al. (2020). Univl: A unified video
and language pre-training model for multimodal understanding and generation.
arXiv preprint arXiv:2002.06353.

Luo, H., Ji, L., Zhong, M., et al. (2022). Clip4clip: An empirical study of clip for end
to end video clip retrieval and captioning. Neurocomputing, 508, 293–304.

Ma, Y., Zhu, Z., Qi, Y., Beheshti, A., Li, Y., Qing, L., et al. (2024). Style-aware two-stage
learning framework for video captioning. Knowledge-Based Systems, 301, Article
112258.

Van der Maaten, L., & Hinton, G. (2008). Visualizing data using t-SNE. Journal of
Machine Learning Research, 9(11).
14 
Miech, A., Alayrac, J.-B., Smaira, L., et al. (2020). End-to-end learning of visual
representations from uncurated instructional videos. In Proceedings of the IEEE
conference on computer vision and pattern recognition CVPR, (pp. 9879–9889).

Mkhallati, H., Cioppa, A., Giancola, S., et al. (2023). SoccerNet-Caption: Dense video
captioning for soccer broadcasts commentaries. In Proceedings of the IEEE conference
on computer vision and pattern recognition CVPR, (pp. 5073–5084).

Nabati, M., & Behrad, A. (2023). Multi-sentence video captioning using spatial saliency
of video frames and content-oriented beam search algorithm. Expert Systems with
Applications, 228, Article 120454. http://dx.doi.org/10.1016/j.eswa.2023.120454.

Pan, B., Cai, H., Huang, D.-A., et al. (2020). Spatio-temporal graph for video captioning
with knowledge distillation. In Proceedings of the IEEE conference on computer vision
and pattern recognition CVPR, (pp. 10870–10879).

Papineni, K., Roukos, S., Ward, T., et al. (2002). Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th annual meeting of the
association for computational linguistics ACL, (pp. 311–318).

Qi, M., Wang, Y., Li, A., et al. (2019). Sports video captioning via attentive motion
representation and group relationship modeling. IEEE Transactions on Circuits and
Systems for Video Technology, 30(8), 2617–2633.

Qi, J., Yu, J., Tu, T., et al. (2023). GOAL: A challenging knowledge-grounded video
captioning benchmark for real-time soccer commentary generation. In Proceedings
of the 32nd ACM international conference on information and knowledge management
(pp. 5391–5395).

Radford, A., Kim, J. W., Hallacy, C., et al. (2021). Learning transferable visual models
from natural language supervision. In International conference on machine learning
ICML, (pp. 8748–8763). PMLR.

Radford, A., Wu, J., Child, R., et al. (2019). Language models are unsupervised
multitask learners. OpenAI Blog, 1(8), 9.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., et al. (2020).
Exploring the limits of transfer learning with a unified text-to-text transformer.
Journal of Machine Learning Research, 21(140), 1–67.

Rao, J., Wu, H., Jiang, H., Zhang, Y., & Xie, Y. W. W. (2024). Towards universal Soccer
video understanding. arXiv preprint arXiv:2412.01820.

Rao, J., Wu, H., Liu, C., Wang, Y., & Xie, W. (2024). MatchTime: Towards automatic
soccer game commentary generation. arXiv preprint arXiv:2406.18530.

Sap, M., Le Bras, R., Allaway, E., et al. (2019). Atomic: An atlas of machine
commonsense for if-then reasoning. vol. 33, In Proceedings of the AAAI conference
on artificial intelligence (pp. 3027–3035).

Shao, H., Fang, Z., & Yang, Y. (2022). CAVAN: Commonsense knowledge anchored
video captioning. In Proceedings of the 26th international conference on pattern
recognition ICPR, (pp. 4095–4102). IEEE.

Sharma, P., Ding, N., Goodman, S., & Soricut, R. (2018). Conceptual captions: A
cleaned, hypernymed, image alt-text dataset for automatic image captioning. In
Proceedings of the 56th annual meeting of the association for computational linguistics
(volume 1: long papers) (pp. 2556–2565).

Shen, Y., Gu, X., Xu, K., Fan, H., Wen, L., & Zhang, L. (2023). Accurate and fast
compressed video captioning. In Proceedings of the IEEE/CVF international conference
on computer vision (pp. 15558–15567).

Smith, E., & Kosslyn, S. (2007). Cognitive psychology: Mind and brain. Pearson/Prentice
Hall.

Tang, M., Wang, Z., Liu, Z., et al. (2021). Clip4caption: Clip for video caption. In
Proceedings of the 29th ACM international conference on multimedia (pp. 4858–4862).

Vaswani, A., Shazeer, N., Parmar, N., et al. (2017). Attention is all you need. Advances
in Neural Information Processing Systems, 30.

Vedantam, R., Lawrence Zitnick, C., & Parikh, D. (2015). Cider: Consensus-based image
description evaluation. In Proceedings of the IEEE conference on computer vision and
pattern recognition CVPR, (pp. 4566–4575).

Venugopalan, S., Xu, H., Donahue, J., Rohrbach, M., Mooney, R., & Saenko, K. (2014).
Translating videos to natural language using deep recurrent neural networks. arXiv
preprint arXiv:1412.4729.

Wang, J., Chen, D., Luo, C., He, B., Yuan, L., Wu, Z., et al. (2024). Omnivid: A
generative framework for universal video understanding. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition (pp. 18209–18220).

Wang, L., Xiong, Y., Wang, Z., et al. (2016). Temporal segment networks: Towards
good practices for deep action recognition. In European conference on computer vision
ECCV, (pp. 20–36). Springer.

Wu, G., Song, S., Wang, X., & Zhang, J. (2024). Reconstructive network under
contrastive graph rewards for video summarization. Expert Systems with Applications,
250, Article 123860. http://dx.doi.org/10.1016/j.eswa.2024.123860, URL https:
//www.sciencedirect.com/science/article/pii/S0957417424007267.

Wu, D., Zhao, H., Bao, X., et al. (2022). Sports video analysis on large-scale data. In
European conference on computer vision ECCV, (pp. 19–36). Springer.

Xi, Z., Shi, G., Li, X., Yan, J., Li, Z., Wu, L., et al. (2025). A simple yet effective
knowledge guided method for entity-aware video captioning on a basketball
benchmark. Neurocomputing, 619, Article 129177.

Xiong, H., Wang, L., Qiu, H., Zhao, T., Qiu, B., & Li, H. (2025). Adaptively forget
with cross-modal and textual distillation for class-incremental video captioning.
Neurocomputing, Article 129388.

Xu, J., Huang, Y., Hou, J., et al. (2024). Retrieval-augmented egocentric video
captioning. arXiv preprint arXiv:2401.00789.

http://arxiv.org/abs/1406.1078
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb7
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb7
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb7
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb7
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb7
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/2010.11929
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb10
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb10
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb10
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb10
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb10
http://dx.doi.org/10.1016/j.eswa.2022.118985
http://dx.doi.org/10.1016/j.eswa.2022.118985
http://dx.doi.org/10.1016/j.eswa.2022.118985
https://www.sciencedirect.com/science/article/pii/S0957417422020036
https://www.sciencedirect.com/science/article/pii/S0957417422020036
https://www.sciencedirect.com/science/article/pii/S0957417422020036
http://arxiv.org/abs/2003.05162
http://arxiv.org/abs/2003.05162
http://arxiv.org/abs/2003.05162
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb13
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb13
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb13
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb13
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb13
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb14
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb14
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb14
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb14
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb14
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb15
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb15
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb15
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb15
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb15
http://arxiv.org/abs/2405.07354
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb17
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb17
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb17
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb17
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb17
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb18
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb18
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb18
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb18
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb18
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb19
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb19
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb19
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb20
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb20
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb20
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb20
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb20
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb21
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb21
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb21
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb21
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb21
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb22
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb22
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb22
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb22
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb22
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb23
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb23
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb23
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb23
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb23
http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1910.13461
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb25
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb25
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb25
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb25
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb25
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb26
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb26
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb26
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb26
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb26
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb27
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb27
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb27
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb28
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb28
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb28
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb28
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb28
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb29
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb29
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb29
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb29
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb29
http://arxiv.org/abs/2002.06353
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb31
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb31
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb31
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb32
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb32
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb32
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb32
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb32
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb33
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb33
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb33
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb34
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb34
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb34
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb34
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb34
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb35
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb35
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb35
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb35
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb35
http://dx.doi.org/10.1016/j.eswa.2023.120454
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb37
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb37
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb37
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb37
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb37
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb38
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb38
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb38
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb38
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb38
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb39
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb39
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb39
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb39
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb39
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb40
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb40
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb40
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb40
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb40
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb40
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb40
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb41
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb41
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb41
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb41
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb41
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb42
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb42
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb42
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb43
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb43
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb43
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb43
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb43
http://arxiv.org/abs/2412.01820
http://arxiv.org/abs/2406.18530
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb46
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb46
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb46
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb46
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb46
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb47
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb47
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb47
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb47
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb47
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb48
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb48
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb48
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb48
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb48
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb48
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb48
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb49
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb49
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb49
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb49
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb49
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb50
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb50
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb50
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb51
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb51
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb51
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb52
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb52
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb52
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb53
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb53
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb53
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb53
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb53
http://arxiv.org/abs/1412.4729
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb55
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb55
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb55
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb55
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb55
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb56
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb56
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb56
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb56
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb56
http://dx.doi.org/10.1016/j.eswa.2024.123860
https://www.sciencedirect.com/science/article/pii/S0957417424007267
https://www.sciencedirect.com/science/article/pii/S0957417424007267
https://www.sciencedirect.com/science/article/pii/S0957417424007267
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb58
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb58
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb58
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb59
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb59
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb59
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb59
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb59
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb60
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb60
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb60
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb60
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb60
http://arxiv.org/abs/2401.00789


Z. Xi et al. Expert Systems With Applications 274 (2025) 126906 
Xu, W., Xu, Y., Miao, Z., Cen, Y., Wan, L., & Ma, X. (2025). CroCaps: A CLIP-assisted
cross-domain video captioner. Expert Systems with Applications, 268, Article 126296.

Xu, J., Yao, T., Zhang, Y., et al. (2017). Learning multimodal attention LSTM networks
for video captioning. In Proceedings of the 25th ACM international conference on
multimedia (pp. 537–545).

Yang, B., Cao, M., & Zou, Y. (2023). Concept-aware video captioning: Describing videos
with effective prior information. IEEE Transactions on Image Processing.

Yang, B., Zhang, T., & Zou, Y. (2022). Clip meets video captioning: Concept-aware
representation learning does matter. In Chinese conference on pattern recognition and
computer vision PRCV, (pp. 368–381). Springer.

Yao, L., Torabi, A., & Cho, K. (2015). Describing videos by exploiting temporal
structure. In Proceedings of the IEEE conference on computer vision and pattern
recognition CVPR, (pp. 4507–4515).

Ye, H., Li, G., Qi, Y., et al. (2022). Hierarchical modular network for video captioning.
In Proceedings of the IEEE conference on computer vision and pattern recognition CVPR,
(pp. 17939–17948).

Yu, H., Cheng, S., Ni, B., et al. (2018). Fine-grained video captioning for sports
narrative. In Proceedings of the IEEE conference on computer vision and pattern
recognition (pp. 6006–6015).

Yu, W., Liang, J., Ji, L., et al. (2021). Hybrid reasoning network for video-based
commonsense captioning. In Proceedings of the 29th ACM international conference
on multimedia (pp. 5213–5221).

Yuan, M., Jia, G., & Bao, B.-K. (2023). GPT-based knowledge guiding network for
commonsense video captioning. IEEE Transactions on Multimedia.
15 
Zeng, Y., Wang, Y., Liao, D., et al. (2024). Contrastive topic-enhanced network for
video captioning. Expert Systems with Applications, 237, Article 121601. http://dx.
doi.org/10.1016/j.eswa.2023.121601.

Zeng, P., Zhang, H., Gao, L., et al. (2023). Visual commonsense-aware representation
network for video captioning. IEEE Transactions on Neural Networks and Learning
Systems.

Zhang, B., Gao, J., & Yuan, Y. (2024). A descriptive basketball highlight dataset for
automatic commentary generation. In Proceedings of the 32nd ACM international
conference on multimedia (pp. 10316–10325).

Zhang, Y., Liu, Y., & Wu, C. (2024). Attention-guided multi-granularity fusion model
for video summarization. Expert Systems with Applications, 249, Article 123568.

Zhang, Z., Qi, Z., Yuan, C., et al. (2021). Open-book video captioning with retrieve-
copy-generate network. In Proceedings of the IEEE conference on computer vision and
pattern recognition CVPR, (pp. 9837–9846).

Zhang, Z., Shi, Y., Yuan, C., et al. (2020). Object relational graph with teacher-
recommended learning for video captioning. In Proceedings of the IEEE conference
on computer vision and pattern recognition CVPR, (pp. 13278–13288).

Zhou, H., Luo, T., & He, Y. (2025). Dynamic collaborative learning with heterogeneous
knowledge transfer for long-tailed visual recognition. Information Fusion, 115,
Article 102734.

Zhuo, J., Zhu, Y., Cui, S., et al. (2022). Zero-shot video classification with appropriate
web and task knowledge transfer. In Proceedings of the 30th ACM international
conference on multimedia (pp. 5761–5772).

http://refhub.elsevier.com/S0957-4174(25)00528-7/sb62
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb62
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb62
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb63
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb63
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb63
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb63
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb63
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb64
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb64
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb64
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb65
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb65
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb65
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb65
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb65
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb66
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb66
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb66
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb66
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb66
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb67
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb67
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb67
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb67
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb67
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb68
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb68
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb68
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb68
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb68
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb69
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb69
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb69
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb69
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb69
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb70
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb70
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb70
http://dx.doi.org/10.1016/j.eswa.2023.121601
http://dx.doi.org/10.1016/j.eswa.2023.121601
http://dx.doi.org/10.1016/j.eswa.2023.121601
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb72
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb72
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb72
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb72
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb72
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb73
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb73
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb73
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb73
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb73
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb74
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb74
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb74
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb75
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb75
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb75
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb75
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb75
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb76
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb76
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb76
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb76
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb76
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb77
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb77
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb77
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb77
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb77
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb78
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb78
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb78
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb78
http://refhub.elsevier.com/S0957-4174(25)00528-7/sb78

	EIKA: Explicit & Implicit Knowledge-Augmented Network for entity-aware sports video captioning
	Introduction
	Related Works
	Video Captioning
	Sports Video Captioning
	Computer Vision with Knowledge

	Method
	Architecture Overview
	Scene Knowledge Extraction (SKE)
	Game Knowledge Extraction (GKE)
	Spatial–temporal Modeling Module (STMM)
	Video-knowledge Interaction Module (VKIM)
	Entity-video Interaction Module (EVIM)
	Scene-to-entity (STE) Decoder

	Experiments
	Implementation Details
	Datasets
	Evaluation Metrics
	Compared Methods
	Performance Comparison
	Ablation Study

	Conclusion, Limitation and Future Work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References


