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Abstract001

Current backdoor attack defenders in Natural002
Language Processing (NLP) typically involve003
data reduction or model pruning, risking losing004
crucial information. To address this challenge,005
we introduce a novel backdoor defender, i.e.,006
BadWindtunnel, in which we build a high-noise007
simulated training environment, similar to the008
wind tunnel, which allows precise control over009
training conditions to model the backdoor learn-010
ing behavior without affecting the final model.011
We also use the confidence variance as a learn-012
ing behavior quantification metric in the simu-013
lated training, which is based on the characteris-014
tics of backdoor-poisoned data (shorted in poi-015
soned data): higher learnability and robustness.016
In addition, we propose a two-step strategy to017
further model poisoned data, including target018
label identification and poisoned data revealing.019
Extensive experiments demonstrate BadWind-020
tunnel’s superiority, with a 21% higher average021
reduction in attack success rate than the second-022
best defender.023

1 Introduction024

Backdoor attacks are a significant security risk in025

NLP. These attacks manipulate a victim model that026

has good performance on clean data but always027

predicts the target label on poisoned data, which028

is applied with a specific trigger pattern. Triggers029

in NLP are categorized into four types: word, sen-030

tence, style, and syntax. Word and sentence trig-031

gers often involve inserting rare words or short032

sentences into the original text (Kurita et al., 2020;033

Chen et al., 2021; Dai et al., 2019). Style and syn-034

tactic triggers modify the text to match predefined035

styles or syntax (Qi et al., 2021b,c). These triggers036

have more implicit characteristics, allowing for a037

natural backdoor injection while preserving seman-038

tics. This semantic invariance makes such attacks039

particularly challenging to defend against.040

As shown in Figure 1, current research mitigates041

backdoor attacks by reducing backdoor-related in-042
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Figure 1: The diagram of current methods versus ours:
(a) data reduction methods, reducing poisoned informa-
tion from the data; (b) model pruning methods, pruning
poisoned neurons from the model; In contrast, (c) our
method, revealing poisoned data through controlled sim-
ulated training and conducting defensive real training
by fully utilizing both clean and poisoned information.

formation from the data or model perspectives. 043

As shown in Figure 1a, data reduction methods 044

identify the statistical traits of poisoned data, such 045

as spurious correlations with the target label, to 046

eliminate poisoned data or remove embedded trig- 047

gers (Yang et al., 2021; Qi et al., 2021a; He et al., 048

2023). However, these methods do not fully ex- 049

ploit the eliminated data and struggle with remov- 050

ing semantic-invariant attacks. In addition, residual 051

poisoned data can still lead to a high attack success 052

rate (Carlini et al., 2024), making this approach 053

insufficient for an effective defense. As shown in 054

Figure 1b, model pruning methods learn the differ- 055

ences in neuron activation between clean and poi- 056

soned data, enabling model pruning (Zheng et al., 057

2021; Tang et al., 2023; Yi et al., 2024). However, 058

neurons often carry mixed information from both 059

clean and poisoned data. Pruning may inadver- 060

tently eliminate some clean information, leading to 061

a potential decline in overall model performance. 062
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To overcome the above limitations, we pro-063

pose an effective backdoor defense method, i.e.,064

Backdoor defender in Wind tunnel (dubbed065

BadWindtunnel), that avoids data and model re-066

ductions, as shown in Figure 1c. In our method,067

we create a simulated training scheme, similar to a068

wind tunnel, to reveal poisoned data for real train-069

ing. The simulated training does not affect the final070

model and allows precise control over training con-071

ditions to better model the learning behavior of072

poisoned data. The learning behavior during simu-073

lated training can be used to reveal poisoned data,074

guiding the gradient descent direction and rate in075

real training. Thus, BadWindtunnel manages back-076

door attacks without reduction to data or pruning077

of the model, preserving all detailed information.078

Specifically, in BadWindtunnel, we propose to079

use confidence variance instead of normal-used loss080

to quantify learning behavior in simulated training.081

The confidence variance indicates shifts in confi-082

dence throughout a training epoch, representing the083

model’s learning speed, with poisoned data exhibit-084

ing higher values due to its greater learnability (Du085

et al., 2020; Hong et al., 2020; Li et al., 2021a). In086

addition, we control the noise rate in the simulated087

training to amplify the difference in confidence vari-088

ance between the clean and poisoned data. Given089

the high robustness of poisoned data (Yang et al.,090

2021; Wei et al., 2024; Wu and Wang, 2021; Zhao091

et al., 2024), its learnability remains stable at the092

same noise level, making the confidence variance093

more distinguishable. To further reveal poisoned094

data, we propose a two-step strategy, including tar-095

get label identification and poisoned data revealing.096

The strategy ensures that the confidence variance097

distribution is unaffected by semantic category, fo-098

cusing solely on whether the data is poisoned. The099

main contributions are as follows:100

• We propose an effective backdoor defender,101

i.e., BadWindtunnel, without reducing data102

or pruning neuron connections. It models103

poisoned data’s learning behavior to generate104

poison-revealing data, guiding the gradient105

descent direction and rate in real training.106

• We propose a novel backdoor defense scheme,107

i.e., simulated training, which isolates and108

controls the training environment to thor-109

oughly explore poisoned data characteristics110

without affecting real training.111

• We propose an easy but effective learning be-112

havior quantification method, i.e., confidence 113

variance, which leverages the high learnabil- 114

ity of poisoned data and applies to multiple 115

backdoor attacks. 116

Extensive experiments show that: (1) Our 117

method effectively defends against the backdoor, 118

achieving an average 21% lower attack success rate 119

than the second-best defender and maintaining sta- 120

ble clean accuracy. (2) A comprehensive ablation 121

study validates and visualizes the effectiveness of 122

the simulated training, confidence variance, two- 123

step strategy, and other key designs. (3) By increas- 124

ing the proportion of poisoned data, we validate 125

the robustness of the proposed model, which does 126

not require any hyperparameter tuning. 127

2 Related Work 128

2.1 Characteristics of Poisoned Data 129

High Learnability. Many studies find that poi- 130

soned data are easier to learn because they only 131

need to identify the triggers, unlike text semantics, 132

which require full-text analysis. Zheng et al. (2021) 133

observe that poisoned data often activate shortcuts 134

from input to output layers. Other research shows 135

that the average loss of backdoor samples drops 136

faster than that of clean data after each training 137

epoch (Li et al., 2021a; Tang et al., 2023). In this 138

paper, we also find that the confidence of poisoned 139

data increases faster, further supporting this view. 140

High Robustness. Backdoor’s high robustness is 141

a key trick in its defenses. Due to the strong corre- 142

lation between trigger and target label, backdoors 143

are less affected by noise. Studies show that noisy 144

poisoned data can still lead to stable outputs (Gao 145

et al., 2019; Yang et al., 2021; Zhai et al., 2023), 146

and noisy backdoored models also maintain con- 147

sistent outputs for poisoned data (Wei et al., 2024). 148

Even after random label scrambling and retraining, 149

backdoor models retain the trigger-target label asso- 150

ciation (Cao et al., 2024). In our work, we leverage 151

this robustness by creating a high-noise simulated 152

training environment to amplify the learnability 153

differences, enhancing defense effectiveness. 154

2.2 Methods for Backdoor Defense 155

Data Reduction Methods. Some researchers 156

focus on modeling statistical features of poi- 157

soned data to eliminate poisoned data or triggers. 158

RAP (Yang et al., 2021) and BDMMT (Wei et al., 2024) 159

identify and remove data with high robustness. Xi 160
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et al. (2024) uses KL divergence in active space to161

distinguish poisoned data. ONION (Qi et al., 2021a)162

removes words that increase text perplexity. He163

et al. (2023) eliminate words falsely associated164

with the target label. Qi et al. (2021c) removes trig-165

gers through multiple translations. However, these166

methods struggle with semantic-invariant attacks167

and waste the information in poisoned data.168

Model Pruning Methods. Liu et al. (2018) try to169

prune neurons inactive during clean data training.170

Li et al. (2021b) tries to reconstruct the compro-171

mised neural network through knowledge distil-172

lation. Wu and Wang (2021) employ adversarial173

weight perturbation to enhance the difference be-174

tween clean and malicious neurons. Tang et al.175

(2023) use the model’s shallow network to cre-176

ate a honeypot for backdoor attacks. MuScleLoRA177

encourages models to prioritize learning high-178

frequency clean mappings (Wu et al., 2024). How-179

ever, these pruning methods necessitate a compre-180

hensive understanding of the attacked model, limit-181

ing their generalizability and usability. Moreover,182

pruning may eliminate some correct connections,183

potentially reducing model performance.184

In conclusion, current methods often use re-185

moval or pruning for defense, leading to informa-186

tion loss. This paper proposes a non-reductive train-187

ing scheme to leverage the high learnability and188

robustness, enhancing defense effectiveness.189

3 Method190

3.1 Problem Formulation191

Backdoor Attacks. Given a raw dataset D =192

{(xi, yi)}Ni=0 with N samples, where xi is a193

text and yi is the semantic label. We set y =194

{y0, yi, . . . , yN}. Backdoor attack aims to manipu-195

late the outputs of the victim model M to satisfy:196

M(xinput) =

{
yi, xinput = xi,

ytarget, xinput = τ(xi),
(1)197

in which τ(·) denotes the trigger injection function,198

and ytarget is a predefined target label.199

The typical backdoor attack usually employs200

data poisoning. Specifically, given an attack rate201

r = N ′

N , the attacker randomly selects a sub-202

set I from the dataset D and poisons it into203

I ′ = {(τ(xi), ytarget)}N
′

i=0. The poisoned dataset,204

Dpoison = (D − I) ∪ I ′, is then used to train M .205

Thus, data in Dpoison also contains a hidden label206

ypoison,i, which indicates the poisoned status with 1207

denotes poisoned. Notably, such attacks are often 208

implicit, with the attacker choosing data with se- 209

mantic label yi = ytarget rather than forcibly chang- 210

ing it. This implicit poisoning aligns all texts and 211

labels in Dpoison, increasing defense complexity. 212

Backdoor Defends. Upon receiving Dpoison, the 213

defenders do not know which data are attacked, 214

nor do they have any knowledge of the target label 215

ytarget or specific trigger patterns τ(·). The ultimate 216

goal of the defenders is to identify and cleanse the 217

poisoned inputs τ(xi) or reform the victim model 218

M , enabling it to predict the real semantic labels 219

yi without affecting the performance on clean data. 220

Appendix A summarizes main notations. 221

3.2 Overview 222

Figure 2 illustrates the framework of our pro- 223

posed BadWindtunnel, which consists of three 224

main steps: (1) Simulated Environment Building: 225

We construct the environment by label balancing 226

and noise injection to build D′
poison with amplified 227

distinction in learning behaviors. (2) Learning 228

Behavior Modeling: We generate the confidence 229

variance by simulate training on D′
poison to quantify 230

the learning behavior. Then, use it to identify the 231

target label. We fit target data with a Gaussian mix- 232

ture model (GMM), using GMM’s posterior prob- 233

ability to generate poison-revealing data D∗
poison. 234

The modeling quality is evaluated. If the modeling 235

is substandard, revert to the environment building 236

step and increase the noise rate. Otherwise, pro- 237

ceed to (3) Real Train: Use Dpoison to produce a 238

clean model by loss-corrected real training. 239

3.3 Simulated Environment Building 240

We first establish a simulated environment with 241

controlled training conditions. It transforms a raw 242

poisoned dataset, Dpoison, into D′
poison to augment 243

both the modeling accuracy and defense efficacy 244

in subsequent learning behavior modeling. This 245

process consists of two stages: 246

Label Balancing. The data quantity across cate- 247

gories may be imbalanced in the raw data, leading 248

to uneven training frequency and distinct confi- 249

dence variances between categories. To mitigate 250

this, we initially balance the labels by upsampling 251

underrepresented categories. 252

Noise Injection. As the poisoned data have high 253

robustness, the text semantics are susceptible to 254

equivalent noise rate. By introducing artificial 255

noise, we can accentuate the learnability difference 256
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Figure 2: The framework of BadWindtunnel. Take ytarget = 1 for example. 1⃝Given poisoned data, BadWindtunnel
initially builds the simulated training environment through label balancing and noise injection. 2⃝ The processed
data undergoes simulated training, quantifying learning behavior. Subsequently, the poisoned data is revealed and
assigned weights through a two-step strategy: target label identification and poisoned data revealing. 3⃝ Finally, we
use the poison-revealing data for loss-corrected real training.

between clean and poisoned data, enhancing the257

accuracy of subsequent modeling. We achieve this258

by randomly swapping the order of letters in t% of259

the words within the text. The noise rate increases260

with the number of simulated training. Details are261

shown in Appendix B.262

3.4 Learning Behavior Modeling263

In this section, we first generate confidence vari-264

ance by simulated training on D′
poison to quantify265

learning behaviors. We then utilize this confidence266

variance in two phases: target label identification267

and poisoned data revealing, resulting in poison-268

revealing data D∗
poison = {(xi, yi, wi)}Ni=1.269

3.4.1 Learning Behavior Quantification270

As shown in Figure 3, the confidence variance ∆c271

of poisoned data is significantly larger than that of272

the clean data. Thus, we use it to quantify learning273

behavior. Given a text xi, its confidence ci is:274

ci := max(h′0, h
′
1, . . . , h

′
Y ),

h′n = Softmax(hn) =
exp(hn)∑Y
m exp(hm)

,
(2)275

in which hn is the probability of the model classify-276

ing xi into category n. Y is the number of possible277

categories. We can calculate ∆ci:278

∆ci = ci(1)− ci(0), (3)279

in which ci(0) and ci(1) are the confidence values280

before and after a training epoch, respectively.281

Notably, many studies recognize the high learn- 282

ability of poisoned data with loss variance (Li et al., 283

2021a; Tang et al., 2023). In contrast, we use con- 284

fidence as the quantification standard. By defini- 285

tion, confidence reflects the model’s assurance in 286

classifying text into “any category”, whereas loss 287

indicates the certainty of the “real category”. Confi- 288

dence can reveal numerical differences more easily 289

and earlier without requiring higher model capabil- 290

ity or deeper learning. Thus, we prefer confidence 291

variance for simplicity and early detection. 292

3.4.2 Target Label Identification 293

We identify the target label rather than model the 294

raw data directly, as the raw data contains two dis- 295

tinct distributions: (1) semantic category and (2) 296

poisoned status. Isolating the target label helps re- 297

move bias from the semantic category, ensuring a 298

purer distribution for more accurate results. 299

Identifying the target label leverages the observa- 300

tion that the poisoned data have higher confidence 301

variances. Define Count(y, C) as the number of 302

category’s occurrences under condition C. The 303

target label ytarget is the category with the highest 304

proportion in the top 5% of data with the most 305

significant confidence variance ∆c(5%): 306

ytarget = argmax
yi

Count(y,∆c(5%)). (4) 307

This way, the non-target data can be immediately 308

classified as clean with weights wi = 1. We only 309

need to model the target data’s confidence variance 310

∆ctarget = {∆ci|yi = ytarget, yi ∈ y}. 311

4



3.4.3 Poisoned Data Revealing312

As shown in Figure 3, the poisoned status signifi-313

cantly affects the confidence variance distribution.314

We aim to leverage this feature to reveal poisoned315

data easily, efficiently, and effectively without hy-316

perparameters. Gaussian Mixture Models (GMMs),317

a popular unsupervised technique (Reynolds et al.,318

2009; Arazo et al., 2019), are used for this pur-319

pose. The probability density function of a GMM320

with K components in terms of confidence vari-321

ance ∆ctarget is defined as:322

P (∆ctarget) =

K∑
k=1

P (∆ctarget,k), (5)323

in which ∆ctarget,k is the set of ∆ctarget belonging324

to class k and ∆ctarget,k ∼ N (µk, σ
2
k). We use a325

two-component (clean-poisoned) GMM to model326

the distribution. The probability pi of xi being327

poisoned, calculated by its corresponding ∆ctarget,i,328

is determined using GMM’s posterior probability:329

pi = P (k = 1|∆ctarget,i)

=
P (∆ctarget,i|k = 1)P (k = 1)

P (∆ctarget,i)
,

(6)330

where k = 0 (1) denotes a clean (poisoned) data.331

We aim to adjust the loss weight of each xi in332

real training based on pi. The weight should be333

negative if the data is likely poisoned (pi → 1),334

positive if it is likely safe (pi → 0), and have min-335

imal impact if its poisoned probability is unclear336

(pi → 0.5). The soft weight can be achieved using337

the inverse hyperbolic tangent function:338

wi = atanh(p′i) =
1

2
ln

(
p′i + 1

p′i − 1

)
, (7)339

where p′i = −1.6pi+0.8 is a linear transformation340

of pi. Since the function is monotonically increas-341

ing in [−1, 1] and pi ∈ [0, 1], we use this scaling342

to ensure the maximum weight is 1, maintaining343

consistency with the weights of non-target data.344

By combining the weights from Section 3.4.2345

and Section 3.4.3, we get the poison-revealing data346

D∗
poison = {(xi, yi, wi)}Ni=0.347

3.5 Real Train348

We design an iterative mechanism to improve de-349

fense efficacy. If the modeling is unsatisfactory,350

we introduce additional noise and return to the sim-351

ulated environment building phase; otherwise, it352

proceeds to the real training phase. The modeling353

Figure 3: The actual distribution and GMM fitting re-
sults of confidence variance for clean and poisoned data
within the target data. The poisoned status is indicated
by ypoison, with 0 for clean and 1 for poisoned, and are
colored for clarity.

quality is quantified by the Davies-Bouldin Index 354

(DBI), with a detailed explanation in Appendix C. 355

The real training aims to maximize information 356

utilization from all data. It involves gradient de- 357

scent on clean data and gradient ascent on poisoned 358

data. The corrected loss based on D∗
poison is: 359

l =
∑

(xi,yi,wi)∈D∗
poison

wiLCE(Mθ(xi), yi). (8) 360

This approach avoids any data reduction or model 361

pruning. Comprehensively using the information 362

enhances the defense efficacy of our method. 363

The time complexity of BadWindtunnel is ana- 364

lyzed in Appendix D. 365

4 Experiments 366

4.1 Experimental Settings 367

Datasets. We conducted experiments on four 368

widely used text classification datasets: SST- 369

2 (Socher et al., 2013), HSOL (Davidson 370

et al., 2017), IMDB (Maas et al., 2011) and 371

AG News (Zhang et al., 2015). The former three 372

are binary-classification datasets, while AGNews 373

is a four-classification dataset. More details can be 374

found in Appendix E. 375

Backdoor Attackers. We evaluated our method 376

with four widely used attackers: (1) BadNets se- 377

lects rare word like “cf ” as a trigger and randomly 378

inserts it into the text (Kurita et al., 2020). (2) 379

AddSent uses short sentence like “I watch this 3D 380

movie” as a trigger and randomly inserts it into the 381

text (Dai et al., 2019). (3) Stylebkd employs Bible 382

style as a trigger (Qi et al., 2021b). (4) Synbkd 383

uses predefined syntactic template as a trigger (Qi 384
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Data Attack
No-Defense ONION RAP Z-SEQ MuScleLoRA BadActs Ours

CACC↑ ASR↓ CACC↑ ASR↓ CACC↑ ASR↓ CACC↑ ASR↓ CACC↑ ASR↓ CACC↑ ASR↓ CACC↑ ASR↓
SS

T-
2

BadNets 91.31 96.27 87.29 19.34 90.21 73.93 91.24 6.84 83.25 21.62 88.90 0.68 90.21 0.00⋆

AddSent 91.22 100.00 87.46 93.55 90.17 100.00 91.15 20.57 81.65 45.59 89.25 37.04 91.37 0.00⋆

Stylebkd 90.06 85.20 84.16 85.71 89.12 84.80 87.91 70.55 82.42 37.11 88.34 70.94 89.21 32.87⋆

Synbkd 90.09 95.42 84.96 95.39 79.21 90.13 77.57 33.18 84.22 28.73 88.15 87.21 88.81 7.18⋆

H
SO

L

BadNets 89.52 99.01 89.26 8.57 71.60 59.35 89.52 30.15 89.54 1.15 89.54 0.30 91.57 0.00⋆

AddSent 91.59 99.99 91.16 94.18 91.29 99.99 91.55 5.23 89.54 11.93 89.09 16.94 91.48 0.00⋆

Stylebkd 89.08 85.47 87.68 80.76 88.76 84.91 76.58 86.59 89.42 18.19 86.37 62.77 89.05 31.91⋆

Synbkd 90.28 98.27 89.53 90.18 89.52 98.12 83.67 86.11 89.34 0.80 88.52 39.83 90.75 5.72⋆

IM
D

B

BadNets 93.93 86.44 93.55 49.26 92.36 65.94 86.59 6.37 86.43 13.08 92.07 12.03 92.52 1.19⋆

AddSent 93.90 96.33 93.55 66.25 83.93 77.50 84.99 7.09 86.33 14.32 92.11 67.31 92.55 9.47⋆

Stylebkd 93.74 98.93 93.32 99.20 91.76 98.64 50.06 81.05 86.11 64.40 91.91 0.06 91.32 0.03⋆

Synbkd 93.73 41.67 93.37 42.21 83.29 38.43 89.53 26.78 86.25 33.47 91.89 3.28 91.67 3.82⋆

A
G

N
ew

s BadNets 93.97 83.55 92.69 6.75 93.70 59.67 92.16 0.28 88.35 2.03 92.12 92.83 88.39 0.00⋆

AddSent 94.32 100.00 93.16 81.62 79.94 80.00 83.29 0.01 87.97 99.96 92.19 72.95 93.44 0.00⋆

Stylebkd 94.32 100.00 93.16 81.62 79.94 80.00 83.29 0.01 87.97 99.96 92.19 72.95 92.26 32.52⋆

Synbkd 94.24 99.83 93.23 96.52 93.61 99.79 85.22 5.87 87.46 97.29 92.20 57.24 93.38 6.91⋆

Average 92.21 91.65 90.47 68.19 86.78 80.70 84.02 29.17 86.64 36.85 90.30 43.40 91.12 8.23⋆

Table 1: CACC and ASR on four datasets with four attackers. Six defenders are tested. The grayed out records
the raw model without defense. All the results are in %. The best are in bold and the second best are in underline.
⋆ denotes the attainment of the theoretical optimum outcome.

et al., 2021c). All attackers are implemented by the385

open-source project OpenBackdoor1.386

Backdoor Defensers. We compare our method387

against five backdoor defenders, each addressing388

different aspects like data reduction and model389

pruning. These include: (1) ONION minimizes390

the words contributing to text confusion (Qi et al.,391

2021a). (2) RAP reduces the texts with strong pre-392

diction robustness to noise (Yang et al., 2021).393

(3) Z-SEQ reduces words with spurious correla-394

tions to the target label (He et al., 2023). (4)395

MuScleLoRA encourages the model to prioritize the396

high-frequency clean mappings (Wu et al., 2024).397

(5) BadActs purifies the poisoned data by aligning398

abnormal activations with optimized clean activa-399

tion intervals (Yi et al., 2024). All defenders are400

tested using their open-source codes and default401

hyperparameters.402

Evaluation Metrics. We evaluate defense per-403

formance using two metrics: (1) Clean Accu-404

racy (CACC): The likelihood of victim model405

correctly classifying clean data. A good defense406

should maintain a high CACC, close to the orig-407

inal undefended value. (2) Attack Success Rate408

(ASR): The likelihood of the victim model mis-409

classifying poisoned data as the target label. A410

successful defense should achieve a lower ASR.411

1https://github.com/thunlp/OpenBackdoor

Parameter Settings and Implementations. Our 412

experiments are conducted on a workstation with 413

an Intel Xeon Silver 6230R CPU, three NVIDIA 414

A40 GPUs, and 503 GB of RAM. We employ the 415

widely-used BERT-base-uncased model (Devlin 416

et al., 2019). The attack rate is set at 20%, con- 417

sistent with the original attack settings (Qi et al., 418

2021b; Yi et al., 2024). We use the poisoned data 419

for five epochs of backdoor training with a learning 420

rate of 2e− 5 to get the poisoned model. 421

4.2 Effectiveness Test 422

We test BadWindtunnel’s defense effectiveness 423

against backdoor attacks using four datasets, each 424

exposed to four different attackers. No defense and 425

five other defenders are compared. Each experi- 426

ment runs five times independently, and we log the 427

average CACC and ASR for reliability. 428

Table 1 displays the experimental results, with 429

BadWindtunnel consistently excelling across in all 430

settings and metrics. It achieves a top-two ASR 431

reduction in all cases and reaches the theoretically 432

optimal value in 6 cases, with an average ASR re- 433

duction that is 21% higher than that of the next-best 434

defender. In maintaining CACC, it secures top-two 435

results in 14 out of 16 cases, boasting the high- 436

est average CACC. Although Z-SEQ outperforms 437

BadWindtunnel in some ASR reduction cases in 438

AGNews, this comes with a significant CACC de- 439
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Figure 4: Robustness test. Defensive results of different defenders against backdoor attack rates of 10%-40% under
four attackers. Each column represents an attacker, each row corresponds to an evaluation metric, and each line
represents a defender. Mean and standard deviation values are plotted for each case.

crease. Most methods experience a notable per-440

formance decline against Stylebkd and Synbkd at-441

tacks, while BadWindtunnel maintains a stable de-442

fense. These results underscore BadWindtunnel’s443

superiority in backdoor defense, attributed to its444

full utilization of data and model information.445

4.3 Robustness Test446

We evaluate the robustness of BadWindtunnel and447

five competitors against attack rates ranging from448

10% to 40%, which represent the fraction of the449

poisoned data in Dpoison. These evaluations use the450

SST-2 dataset, a standard NLP resource, ensuring451

a precise assessment of each method’s robustness.452

Figure 4 presents the average and standard devia-453

tions of the CACC and ASR from five independent454

runs. While most methods’ defenses deteriorate455

as attack rates increase, our method consistently456

performs well. Notably, under the Synbkd attack,457

BadWindtunnel’s ASR is higher at lower attack458

rates, possibly because the smaller proportion of459

poisoned data allows clean data to catch up in learn-460

ability through additional training. Despite this,461

BadWindtunnel’s ASR still ranks second, empha-462

sizing its stable defense. Interestingly, BadActs’463

performance improves as the attack rate increases,464

a phenomenon not discussed in its original paper.465

We verified this result using the provided source466

code, only altering the attack rate. Overall, these467

results highlight BadWindtunnel’s effective and468

stable defense against backdoor attacks.469

4.4 Ablation Study470

We assess the key designs of BadWindtunnel471

with four attack methods through five simpli-472

Attackers
Metrics Defenders

BadNets AddSent Stybkd Synbkd

CACC ↑

BadWindtunnel 91.6 91.5 89.1 90.8
w/o Lab.Bal. -2.3 -1.9 -34.3 -46.2
w/o N.Inject -27.9 -22.3 -0.1 -38.1
w/o TwoStep -37.7 -41.8 -15.0 -25.7
w/o SoftWeight -2.0 -1.9 -0.2 -2.0
w/o ∆c -16.9 -9.4 -4.6 -17.7

ASR ↓

BadWindtunnel 0.0 0.0 31.9 5.7
w/o Lab.Bal. +99.8 +100.0 +42.2 +92.7
w/o N.Inject +70.4 +41.2 +11.8 +74.6
w/o TwoStep +1.0 0.0 +32.6 +2.2
w/o SoftWeight +99.4 +99.9 +12.5 +82.9
w/o ∆c +20.0 +40.0 +22.6 +35.7

Table 2: Ablation study. Five simplified versions on
four attackers are tested. We record the CACC and ASR
on the original BadWindtunnel, as well as changes in
the corresponding values on the simplified versions. All
the results are in %. The best are in bold.

fied versions: w/o Lab.Bal. (without label 473

balance), w/o N.Inject. (without noise injec- 474

tion), w/o TwoStep (without the two-step strategy), 475

w/o SoftWeight (directly use poisoned probability 476

as weights), and w/o ∆c (substituting loss for con- 477

fidence). We use HSOL for evaluation, chosen for 478

its label imbalance, to highlight the effectiveness 479

of label balancing. Each experiment runs five times 480

independently, with average performance recorded. 481

Table 2 shows that BadWindtunnel notably sur- 482

passes all the simplified versions, validating its key 483

designs. Omitting any of these features results in a 484

considerable increase in ASR. Specifically, exclud- 485

ing label balancing and noise injection consider- 486

ably reduces the CACC, as these elements enhance 487

learning behavior. Removing the two-step strategy 488

also leads to a sharp decrease in CACC, as the learn- 489
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(a) All Data (b) Semantic Category

(c) Poisoned Status

Figure 5: Confidence variance distribution in all data. yi
represents the semantic category. ypoison,i represents the
poisoned status label, where 0 is clean and 1 is poison.
The figure takes ytarget = 1 as an example.

ing behavior, influenced by the semantic category,490

results in incorrect poisoned status identification.491

Replacing soft weights with hard weights causes a492

significant increase in ASR, with negligible CACC493

changes, suggesting that while hard weights align494

with the defense strategy, they can be overly abso-495

lute. Substituting loss for confidence has a minor496

effect but is less effective than the original method,497

indicating the superiority of the proposed confi-498

dence model. In summary, all the proposed key499

designs are vital for the defense’s effectiveness.500

4.5 Visualization Test501

We visualize the importance of the two-step strat-502

egy, i.e., identifying the target label first and then503

revealing the poisoned data. Figure 5a shows the504

confidence variance ∆c distribution and the fitted505

GMM curve for all datasets. The distribution can506

be divided into two types: (1) the semantic category507

(shown in Figure 5b) and (2) the poisoned status508

(shown in Figure 5c). Directly modeling the mixed509

distribution may overly focus on the semantic cate-510

gory, leading to incorrect GMM fitting and failing511

to distinguish the poisoned status. On the contrary,512

as shown in Figure 3, identifying the target label513

first allows GMM to focus on the poisoned status,514

accurately revealing the poisoned data.515

We visualize the effectiveness of confidence vari-516

ance in identifying the target label. Figure 6 shows517

the confidence variance distribution for different518

categories and the ∆c(5%) percentile point, with519

various target label sets. Due to space limitations,520

we only display the results on AGNews under Bad-521

(a) ytarget = 0 (b) ytarget = 1

(c) ytarget = 2 (d) ytarget = 3

Figure 6: Visualization of target label identification. We
present the distribution and the 5% percentile point of
confidence variance. Four categories are color-coded for
clarity. Each sub-graph represents a target label setting.
yi indicates the semantic label.

Nets attack. AGNews is chosen because it is a 522

four-class dataset, making target label identifica- 523

tion more challenging and validating our method 524

robustly. More experiments are provided in Ap- 525

pendix F.1. In all scenarios, the category corre- 526

sponding to the target label shows a significant 527

increase in confidence variance and constitutes the 528

majority within the 5% percentile, confirming the 529

effectiveness of confidence variance. 530

The ability of confidence variance to reveal the 531

poisoned status is visualized in Figure 3. Addi- 532

tional experiments on all datasets are provided in 533

Appendix F.2. 534

5 Conclusion 535

This paper introduces BadWindtunnel, a novel de- 536

fense scheme for backdoor attacks in NLP. It builds 537

a high-noise simulated training environment to re- 538

veal poisoned data without data reduction or model 539

pruning. Precisely, we quantify the high learnabil- 540

ity of poisoned data using confidence variance and 541

model it with the GMM in a two-step strategy. The 542

poison-revealing data guides the gradient descent 543

direction and rate during the defensive real training. 544

Experimental results show that BadWindtunnel re- 545

duces the attack success rate by an additional 21% 546

compared to the second-best defender on average 547

and demonstrates robustness. Ablation and visual- 548

ization experiments further validate the effective- 549

ness of our key designs. 550
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6 Limitations551

We propose a confidence variance-based simulated552

training in the high-noise environment against back-553

door attacks in NLP. Our approach uses the learn-554

ability of poisoned data to quantify learning be-555

havior and reveals the poisoned data to guide the556

defensive real training.557

However, the learnability of poisoned data poses558

a limitation when the clean data vastly outnumber559

it. Over more training chances, clean data can560

match the learning progress of the poisoned data,561

thus masking their learning behavior differences.562

We mitigate the quantity disparity from category563

imbalance via label balancing but cannot eliminate564

it when the attack rate is extremely low. As shown565

in Section 4.3, BadWindtunnel maintains optimal566

performance under most attacks when the attack567

rate is 10%. However, its performance starts to568

decrease for semantic invariant attacks like Synbkd.569

Given this limitation, future research could ex-570

plore further ways to magnify the differences in571

learnability. For instance, we can try to increase572

the learning difficulty of clean data by creating573

more complex artificial noise or investigating dif-574

ferent perturbation methods. Alternatively, efforts575

could be made to enhance the learnability of the576

poisoned data, such as implementing controlled577

loss reduction in simulated training.578

7 Ethics Statement579

Our study introduces an efficient method to protect580

NLP models from backdoor attacks. We believe581

that our proposed method will contribute to miti-582

gating security risks associated with such attacks.583

All experiments conducted in this paper utilize es-584

tablished open datasets. We do not anticipate any585

direct negative consequences to the work, and we586

hope to expand upon our research and advance the587

development of more robust defense methods in588

future investigations.589

References590

Eric Arazo, Diego Ortego, Paul Albert, Noel O’Connor,591
and Kevin McGuinness. 2019. Unsupervised label592
noise modeling and loss correction. In International593
Conference on Machine Learning, pages 312–321.594
PMLR.595

Bochuan Cao, Yuanpu Cao, Lu Lin, and Jinghui Chen.596
2024. Defending against weight-poisoning backdoor597
attacks for parameter-efficient fine-tuning. In North598

American Chapter of the Association for Computa- 599
tional Linguistics, pages 10542–10560. 600

Nicholas Carlini, Matthew Jagielski, Christopher A. 601
Choquette-Choo, Daniel Paleka, Will Pearce, Hyrum 602
Anderson, Andreas Terzis, Kurt Thomas, and Florian 603
Tramèr. 2024. Poisoning web-scale training datasets 604
is practical. In IEEE European Symposium on Secu- 605
rity and Privacy, pages 407–425. IEEE. 606

Xiaoyi Chen, Ahmed Salem, Dingfan Chen, Michael 607
Backes, Shiqing Ma, Qingni Shen, Zhonghai Wu, and 608
Yang Zhang. 2021. Badnl: Backdoor attacks against 609
nlp models with semantic-preserving improvements. 610
In Annual Computer Security Applications Confer- 611
ence, pages 554–569. 612

Jiazhu Dai, Chuanshuai Chen, and Yufeng Li. 2019. A 613
backdoor attack against lstm-based text classification 614
systems. IEEE Access, 7:138872–138878. 615

Thomas Davidson, Dana Warmsley, Michael Macy, and 616
Ingmar Weber. 2017. Automated hate speech detec- 617
tion and the problem of offensive language. In AAAI 618
Conference on Artificial Intelligence, volume 11, 619
pages 512–515. 620

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 621
Kristina Toutanova. 2019. BERT: Pre-training of 622
deep bidirectional transformers for language under- 623
standing. In North American Chapter of the Associa- 624
tionfor Computational Linguistics. 625

Min Du, Ruoxi Jia, and Dawn Song. 2020. Robust 626
anomaly detection and backdoor attack detection via 627
differential privacy. The International Conference on 628
Learning Representations. 629

Yansong Gao, Change Xu, Derui Wang, Shiping Chen, 630
Damith C. Ranasinghe, and Surya Nepal. 2019. 631
STRIP: A defence against trojan attacks on deep 632
neural networks. In Annual Computer Security Ap- 633
plications Conference, pages 113–125. 634

Xuanli He, Qiongkai Xu, Jun Wang, Benjamin Rubin- 635
stein, and Trevor Cohn. 2023. Mitigating backdoor 636
poisoning attacks through the lens of spurious cor- 637
relation. In Conference on Empirical Methods in 638
Natural Language Processing, pages 953–967. 639

Sanghyun Hong, Varun Chandrasekaran, Yiğitcan Kaya, 640
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A Notations 746

Detailed notation of the main symbols is provided 747

in Table 3. Notably, yi and ypoison are the private 748

attributes of each sample, while ytarget is a public 749

target label defined by the attacker. 750

B Details of Noise Injection 751

Given a datasetDpoison with N samples and a noise 752

rate t%, we inject noise into all samples. Specifi- 753

cally, for any sample xi in Dpoison, let it contains 754

n words. As illustrated in Figure 7, we randomly 755

select ⌈n · t%⌉ words from xi. For each selected 756

word, we randomly choose a pair of adjacent letters 757
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Format Notations - Descriptions

Calligraphic fonts D - raw dataset, Dpoison - poisoned dataset, D∗
poison - poisoned-revealing dataset

Bold lowercase letters x - texts, y - semantic labels,
∆c - confidence variances, ∆ctarget - confidence variances of target data,
∆c(5%) - confidence variances with top 5% values

Lowercase letters x - a text, y - a semantic label, ypoison - a poisoned status label,
∆c - a confidence variance, p - a poisoned probability, w - a loss weight,
ytarget - the target label, r - the attack rate, t - the noise rate

Uppercase letters M - victim model, P - probability density function, L - loss function,
N - number of raw dataset, N ′ - number of poisoned dataset

Table 3: The main notations used in the paper: Calligraphic font signifies a dataset; bold lowercase letter symbolizes
a set of data; lowercase letter denotes a individual data point; and uppercase letter designates a model, a function, or
the cardinality of a set.

an unbelievably stupid film , though occasionally 
fun enough to make you forget its absurdity .

an unbelievably stupid film , though occasionally 
fun enough to make you forget its absurdity .

an uneblievably stupid film , though occasionally 
fun enough to amke you forget its absurdity .

random select              words%n t 
 

random swap adjacent letters’ order

Figure 7: Instruction of noise injection. The sentence
contains 14 words, and we set the noise rate t = 10%.
Thus, two pairs of adjacent letters’ order are swapped.

and swap their order. This noise injection is cumu-758

lative, with subsequent rounds of noise injection759

applied to already noise-injected samples.760

C Modeling Quality Evaluation761

The revealing performance of poisoned data re-762

lies on the quality of GMM modeling learning be-763

haviors. To enhance defensive effectiveness, we764

develop an iterative improvement scheme. When765

the modeling is suboptimal, BadWindtunnel intro-766

duces additional noise and returns to the simulated767

environment-building phase. Thus, we aim to find768

an index to identify the modeling quality.769

This paper employs the Davies-Bouldin Index770

(DBI) as the index. The DBI quantifies the dis-771

tances between clusters in the results of a mixture772

model fit, with a smaller DBI indicating a better773

clustering outcome. DBI is defined as the average774

of the maximum inter-cluster similarities: 775

DBI =
1

K

K∑
i,j=1

max
i ̸=j

Rij , (9) 776

in which K denotes the total number of clusters. 777

Rij represents the similarity between cluster i and 778

cluster j which is defined as: 779

Rij =
si + sj
dij

, (10) 780

in which si denotes the average distance from all 781

samples in the i-th cluster to its cluster centre, also 782

known as the intra-cluster diameter. dij represents 783

the center distance between the i-th and j-th clus- 784

ters , also known as the extra-cluster distance. 785

This study assumes K = 2, thus DBI is re- 786

duced to DBI = R01. A lower DBI value indicates 787

smaller intra-cluster diameter (s0 and s1) and larger 788

extra-cluster distance (d01), which correspond to 789

better clustering results. Specifically, a lower DBI 790

signifies superior modeling. 791

D Time Complexity Analysis 792

In the analysis of the time complexity of 793

BadWindtunnel, we decompose the main process 794

into three parts: 795

(1) Simulated Environment Building: This 796

phase involves two steps: label balance and noise 797

injection. Both steps require a single pass through 798

Dpoison, thus having a time complexity of O(N). 799

(2) Simulated Training: This phase involves 800

three steps: 801
• Learning Behavior Quantification: This re- 802

quires a simulated training epoch on M , re- 803

sulting in a time complexity of O(N). 804
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Figure 8: Visualization of target label identification. We present the distribution and the 5% percentile point. Four
categories are color-coded for clarity. Each row represents an attacker. Each column represents a target label setting.
yi represents the semantic label.

Dataset Train Valid Test Categories Category Proportion Avg. #W
SST-2 6,920 872 1,821 2 (Negative/Positive) 3,310: 3,610 19.2
HSOL 7,071 987 1,999 2 (Non-hateful/Hateful) 6,206:865 18.1
IMDB 31,500 3,500 15,000 2 (Negative/Positive) 15,756:15,744 231.5

AGNews 107,961 11,995 7,600 4 (World/Sports/Business/Science) 26,998:27,034:27,029:26,900 31.1

Table 4: Statistics details of datasets. “Train”, “Valid” and “Test” denote the text numbers in the training, validation
and test sets, respectively. “Category” indicates the number of classifications. “Category Proportion” represents the
proportion of each category. “Avg. #W” signifies the average text length (number of words).

• Target Label Identification: This involves805

traversing and counting the number of each806

semantic label within the data with the high-807

est confidence variance, resulting in a time808

complexity of O(N).809

• Poisoned Data Revealing: This step fits810

∆ctarget with a two-component GMM, and811

uses GMM to calculate the poisoned prob-812

ability of each sample. In practice, we use813

the sklearn2 package for GMM implementa-814

tion, with the training and posterior probabil-815

ity calculation time complexity roughly being816

O(nq2) and O(nq) respectively. Here, n is817

the size of ∆ctarget, and q is the dimensional-818

ity of each ∆ci. As ∆ci is one-dimensional819

(q = 1) and n ≈ N , the time complexity820

2https://scikit-learn.org/stable/index.html

simplifies to O(N). 821

(3) Real Training: As the poisoned-revealing 822

dataset D∗
poison has the sample number of samples 823

to the raw poisoned dataset, the time complexity of 824

real training is O(N). 825

In summary, the total time complexity of 826

BadWindtunnel is O(N), on par with the unde- 827

fended method’s complexity. 828

E Datasets 829

We employ four widely used text classifi- 830

cation datasets covering binary and multi- 831

class scenarios to evaluate BadWindtunnel: 832

(a) Stanford Sentiment Treebank (SST-2) is a 833

sentiment analysis dataset for movie reviews, man- 834

ually annotated and categorized into (0) negative re- 835

views and (1) positive reviews (Socher et al., 2013). 836
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Figure 9: Visualization of confidence variance in target data. We present the distribution and GMM fitting results.
Clean and poisoned data are colored for clarity. Each row represents a dataset. Each column represents an attacker.
ypoison,i represents the poisoned status label, where 0 is clean and 1 is poison. We take ytarget = 1 as an example.

(b) Hate Speech and Offensive Language (HSOL)837

is a hate speech detection dataset in Twitter com-838

ments, manually annotated and classified into839

(0) non-hateful and (1) hateful (Davidson840

et al., 2017). (c) IMDB is a sentiment analysis841

dataset for movie reviews, where the sentiment842

orientation is determined based on the IMDB843

score: (0) scores < 5 as negative reviews and844

(1) scores ≥ 7 as positive reviews (Maas et al.,845

2011). (d) AG’s News Corpus (AGNews) is846

a subdataset of AG’s corpus of news articles847

constructed by assembling titles and description848

fields of articles from the four largest classes:849

(0) world, (1) sports, (2) business, (3) science and850

technology (Zhang et al., 2015). The statistical851

details are summarized in Table 4. Most datasets852

are label-balanced, but HSOL has a serious853

imbalance problem.854

F Additional Empirical Results855

F.1 Visualize of Target Label Identification856

We add visualization experiments over four attack-857

ers to demonstrate the effectiveness of confidence858

variance in determining the target label. Figure 8859

shows that the target label category exhibits a sig-860

nificant increase in confidence variance and con-861

stitutes the majority within the 5% percentile, con- 862

firming the effectiveness of confidence variance in 863

identifying the target label. 864

F.2 Visualize Of Confidence Variance 865

We add visualization experiments to demonstrate 866

the effectiveness of confidence variance in differ- 867

entiating poisoned states over all cases. Figure 9 868

shows the confidence variance distribution of target 869

data and GMM fitting results across four datasets 870

and four attackers. In all cases, there is a clear 871

difference between clean and poisoned data, indi- 872

cating the effectiveness of confidence variance in 873

quantifying data learning behavior. Notably, in AG- 874

News, the proportion of clean data seems minimal. 875

This is because we set the attack rate at 20%, and 876

AGNews is a four-classification dataset with each 877

category approximately accounting for 25%. Thus, 878

in this scenario, the ratio of clean to poisoned data 879

within the target data is 1:4. 880

G Algorithm 881

Algorithm 1 outlines the detailed defense process 882

of BadWindtunnel. Given a poisoned dataset 883

Dpoison, we first build the simulated training en- 884

vironment in Steps (4-9). Specifically, we initialize 885

the best memory and noise rate in Steps (5-6). The 886
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Algorithm 1 The Process of BadWindTunnel
1: Input: Dpoison - The poisoned dataset.
2: Parameter: t - The noise rate.
3: Output:M - A clean NLP model.
4: D′

poison ← Label balancing on Dpoison
5: Set the best memory as NULL
6: t = 10%
7: repeat
8: t← t+ 10% # t is max to 100%
9: D′

poison ← Inject t noise to D′
poison

10: c(0), c(1) ← Train Mθ′ on D′
poison for one

epoch # Simulated training
11: ∆c← c(1)− c(0)
12: ytarget ← argmaxyi Count(y,∆c(5%))
13: ∆ctarget ← {∆ci|yi = ytarget, yi ∈ y}
14: DBI← Fit GMM on ∆ctarget
15: p← GMM(∆ctarget)
16: w ← according to Equation (7)
17: if best[DBI] > DBI then
18: best← {DBI,∆ctarget,w}
19: end if
20: until Reach maximum number of simulated

train or best[DBI] < 0.4
21: w ← best[w]
22: Train M on D∗

poison with w # Real training
23: return M

label balancing and noise injection are executed887

in Step (4) and Step (9). The noise rate is itera-888

tively increased in Step (8). Afterwards, a single889

round of learning behavior modeling is performed890

in Steps (10-17). The modeling primarily involves891

simulated training in Steps (10-11) to calculate ∆c.892

Then, in Steps (12-13), the target label is deter-893

mined, and the ∆ctarget corresponding to the target894

data is extracted. Following this, in Steps (14-16),895

the learning behavior is modeled using a Gaussian896

Mixture Model (GMM), and the weights w are cal-897

culated using GMM’s posterior probability. This898

single-round modeling process is repeated, and the899

return condition is evaluated based on the fitted900

DBI value. The optimal result stored in best mem-901

ory is output in Steps (17-19). Finally, in Steps902

(21-23), real training is carried out to obtain the903

clean NLP model M .904
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