
Can Smart Contracts Become Smart?
An Overview of Transaction Impact on Ethereum DApp

Engineering
Emanuel Onica

emanuel.onica@uaic.ro
Alexandru Ioan Cuza University

Iaşi, Romania

Marius Georgică
georgica.marius756@gmail.com
Alexandru Ioan Cuza University

Iaşi, Romania

ABSTRACT
Despite the growth in the number of decentralized applications
(DApps) supported by the Ethereum blockchain, we can observe
the narrow scope of these DApps, concentrated within the fintech
and games areas. A cause for the lack of range of DApps lies in the
fees for transactions sent to backing smart contracts. While consis-
tent steps have been made to overcome cost efficiency problems,
introducing rollups as a secondary layer solution, intertwined ac-
cessibility and security drawbacks still persist. Measures addressing
some of these issues like account abstraction were independently
proposed. These solutions bring changes in transaction handling
that often exceed the scope of smart contracts, where the core of
DApp logic resides. Integrating such measures often requires the
use of new frameworks and understanding the changes in the trans-
action flow, which can prove challenging to a DApp developer. A
question is whether the current landscape of solutions proposed
for increasing usability is capable of producing a consistent impact
on DApp scope trends. In this position paper we try to answer this,
raising also the matter of impact on DApp engineering.

CCS CONCEPTS
• Software and its engineering→ Software design engineer-
ing; • Computer systems organization→ Distributed architec-
tures.
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1 INTRODUCTION
Like most blockchain networks, Ethereum’s purpose is to maintain
a ledger formed of securely chained blocks. The essential ensured
properties are decentralized trust on the validity of transactions
updating this ledger, as well as its transparency and immutability.
Ethereum was the first blockchain to support Turing complete
smart contracts, small programs executed by the Ethereum Virtual
Machine (EVM) on the network nodes. Transactions are initiated by
Externally Owned Accounts (EOAs) associated with the users, and
can either update the balance of other EOAs or the state of smart
contracts. The most used high-level language for programming
Ethereum smart contracts is Solidity, which is compiled into a low-
level bytecode executed by the EVM. A Solidity function call that
modifies the state of an EOA or contract essentially corresponds to
an Ethereum transaction.

Are smart contracts smart enough? This is a question that pops
back periodically in the online media either on topics related to the
utility of smart contracts or in the context of security issues [2, 3,
12]. The initially foreseen utility of smart contracts introduced by
Ethereum was extremely versatile, covering a wide range of use
cases: currency exchanges, financial derivatives, insurance claims
and settlements, games, supply chain tracking, land registries, and
many others [1]. All these are supposed to benefit from the de-
centralized trust guaranteed for the executed transactions. The
introduced decentralized application model, referenced as DApp,
typically consists of an augmented web application where the fron-
tend functionality is capable of transaction initiation and the back-
end provides the support of calling smart contracts. Currently, the
bulk of Ethereum transactions is generated by DApps whose scope
is narrowed to fintech and games, including gambling. Many of
these DApps use tokens, which are essentially DApp specific curren-
cies (fungible) or unique assets (non-fungible) that can be traded,
exchanged, and used in internal DApp operations. The concentra-
tion of range in the mentioned areas was confirmed by periodical
overviews of the Ethereum DApps landscape, for more than half of
counted DApps [5, 31]. This makes the question at the beginning of
this paragraph seem rhetorical. Clearly, Ethereum smart contracts
have not proven smart enough yet to gain traction in all potential
areas of application. The more important question is why?

We believe the answer is less related to the expressiveness of
smart contract logic and more to the fees charged for transactions
initiated toward smart contracts. This has a direct negative impact
on the usability of DApps. Measures for increasing transaction cost
efficiency and DApp accessibility were proposed, which partially
eliminate the fee burden. Currently, some of the most prominent
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solutions are rollups and account abstraction. To integrate such
solutions a DApp developer must resort to intricate patterns touch-
ing the transaction flow, which often exceed the scope of smart
contracts that hold the core of DApp logic. We believe that smart
contracts cannot become smart enough to produce an impact on
DApp trends unless accompanied by such changes in the typical
transaction flow. This can bring, however, a consistent added cost
to the DApp engineering complexity.

In this paper, we advocate our position. Section 2 provides back-
ground on the costs of transactions to Ethereum smart contracts.
In Section 3 we overview measures introduced to circumvent effi-
ciency and accessibility issues in DApps in direct relation to low-
ering transaction fees, and their impact on the DApp engineering.
In particular, we introduce a simple use case example of an e-gov
DApp outside the fintech and games realms, to show the viability
of rollups. In Section 4 we discuss additional details on why the
mechanisms we overview do not seem yet to have a significant
impact on DApp diversity. Finally, we conclude in Section 5, where
we offer a perspective on possible future improvements.

2 TRANSACTION COSTS BACKGROUND
Each transaction to an Ethereum smart contract or for creating
a contract has a cost. This prevents network abuse by limiting
potentially malicious invocation of smart contract code, which
could lead to DoS attempts. The computational transaction cost is
defined in the Ethereum specifications and is quantified in units
of gas. In essence, the total cost of a transaction can be split in
two parts: the cost of submitting the transaction and the cost of
executing the transaction.

The cost of submitting a transaction starts from a fixed gas
amount, which depends on the transaction purpose: either a regular
transaction or one used to instantiate a new contract. This amount
is incremented per each byte encoded in the transaction call, with a
higher cost for non-zero bytes. The cost of executing the transaction
sums up the gas cost of each low-level instruction executed by the
EVMwhen running the corresponding smart contract function. The
Ethereum specifications periodically changed the defined execution
costs, but storage typically inflicts substantially higher amounts.

A transaction initiator must pay a fee expressed in Ether (ETH),
the cryptocurrency of Ethereum. The fee is computed as a product
of the transaction cost multiplied by the price per unit of gas. This
price is composed of a base fee and a priority fee as an incentive for
transaction validators. The price per unit of gas varies, depending
on the network load.

3 TRANSACTIONS AND DAPPS USABILITY
Various solutions have been proposed in the Ethereum landscape
for increasing usability. One direction is to attempt scaling the
transaction processing load, which has a direct impact on lowering
transaction fees. Another direction focuses on accessibility, by mak-
ing it possible for users to pay transactions with other currencies,
or even exempt them from payment altogether. In the following, we
overview two prominent solutions in each category, namely rollups
and respectively account abstraction. We observe how complicated
is their integration with DApps and provide a use case example for
what we find as the most facile approach.

3.1 DApps and rollup transactions
Solutions grouped under the Layer 2 (L2) umbrella, consist of hor-
izontal scaling by extending the processing power of the main
Ethereum network (L1) with secondary networks capable of trans-
action execution. L2 networks come in flavors that differ in how
they interact with L1 for deriving trust guarantees.1 Currently, the
most popular L2 solutions are rollups, which are the only ones to
store transaction data on the main Ethereum network, providing a
higher degree of trust. Essentially, besides executing transactions,
nodes in rollup networks batch multiple transaction data into single
"rollup" transactions submitted to L1.

Rollups come in two variants: optimistic rollups and zk-rollups.
Optimistic rollups consider transactions valid implicitly, posting on
L1 their compressed data. Transactions can be challenged during a
certain time window using fraud proofs. Networks that implement
the optimistic rollup pattern typically run EVM compatible nodes.
This means that the backend contracts of a typical Ethereum DApp
can be ported to the rollup network with minimal or no changes.

Zk-rollups use zero-knowledge proofs for validating transac-
tions, offering stronger security guarantees. The transaction sum-
mary is posted on L1 along with the cryptographic information
required for verification. However, unlike optimistic rollups, most
zk-rollups are not EVM compatible. Computing zero-knowledge
proofs for a transaction to a generic smart contract that can use
any native EVM instruction is computationally difficult. Early so-
lutions for zk-rollups (Loopring [19], zkSync Lite [24], dYdX [14])
restrict the use of smart contracts to specific subsets of transactions,
in particular for transactions with tokens. Other platforms like
Starknet [22] introduced new running environments and specific
programming languages (Cairo [13]), providing support for expres-
sive zk-provable smart contracts. The above either limits severely
the use cases for integrating with an Ethereum DApp or might re-
quire breaking changes when porting existing smart contracts. One
approach for more complex DApps can be splitting the contracts
set depending on the transaction support. Token contracts could
be deployed on the zk-rollup, while code corresponding to other
unsupported transactions could be grouped in contracts deployed
on L1. The DApp frontend would selectively route transactions.
This approach, however, would only partially reduce DApp usage
fees.

Recent zk-rollup solutions make use of zkEVMs runtime imple-
mentations that aim to be compatible with EVM, which should
allow running any contract. Still, these solutions are either in alpha
or beta stages (Linea [18], Polygon-zkEVM [21]) or require different
Solidity compilers (zkSync Era [23]).

Both optimistic and zk-rollups present a common drawback.
A centralized sequencer is typically the component tasked with
ordering transactions, building blocks, and submitting these to
L1. The sequencer is under the control of the rollup operator and
is usually the sole manager of an L2 transaction mempool. Even
though this does not have a direct impact on DApp development, it
brings concerns about potential censorship or unfair handling of
transactions.

1We do not consider as part of L2, solutions like sidechains, which only provide
bridges to Ethereum and their security is completely independent.
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Figure 1: High level overview of the User Operation flow in ERC-4337

3.2 DApps and account abstraction
The need for transaction payment complicates the onboarding of
new users. A DApp that initiates transactions on behalf of the
user would normally require the user to create an Ethereum exter-
nally owned account (EOA), fund this account with Ether, and then
sign and pay for the transaction. Creating an EOA and signing the
transaction are steps that can be handled transparently by a DApp
frontend. Funding the account with Ether is not. For this, a user
would typically need to register with a cryptocurrency exchange,
get through a KYC process, and acquire the needed Ether. This
already implies starting a learning curve for new users who do not
have any knowledge of Ethereum economics.

Then, the user might not be comfortable transferring funds be-
tween multiple accounts if using multiple DApps, because trans-
actions have a cost even between the user’s accounts. Therefore,
typically users end up installing a wallet like MetaMask or Coinbase
as a typical way to manage an EOA and its associated funds for
different payments. DApp frontends should then integrate with ex-
ternal wallet implementations, for obtaining the required signature
when initiating the transaction. This creates some dependency be-
tween the DApp frontend and the wallet implementation. However,
wallets typically adhere to a standardized RPC API for Ethereum
interaction [27], supposed to minimize conflicting behavior when
switching between different implementations.

The major problem remains the need for Ether for transaction
payment, which most users are not familiar with. Moreover, for
some use cases like e-gov land registries or voting DApps that ad-
dress large categories of people and infrequent usage, it is hard to
expect that users would be willing to pay for transactions. A pat-
tern that is a possible solution for this problem is meta-transactions.
These are mechanisms that decouple the user transactions from
signing and paying with an EOA’s credentials. The transaction call-
data is sent as a user signed message to a relayer, which further
envelopes it in a meta-transaction that preserves user identity but
can be countersigned and paid by a different entity. Multiple varia-
tions of this pattern were developed in recent years [7, 10, 11, 25],
but ERC-4337: Account Abstraction [4] emerged as a proposal for
Ethereum standardization.

ERC-4337 introduces a message format that wraps the trans-
action calldata, named User Operation. We summarize its path in
Figure 1. The DApp frontend is supposed to send the User Opera-
tions to a canonical mempool, separate from the normal Ethereum
transactionmempool. From there, a new entity type: bundlers, select
and pack multiple User Operations in bundles and pass these via a
transaction to a standard defined EntryPoint contract deployed on
the Ethereum network. This triggers a flow of interactions with the
final purpose of executing the original transaction’s calldata. The
EntryPoint first validates each User Operation with a correspond-
ing contract account (CA). The CA is a smart contract encoded as
a sender in a User Operation that basically replaces the EOA. The
main reason for introducing this CA in the flow is to permit the im-
plementation of customized verification logic of the User Operation,
e.g., multiple signatures or other patterns, instead of verifying the
standard EOA signature. Further, the EntryPoint flow permits an
optional paymaster contract to validate the User Operation and to
pay for it. The EntryPoint charges either the CA or the paymaster
for the User Operation and calls an execution method in the CA
for the User Operation calldata. This execution method in the CA
further calls the final intended destination smart contract function.
Finally, the EntryPoint compensates the bundler, which paid for
the transaction that initiated this entire flow.

The proposed ERC-4337 transaction flow has the major advan-
tage of simplifying end-users interaction, exempting them from
paying for transactions when these can be sponsored by a third
party. However, the whole process is actually more complex than
the above simplified description. We identify several aspects that
can have an impact on DApp engineering.

The calldata originally wrapped in the User Operation by the
DApp frontend represents the transaction to a generic execution
function in the deployed CA, further calling the intended desti-
nation smart contract. From the DApp frontend perspective, this
calldata is not directly the call to the function in the destination
smart contract as in a regular transaction case. ERC-4337 defines
the interface for the User Operation validation function that should
be implemented by the CA but does not specify an interface for an
execution function. In order to support building and sending User
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Operations compatible with an ERC-4337 CA instead of direct trans-
actions to backend smart contracts, the DApp frontend must be
aware of the execution function signature in the CA. Otherwise, a
user whose CA does not respect the execution signature supported
by the DApp frontend, will not be able to use the DApp. One might
argue that this is similar to ensuring different compatibility with
different normal wallets, where the DApp frontend should adapt in
order to support various implementations. However, normal wallets
do not need to interfere with building a transaction to a smart con-
tract, which is typically performed using a dedicated library. The
coupling is tighter when using a CA, which can introduce different
calldata formats, depending on the execution function the user’s
CA implements. A solution for this issue is present in ERC-6900 [6],
meant to further standardize the possible composable logic in CA
implementations. ERC-6900 is a relatively complex specification
touching multiple patterns built around ERC-4337, but essential
to our discussion is that it defines a standard interface for the exe-
cution methods of a CA. The issue that remains is that not all CA
implementations adhere to this specification yet. ERC-6900 is more
recent than ERC-4337, and a diverging code base used for deployed
CAs already appeared before its release. Handling this variation can
be a complicated challenge in a DApp frontend implementation.

An issue that is somewhat similar to the case of the rollups trans-
action flow via centralized sequencers concerns the User Operations
mempool. ERC-4337 states that User Operations should be directed
to a public mempool, avoiding trust assumptions on the bundlers
selecting these User Operations. At the date of writing of this paper
this public canonical mempool is still under development, although
foreseen to be operational in the near future [15]. Currently, the
ERC-4337 ecosystem operates using private mempools, with User
Operations being sent directly to bundler nodes. This assumes the
DApp trusts the bundler for not censoring User Operations.

For the moment, a DApp frontend could periodically switch
between different bundlers when submitting User Operations. ERC-
4337 defines a standard RPC API that is used for interaction with
bundler nodes. However, various bundler implementations define
extramethods. Therefore, a DApp that changes bundlers for sending
User Operations has to take into account such possible differences.

At the time of writing both ERC-4337 as well as ERC-6900 are
still in draft status. The networking specification, which should
contribute to the operation of the canonical mempool is still a work-
in-progress. However, the proposals do not change the native pro-
tocol run for normal transactions by the Ethereum network nodes.
Therefore, multiple implementations for the components emerged
and applications already started adopting the account abstraction
pattern. There are various aspects as the ones we mentioned above
that we find yet volatile for expecting stable DApp implementa-
tions. Nevertheless, we believe this to be a very promising direction
towards an improvement in the DApp range.

3.3 Use case evaluation
Following our overview, optimistic rollups currently seem the most
accessible solution for a developer faced with choosing a design
that improves the chances of adoption for a DApp. We implemented
a simple use case scenario for testing our assumption, and also to
verify the efficiency improvement. We chose Optimism [20], which

is a rollup currently ranked among the highest in terms of total
currency value locked.

We opted for an e-gov DApp used for managing land registries,
which is outside the dominating range of fintech and games. De-
spite the apparent lack of popularity, e-gov DApps represent an
important area where decentralized trust and immutability have
useful applications. A statistic lists 203 e-gov blockchain related
initiatives in over 40 countries, out of which 19 are concerned with
land registry management [8].

We used a single smart contract in our example implementation,
where functions are focused on storing information, the most costly
part in terms of gas. The users of the DApp have two possible roles:
government staff charged with adding new data about land and
people who own the land, can transfer it by changing ownership
and lease it. The smart contract has a simple data flow, implemented
mainly through seven functions. Two functions are used for reg-
istering and respectively removing government staff credentials,
retained in a map as EOA addresses of 20 bytes in length. One
function, restricted only to government staff, is used for registering
new land data like ownership title information, owner information
and geographical position. This uses six dynamically-sized strings,
one EOA address and a boolean flag. Two functions are used for
initiating changing land ownership by government staff, and re-
spectively for responding to the change by owners. The first stores
temporary information about the pending ownership change, while
the second frees that information and settles the change. Two more
functions have a similar role but for leasing land properties.2

The frontend of the DApp was implemented using the Angular
framework. We used the ethers.js [16] library for sending trans-
actions and querying the smart contract. The frontend integrated
MetaMask [17] as an EOA wallet, used to sign and pay the transac-
tions. We deployed our backend smart contract on both Goerli test
networks that mimic the Ethereum main network and respectively
the Optimism rollup network. The frontend of the DApp, in partic-
ular the transaction initiation, did not require any implementation
changes when porting the application between the two networks.
This is what we expected since Optimism is EVM compatible.
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Figure 2: Gas cost split on L1 and L2 for a transaction executed
on L2

2We note that our implementation had also a didactical purpose of demonstrating
a DApp usage. Therefore, we are aware of some redundancies in its functionalities,
which might seem irrelevant from an efficiency perspective.
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The transaction fee on Optimism is computed similarly to the
main Ethereum network, as the product of the transaction cost in
gas with the price per gas unit. However, to this L2 fee, an L1 cost is
added for the portion of the transaction data submitted as the rollup
to the main network. The cost benefit for a user results from the
much lower price per gas unit on L2 compared to L1. We evaluated
this for our use case application example.

First, we measured the amounts of gas used by each contract
method on each of the layers, using the Optimism SDK for L2. In ad-
dition, we also measured the gas used by a simple currency transfer,
which corresponds to the minimal cost of a transaction. The results
are depicted in Figure 2. The transaction for new land registration
is the most costly since it has the highest storage requirement. Most
importantly, we notice that the more expensive part of the gas cost
on L1 is on average only 2.5% of the total.

At the time of our evaluation, the price per gas unit on L1 oscil-
lated around 30 Gwei, and on L2 around 0.002 Gwei.3 In Figure 3
we compared the fees when executing on L2 with the fees when
executing the transaction completely on L1.

At the time of our experiments, the fiat exchange rate of Ethereum
varied around 1800$ per Ether, whichmeans 1.8$ per 1MGwei. Most
transactions in our e-gov use case would be related to registration
and changes of land properties, which would average to approxi-
mately 4.8M Gwei per transaction in the L1 case, equivalent to a
price of 8.64$. If executed on L2, the average is approximately 0.1M
Gwei per transaction, which results in a price of 0.18$. With the
caveat that both the exchange rate and the gas price are volatile
metrics, the savings at the evaluated rates are 48 times on average
for the most frequent transactions. We are aware that our experi-
ment is a simplistic one, but in an effective case of an e-gov DApp
built for production, we expect that smart contract functions would
benefit from further optimization for their storage needs.

4 DISCUSSION
From our overview, themechanisms implemented in the transaction
flow might seem to alleviate the transaction fee issue and favor
DApp usability. However, we cannot see yet a significant increase
in the DApps diversity. One reason is that presented mechanisms

31 Ether = 109 Gwei. The values considered correspond to the beginning of April
2023, when we started our experiments. We note that the gas price on L2 increased
after the Optimism Bedrock update in June 2023, but was still orders of magnitude
lower than on L1.

are recent and their full impact is yet to be observed. We discuss
several other motives that might still limit the DApps range.

Another main cause is precisely the changes that appear in the
transaction flow and the difficulty of integration in DApps for use
cases not previously tested. This is particularly the case when using
the transaction model defined in ERC-4337, which comes along
with multiple new logic constructs on the smart contracts side,
like integrating the CA or the paymaster. For rollups, in general
situations like the example provided in the previous section, the
transaction changes are transparent and the DApp integration is
seamless, without mandatory changes in the smart contract logic.
However, this is not the case when the DApp requires explicit
communication or sending funds between L1 and L2, which requires
different specific flows. Moreover, rollups and the ERC-4337 account
abstraction might seem to a developer to be divergent technologies.
Both include specific nodes in their architecture, i.e., sequencers
and respectively bundlers for which interoperation might seem
questionable. Indeed, the ERC-4337 authors raised the issue of the
need for a new RPC request that sequencers should support in order
to conditionally accept transactions from bundlers [28]. Otherwise,
these transactions are prone to revert due to delays from validation
in the User Operation path. Arbitrum, the most used rollup network,
already offers support for this change via a new RPC endpoint [30].
It is unclear yet if Optimism offers a similar solution but this is
brought into discussion [26].

Privacy and lack of trust in transactions have been concerns since
the early days of Ethereum. Because Ethereum is a public blockchain
transactions are inherently available in the public domain, and
ensuring their privacy is a complicated matter. Discussing solutions
is out of the scope of this paper but we acknowledge the impact of
the issue, which makes it difficult to harmonize DApps with legal
contexts like GDPR.

Lack of trust in transactions has one cause in vulnerabilities of
mechanisms interfering with the transaction flow against censor-
ship and attacks. We already mentioned in Section 3 the issue of
sequencer centralization in the rollups case and respectively of the
private mempools used by ERC-4337 bundlers. In addition, most
optimistic rollups do not have a working implementation of decen-
tralized fraud proofs or this is limited to whitelisted actors. These
are known issues, for which solutions are under development, but
yet represent a factor that discourages implementation of DApps.

We summarize the range of the above DApp integration concerns
in Table 1. Independent of these, a distinct aspect is the use of tokens,
which is found in the majority of the DApps in the dominating
areas of fintech and games. This seems to exert a driving force
in technological advancements. An example is meta-transactions
patterns, which were initially driven by the need of users lacking
the native Ether currency to pay for transactions with tokens. This
is reflected also in ERC-4337, which specifically mentions this use
case. Also, many development frameworks see a main use of ERC-
4337 in the context of smart contract wallets, which have a primary
role in storing and managing tokens on behalf of users [9, 29].

While undoubtedly a necessity in many scenarios, we believe
that this token dominance in the focus of the Ethereum community
is an indirect cause of the limited DApps range. E-gov examples,
like the land registry or voting applications, would fit with an
implementation where a government entity would pay the fees
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Table 1: Summary of DApp integration concerns for rollups and ERC-4337 compared to typical Ethereum use

Technology Transaction Flow Changes Smart Contract Changes Transaction Fraud Proofs Added Centralization
Optimistic rollups Yes Not mandatory Required Sequencer traffic

Zk-rollups (w/o zkEVM) Yes Limited expressiveness Not required Sequencer traffic
Zk-rollups (with zkEVM) Yes Not mandatory Not required Sequencer traffic

ERC-4337 Yes Specific constructs N/A Private mempools

on behalf of citizens who are mostly unaware of the blockchain
technology, and respectively of tokens. In such contexts, the de-
velopment of patterns like using the paymaster in ERC-4337 for
transaction sponsorship is of much more interest than integration
as a smart contract wallet, which seems to be a dominating trend.
Another case is zk-rollups, which were mostly dedicated to token
transactions in their initial form until the recent development of
zkEVM based solutions. We argue that maintaining a more general
perspective of technology than token focused will help towards an
increase in the DApp range.

5 CONCLUSION
In this paper, we provided an overview of rollups and account ab-
straction, significant mechanisms that impact the Ethereum transac-
tion flow to smart contracts, with the potential of increasing DApps
range and adoption. We argued that these mechanisms increase
the complexity of Ethereum DApps engineering, but their utility
in lowering the transaction fees is essential. In our discussion we
also referred to the trust issues these solutions still present. Con-
sidering the current trends in development, we think that a future
direction could be AI driven analysis of smart contract functional-
ity and selective choices in a DApp implementation. For instance,
smart contract functions detected to have a high security sensi-
tivity could be selectively sent as normal transactions, while less
sensitive functions could be called as User Operations via a bundler,
saving fees. A similar idea could be investigated also in relation to
rollups. Transactions for which an AI analysis renders an accept-
able tradeoff between security and costs could be grouped in smart
contracts to be deployed on L2 rollups, while the rest would be
kept on L1. An AI based solution used in the above scenario could
most probably employ existing verification and analysis tools used
for detecting problems in smart contract code. This approach is
obviously a subject for a more complex discussion, but we see it as
a direction worth exploring.
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