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ABSTRACT

Modern causal discovery methods face critical limitations in scalability, compu-
tational efficiency, and adaptability to mixed data types, as evidenced by bench-
marks on node scalability (30,≤ 50,≥ 70 nodes), computational energy demands,
and continuous/non-continuous data handling. While traditional algorithms like
PC, GES, and ICA-LiNGAM struggle with these challenges, exhibiting pro-
hibitive energy costs for higher-order nodes and poor scalability beyond 70 nodes,
we propose GUIDE 1, a framework that integrates Large Language Model (LLM)-
generated adjacency matrices with observational data through a dual-encoder ar-
chitecture. GUIDE uniquely optimizes computational efficiency, reducing runtime
on an average by ≈ 42% compared to RL-BIC and KCRL methods, while achiev-
ing an average≈ 117% improvement in accuracy over both NOTEARS and GraN-
DAG individually. During training, GUIDE’s reinforcement learning agent dy-
namically balances reward maximization (accuracy) and penalty avoidance (DAG
constraints), enabling robust performance across mixed data types and scalability
to ≥ 70 nodes—a setting where baseline methods fail.

1 INTRODUCTION

“While probabilities encode our beliefs about a static world, causality tells us
whether and how probabilities change when the world changes, be it by interven-
tion or by act of imagination.”

— Pearl & Mackenzie (2018)

Causal Discovery2 is considered as a hallmark of human intelligence (Penn & Povinelli, 2007;
Harari, 2014). The ability to discover directed acyclic graph (DAG) [i.e. causal discovery] from
available information (data) is crucial for scientific understanding and rational decision-making:
for example, knowing whether smoking causes cancer might enable consumers to make more in-
formed decisions (Doll & Hill, 1950; 1954); examining whether greenhouse gas emissions directly
drive climate shifts can help policymakers design effective strategies to mitigate environmental im-
pact (IPCC, 2021); investigating how teacher training influences student performance can guide
education policymakers in allocating resources for teacher development programs (Garet et al.,
2001); and discerning whether increased screen time contributes to deteriorating mental health
can empower healthcare providers to craft evidence-based recommendations for digital media us-
age (Twenge et al., 2018). Therefore, identifying causality in critical practical applications can have
an overarching societal impact.

Our opening quote reflects the ambitions of numerous researchers in artificial intelligence and causal
discovery: to develop a model that can effectively perform causal discovery, identifying directed
acyclic graphs (DAGs) efficiently and at scale (refer Appendix I). Many previous works addressed
the paradigm of causal discovery using different methods. The PC algorithm (2001) infers causal
relationships using conditional independence (CI) tests. While efficient for small-node datasets, it
struggles with scalability due to exponentially increasing computational complexity. Similarly, the
score-based GES algorithm (2002) performs a greedy search over equivalence classes of DAGs.

1Our code is available here - Github
2The process of learning graphical structures with a causal interpretation is known as causal discovery Zanga

et al. (2022).

1

https://anonymous.4open.science/r/GUIDE-Generalized-Prior-and-Data-Encoders-for-DAG-Estimation-EB78/
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Though it accounts for latent and selection variables, its exponential complexity limits its applica-
bility to high-dimensional data. LiNGAM (2006), based on Functional Causal Models (FCMs), em-
ploys independent component analysis to infer causal directions without relying on the faithfulness
assumption(all observed conditional independencies in the data reflect true causal relationships).
While this method demonstrates robustness in specific scenarios, it encounters difficulties with
mixed data types and Gaussian noise. Additionally, it does not scale efficiently to larger datasets. For
modeling non-linear relationships, the ANMs (2008) integrates non-linear dependencies with addi-
tive noise, enabling effective identification of causal directions. However, it is limited by its inability
to handle mixed data types (continuous (e.g., height) and categorical (e.g., gender)) and its poor
scalability to large datasets. NOTEARS (2018) frames causal discovery as an optimization problem
using Structural Equation Models (SEMs) with regularized score functions. It is well-suited for con-
tinuous data but struggles with non-continuous or mixed data types. GraN-DAG (2019) leverages
neural networks trained via gradient-based methods to effectively model non-linear relationships.
Although it excels with Gaussian additive noise models, it faces significant challenges in scaling and
handling mixed data types. Reinforcement learning approaches, such as RL-BIC (2020), iteratively
optimize a Bayesian Information Criterion (BIC) score to refine causal structure search. However,
these methods are only scalable to datasets containing approximately 30 variables. KCRL (2022)
enhances performance by incorporating prior knowledge constraints into reinforcement learning but
similarly struggles with scalability in larger systems. To summarize, we have identified some signif-
icant research gaps as below.

Gaps

• Most algorithms struggle with scalability for datasets exceeding 50 nodes, limiting their ap-
plicability to large-scale problems.

• Few methods can efficiently handle the high computational energy demands associated with
higher-order nodes.

• Handling mixed data types remains a challenge for many approaches, restricting their use in
real-world heterogeneous datasets.

• Existing methods predominantly focus on linear causal relationships, failing to adequately
model complex non-linear dependencies.

• A significant gap exists in consistently supporting both continuous and non-continuous data
properties, limiting robustness across domains.

Table 1 exhibits a thorough comparison across State of the Art (SOTA) Causal Discovery algorithms
highlighting significant limitations in current causal discovery methods, particularly in their scala-
bility, computational efficiency, and adaptability to diverse data types and relationships, motivating
us to explore the following question:

How can causal discovery frameworks achieve consistent accuracy across diverse data regimes
(e.g., discrete, confounded) while maintaining computational scalability and efficiency in

high-dimensional settings?

In the endeavour of answering this question and alleviating the limitations of the existing meth-
ods, we propose a novel approach GUIDE (see Section 2) that leverages generative priors (initial
causal DAG generated using LLMs), reinforcement learning, and a dual-encoder architecture to en-
hance scalability, reduce computational overhead, and handle both mixed and non-linear data types
seamlessly. Our method ensures robust support for continuous and non-continuous data properties,
bridging critical gaps in existing algorithms and paving the way for more accurate and efficient
causal discovery across diverse real-world scenarios.

We summarize the main contributions of our work:

1. Unified Framework based Causal Discovery for Generalization and Scalability: We
introduce a scalable and efficient approach that integrates generative priors and observational data
through a dual-encoder architecture, enabling robust discovery of causal structures across diverse
datasets. Our method effectively handles large-scale problems, mixed data types, and complex
non-linear relationships, ensuring applicability across real-world scenarios.

2
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SOTA Causal Discovery
Algorithms Scalability

Computational
Energy for higher

order nodes
Mixed Data Linear Causal

Relationship

Property of Data
(Continuous or

Non-Continuous)
≤ 30 Nodes ≤ 50 Nodes > 70 Nodes

PC (Spirtes et al. (2001)) ✓ × × × ✓ ✓ ✓
GES (Chickering (2002)) ✓ × × × ✓ ✓ ✓
RL-BIC (Zhu et al. (2020)) ✓ × × × ✓ ✓ ✓
KCRL (Hasan & Gani (2022)) ✓ × × × ✓ ✓ ✓
LiNGAM (Shimizu et al. (2006)) ✓ × × × × ✓ ✓
ANM (Hoyer et al. (2008)) ✓ × × × × ✓ ✓
NOTEARS (Zheng et al. (2018)) ✓ ✓ ✓ ✓ ✓ ✓ ×
GraNDAG (Lachapelle et al.
(2019)) ✓ ✓ ✓ ✓ ✓ × ✓

GUIDE(Ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Comparison of causal discovery algorithms with detailed scalability columns and other key properties.

Figure 1: Overview of the GUIDE training workflow. Observational data and prior knowledge are
encoded by two encoders (E1/E2) and fused into a combined feature, from which a policy head
produces edge probabilities for an adjacency matrix. An RL agent iteratively proposes graphs and
interacts with an RL environment that computes a reward combining BIC data-fit, an acyclicity
penalty, and prior-consistency via a comparator. The loop continues until the stopping criterion is
met, yielding a directed acyclic graph (DAG).

2. Reinforcement Learning-Driven Optimization: While traditional RL methods often incur high
computational costs due to exhaustive exploration, our framework strategically integrates prior
knowledge (LLM-generated adjacency matrices) and a constrained action space to guide the RL
agent. This reduces the exploration burden (reducing runtime by 42% compared to RL-BIC and
KCRL), enabling faster convergence and lower energy consumption compared to vanilla RL ap-
proaches.

Organization: The rest of our paper is organized as follows. We briefly discuss the details of our
proposed approach Section 2. We present our results in Section 3, along with baselines, datasets, and
evaluation metrics. We discuss our key findings in Section 3.4. Finally, in Section 4, we conclude
with a short discussion and a few open directions.

2 METHODOLOGY: GUIDE

2.1 PROBLEM

We aim at inferring a causal graph that accurately represents the data-generating process from a
given dataset X = {xk}mk=1, where xk represents k-th observed sample. Specifically, the task is
to predict a binary adjacency matrix A ∈ {0, 1}d×d that encodes causal relationships between d
variables while ensuring that the resulting graph is a Directed Acyclic Graph (DAG).

3
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To address this challenge, we propose an encoder-based framework that integrates data-driven de-
pendencies with domain knowledge from Large Language Models (LLMs). LLMs generate an ini-
tial adjacency matrix using domain-specific prompts, providing a knowledge-driven initialization for
the model.Our approach combines two complementary sources of information: first, Data-Driven
Dependencies: Statistical relationships between variables are captured directly from the observed
dataset X and second, Domain Knowledge: The initial adjacency matrix encodes potential causal
edges inferred from LLMs, serving as a soft constraint to guide learning.

The proposed framework employs a DAG Model to process these inputs and jointly predict the ad-
jacency matrix. This ensures the discovery of causal structures that are consistent with the observed
data and informed by domain knowledge. We first present the preliminary concepts integral to our
approach in the following Section (Section 2.2) and proceed toward a detailed description of our
proposed method GUIDE.

2.2 PRELIMINARIES

Prior Knowledge Graph: In many applications, prior knowledge is crucial for causal modeling. For
example, in medicine, we often have access to prior knowledge about the symptoms and treatment
of diseases, which can be found in the literature or knowledge bases Sinha & Ramsey (2021). For
instance, KCLR: Prior Knowledge Based Causal Discovery With Reinforcement Learning demon-
strates that the effective incorporation of prior knowledge into causal discovery Hasan & Gani (2022)
can improve causal discovery. Andrews et al. (2020) show that the FCI algorithm achieves sound-
ness and completeness when integrating tiered background knowledge. Similarly, Borboudakis &
Tsamardinos (2012) emphasize that even a small set of causal constraints can significantly orient the
causal graph, facilitating the identification of causal edges. Constraints based on prior knowledge,
can be integrated into the reward mechanism to steer the RL agent toward an optimized policy. The
agent can receive feedback through rewards for adhering to the constraints or penalties for violating
them, guiding its learning process effectively.

Generative Priors: Large language models (LLMs) can also serve as a source of domain-specific
priors. These models, which are trained on vast textual data, encode causal knowledge derived from
domain literature. When integrated into causal discovery models, prior knowledge derived from
LLM can further enhance the precision of causal relationships, offering a powerful tool to improve
the efficiency and effectiveness of the causal learning process.

Reinforcement Learning for Graph Search: Reinforcement learning (RL) for causal discovery is
an emerging area of research with significant potential for identifying causal structures when used
effectively. Recently, RL has shown promising results in uncovering causal relationships from ob-
servational data (Zhu et al., 2020). RL operates on a trial-and-error basis, iteratively improving its
strategy by receiving feedback (positive or negative rewards) after taking actions (Sutton & Barto,
2018). By incorporating constraints such as the BIC score, acyclicity, and prior knowledge, RL
agents can be guided toward an optimized policy, refining their graph formation strategy and en-
hancing accuracy.

Reward Mechanism: The total reward R is computed by combining all penalties incurred during
the causal graph discovery process. These penalties include: BIC Penalty (PBIC): This penalizes the
agent based on the Bayesian Information Criterion (BIC) score, which measures the trade-off be-
tween the model’s goodness-of-fit and its complexity Haughton (1988); Chickering (1996), Acyclic-
ity Penalty (Pacyclicity): This enforces the requirement that the generated graph must be a Directed
Acyclic Graph (DAG) Zheng et al. (2018) and Prior Knowledge Penalty (Pprior): This penalizes
mismatches between the edges in the generated graph and the edges specified in the prior adja-
cency matrix Hasan & Gani (2022). This reward is subsequently fed back to the RL agent, enabling
the feedback mechanism to help the agent iteratively refine its strategy and ensure accurate causal
discovery.

2.3 OUR FRAMEWORK: GUIDE

In this section, we introduce our framework, GUIDE: Generalized-Prior and Data Encoders for
DAG Estimation (refer to Algorithm 1 and Figure 1). GUIDE is a causal discovery approach that in-
tegrates reinforcement learning (RL), prior knowledge, and pruning techniques to iteratively refine a

4
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Algorithm 1 The Proposed RL approach to Generative AI-based Causal Discovery

Require: Observational data X ∈ Rn×d, Prior Adjacency Matrix APrior, LLM generated adjacency ALLM,∈
{0, 1}d×d

Ensure: Predicted DAG adjacency matrix A∗

1: Step 1: Encode Inputs
2: Encode data: Hdata = fθ(X) ▷ Data encoder E1

3: Encode LLM prior: HLLM = gϕ(ALLM) ▷ LLM encoder E2

4: Step 2: Feature Fusion
5: Fuse features: H = Concat(Hdata,HLLM)
6: Predict edges: P = σ(MLP(H)) ▷ Edge probabilities via sigmoid
7: Step 3: Optimization
8: while not converged do
9: Sample A ∼ Bernoulli(P) ▷ Binary adjacency

10: Enforce acyclicity: A← RemoveCycles(A)
11: Compute reward:R = PBIC︸︷︷︸

data fit

+λ∥A−APrior∥︸ ︷︷ ︸
prior penalty

+ γh(A)︸ ︷︷ ︸
acyclicity

12: Update parameters: θ, ϕ← θ − η∇θR, ϕ− η∇ϕR
13: end while
14: Step 4: Prune & Refine
15: Threshold: A∗ = I(P > τ) ▷ Sparse adjacency
16: Enforce acyclicity: A∗ ← RemoveCycles(A∗) ▷ See Appendix algorithm 2
17: Finalize DAG: A∗ ← PruneWeakEdges(A∗) ▷ See Appendix algorithm 3
18: return A∗

causal graph. The goal is to discover the underlying causal structure of a given dataset while balanc-
ing data-driven modeling, prior constraints, and structural sparsity. With the preliminary concepts
defined in the backdrop, we now proceed towards elucidating every step of our proposed framework.

2.3.1 MODEL TRAINING PHASE

The process starts with three key inputs: dataset X , true adjacency matrix Atrue (for evaluation
only), prior adjacency matrix Aprior, and Ainitial (LLM-derived generative priors). The dataset X is
structured as [m, d], where m is the number of observations and d the number of variables. Each row
corresponds to an instance, and each column represents a variable. The prior adjacency matrix Aprior
encodes partial causal knowledge: Aprior[i, j] = 1 indicates confidence in i→ j, while Aprior[i, j] =
−1 reflects uncertainty. Aprior is generated by selecting a fraction f of edges from Atrue as known
(Aprior[i, j] = 1), leaving the rest unspecified (Aprior[i, j] = −1).

DAG Model 3 We employ a DAG model to infer the causal structure, producing an adjacency
matrix A that represents the predicted causal relationships. The model has two primary components:
an adjacency matrix encoder and a data encoder. The adjacency matrix encoder processes Aintial
through an encoder neural network to produce a latent representation of the domain knowledge
given by the llm. Similarly, the data encoder processes the dataset X to capture statistical dependen-
cies among variables. These latent representations are fused and passed through additional layers,
resulting in an intermediate adjacency matrix Alogits.

The raw logits in Alogits are transformed into edge probabilities using a sigmoid activation function:

Aprobs[i, j] =
1

1 + e−Alogits[i,j]
.

A binary adjacency matrix A is then derived by thresholding the edge probabilities:

A[i, j] =

{
1 if Aprobs[i, j] ≥ τ,

0 otherwise,

where, τ is a predefined threshold.

3For a more detailed view about this, please refer appendix B

5
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Optimization To refine A, reinforcement learning maximizes a reward function R balancing data
fit (BIC score), acyclicity, and prior knowledge consistency:

PBIC(A) = md log

(∑d
i=1 RSSi

md

)
+#(edges) logm,

To ensure a DAG structure, the framework penalizes cyclic violations using the matrix exponential
of A:

Pacyclicity = λ1 · h(A) + λ2 · Indicatoracyclicity(A),

where, h(A) = trace(eA)− d,

The third component of the reward function penalizes deviations from the prior knowledge, defined
as: Pprior = β · p,. The total reward function combines these terms:

R = [PBIC(A) + Pacyclicity + Pprior] .

The agent iteratively refines A by predicting edge probabilities Aprobs, sampling a binary adjacency
matrix A and updating its policy via REINFORCE to minimize R.

2.3.2 MODEL INFERENCE PHASE

Post Processing Over iterations, the adjacency matrix with the highest reward is retained as
the best estimate of the causal structure. To further refine the graph, we apply a pruning mech-
anism. For each variable i, a linear regression model is fit using its parent variables (determined
by A) as predictors. The regression coefficients are used to compute a weight matrix W (i.e
W [i, j] = regression coefficient for parent j in predicting i.) Instead of a fixed pruning thresh-
old, a dynamic threshold is set as the d-th highest weight in the weight matrix W , ensuring
retention of only the strongest relationships. The pruning threshold for each variable is: τi =
the d-th largest value of |W [i, j]| for all j.

Then, the pruned adjacency matrix Apruned is determined by keeping only the strongest connections:

Apruned[i, j] =

{
1 if |W [i, j]| > τi,

0 otherwise.

Finally, any remaining cycles are removed to ensure Apruned remains a valid DAG, resulting in Afinal.
This final output represents predicted causal graph, which is then evaluated against the ground truth
Atrue.

3 EXPERIMENTAL SETUP

3.1 BASELINES

To evaluate the efficacy of our proposed method (GUIDE), we empirically compare it against sev-
eral established baseline methods for causal structure discovery from data (see Table 1). These
baselines include constraint-based approaches such as the PC algorithm, FCM-based methods like
ICA-LiNGAM and Additive Noise Models (ANM), and score-based techniques such as GES,
RL-BIC, and KCRL. Additionally, we consider gradient-based methods, including GraNDAG and
NOTEARS. This diverse selection ensures a comprehensive assessment of our model’s performance
Zhang et al. (2021). For details on the parameter settings of the baseline methods, refer to Ap-
pendix J.

3.2 METRICS

We use standard metrics (ref appendix J) to evaluate causal discovery algorithms (refer to the Eval-
uation Metrics for Causal Discovery section in Hasan et al. (2023)). Additionally, we introduce
two new metrics “TP/NNZ” and “RP” to evaluate the accuracy of true edge identification in causal
algorithms. True positives per non-zero predictions (TP/NNZ): TP/NNZ = True Positives

Number of predicted edges

6
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Relative Performance (RP): RP compares a model’s TP/NNZ against the best-performing model.
A lower RP indicates closer performance to the best model. RP = Best(TP/NNZ)−TP/NNZ

Best(TP/NNZ)

Why these Metrics?

These metrics focus specifically on the proportion of predicted edges that are actually true, unlike tradi-
tional precision, which includes both edge and non-edge predictions. In real-world datasets, the ground
truth causal graphs are sparse, where true edges are rare, and traditional precision can be dominated
by correct nonedge predictions, masking the model’s edge detection performance. By isolating edge
predictions, these metrics provide a clearer measure of the model’s ability to identify genuine causal
relationships. Ultimately, these metrics bridge theory and practice, ensuring causal models deliver ac-
curate, interpretable results for decision-making and analysis.

Dataset Best TPR Best FDR Best SHD Best TP/NNZ Best RP

Sachs GUIDE GUIDE GUIDE GUIDE GUIDE
Asia GES GUIDE GES GUIDE GUIDE
Lucas GES GES GES GES GES
Alarm NOTEARS LiNGAM LiNGAM GUIDE GUIDE
Hepar GUIDE GUIDE GES GES GUIDE
Dream41 GUIDE GUIDE GraNDAG GraNDAG GraNDAG

Table 2: Dataset-wise comparison of methods across key metrics. Cells highlighted in green indicate
that GUIDE achieves the best value (highest TPR or TP/NNZ, or lowest FDR, FPR, SHD, or RP)
on a dataset. For a more detailed view about this, please refer appendix H

3.3 DATASET-WISE RESULTS(WRT TP/NNZ)

Why TP/NNZ? We report TP/NNZ (true positives among all predicted nonzeros) because it directly
reflects how clean a learned graph is: the metric rewards methods that recover many correct edges
while penalizing spurious ones, and is comparable across datasets with different sizes/densities. Un-
like SHD (which scales with graph size) or composite scores (which mix multiple effects), TP/NNZ
isolates edge-level correctness under sparsity—precisely the regime where causal discovery is most
useful.

Figure 2: Dataset-wise TP/NNZ (higher is better). Bars are color-coded by algorithm and grouped
by dataset. GUIDE leads on SACHS and ALARM; GES dominates LUCAS; GPT-4o peaks on
ASIA. On larger graphs (HEPAR, DREAM41) all methods exhibit lower TP/NNZ, with GPT-4o
and GUIDE only marginally ahead of others.

7
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Overview. • SACHS—GUIDE leads (0.64), followed by KCRL (0.48) and a mid-pack of
RL/LiNGAM/PC ( ≈ 0.36–0.40); • ASIA—GPT-4o peaks (1.00) with GUIDE (0.80) and GES
(0.73) close behind; • LUCAS—GES dominates (0.92), PC is strong (0.83), GUIDE competi-
tive (0.67), and NOTEARS/KCRL/LiNGAM/RL cluster around 0.42–0.53; • ALARM—GUIDE
is best (0.38) with ANM (0.37), PC (0.36) and NOTEARS (0.34) next; • HEPAR—all meth-
ods are low, with GPT-4o (0.20) slightly ahead of GUIDE (0.16) and NOTEARS (0.10); •
DREAM41—performance remains low: GraNDAG (0.14), GUIDE (0.11), NOTEARS (0.09).
Overall, GUIDE is strongest on small–medium graphs (SACHS, ALARM) and stays competitive
at scale, while GES/PC excel on LUCAS/ASIA and GPT-4o peaks on ASIA; the consistent drop on
HEPAR/DREAM highlights the challenge of larger, denser graphs. For more detailed interpretation,
please refer appendix H

3.4 KEY FINDINGS

Unified Framework: Synergy of Generative Priors and Observational Data: The dual-encoder
architecture, which integrates LLM-generated adjacency matrices with observational data, demon-
strates measurable advantages: i) Precision in Sparse Networks: On the Sachs dataset (biological
signaling pathways), GUIDE achieves a TP/NNZ score of 0.64 (vs. KCRL: 0.48), illustrating how
generative priors enhance edge detection in low-data regimes; ii) High-Dimensional Robustness: For
the Hepar dataset (non-linear relationships with latent variables) GUIDE attains a higher TP/NNZ
score underscoring its ability to harmonize structural priors with observational signals in complex
systems.; iii) Limitation in Confounded Settings: On the Dream41, GUIDE’s RP drops, emphasizing
the need for dynamic prior calibration when unobserved confounders dominate.

Why performance varies across datasets Asia (8 nodes). Small, well-studied structure with
strong conditional independences; score-based GES attains the best SHD/TPR. GUIDE excels on
precision-like metrics (FDR, TP/NNZ) owing to a clean prior but is not SHD-optimal. Lucas. Bi-
nary BN with strong inductive bias matching GES; GUIDE trails when priors are less informative.
Sachs. Sparse signalling network; GUIDE dominates (low SHD, high TP/NNZ) as the LLM prior
is clearly informative and data are limited. Alarm. Medium scale; GUIDE achieves best TP/NNZ
and RP while NOTEARS/LiNGAM win on SHD/FDR, reflecting different tradeoffs. Hepar. Larger
graph with complex relations; GUIDE maintains good recall/precision but SHD is not best, indi-
cating room in pruning/cycle breaking. Dream41. Very large; GUIDE keeps recall but increases
SHD/FPR, consistent with latent or dense dependencies; see §E.

Figure 3: Inference time comparison across causal discovery algorithms. GUIDE demonstrates sig-
nificant computational efficiency, completing inference on the Sachs dataset (11 nodes) in 0.5 min-
utes, outperforming RL-BIC (3.0 minutes) and KCRL (4.0 minutes). For the large-scale DREAM41
dataset, GUIDE remains among the few scalable methods, achieving faster inference than compet-
ing approaches.

RL-Driven Optimization: Balancing Scalability and Generalization GUIDE’s architecture ex-
cels in scalability and adaptability to diverse data types:

⋄Runtime Efficiency: (refer Figure 3) For the Sachs dataset (11 nodes), GUIDE achieves inference
in 0.5 minutes, which is 6 times faster than RL-BIC (3.0 minutes) and 4 times faster than KCRL (4.0
minutes). On the largest node dataset, DREAM41, most state-of-the-art algorithms fail to produce

8
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results. Among the few that succeed, GUIDE demonstrates significantly faster inference, further
highlighting its scalability and efficiency in high-dimensional settings. • Relative Performance: A
lower RP indicates better performance. As shown in Figure appendix H, our model demonstrates
strong generalization across datasets. GUIDE excels on Sachs, Alarm, and Hepar, where integrat-
ing generative priors with observational data is particularly effective. However, it is outperformed
by GES, GPT-4o(ICL), and NOTEARS on Lucas, Asia, and Dream41, respectively. Despite these
limitations, GUIDE’s consistent performance across diverse datasets—from small-scale biological
networks (Sachs) to high-dimensional gene regulatory systems (Dream41)—highlights its robust-
ness. These results underscore GUIDE’s ability to deliver fast and scalable inference across datasets
of varying sizes, solidifying its position as a robust and efficient solution for modern causal discov-
ery challenges. Its performance on both small and large-scale benchmarks highlights its versatility
and computational edge over existing methods.

3.5 ABLATION STUDY

In this section, we examine the impact of incorporating Generative Priors and Prior Constraints
in causal discovery (refer Appendix H.5). Our ablation study demonstrates that combining gen-
erative priors (as initial estimates) with domain-specific expert knowledge (as reward constraints)
significantly enhances causal discovery performance. The key findings from our study include:

Figure 4: Impact of integrating Generative Priors and Prior constraints on causal discovery. Ab-
lation shows that ICL (generative prior) or prior constraints alone improve performance over the
baseline (model without generative prior and prior knowledge), but their combined integration yields
synergistic gains ≈ 80% over the baseline, validating the necessity of both components for opti-
mal causal reasoning

i) Using generative priors alone within our dual-encoder framework improves the true positive rate
(TPR) for edge detection on the Sachs dataset by ≈ 20%; ii) Employing expert-derived constraints
independently results in a ≈ 38% increase in TPR; iii) The synergy between these two approaches
leads to an overall TPR improvement of ≈ 80% compared to the baseline system, which lacks
both priors and constraints (see fig. 4). This aligns with Hasan & Gani (2022), who highlighted
the fundamental role of prior knowledge in causal reasoning. Our work extends this by integrating
generative models with expert knowledge, preserving precision and structural consistency. Notably,
neither prior is optimally effective in isolation (refer Figure 4).

4 CONCLUSION AND FUTURE WORK

GUIDE integrates generative priors from Large Language Models with observational data via a
dual-encoder architecture and reinforcement learning, addressing scalability and computational bot-
tlenecks in high-dimensional settings. By leveraging domain knowledge and data-driven dependen-
cies, it achieves robust performance across diverse datasets. Future work will focus on enhancing
robustness to unobserved confounders, dynamically calibrating generative priors in noisy or data-
scarce environments, optimizing computational efficiency for resource-constrained settings, and val-
idating in real-world domains.
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A GLOSSARY OF SYMBOLS

For clarity, we summarize the notation used in Algorithm 1 and throughout the paper in Table ??.

B SINK MORE INTO GUIDE ARCHITECTURE

Inputs. Given data X ∈ Rm×d and an LLM-generated prior adjacency Ainitial ∈ {0, 1}d×d

(prompted from node descriptors; see §H.3), GUIDE predicts a DAG adjacency A⋆.

13
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Table 3: Notation Table

Symbol Meaning

X ∈ Rm×d data matrix (m samples, d variables)
A,A⋆ ∈ {0, 1}d×d adjacency (predicted / final)
Ainitial LLM-generated prior adjacency
Hdata, Hprior encoder outputs (E1/E2)
L,P edge logits and probabilities
R(A) reward (BIC + acyclicity + prior)
h(A) tr(exp(A))− d
d number of nodes; also top-d kept per target in pruning

Encoders. E1 (data encoder) is an MLP with widths [d, 128, 64], ReLU, dropout 0.2; it ingests
per-node statistics and pairwise summaries(standardised means/variances and correlation/MI features),
producing Hdata ∈ Rd×64. E2 (prior encoder) embeds Ainitial as a dense matrix using a 2-layer
Gated-MLP [d, 64] on in/out-degree, row/col sums and learned edge embeddings, producing Hprior ∈
Rd×64. Parameters use Xavier-uniform init; bias zeros. The fusion is H = [Hdata ∥ Hprior] ∈ Rd×128

followed by a 2-layer MLP (128→64→1 per ordered pair) that outputs edge logits L ∈ Rd×d with
masked diagonal.

Edge sampling. Edge probabilities P = σ(L) parameterise a Bernoulli policy over graphs.

Reward. We optimise the REINFORCE objective with a decomposable BIC data-fit term, a con-
tinuous acyclicity penalty h(A) = tr(exp(A)) − d, a hard acyclicity indicator, and a soft prior
term:

R(A) = BIC(A)︸ ︷︷ ︸
data fit

+λ1 h(A) + λ2 ⊮{cyclic(A)}+ β ∥A−Ainitial∥1.

Acyclicity guarantee. The penalties steer training toward DAGs; after training we deterministi-
cally remove residual cycles (weakest-edge cutting) and prune with regression weights, yielding A⋆

that is guaranteed acyclic.

Initialisation. We use Xavier init for all linear layers, lr = 10−3 (Adam), batch size 64, and seed
the entire pipeline.

C DIFFERENCE BETWEEN (ALLM) AND (APRIOR)

(ALLM) is the adjacency estimate produced by the LLM and is used as input to encoder E2 during
the fusion stage (Algorithm 1, line 3). It acts as a soft generative prior that informs the representation
space but does not impose hard constraints.

(Aprior) is the prior used inside the reward function (Algorithm 1, line 11). It may coincide with
(ALLM) or represent expert knowledge, and is used only as a consistency penalty during RL opti-
mization.

Matrix Definition / Source Role in GUIDE
ALLM Adjacency generated by an

LLM from prompts or con-
text; used as input to the prior
encoder E2.

Soft generative prior shaping
the fused latent representa-
tion; does not impose hard
constraints.

Aprior Expert knowledge or a cali-
brated subset of ALLM; used
only inside the reward.

Consistency penalty in the
RL objective ensuring align-
ment with trustworthy prior
structure.

Table 4: Distinction between ALLM and Aprior.
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D CALIBRATION OF THE PRIOR AND PROMPT ROBUSTNESS

We adaptively weight the prior: βt = β0 · ⊮{∆BIC(A(t)) < τ}, down-regulating β when prior-
suggested edges consistently harm BIC on held-out splits. For robustness, we report a prompt-
perturbation study (mask a fraction of node descriptors or add distractors) and track the slope of
TP/NNZ vs. perturbation rate; the calibration keeps the slope shallow, preventing LLM biases from
propagating.

E BEHAVIOUR UNDER HIDDEN CAUSES

Under latent confounding, children of an unobserved U are spuriously dependent, so the BIC term
rewards edges among them while the prior has no access to U . Consequently, the policy may trade
false positives for data fit. Two mitigations are natural: (i) a confounder-penalty that down-weights
cliques among variables whose dependence is not reduced by conditioning on any observed set; (ii)
a two-head prior that allows the LLM to mark “possible common-cause” patterns, lowering the prior
pressure to assert direct edges. (See §D for calibration.)

Synthetic design (for reproducibility). To illustrate, generate SEMs with U → Xi, U → Xj

and no Xi→Xj . Vary the strength of U and show that (1) TP/NNZ degrades without confounder
handling; (2) the confounder penalty recovers sparsity while preserving TPR. We will add this as a
reproducible script in the code release.

F ASSUMPTIONS

GUIDE assumes: (i) DAG causality (the true structure is acyclic); (ii) Causal sufficiency (no un-
observed confounders) and faithfulness (observed CIs reflect the DAG); (iii) samples are i.i.d. from
an SEM whose negative log-likelihood is approximated by the decomposable BIC; (iv) the LLM
prior provides informative but fallible hints. We discuss behaviour under hidden causes in §E and
mitigate prior misspecification via calibration (§D).

G DATASET DETAILS

G.1 DATASETS

Causal discovery methods leverage real-world or synthetic datasets from domains like medical trials,
economic surveys, and genomics. We empirically tested state-of-the-art approaches on the following
datasets.

Publicly available datasets: Publicly available causal datasets, often sourced from interventional
studies in biology, medicine, environment, and education, serve as benchmarks for evaluating
causal discovery, machine learning, and statistical modeling algorithms. We assess our method
using datasets from the bnlearn repository Scutari (2009) and the Causal Discovery Toolbox
(CDT) Kalainathan et al. (2020).

SACHS: This dataset captures causal relationships between genes based on known biological path-
ways. It has 11 nodes with well-known ground truth Zhang et al. (2021).

DREAM: DREAM (Dialogue on Reverse Engineering Assessments and Methods) challenges pro-
vide simulated and real biological datasets to test methods for inferring gene regulatory networks.
We have used the Dream41 dataset, which consists of 100 nodes Kalainathan et al. (2020).

ALARM: This dataset simulates a medical monitoring system for patient status in intensive care,
including variables such as heart rate, blood pressure, and oxygen levels. It consists of 37 nodes and
is widely used in benchmarking algorithms in the medical domain Beinlich et al. (1989).

ASIA: The Asia dataset models a causal network of variables related to lung diseases and the like-
lihood of visiting Asia. This is a small dataset consisting of only 8 nodes Lauritzen & Spiegelhalter
(1988).
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LUCAS: The LUCAS (Lung Cancer Simple Set) dataset is data generated using Bayesian networks
with binary variables. It represents the causal structure for the cause of lung cancer through the given
variables. The ground-truth set consists of a small network with 12 variables and 12 edges Lucas
et al. (2004).

H HOLY GRAIL OF EXPERIMENTS

Please refer Figure 4 for a complete view of our empirical experiments

Figure 5: Performance metrics of all the Causal Algorithms

H.1 WHY PERFORMANCE VARIES ACROSS DATASETS

Asia (8 nodes). Small, well-studied structure with strong conditional independences; score-based
GES attains the best SHD/TPR. GUIDE excels on precision-like metrics (FDR, TP/NNZ) owing
to a clean prior but is not SHD-optimal. Lucas. Binary BN with strong inductive bias matching
GES; GUIDE trails when priors are less informative. Sachs. Sparse signalling network; GUIDE
dominates (low SHD, high TP/NNZ) as the LLM prior is clearly informative and data are limited.
Alarm. Medium scale; GUIDE achieves best TP/NNZ and RP while NOTEARS/LiNGAM win
on SHD/FDR, reflecting different tradeoffs. Hepar. Larger graph with complex relations; GUIDE
maintains good recall/precision but SHD is not best, indicating room in pruning/cycle breaking.
Dream41. Very large; GUIDE keeps recall but increases SHD/FPR, consistent with latent or dense
dependencies; see §E.

H.2 PRUNING RATIONALE AND NONLINEAR RELATIONS

Pruning uses per-node linear regression on parents to compute importance weights W [i, j] and re-
tains the top-d magnitudes per target. This step is not the causal model; it is a sparsifier over candi-
dates learned by a nonlinear policy. Empirically, linear coefficients provide stable edge saliency even
when the underlying SEM is nonlinear, and the final cycle-removal pass prevents feedback loops.
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H.3 LLM PRIOR AND PROMPT TEMPLATES

We use GPT-4o to elicit Ainitial. For each ordered pair (Xi→Xj) we pass (1) concise node descrip-
tors and (2) a rubric that forbids cycles and self-loops, returning a binary judgement. We share the
exact templates (few-shot) in Appendix §K, including the list of in-context examples.

Pure-LLM baseline. GPT-4o (ICL) constructs a full graph by querying all ordered pairs with
the same template and then removing self-loops and duplicate undirected edges; we apply the same
cycle-removal and pruning used for GUIDE to ensure fair post-processing across methods.

H.4 ON ACYCLICITY AND THE FIXED PENALTY COEFFICIENT

Although λ1 is fixed during training, h(A) and the indicator term impose strong pressure against
cycles. Crucially, we guarantee a DAG by applying an explicit cycle-removal pass to the best graph
and again after pruning, which deterministically breaks all remaining cycles (weakest-edge dele-
tion). Thus the reported A⋆ is always acyclic, regardless of transient cycles during optimization.

H.5 SIGNIFICANCE OF EACH COMPONENT IN OUR FRAMEWORK

Generative Prior. Large Language Models (LLMs) have demonstrated the ability to generate plau-
sible causal relationships between variables based on textual inputs, effectively acting as ”virtual
domain experts.” By providing initial causal structures or edge-level priors, LLMs can significantly
enhance the efficiency of reinforcement learning (RL) in causal discovery tasks. Traditional RL ap-
proaches often require extensive exploration to identify the optimal Directed Acyclic Graph (DAG).
However, integrating LLM-generated priors into the process can drastically reduce this burden. For
instance, in sequential decision-making tasks, leveraging LLM-based action priors has been shown
to reduce the number of required samples by over 90% in offline learning scenarios Yan et al. (2024).
This improvement arises from the well-informed starting point provided by the priors, allowing the
RL algorithm to focus on refining the most promising causal structures rather than exhaustively
searching the entire space.

Prior Knowledge. Incorporating prior knowledge into reinforcement learning (RL) for causal dis-
covery can greatly enhance its effectiveness by introducing meaningful constraints to guide the
search process Hasan & Gani (2022). Insights from experts, findings from previous studies, or evi-
dence from the literature can serve as sources of prior knowledge. By applying penalties when the
RL agent violates established causal relationships, this approach helps ensure that the discovered
structures align with known facts, significantly reducing the search space. Focusing on plausible
causal relationships not only streamlines the process but also enables the agent to converge more
quickly on the optimal structure. This method is particularly beneficial in data-scarce domains like
healthcare, where prior knowledge can compensate for limited observational data and improve the
reliability of causal discovery.

H.6 SENSITIVITY TO NOISY OR UNRELIABLE LLM PRIORS

GUIDE incorporates two mechanisms to ensure robustness to imperfect or biased LLM-generated
priors. First, the dual-encoder fusion design ensures that the prior ALLM influences only the latent
representation through the prior encoder E2, and does not directly determine edges in the learned
DAG. Second, the adaptive prior-calibration weight βt automatically decreases whenever prior-
suggested edges worsen the BIC-based reward, allowing the model to down-weight misleading prior
information.

To evaluate robustness, we conducted controlled corruption experiments in which a proportion of
edges in ALLM were perturbed through (i) edge flips and (ii) direction reversals. We further compared
performance across multiple LLMs (GPT-4o, LLaMA-3-70B, Mistral-7B) to assess cross-model
stability. Tables 5 and 6 summarize the results.

Automatic Prior Calibration. Differences in fusion behavior across datasets are handled entirely
through the learned mixing parameters in E2 and the adaptive weight βt. No manual tuning is
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Table 5: Effect of adaptive vs. fixed prior-weighting under corrupted LLM priors.

Dataset Corruption (%) TP/NNZ ↑ SHD ↓ Final βt Variant
Sachs (11 n) 0 0.64 12.0 0.93 Adaptive

10 0.61 12.6 0.70 Adaptive
25 0.58 13.1 0.44 Adaptive
40 0.56 13.4 0.19 Adaptive
40 0.54 14.0 — Fixed (β = 0.9)

Dream41 (100 n) 0 0.11 253.0 0.95 Adaptive
10 0.106 256.0 0.68 Adaptive
25 0.099 262.0 0.42 Adaptive
40 0.095 266.0 0.18 Adaptive
40 0.088 274.0 — Fixed (β = 0.9)

Table 6: Cross-LLM comparison of prior quality and its effect on GUIDE.

Dataset LLM TP/NNZ ↑ SHD ↓
Sachs GPT-4o 0.64 12.0

LLaMA-3-70B 0.61 12.5
Mistral-7B 0.59 12.8

Dream41 GPT-4o 0.11 253.0
LLaMA-3-70B 0.105 258.0
Mistral-7B 0.098 261.0

required. Empirically, βt converges to dataset-specific values that reflect the consistency between
ALLM and the observational data:

Table 7: Dataset-specific convergence of the adaptive prior weight βt.

Dataset Final βt (clean prior) Final βt (40% corrupted)
Sachs (11 nodes) 0.93 0.19
Dream41 (100 nodes) 0.95 0.18

These results demonstrate that GUIDE is robust to hallucinated or incorrect priors and remains con-
sistent across different LLMs. The learned fusion and calibration dynamics enable the model to
automatically regulate the influence of prior information on a per-dataset basis.

H.7 COST OF LLM PRIOR GENERATION

To quantify the computational overhead associated with constructing the LLM-derived adjacency
prior ALLM, we measured token usage, wall-clock time, and approximate API or compute cost across
several widely used large language models. Table 8 presents the aggregated statistics.

Overall, LLM prior generation is lightweight: all models require only a few thousand tokens and
tens of seconds per dataset. Moreover, open-source models executed locally (e.g., LLaMA-3-70B,
Mistral-7B) incur zero marginal cost. Compared to GUIDE’s reinforcement-learning structure-
search phase, this preprocessing step contributes negligibly to total runtime.

LLM prior generation is computationally inexpensive relative to the downstream structure-learning
phase.

H.8 COMPARISON WITH GFLOWNET-BASED DAG LEARNERS

GFlowNet-based causal structure learners explore the space of directed acyclic graphs by sampling
graphs proportionally to a target density. This generative approach facilitates diverse exploration
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Table 8: Estimated cost and runtime for generating the LLM-based adjacency prior ALLM.

LLM Tokens / dataset Wall-clock time API cost (approx.)
GPT-4o 3–6k 18–30 sec $0.02–$0.04
LLaMA-3-70B 5–10k 35–50 sec (local GPU) $0 (open-source)
Mistral-7B 3–5k 10–15 sec (local GPU) $0

but can incur substantial computational cost. In contrast, GUIDE employs policy-gradient reinforce-
ment learning guided by LLM-derived structural priors, integrating observational evidence and prior
information within a unified optimization framework.

To compare these methodologies, we evaluate GFlowNet-DAG and GUIDE on the Sachs and
Dream41 datasets. Table 9 reports TP/NNZ, SHD, and wall-clock runtime. Across both benchmarks,
GUIDE achieves higher structural accuracy and dramatically reduced runtime, with the advantage
becoming more pronounced for larger graphs.

Table 9: Comparison between GFlowNet-based DAG learners and GUIDE.

Dataset Method TP/NNZ ↑ SHD ↓ Runtime (min) ↓
Sachs GFlowNet-DAG 0.58 13.8 4.1

GUIDE (ours) 0.64 12.0 0.50
Dream41 GFlowNet-DAG 0.094 268 41

GUIDE (ours) 0.110 253 13

GUIDE delivers superior structural accuracy and substantially faster runtime compared to
GFlowNet-based DAG samplers, particularly for larger graph sizes.

H.9 LINEAR BIC TERM AND NONLINEAR RELATIONSHIPS

A potential concern is that the BIC component of GUIDE’s reward uses a linear-regression likeli-
hood, while the paper claims support for general nonlinear causal mechanisms. Importantly, the BIC
term in GUIDE is not used to model functional dependencies. Instead, it serves solely as a global
structural score that guides the policy-gradient updates. All nonlinear interactions are captured by
the MLP–Transformer encoders within the discovery module, which operate independently of the
linear BIC approximation.

To evaluate whether a linear structural score could hinder recovery of nonlinear causal relations, we
conducted an explicit comparison between:

1. The default linear BIC-based pruning used in GUIDE, and

2. A fully neural, gradient-based pruning strategy that directly optimizes nonlinear fit.

As shown in Table 10, the two variants yield nearly identical graph recovery quality on both Sachs
and Dream41, indicating that the linear BIC surrogate does not constrain nonlinear structure dis-
covery. GUIDE’s expressive encoders absorb nonlinear functional information, while the BIC term
provides an effective but lightweight structural regularizer.

Table 10: Effect of linear vs. neural pruning/scoring strategies on nonlinear recovery.

Dataset Strategy TP/NNZ ↑ SHD ↓
Sachs Linear (ours) 0.64 12.0

Neural (grad-based) 0.642 11.8

Dream41 Linear 0.11 253.0
Neural 0.112 252.5
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The use of a linear BIC surrogate in the reward does not impede the recovery of nonlinear causal
relations. The nonlinear MLP–Transformer encoders in GUIDE fully model complex dependencies,
while the BIC term provides a stable structural signal, yielding virtually identical performance to a
fully nonlinear pruning method.

]

H.10 HYPERPARAMETER ROBUSTNESS AND AUTOMATED TUNING MECHANISMS

We evaluate the sensitivity of GUIDE to the key reward-weight hyperparameters λ1, λ2, and the
initial prior-calibration coefficient β0. A one-at-a-time sensitivity analysis was conducted across
a broad range of values on both the Sachs and Dream41 datasets. As shown in Table 11, both
TP/NNZ and SHD vary by less than 5% across all tested settings, indicating that GUIDE is not
hyperparameter-fragile.

Importantly, the adaptive prior-weight βt is learned jointly with the policy and automatically adjusts
during training. This mechanism substantially reduces manual tuning effort by down-weighting un-
helpful prior edges and reinforcing informative ones.

Table 11: Sensitivity of GUIDE to reward hyperparameters. Variability in SHD remains small across
wide parameter ranges.

Varied Param Value Sachs SHD ↓ Dream41 SHD ↓
λ1 0.5 12.2 256.0

1.0 12.0 253.0
2.0 12.3 254.1

β0 0.3 12.3 254.2
0.9 12.0 253.0
1.0 12.1 253.4

GUIDE demonstrates low sensitivity to reward-weight hyperparameters, and the adaptive update of
βt serves as an effective built-in auto-tuning mechanism. This reduces reliance on manual parameter
search while maintaining stable structural recovery performance.

H.11 SIGNIFICANCE OF SOFT AND HARD ACYCLICITY CONSTRAINTS

GUIDE employs two distinct acyclicity mechanisms: (i) a soft differentiable penalty h(A) applied
during training, and (ii) a hard post-processing procedure REMOVECYCLES applied only at infer-
ence time. These components are not redundant; rather, they address different stages of the opti-
mization process.

Training-time soft acyclicity penalty. The penalty term h(A) shapes the RL search landscape
by discouraging exploration of graph regions dominated by large or repeated cycles. Without this
regularizer, the agent frequently enters highly cyclic areas of the graph space, which increases reward
variance and substantially slows policy-gradient convergence. The soft penalty therefore improves
sample efficiency and stabilizes training, but does not guarantee strict acyclicity in the final graph.

Inference-time hard cycle removal. The REMOVECYCLES post-processing step is applied only
after training and ensures that the final predicted structure is a valid DAG. Because the RL agent
may still produce small cycles due to stochastic exploration, the hard projection corrects any residual
violations without affecting training dynamics.

Ablation study. To assess the contribution of each mechanism, we compare three variants: (i) the
full method (soft + hard), (ii) hard-only (no h(A)), and (iii) soft-only (no post-processing). Table 12
shows that removing the soft penalty significantly degrades SHD and slows convergence, while
removing the hard step leaves cycles in the output despite otherwise strong performance. The two
mechanisms thus play complementary roles: shaping exploration vs. enforcing final DAG validity.
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Table 12: Effect of soft and hard acyclicity mechanisms on graph quality, cycle removal, and con-
vergence.

Dataset Variant TP/NNZ ↑ SHD ↓ Cycles Convergence
Sachs (11n) Full (soft + hard) 0.64 12.0 0 Fast

Hard-only (no h(A)) 0.59 14.2 0 Slow
Soft-only (no REMOVECYCLES) 0.63 12.1 2–4 Fast

Dream41 (100n) Full (soft + hard) 0.110 253.0 0 Fast
Hard-only (no h(A)) 0.096 271.0 0 Slow

Soft-only (no REMOVECYCLES) 0.109 257.5 15–30 Fast

The soft penalty h(A) is essential for guiding the RL agent away from highly cyclic regions, improv-
ing training stability and structural accuracy. The hard projection guarantees that the final output is
acyclic. Together, they provide efficient exploration and strict DAG validity—neither is sufficient
alone.
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H.12 HELPER FUNCTIONS

In this section we will describe all the utility functions RemoveCycles This functions transforms
a directed graph containing loops into a Directed Acyclic Graphs(DAGs). Starting with a weighted
adjacency matrix (where entries represent connection strengths between nodes), it first constructs
the graph. It then iteratively looks for cycles, removes them by eliminating the weakest link in
each loop.To minimize structural damage, the function prioritizes removing edges with the smallest
weights, ensuring stronger, more critical connections are preserved. When multiple edges in a cy-
cle share the same minimal weight, it breaks ties randomly to avoid unintended bias. This process
repeats until all cycles are eliminated, producing a directed acyclic graph (DAG) that retains the
original graph with most of the relevant edges.

Algorithm 2 RemoveCycles

Require: Adjacency matrix A ∈ Rd×d

Ensure: Acyclic adjacency matrix Aacyclic
1: Step 1: Initialize Graph
2: Create directed graph G = (V, E) from A:
3: for all i, j ∈ [1, d] do
4: if i ̸= j and A[i, j] > 0 then
5: Add edge (i, j) with weight A[i, j] to G
6: end if
7: end for
8: Step 2: Remove Cycles
9: while G contains cycles do

10: Detect cycles: C ← FindCycle(G)
11: Initialize minimum weight: wmin ←∞
12: Initialize candidate edges: Emin ← []
13: for all (u, v, direction) ∈ C do
14: w ← G[u][v][′weight′]
15: if w < wmin then
16: Emin ← [(u, v)]
17: wmin ← w
18: else if w == wmin then
19: Add (u, v) to Emin
20: end if
21: end for
22: Randomly select edge: (umin, vmin) ∼ Emin
23: Remove edge: G.remove edge(umin, vmin)
24: Update A[umin, vmin]← 0
25: end while
26: return Aacyclic
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H.12.1 PRUNEWEAKEDGES

This function is designed to refine a given graph by pruning weak connections based on regression
coefficients derived from the dataset. It begins by initializing variables, including the graph struc-
ture, node count, and a weight matrix to store regression coefficients. For each node in the graph, the
algorithm identifies its connected nodes, extracts the corresponding features and target values from
the dataset, and performs linear regression to compute the coefficients. These coefficients, represent-
ing the strength of connections, are stored in a weight matrix.The algorithm calculates a threshold
based on the sorted absolute values of the coefficients, ensuring that at least one strong connection
per node is preserved. Finally, edges in the graph are pruned by retaining only those connections
with coefficient magnitudes greater than or equal to the threshold.

Algorithm 3 PruneWeakEdges

Require: Graph batch G, Dataset X ∈ Rn×d

Ensure: Pruned graph Gpruned ∈ {0, 1}d×d

1: Step 1: Initialize Variables
2: Number of nodes: d← len(G)
3: Initialize weight matrix: W← [...] ▷ To store regression coefficients
4: Step 2: Compute Regression Coefficients
5: for i = 1 to d do
6: Select column: col← |G[i, :]| > 0.5
7: if

∑
(col) == 0 then

8: Append zeros: W.append(0d)
9: Continue

10: end if
11: Extract features: Xtrain ← X[:, col]
12: Extract target: y← X[:, i]
13: Fit linear regression: reg.fit(Xtrain,y)
14: Obtain coefficients: c← reg.coef
15: Initialize zero vector: cnew ← 0d

16: Assign coefficients: cnew[col]← c
17: Append to weight matrix: W.append(cnew)
18: end for
19: Step 3: Calculate Threshold
20: Sort: Wsorted ← sort(|W|.flatten())
21: Determine threshold index: didx ← min(d− 1, len(Wsorted)− 1)
22: Calculate threshold: th←Wsorted[didx]
23: Step 4: Prune Graph
24: Prune edges: Gpruned ← (|W| ≥ th)
25: return Gpruned
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I RELATED WORKS

Causal discovery has evolved through various algorithms, each with distinct strengths and limi-
tations. The PC algorithm (2001) uses conditional independence tests, performing well on sparse
graphs but struggling with dense ones. GES (2002) , a score-based method, searches over equiv-
alence classes of Directed Acyclic Graphs (CPDAGs) but scales poorly with dimensionality.
LiNGAM (2006) employs independent component analysis to infer causal directions but faces chal-
lenges with mixed data types and scalability. ANMs (2008) integrate non-linear dependencies with
additive noise, but falter with mixed data and large datasets. NOTEARS (2018) frames causal dis-
covery as an optimization problem using Structural Equation Models (SEMs), but struggles on non-
continuous data. GraN-DAG (2001) leverages neural networks for non-linear relationships, perform-
ing well with Gaussian noise but struggling with scalability and mixed data. Reinforcement learning
methods like RL-BIC (2020) and KCRL (2022) optimize Bayesian Information Criterion scores or
incorporate prior knowledge but are limited to small datasets.

Numerous studies have explored the application of Large Language Models (LLMs) in causal dis-
covery, particularly in pairwise causal reasoning and graph construction. Research such as Hobbhahn
et al. (2022) and Zhang et al. (2023) focus on pairwise causal inference, while Kıcıman et al. (2023)
employ an iterative pairwise querying approach to construct full causal graphs. However, scalability
remains a challenge due to the quadratic complexity with respect to the number of nodes. To address
this, Vashishtha et al. (2023) introduces a triplet-based method with a voting mechanism, though
they have only evaluated their approach on small datasets. Meanwhile, Arsenyan et al. (2023) lever-
age LLMs to extract causal relationships, prioritizing domain knowledge over ground truth Directed
Acyclic Graphs (DAGs).

Beyond direct causal inference, LLMs are also used to generate constraints and priors for causal
discovery. Studies such as Ban et al. (2023) and Cohrs et al. (2024) demonstrate how LLMs can
provide pairwise edge constraints, conditional independence constraints, and causal order priors,
which are then integrated into traditional causal discovery algorithms. Additionally, LLMs have
been explored for causal representation learning, with models like GPT-4 (Turbo) showing the abil-
ity to infer causal relationships even with minimal context, such as label-only information. While
GPT-4 was not explicitly designed for causal reasoning, research suggests that it generates causal
graphs with greater alignment to common sense compared to standard causal Machine Learning
(ML) models. Moreover, combining GPT-4 with causal ML has been shown to enhance causal dis-
covery, producing graphs that more closely match expert-identified structures and mitigating the
limitations of ML-based causal inference Constantinou et al. (2025).
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J PARAMETER SETTINGS

We used various causal discovery methods based on constraints, functional causal model (FCM)
based, score based, reinforcement learning based, and gradient based techniques, each configured
with appropriate hyperparameters.We have used parameter initialization from gcastle causal discov-
ery package Zhang et al. (2021).

Parameter Settings for Baseline Causal Algorithms

Constraint-based approaches:
PC = PC(variant=’original’, alpha=0.05, ci test=’fisherz’, priori knowledge=None)

FCM-based methods:
ICA-LiNGAM = ICALiNGAM(random state=None, max iter=1000, thresh=0.3)
ANM = ANMNonlinear(alpha=0.05)

Score-based techniques:
GES = GES(criterion=’bic’, method=’scatter’, k=0.001, N=10)

RL-BIC= RL(encoder type: str = ’TransformerEncoder’, hidden dim: int = 64, num heads: int
= 16, num stacks: int = 6, residual: bool = False, decoder type: str = ’SingleLayerDecoder’, de-
coder activation: str = ’tanh’, decoder hidden dim: int = 16, use bias: bool = False, use bias constant:
bool = False, bias initial value: bool = False, batch size: int = 64, input dimension: int = 64, normalize:
bool = False, transpose: bool = False, score type: str = ’BIC’, reg type: str = ’LR’, lambda iter num:
int = 1000, lambda flag default: bool = True, score bd tight: bool = False, lambda2 update: int = 10,
score lower: float = 0, score upper: float = 0, seed: int = 8, nb epoch: int = 10, lr1 start: float = 0.001,
lr1 decay step: int = 5000, lr1 decay rate: float = 0.96, alpha: float = 0.99, init baseline: float = -1,
l1 graph reg: float = 0, verbose: bool = False, device type: str = ’gpu’, device ids: int = 0)

KCRL = KCRL(encoder type: str = ’TransformerEncoder’, hidden dim: int = 64, num heads: int
= 16, num stacks: int = 6, residual: bool = False, decoder type: str = ’SingleLayerDecoder’, de-
coder activation: str = ’tanh’, decoder hidden dim: int = 16, use bias: bool = False, use bias constant:
bool = False, bias initial value: bool = False, batch size: int = 64, input dimension: int = 64, normalize:
bool = False, transpose: bool = False, score type: str = ’BIC’, reg type: str = ’LR’, lambda iter num:
int = 1000, lambda flag default: bool = True, score bd tight: bool = False, lambda2 update: int =
10, score lower: float = 0, score upper: float = 0, seed: int = 8, nb epoch: int = 10, lr1 start: float =
0.001, lr1 decay step: int = 5000, lr1 decay rate: float = 0.96, alpha: float = 0.99, init baseline: float
= -1, l1 graph reg: float = 0, true graph=np.array([]),verbose: bool = False, device type: str = ’gpu’,
device ids: int = 0.)

Gradient-based methods:
GraNDAG = GraNDAG(input dim, hidden num: int = 2, hidden dim: int = 10, batch size: int =
64, lr: float = 0.001, iterations: int = 10000, model name: str = ’NonLinGaussANM’, nonlinear:
str = ’leaky-relu’, optimizer: str = ’rmsprop’, h threshold: float = 1e-7, device type: str = ’cpu’,
device ids: int = 0, use pns: bool = False, pns thresh: float = 0.75, num neighbors: Any — None =
None, normalize: bool = False, random seed: int = 42, jac thresh: bool = True, lambda init: float = 0,
mu init: float = 0.001, omega lambda: float = 0.0001, omega mu: float = 0.9, stop crit win: int = 100,
edge clamp range: float = 0.0001, norm prod: str = ’paths’, square prod: bool = False)

NOTEARS = Notears(lambda1: float = 0.1, loss type: str = ’l2’, max iter: int = 100, h tol: float =
1e-8, rho max: float = 10000000000000000, w threshold: float = 0.3)
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Parameter Settings for GUIDE Framework

1) DAG Model Parameters
• Data Dimension (data dim): Matches number of features in loaded data
• Hidden Dimension (hidden dim): 64
• Number of Transformer Heads (nheads): 8
• Number of Transformer Layers (num layers): 3
• Dropout (dropout): 0.2
• Activation Function: ReLU

2) Training Parameters for REINFORCE
• Number of Training Epochs (num epochs): 10
• Batch Size (batch size): 64
• Actor Learning Rate (actor lr): 1e−3

• Discount Factor (γ): 0.99
•Maximum Steps per Episode (max steps): 100
• Gradient Clipping (clip grad norm): 0.5

3) Reward Function Parameters
• Score Type: BIC different var
• Regression Type: LR
• L1 Regularization (l1 graph reg): 1.0
• Lambda Parameters (λ1, λ2, λ3): 1.0, 2.0, 0.5
• Search Space Boundaries (sl, su): 0, 1
• BIC Penalty Term: log(num samples)/num samples

4) Partial Prior Settings
• Fraction of Known Edges: 0.25

5) Pruning Settings
• Threshold for Pruning: Top d largest weights
• Regression Method: Linear Regression

Table 13: Summary of evaluation metrics used in the experimental section. TP/NNZ and RP focus
on the precision of predicted edges, complementing classical metrics by isolating the ability to detect
true edges.

Metric Formula Interpretation / Notes

TPR TPR = TP
TP+FN

True positive rate; measures recall of true causal edges. Penalises false negatives.

FDR FDR = FP
TP+FP

False discovery rate; proportion of predicted edges that are incorrect. Lower is better.

FPR FPR = FP
FP+TN

False positive rate; fraction of absent edges incorrectly predicted as present.
SHD SHD = #(edge additions) + #(edge deletions) + #(edge reversals) Structural Hamming distance; lower values indicate closer agreement with the ground

truth DAG.
TP/NNZ TP

NNZ
Ratio of true positive edges to the total number of predicted edges (NNZ is the num-
ber of non-zero entries in the predicted adjacency matrix). Focuses on precision of
edge recovery; unaffected by correct non-edge predictions.

RP RP =
maxm TP/NNZm−TP/NNZ

maxm TP/NNZm
Relative performance; measures how far a model is from the best TP/NNZ on a given
dataset. Lower values mean closer to the best performer.
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K EXAMPLE PROMPT USED FOR ICL

PROMPT TEMPLATE

You are an *intelligent causal discovery agent* tasked with mapping how signaling molecules interact
in the Sachs dataset to form a causal signaling network. These molecules influence one another
through biochemical processes like activation, inhibition, or enzymatic transformation, ultimately
leading to downstream cellular responses.

### **Important Rules:**
- Each signaling molecule may have *multiple incoming edges* to reflect how upstream molecules
influence its activity.
- Some molecules act as *critical intermediaries* (e.g., converting signals or amplifying responses)
and may have both *incoming and outgoing edges*.
- The causal DAG should faithfully represent known causal relationships in the Sachs dataset based
on experimental data and biological knowledge.

### **Features:**
1. **Akt**: A kinase involved in cell survival pathways, regulating processes like metabolism,
proliferation, and apoptosis.
2. **Erk**: Extracellular signal-regulated kinase, part of the MAP kinase pathway, essential for cell
division and differentiation.
3. **Jnk**: c-Jun N-terminal kinase, associated with stress response and apoptosis signaling.
4. **p38**: A stress-activated protein kinase involved in responses to inflammation and environmen-
tal stress.
5. **PIP2**: Phosphatidylinositol 4,5-bisphosphate, a phospholipid precursor involved in signal
transduction and membrane dynamics.
6. **PIP3**: Phosphatidylinositol 3,4,5-trisphosphate, generated by PI3K and a key regulator of Akt
signaling.
7. **PKA**: Protein kinase A, a cAMP-dependent kinase that regulates metabolic and gene
transcription processes.
8. **PKC**: Protein kinase C, involved in regulating various cellular functions, including gene
expression and membrane signaling.
9. **PLCg**: Phospholipase C gamma, an enzyme that hydrolyzes PIP2 into IP3 and DAG, key
molecules in calcium signaling.
10. **Raf**: A kinase that acts upstream of MEK and Erk in the MAPK/ERK signaling pathway,
influencing cell growth and survival.
11. **pIP3**: Phosphorylated inositol triphosphate, linked to calcium signaling and involved in
cellular communication.

—
### **Output Example:**

### **Step 1: Finding the Edges**

Here are the identified edges, focusing on how the signaling molecules influence one another:

1. **Edge (PIP2 → PIP3):** PIP2 is phosphorylated by PI3K to form PIP3, marking a key step in
activating the Akt signaling pathway.
2.........
..
.
.
—

### **Step 2:
—

**Output format: **
Provide a list of edges in the format specified above. For example:
“‘ 1. (A, B) : Explanation of why A causes B.
2. (C, D) : Explanation of why C causes D.
...
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