
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GUIDE : GENERALIZED-PRIOR AND DATA ENCODERS
FOR DAG ESTIMATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Modern causal discovery methods face critical limitations in scalability, compu-
tational efficiency, and adaptability to mixed data types, as evidenced by bench-
marks on node scalability (30,≤ 50,≥ 70 nodes), computational energy demands,
and continuous/non-continuous data handling. While traditional algorithms like
PC, GES, and ICA-LiNGAM struggle with these challenges, exhibiting pro-
hibitive energy costs for higher-order nodes and poor scalability beyond 70 nodes,
we propose GUIDE 1, a framework that integrates Large Language Model (LLM)-
generated adjacency matrices with observational data through a dual-encoder ar-
chitecture. GUIDE uniquely optimizes computational efficiency, reducing runtime
on an average by ≈ 42% compared to RL-BIC and KCRL methods, while achiev-
ing an average≈ 117% improvement in accuracy over both NOTEARS and GraN-
DAG individually. During training, GUIDE’s reinforcement learning agent dy-
namically balances reward maximization (accuracy) and penalty avoidance (DAG
constraints), enabling robust performance across mixed data types and scalability
to ≥ 70 nodes—a setting where baseline methods fail.

1 INTRODUCTION

“While probabilities encode our beliefs about a static world, causality tells us
whether and how probabilities change when the world changes, be it by interven-
tion or by act of imagination.”

— Pearl & Mackenzie (2018)

Causal Discovery2 is considered as a hallmark of human intelligence (Penn & Povinelli, 2007;
Harari, 2014). The ability to discover directed acyclic graph (DAG) [i.e. causal discovery] from
available information (data) is crucial for scientific understanding and rational decision-making:
for example, knowing whether smoking causes cancer might enable consumers to make more in-
formed decisions (Doll & Hill, 1950; 1954); examining whether greenhouse gas emissions directly
drive climate shifts can help policymakers design effective strategies to mitigate environmental im-
pact (IPCC, 2021); investigating how teacher training influences student performance can guide
education policymakers in allocating resources for teacher development programs (Garet et al.,
2001); and discerning whether increased screen time contributes to deteriorating mental health
can empower healthcare providers to craft evidence-based recommendations for digital media us-
age (Twenge et al., 2018). Therefore, identifying causality in critical practical applications can have
an overarching societal impact.

Our opening quote reflects the ambitions of numerous researchers in artificial intelligence and causal
discovery: to develop a model that can effectively perform causal discovery, identifying directed
acyclic graphs (DAGs) efficiently and at scale (refer Appendix I). Many previous works addressed
the paradigm of causal discovery using different methods. The PC algorithm (2001) infers causal
relationships using conditional independence (CI) tests. While efficient for small-node datasets, it
struggles with scalability due to exponentially increasing computational complexity. Similarly, the
score-based GES algorithm (2002) performs a greedy search over equivalence classes of DAGs.

1Our code is available here - Github
2The process of learning graphical structures with a causal interpretation is known as causal discovery Zanga

et al. (2022).

1

https://anonymous.4open.science/r/GUIDE-Generalized-Prior-and-Data-Encoders-for-DAG-Estimation-EB78/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Though it accounts for latent and selection variables, its exponential complexity limits its applica-
bility to high-dimensional data. LiNGAM (2006), based on Functional Causal Models (FCMs), em-
ploys independent component analysis to infer causal directions without relying on the faithfulness
assumption(all observed conditional independencies in the data reflect true causal relationships).
While this method demonstrates robustness in specific scenarios, it encounters difficulties with
mixed data types and Gaussian noise. Additionally, it does not scale efficiently to larger datasets. For
modeling non-linear relationships, the ANMs (2008) integrates non-linear dependencies with addi-
tive noise, enabling effective identification of causal directions. However, it is limited by its inability
to handle mixed data types (continuous (e.g., height) and categorical (e.g., gender)) and its poor
scalability to large datasets. NOTEARS (2018) frames causal discovery as an optimization problem
using Structural Equation Models (SEMs) with regularized score functions. It is well-suited for con-
tinuous data but struggles with non-continuous or mixed data types. GraN-DAG (2019) leverages
neural networks trained via gradient-based methods to effectively model non-linear relationships.
Although it excels with Gaussian additive noise models, it faces significant challenges in scaling and
handling mixed data types. Reinforcement learning approaches, such as RL-BIC (2020), iteratively
optimize a Bayesian Information Criterion (BIC) score to refine causal structure search. However,
these methods are only scalable to datasets containing approximately 30 variables. KCRL (2022)
enhances performance by incorporating prior knowledge constraints into reinforcement learning but
similarly struggles with scalability in larger systems. To summarize, we have identified some signif-
icant research gaps as below.

Gaps

• Most algorithms struggle with scalability for datasets exceeding 50 nodes, limiting their ap-
plicability to large-scale problems.

• Few methods can efficiently handle the high computational energy demands associated with
higher-order nodes.

• Handling mixed data types remains a challenge for many approaches, restricting their use in
real-world heterogeneous datasets.

• Existing methods predominantly focus on linear causal relationships, failing to adequately
model complex non-linear dependencies.

• A significant gap exists in consistently supporting both continuous and non-continuous data
properties, limiting robustness across domains.

Table 1 exhibits a thorough comparison across State of the Art (SOTA) Causal Discovery algorithms
highlighting significant limitations in current causal discovery methods, particularly in their scala-
bility, computational efficiency, and adaptability to diverse data types and relationships, motivating
us to explore the following question:

How can causal discovery frameworks achieve consistent accuracy across diverse data regimes
(e.g., discrete, confounded) while maintaining computational scalability and efficiency in

high-dimensional settings?

In the endeavour of answering this question and alleviating the limitations of the existing meth-
ods, we propose a novel approach GUIDE (see Section 2) that leverages generative priors (initial
causal DAG generated using LLMs), reinforcement learning, and a dual-encoder architecture to en-
hance scalability, reduce computational overhead, and handle both mixed and non-linear data types
seamlessly. Our method ensures robust support for continuous and non-continuous data properties,
bridging critical gaps in existing algorithms and paving the way for more accurate and efficient
causal discovery across diverse real-world scenarios.

We summarize the main contributions of our work:

1. Unified Framework based Causal Discovery for Generalization and Scalability: We
introduce a scalable and efficient approach that integrates generative priors and observational data
through a dual-encoder architecture, enabling robust discovery of causal structures across diverse
datasets. Our method effectively handles large-scale problems, mixed data types, and complex
non-linear relationships, ensuring applicability across real-world scenarios.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

SOTA Causal Discovery
Algorithms Scalability

Computational
Energy for higher

order nodes
Mixed Data Linear Causal

Relationship

Property of Data
(Continuous or

Non-Continuous)
≤ 30 Nodes ≤ 50 Nodes > 70 Nodes

PC (Spirtes et al. (2001)) ✓ × × × ✓ ✓ ✓
GES (Chickering (2002)) ✓ × × × ✓ ✓ ✓
RL-BIC (Zhu et al. (2020)) ✓ × × × ✓ ✓ ✓
KCRL (Hasan & Gani (2022)) ✓ × × × ✓ ✓ ✓
LiNGAM (Shimizu et al. (2006)) ✓ × × × × ✓ ✓
ANM (Hoyer et al. (2008)) ✓ × × × × ✓ ✓
NOTEARS (Zheng et al. (2018)) ✓ ✓ ✓ ✓ ✓ ✓ ×
GraNDAG (Lachapelle et al.
(2019)) ✓ ✓ ✓ ✓ ✓ × ✓

GUIDE(Ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Comparison of causal discovery algorithms with detailed scalability columns and other key properties.

Figure 1: Overview of the GUIDE training workflow. Observational data and prior knowledge are
encoded by two encoders (E1/E2) and fused into a combined feature, from which a policy head
produces edge probabilities for an adjacency matrix. An RL agent iteratively proposes graphs and
interacts with an RL environment that computes a reward combining BIC data-fit, an acyclicity
penalty, and prior-consistency via a comparator. The loop continues until the stopping criterion is
met, yielding a directed acyclic graph (DAG).

2. Reinforcement Learning-Driven Optimization: While traditional RL methods often incur high
computational costs due to exhaustive exploration, our framework strategically integrates prior
knowledge (LLM-generated adjacency matrices) and a constrained action space to guide the RL
agent. This reduces the exploration burden (reducing runtime by 42% compared to RL-BIC and
KCRL), enabling faster convergence and lower energy consumption compared to vanilla RL ap-
proaches.

Organization: The rest of our paper is organized as follows. We briefly discuss the details of our
proposed approach Section 2. We present our results in Section 3, along with baselines, datasets, and
evaluation metrics. We discuss our key findings in Section 3.4. Finally, in Section 4, we conclude
with a short discussion and a few open directions.

2 METHODOLOGY: GUIDE

2.1 PROBLEM

We aim at inferring a causal graph that accurately represents the data-generating process from a
given dataset X = {xk}mk=1, where xk represents k-th observed sample. Specifically, the task is
to predict a binary adjacency matrix A ∈ {0, 1}d×d that encodes causal relationships between d
variables while ensuring that the resulting graph is a Directed Acyclic Graph (DAG).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

To address this challenge, we propose an encoder-based framework that integrates data-driven de-
pendencies with domain knowledge from Large Language Models (LLMs). LLMs generate an ini-
tial adjacency matrix using domain-specific prompts, providing a knowledge-driven initialization for
the model.Our approach combines two complementary sources of information: first, Data-Driven
Dependencies: Statistical relationships between variables are captured directly from the observed
dataset X and second, Domain Knowledge: The initial adjacency matrix encodes potential causal
edges inferred from LLMs, serving as a soft constraint to guide learning.

The proposed framework employs a DAG Model to process these inputs and jointly predict the ad-
jacency matrix. This ensures the discovery of causal structures that are consistent with the observed
data and informed by domain knowledge. We first present the preliminary concepts integral to our
approach in the following Section (Section 2.2) and proceed toward a detailed description of our
proposed method GUIDE.

2.2 PRELIMINARIES

Prior Knowledge Graph: In many applications, prior knowledge is crucial for causal modeling. For
example, in medicine, we often have access to prior knowledge about the symptoms and treatment
of diseases, which can be found in the literature or knowledge bases Sinha & Ramsey (2021). For
instance, KCLR: Prior Knowledge Based Causal Discovery With Reinforcement Learning demon-
strates that the effective incorporation of prior knowledge into causal discovery Hasan & Gani (2022)
can improve causal discovery. Andrews et al. (2020) show that the FCI algorithm achieves sound-
ness and completeness when integrating tiered background knowledge. Similarly, Borboudakis &
Tsamardinos (2012) emphasize that even a small set of causal constraints can significantly orient the
causal graph, facilitating the identification of causal edges. Constraints based on prior knowledge,
can be integrated into the reward mechanism to steer the RL agent toward an optimized policy. The
agent can receive feedback through rewards for adhering to the constraints or penalties for violating
them, guiding its learning process effectively.

Generative Priors: Large language models (LLMs) can also serve as a source of domain-specific
priors. These models, which are trained on vast textual data, encode causal knowledge derived from
domain literature. When integrated into causal discovery models, prior knowledge derived from
LLM can further enhance the precision of causal relationships, offering a powerful tool to improve
the efficiency and effectiveness of the causal learning process.

Reinforcement Learning for Graph Search: Reinforcement learning (RL) for causal discovery is
an emerging area of research with significant potential for identifying causal structures when used
effectively. Recently, RL has shown promising results in uncovering causal relationships from ob-
servational data (Zhu et al., 2020). RL operates on a trial-and-error basis, iteratively improving its
strategy by receiving feedback (positive or negative rewards) after taking actions (Sutton & Barto,
2018). By incorporating constraints such as the BIC score, acyclicity, and prior knowledge, RL
agents can be guided toward an optimized policy, refining their graph formation strategy and en-
hancing accuracy.

Reward Mechanism: The total reward R is computed by combining all penalties incurred during
the causal graph discovery process. These penalties include: BIC Penalty (PBIC): This penalizes the
agent based on the Bayesian Information Criterion (BIC) score, which measures the trade-off be-
tween the model’s goodness-of-fit and its complexity Haughton (1988); Chickering (1996), Acyclic-
ity Penalty (Pacyclicity): This enforces the requirement that the generated graph must be a Directed
Acyclic Graph (DAG) Zheng et al. (2018) and Prior Knowledge Penalty (Pprior): This penalizes
mismatches between the edges in the generated graph and the edges specified in the prior adja-
cency matrix Hasan & Gani (2022). This reward is subsequently fed back to the RL agent, enabling
the feedback mechanism to help the agent iteratively refine its strategy and ensure accurate causal
discovery.

2.3 OUR FRAMEWORK: GUIDE

In this section, we introduce our framework, GUIDE: Generalized-Prior and Data Encoders for
DAG Estimation (refer to Algorithm 1 and Figure 1). GUIDE is a causal discovery approach that in-
tegrates reinforcement learning (RL), prior knowledge, and pruning techniques to iteratively refine a

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 The Proposed RL approach to Generative AI-based Causal Discovery

Require: Observational data X ∈ Rn×d, Prior Adjacency Matrix APrior, LLM generated adjacency ALLM,∈
{0, 1}d×d

Ensure: Predicted DAG adjacency matrix A∗

1: Step 1: Encode Inputs
2: Encode data: Hdata = fθ(X) ▷ Data encoder E1

3: Encode LLM prior: HLLM = gϕ(ALLM) ▷ LLM encoder E2

4: Step 2: Feature Fusion
5: Fuse features: H = Concat(Hdata,HLLM)
6: Predict edges: P = σ(MLP(H)) ▷ Edge probabilities via sigmoid
7: Step 3: Optimization
8: while not converged do
9: Sample A ∼ Bernoulli(P) ▷ Binary adjacency

10: Enforce acyclicity: A← RemoveCycles(A)
11: Compute reward:R = PBIC︸︷︷︸

data fit

+λ∥A−APrior∥︸ ︷︷ ︸
prior penalty

+ γh(A)︸ ︷︷ ︸
acyclicity

12: Update parameters: θ, ϕ← θ − η∇θR, ϕ− η∇ϕR
13: end while
14: Step 4: Prune & Refine
15: Threshold: A∗ = I(P > τ) ▷ Sparse adjacency
16: Enforce acyclicity: A∗ ← RemoveCycles(A∗) ▷ See Appendix algorithm 2
17: Finalize DAG: A∗ ← PruneWeakEdges(A∗) ▷ See Appendix algorithm 3
18: return A∗

causal graph. The goal is to discover the underlying causal structure of a given dataset while balanc-
ing data-driven modeling, prior constraints, and structural sparsity. With the preliminary concepts
defined in the backdrop, we now proceed towards elucidating every step of our proposed framework.

2.3.1 MODEL TRAINING PHASE

The process starts with three key inputs: dataset X , true adjacency matrix Atrue (for evaluation
only), prior adjacency matrix Aprior, and Ainitial (LLM-derived generative priors). The dataset X is
structured as [m, d], where m is the number of observations and d the number of variables. Each row
corresponds to an instance, and each column represents a variable. The prior adjacency matrix Aprior
encodes partial causal knowledge: Aprior[i, j] = 1 indicates confidence in i→ j, while Aprior[i, j] =
−1 reflects uncertainty. Aprior is generated by selecting a fraction f of edges from Atrue as known
(Aprior[i, j] = 1), leaving the rest unspecified (Aprior[i, j] = −1).

DAG Model 3 We employ a DAG model to infer the causal structure, producing an adjacency
matrix A that represents the predicted causal relationships. The model has two primary components:
an adjacency matrix encoder and a data encoder. The adjacency matrix encoder processes Aintial
through an encoder neural network to produce a latent representation of the domain knowledge
given by the llm. Similarly, the data encoder processes the dataset X to capture statistical dependen-
cies among variables. These latent representations are fused and passed through additional layers,
resulting in an intermediate adjacency matrix Alogits.

The raw logits in Alogits are transformed into edge probabilities using a sigmoid activation function:

Aprobs[i, j] =
1

1 + e−Alogits[i,j]
.

A binary adjacency matrix A is then derived by thresholding the edge probabilities:

A[i, j] =

{
1 if Aprobs[i, j] ≥ τ,

0 otherwise,

where, τ is a predefined threshold.

3For a more detailed view about this, please refer appendix B

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Optimization To refine A, reinforcement learning maximizes a reward function R balancing data
fit (BIC score), acyclicity, and prior knowledge consistency:

PBIC(A) = md log

(∑d
i=1 RSSi

md

)
+#(edges) logm,

To ensure a DAG structure, the framework penalizes cyclic violations using the matrix exponential
of A:

Pacyclicity = λ1 · h(A) + λ2 · Indicatoracyclicity(A),

where, h(A) = trace(eA)− d,

The third component of the reward function penalizes deviations from the prior knowledge, defined
as: Pprior = β · p,. The total reward function combines these terms:

R = [PBIC(A) + Pacyclicity + Pprior] .

The agent iteratively refines A by predicting edge probabilities Aprobs, sampling a binary adjacency
matrix A and updating its policy via REINFORCE to minimize R.

2.3.2 MODEL INFERENCE PHASE

Post Processing Over iterations, the adjacency matrix with the highest reward is retained as
the best estimate of the causal structure. To further refine the graph, we apply a pruning mech-
anism. For each variable i, a linear regression model is fit using its parent variables (determined
by A) as predictors. The regression coefficients are used to compute a weight matrix W (i.e
W [i, j] = regression coefficient for parent j in predicting i.) Instead of a fixed pruning thresh-
old, a dynamic threshold is set as the d-th highest weight in the weight matrix W , ensuring
retention of only the strongest relationships. The pruning threshold for each variable is: τi =
the d-th largest value of |W [i, j]| for all j.

Then, the pruned adjacency matrix Apruned is determined by keeping only the strongest connections:

Apruned[i, j] =

{
1 if |W [i, j]| > τi,

0 otherwise.

Finally, any remaining cycles are removed to ensure Apruned remains a valid DAG, resulting in Afinal.
This final output represents predicted causal graph, which is then evaluated against the ground truth
Atrue.

3 EXPERIMENTAL SETUP

3.1 BASELINES

To evaluate the efficacy of our proposed method (GUIDE), we empirically compare it against sev-
eral established baseline methods for causal structure discovery from data (see Table 1). These
baselines include constraint-based approaches such as the PC algorithm, FCM-based methods like
ICA-LiNGAM and Additive Noise Models (ANM), and score-based techniques such as GES,
RL-BIC, and KCRL. Additionally, we consider gradient-based methods, including GraNDAG and
NOTEARS. This diverse selection ensures a comprehensive assessment of our model’s performance
Zhang et al. (2021). For details on the parameter settings of the baseline methods, refer to Ap-
pendix J.

3.2 METRICS

We use standard metrics (ref appendix J) to evaluate causal discovery algorithms (refer to the Eval-
uation Metrics for Causal Discovery section in Hasan et al. (2023)). Additionally, we introduce
two new metrics “TP/NNZ” and “RP” to evaluate the accuracy of true edge identification in causal
algorithms. True positives per non-zero predictions (TP/NNZ): TP/NNZ = True Positives

Number of predicted edges

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Relative Performance (RP): RP compares a model’s TP/NNZ against the best-performing model.
A lower RP indicates closer performance to the best model. RP = Best(TP/NNZ)−TP/NNZ

Best(TP/NNZ)

Why these Metrics?

These metrics focus specifically on the proportion of predicted edges that are actually true, unlike tradi-
tional precision, which includes both edge and non-edge predictions. In real-world datasets, the ground
truth causal graphs are sparse, where true edges are rare, and traditional precision can be dominated
by correct nonedge predictions, masking the model’s edge detection performance. By isolating edge
predictions, these metrics provide a clearer measure of the model’s ability to identify genuine causal
relationships. Ultimately, these metrics bridge theory and practice, ensuring causal models deliver ac-
curate, interpretable results for decision-making and analysis.

Dataset Best TPR Best FDR Best SHD Best TP/NNZ Best RP

Sachs GUIDE GUIDE GUIDE GUIDE GUIDE
Asia GES GUIDE GES GUIDE GUIDE
Lucas GES GES GES GES GES
Alarm NOTEARS LiNGAM LiNGAM GUIDE GUIDE
Hepar GUIDE GUIDE GES GES GUIDE
Dream41 GUIDE GUIDE GraNDAG GraNDAG GraNDAG

Table 2: Dataset-wise comparison of methods across key metrics. Cells highlighted in green indicate
that GUIDE achieves the best value (highest TPR or TP/NNZ, or lowest FDR, FPR, SHD, or RP)
on a dataset. For a more detailed view about this, please refer appendix H

3.3 DATASET-WISE RESULTS(WRT TP/NNZ)

Why TP/NNZ? We report TP/NNZ (true positives among all predicted nonzeros) because it directly
reflects how clean a learned graph is: the metric rewards methods that recover many correct edges
while penalizing spurious ones, and is comparable across datasets with different sizes/densities. Un-
like SHD (which scales with graph size) or composite scores (which mix multiple effects), TP/NNZ
isolates edge-level correctness under sparsity—precisely the regime where causal discovery is most
useful.

Figure 2: Dataset-wise TP/NNZ (higher is better). Bars are color-coded by algorithm and grouped
by dataset. GUIDE leads on SACHS and ALARM; GES dominates LUCAS; GPT-4o peaks on
ASIA. On larger graphs (HEPAR, DREAM41) all methods exhibit lower TP/NNZ, with GPT-4o
and GUIDE only marginally ahead of others.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Overview. • SACHS—GUIDE leads (0.64), followed by KCRL (0.48) and a mid-pack of
RL/LiNGAM/PC (≈ 0.36–0.40); • ASIA—GPT-4o peaks (1.00) with GUIDE (0.80) and GES
(0.73) close behind; • LUCAS—GES dominates (0.92), PC is strong (0.83), GUIDE competi-
tive (0.67), and NOTEARS/KCRL/LiNGAM/RL cluster around 0.42–0.53; • ALARM—GUIDE
is best (0.38) with ANM (0.37), PC (0.36) and NOTEARS (0.34) next; • HEPAR—all meth-
ods are low, with GPT-4o (0.20) slightly ahead of GUIDE (0.16) and NOTEARS (0.10); •
DREAM41—performance remains low: GraNDAG (0.14), GUIDE (0.11), NOTEARS (0.09).
Overall, GUIDE is strongest on small–medium graphs (SACHS, ALARM) and stays competitive
at scale, while GES/PC excel on LUCAS/ASIA and GPT-4o peaks on ASIA; the consistent drop on
HEPAR/DREAM highlights the challenge of larger, denser graphs. For more detailed interpretation,
please refer appendix H

3.4 KEY FINDINGS

Unified Framework: Synergy of Generative Priors and Observational Data: The dual-encoder
architecture, which integrates LLM-generated adjacency matrices with observational data, demon-
strates measurable advantages: i) Precision in Sparse Networks: On the Sachs dataset (biological
signaling pathways), GUIDE achieves a TP/NNZ score of 0.64 (vs. KCRL: 0.48), illustrating how
generative priors enhance edge detection in low-data regimes; ii) High-Dimensional Robustness: For
the Hepar dataset (non-linear relationships with latent variables) GUIDE attains a higher TP/NNZ
score underscoring its ability to harmonize structural priors with observational signals in complex
systems.; iii) Limitation in Confounded Settings: On the Dream41, GUIDE’s RP drops, emphasizing
the need for dynamic prior calibration when unobserved confounders dominate.

Why performance varies across datasets Asia (8 nodes). Small, well-studied structure with
strong conditional independences; score-based GES attains the best SHD/TPR. GUIDE excels on
precision-like metrics (FDR, TP/NNZ) owing to a clean prior but is not SHD-optimal. Lucas. Bi-
nary BN with strong inductive bias matching GES; GUIDE trails when priors are less informative.
Sachs. Sparse signalling network; GUIDE dominates (low SHD, high TP/NNZ) as the LLM prior
is clearly informative and data are limited. Alarm. Medium scale; GUIDE achieves best TP/NNZ
and RP while NOTEARS/LiNGAM win on SHD/FDR, reflecting different tradeoffs. Hepar. Larger
graph with complex relations; GUIDE maintains good recall/precision but SHD is not best, indi-
cating room in pruning/cycle breaking. Dream41. Very large; GUIDE keeps recall but increases
SHD/FPR, consistent with latent or dense dependencies; see §E.

Figure 3: Inference time comparison across causal discovery algorithms. GUIDE demonstrates sig-
nificant computational efficiency, completing inference on the Sachs dataset (11 nodes) in 0.5 min-
utes, outperforming RL-BIC (3.0 minutes) and KCRL (4.0 minutes). For the large-scale DREAM41
dataset, GUIDE remains among the few scalable methods, achieving faster inference than compet-
ing approaches.

RL-Driven Optimization: Balancing Scalability and Generalization GUIDE’s architecture ex-
cels in scalability and adaptability to diverse data types:

⋄Runtime Efficiency: (refer Figure 3) For the Sachs dataset (11 nodes), GUIDE achieves inference
in 0.5 minutes, which is 6 times faster than RL-BIC (3.0 minutes) and 4 times faster than KCRL (4.0
minutes). On the largest node dataset, DREAM41, most state-of-the-art algorithms fail to produce

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

results. Among the few that succeed, GUIDE demonstrates significantly faster inference, further
highlighting its scalability and efficiency in high-dimensional settings. • Relative Performance: A
lower RP indicates better performance. As shown in Figure appendix H, our model demonstrates
strong generalization across datasets. GUIDE excels on Sachs, Alarm, and Hepar, where integrat-
ing generative priors with observational data is particularly effective. However, it is outperformed
by GES, GPT-4o(ICL), and NOTEARS on Lucas, Asia, and Dream41, respectively. Despite these
limitations, GUIDE’s consistent performance across diverse datasets—from small-scale biological
networks (Sachs) to high-dimensional gene regulatory systems (Dream41)—highlights its robust-
ness. These results underscore GUIDE’s ability to deliver fast and scalable inference across datasets
of varying sizes, solidifying its position as a robust and efficient solution for modern causal discov-
ery challenges. Its performance on both small and large-scale benchmarks highlights its versatility
and computational edge over existing methods.

3.5 ABLATION STUDY

In this section, we examine the impact of incorporating Generative Priors and Prior Constraints
in causal discovery (refer Appendix H.5). Our ablation study demonstrates that combining gen-
erative priors (as initial estimates) with domain-specific expert knowledge (as reward constraints)
significantly enhances causal discovery performance. The key findings from our study include:

Figure 4: Impact of integrating Generative Priors and Prior constraints on causal discovery. Ab-
lation shows that ICL (generative prior) or prior constraints alone improve performance over the
baseline (model without generative prior and prior knowledge), but their combined integration yields
synergistic gains ≈ 80% over the baseline, validating the necessity of both components for opti-
mal causal reasoning

i) Using generative priors alone within our dual-encoder framework improves the true positive rate
(TPR) for edge detection on the Sachs dataset by ≈ 20%; ii) Employing expert-derived constraints
independently results in a ≈ 38% increase in TPR; iii) The synergy between these two approaches
leads to an overall TPR improvement of ≈ 80% compared to the baseline system, which lacks
both priors and constraints (see fig. 4). This aligns with Hasan & Gani (2022), who highlighted
the fundamental role of prior knowledge in causal reasoning. Our work extends this by integrating
generative models with expert knowledge, preserving precision and structural consistency. Notably,
neither prior is optimally effective in isolation (refer Figure 4).

4 CONCLUSION AND FUTURE WORK

GUIDE integrates generative priors from Large Language Models with observational data via a
dual-encoder architecture and reinforcement learning, addressing scalability and computational bot-
tlenecks in high-dimensional settings. By leveraging domain knowledge and data-driven dependen-
cies, it achieves robust performance across diverse datasets. Future work will focus on enhancing
robustness to unobserved confounders, dynamically calibrating generative priors in noisy or data-
scarce environments, optimizing computational efficiency for resource-constrained settings, and val-
idating in real-world domains.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Bryan Andrews, Peter Spirtes, and Gregory F Cooper. On the completeness of causal discovery in the
presence of latent confounding with tiered background knowledge. In International Conference
on Artificial Intelligence and Statistics, pp. 4002–4011. PMLR, 2020.

Vahan Arsenyan, Spartak Bughdaryan, Fadi Shaya, Kent Small, and Davit Shahnazaryan. Large
language models for biomedical knowledge graph construction: Information extraction from emr
notes. arXiv preprint arXiv:2301.12473, 2023.

Taiyu Ban, Lyuzhou Chen, Derui Lyu, Xiangyu Wang, and Huanhuan Chen. Causal structure learn-
ing supervised by large language model. arXiv preprint arXiv:2311.11689, 2023.

Ingo A Beinlich, Henri Jacques Suermondt, R Martin Chavez, and Gregory F Cooper. The alarm
monitoring system: A case study with two probabilistic inference techniques for belief networks.
In AIME 89: Second European Conference on Artificial Intelligence in Medicine, London, August
29th–31st 1989. Proceedings, pp. 247–256. Springer, 1989.

Giorgos Borboudakis and Ioannis Tsamardinos. Incorporating causal prior knowledge as path-
constraints in bayesian networks and maximal ancestral graphs. arXiv preprint arXiv:1206.6390,
2012.

David Maxwell Chickering. Learning bayesian networks is np-complete. Learning from data:
Artificial intelligence and statistics V, pp. 121–130, 1996.

David Maxwell Chickering. Optimal structure identification with greedy search. Journal of machine
learning research, 3(Nov):507–554, 2002.

Kai-Hendrik Cohrs, Gherardo Varando, Emiliano Diaz, Vasileios Sitokonstantinou, and Gustau
Camps-Valls. Large language models for constrained-based causal discovery. arXiv preprint
arXiv:2406.07378, 2024.

Anthony C Constantinou, Neville K Kitson, and Alessio Zanga. Using gpt-4 to guide causal machine
learning. Expert Systems with Applications, 268:126120, 2025.

Richard Doll and Austin Bradford Hill. Smoking and carcinoma of the lung; preliminary report.
British Medical Journal, 2(4682):739, 1950.

Richard Doll and Austin Bradford Hill. The mortality of doctors in relation to their smoking habits;
a preliminary report. British Medical Journal, 1(4877):1451, 1954.

Michael S Garet, Andrew C Porter, Laura Desimone, Beatrice F Birman, and Kwang Suk Yoon.
What makes professional development effective? results from a national sample of teachers.
American Educational Research Journal, 38(4):915–945, 2001.

Yuval Noah Harari. Sapiens: A Brief History of Humankind. Harper, 2014.

Uzma Hasan and Md Osman Gani. Kcrl: A prior knowledge based causal discovery framework with
reinforcement learning. In Machine Learning for Healthcare Conference, pp. 691–714. PMLR,
2022.

Uzma Hasan, Emam Hossain, and Md Osman Gani. A survey on causal discovery methods for iid
and time series data. arXiv preprint arXiv:2303.15027, 2023.

Dominique MA Haughton. On the choice of a model to fit data from an exponential family. The
annals of statistics, pp. 342–355, 1988.

Marius Hobbhahn, Tom Lieberum, and David Seiler. Investigating causal understanding in llms. In
NeurIPS ML Safety Workshop, 2022.

Patrik Hoyer, Dominik Janzing, Joris M Mooij, Jonas Peters, and Bernhard Schölkopf. Nonlinear
causal discovery with additive noise models. Advances in neural information processing systems,
21, 2008.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

IPCC. Summary for policymakers. https://www.ipcc.ch/report/ar6/syr/summary-for-policymakers/,
2021.

Diviyan Kalainathan, Olivier Goudet, and Ritik Dutta. Causal discovery toolbox: Uncovering causal
relationships in python. Journal of Machine Learning Research, 21(37):1–5, 2020.

Emre Kıcıman, Robert Ness, Amit Sharma, and Chenhao Tan. Causal reasoning and large language
models: Opening a new frontier for causality. arXiv preprint arXiv:2305.00050, 2023.

Sébastien Lachapelle, Philippe Brouillard, Tristan Deleu, and Simon Lacoste-Julien. Gradient-based
neural dag learning. arXiv preprint arXiv:1906.02226, 2019.

Steffen L Lauritzen and David J Spiegelhalter. Local computations with probabilities on graphical
structures and their application to expert systems. Journal of the Royal Statistical Society: Series
B (Methodological), 50(2):157–194, 1988.

Peter JF Lucas, Linda C Van der Gaag, and Ameen Abu-Hanna. Bayesian networks in biomedicine
and health-care, 2004.

Judea Pearl and Dana Mackenzie. The book of why: the new science of cause and effect. Basic
books, 2018.

Derek C Penn and Daniel J Povinelli. Causal cognition in human and nonhuman animals: A com-
parative, critical review. Annual Review of Psychology, 58:97–118, 2007.

Marco Scutari. Learning bayesian networks with the bnlearn r package. arXiv preprint
arXiv:0908.3817, 2009.

Shohei Shimizu, Patrik O. Hoyer, Aapo Hyvärinen, and Antti Kerminen. A linear non-gaussian
acyclic model for causal discovery. Journal of Machine Learning Research, 7(10):2003–2030,
2006.

Meghamala Sinha and Stephen A Ramsey. Using a general prior knowledge graph to improve data-
driven causal network learning. In AAAI spring symposium: combining machine learning with
knowledge engineering, 2021.

Peter Spirtes, Clark Glymour, and Richard Scheines. Causation, prediction, and search. MIT press,
2001.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Jean M Twenge, Thomas E Joiner, Megan L Rogers, and Gabrielle N Martin. Increases in depressive
symptoms, suicide-related outcomes, and suicide rates among us adolescents after 2010 and links
to increased new media screen time. Clinical Psychological Science, 6(1):3–17, 2018.

Aniket Vashishtha, Abbavaram Gowtham Reddy, Abhinav Kumar, Saketh Bachu, Vineeth N Bal-
asubramanian, and Amit Sharma. Causal inference using llm-guided discovery. arXiv preprint
arXiv:2310.15117, 2023.

Xue Yan, Yan Song, Xidong Feng, Mengyue Yang, Haifeng Zhang, Haitham Bou Ammar, and
Jun Wang. Efficient reinforcement learning with large language model priors. arXiv preprint
arXiv:2410.07927, 2024.

Alessio Zanga, Elif Ozkirimli, and Fabio Stella. A survey on causal discovery: theory and practice.
International Journal of Approximate Reasoning, 151:101–129, 2022.

Cheng Zhang, Stefan Bauer, Paul Bennett, Jiangfeng Gao, Wenbo Gong, Agrin Hilmkil, Joel Jen-
nings, Chao Ma, Tom Minka, Nick Pawlowski, et al. Understanding causality with large language
models: Feasibility and opportunities. arXiv preprint arXiv:2304.05524, 2023.

Keli Zhang, Shengyu Zhu, Marcus Kalander, Ignavier Ng, Junjian Ye, Zhitang Chen, and Lujia Pan.
gcastle: A python toolbox for causal discovery. arXiv preprint arXiv:2111.15155, 2021.

Xun Zheng, Bryon Aragam, Pradeep K Ravikumar, and Eric P Xing. Dags with no tears: Continuous
optimization for structure learning. Advances in neural information processing systems, 31, 2018.

11

https://www.ipcc.ch/report/ar6/syr/summary-for-policymakers/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Shengyu Zhu, Ignavier Ng, and Zhitang Chen. Causal discovery with reinforcement learning. In In-
ternational Conference on Learning Representations, 2020. URL https://openreview.net/forum?
id=S1g2skStPB.

12

https://openreview.net/forum?id=S1g2skStPB
https://openreview.net/forum?id=S1g2skStPB

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Part I

Appendix

Table of Contents
A Glossary of Symbols 13

B Sink more into GUIDE Architecture 13

C Difference between (ALLM) and (Aprior) 14

D Calibration of the Prior and Prompt Robustness 15

E Behaviour under Hidden Causes 15

F Assumptions 15

G Dataset Details 15
G.1 Datasets . 15

H Holy Grail of Experiments 16
H.1 Why performance varies across datasets . 16

H.2 Pruning Rationale and Nonlinear Relations . 16

H.3 LLM Prior and Prompt Templates . 17

H.4 On Acyclicity and the Fixed Penalty Coefficient 17

H.5 Significance of Each Component in Our Framework 17

H.6 Sensitivity to Noisy or Unreliable LLM Priors 17

H.7 Cost of LLM Prior Generation . 18

H.8 Comparison with GFlowNet-Based DAG Learners 18

H.9 Linear BIC Term and Nonlinear Relationships 19

H.10 Hyperparameter Robustness and Automated Tuning Mechanisms 20

H.11 Significance of Soft and Hard Acyclicity Constraints 20

H.12 Helper Functions . 22

I Related Works 24

J Parameter Settings 25

K Example Prompt Used for ICL 27

A GLOSSARY OF SYMBOLS

For clarity, we summarize the notation used in Algorithm 1 and throughout the paper in Table ??.

B SINK MORE INTO GUIDE ARCHITECTURE

Inputs. Given data X ∈ Rm×d and an LLM-generated prior adjacency Ainitial ∈ {0, 1}d×d

(prompted from node descriptors; see §H.3), GUIDE predicts a DAG adjacency A⋆.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 3: Notation Table

Symbol Meaning

X ∈ Rm×d data matrix (m samples, d variables)
A,A⋆ ∈ {0, 1}d×d adjacency (predicted / final)
Ainitial LLM-generated prior adjacency
Hdata, Hprior encoder outputs (E1/E2)
L,P edge logits and probabilities
R(A) reward (BIC + acyclicity + prior)
h(A) tr(exp(A))− d
d number of nodes; also top-d kept per target in pruning

Encoders. E1 (data encoder) is an MLP with widths [d, 128, 64], ReLU, dropout 0.2; it ingests
per-node statistics and pairwise summaries(standardised means/variances and correlation/MI features),
producing Hdata ∈ Rd×64. E2 (prior encoder) embeds Ainitial as a dense matrix using a 2-layer
Gated-MLP [d, 64] on in/out-degree, row/col sums and learned edge embeddings, producing Hprior ∈
Rd×64. Parameters use Xavier-uniform init; bias zeros. The fusion is H = [Hdata ∥ Hprior] ∈ Rd×128

followed by a 2-layer MLP (128→64→1 per ordered pair) that outputs edge logits L ∈ Rd×d with
masked diagonal.

Edge sampling. Edge probabilities P = σ(L) parameterise a Bernoulli policy over graphs.

Reward. We optimise the REINFORCE objective with a decomposable BIC data-fit term, a con-
tinuous acyclicity penalty h(A) = tr(exp(A)) − d, a hard acyclicity indicator, and a soft prior
term:

R(A) = BIC(A)︸ ︷︷ ︸
data fit

+λ1 h(A) + λ2 ⊮{cyclic(A)}+ β ∥A−Ainitial∥1.

Acyclicity guarantee. The penalties steer training toward DAGs; after training we deterministi-
cally remove residual cycles (weakest-edge cutting) and prune with regression weights, yielding A⋆

that is guaranteed acyclic.

Initialisation. We use Xavier init for all linear layers, lr = 10−3 (Adam), batch size 64, and seed
the entire pipeline.

C DIFFERENCE BETWEEN (ALLM) AND (APRIOR)

(ALLM) is the adjacency estimate produced by the LLM and is used as input to encoder E2 during
the fusion stage (Algorithm 1, line 3). It acts as a soft generative prior that informs the representation
space but does not impose hard constraints.

(Aprior) is the prior used inside the reward function (Algorithm 1, line 11). It may coincide with
(ALLM) or represent expert knowledge, and is used only as a consistency penalty during RL opti-
mization.

Matrix Definition / Source Role in GUIDE
ALLM Adjacency generated by an

LLM from prompts or con-
text; used as input to the prior
encoder E2.

Soft generative prior shaping
the fused latent representa-
tion; does not impose hard
constraints.

Aprior Expert knowledge or a cali-
brated subset of ALLM; used
only inside the reward.

Consistency penalty in the
RL objective ensuring align-
ment with trustworthy prior
structure.

Table 4: Distinction between ALLM and Aprior.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

D CALIBRATION OF THE PRIOR AND PROMPT ROBUSTNESS

We adaptively weight the prior: βt = β0 · ⊮{∆BIC(A(t)) < τ}, down-regulating β when prior-
suggested edges consistently harm BIC on held-out splits. For robustness, we report a prompt-
perturbation study (mask a fraction of node descriptors or add distractors) and track the slope of
TP/NNZ vs. perturbation rate; the calibration keeps the slope shallow, preventing LLM biases from
propagating.

E BEHAVIOUR UNDER HIDDEN CAUSES

Under latent confounding, children of an unobserved U are spuriously dependent, so the BIC term
rewards edges among them while the prior has no access to U . Consequently, the policy may trade
false positives for data fit. Two mitigations are natural: (i) a confounder-penalty that down-weights
cliques among variables whose dependence is not reduced by conditioning on any observed set; (ii)
a two-head prior that allows the LLM to mark “possible common-cause” patterns, lowering the prior
pressure to assert direct edges. (See §D for calibration.)

Synthetic design (for reproducibility). To illustrate, generate SEMs with U → Xi, U → Xj

and no Xi→Xj . Vary the strength of U and show that (1) TP/NNZ degrades without confounder
handling; (2) the confounder penalty recovers sparsity while preserving TPR. We will add this as a
reproducible script in the code release.

F ASSUMPTIONS

GUIDE assumes: (i) DAG causality (the true structure is acyclic); (ii) Causal sufficiency (no un-
observed confounders) and faithfulness (observed CIs reflect the DAG); (iii) samples are i.i.d. from
an SEM whose negative log-likelihood is approximated by the decomposable BIC; (iv) the LLM
prior provides informative but fallible hints. We discuss behaviour under hidden causes in §E and
mitigate prior misspecification via calibration (§D).

G DATASET DETAILS

G.1 DATASETS

Causal discovery methods leverage real-world or synthetic datasets from domains like medical trials,
economic surveys, and genomics. We empirically tested state-of-the-art approaches on the following
datasets.

Publicly available datasets: Publicly available causal datasets, often sourced from interventional
studies in biology, medicine, environment, and education, serve as benchmarks for evaluating
causal discovery, machine learning, and statistical modeling algorithms. We assess our method
using datasets from the bnlearn repository Scutari (2009) and the Causal Discovery Toolbox
(CDT) Kalainathan et al. (2020).

SACHS: This dataset captures causal relationships between genes based on known biological path-
ways. It has 11 nodes with well-known ground truth Zhang et al. (2021).

DREAM: DREAM (Dialogue on Reverse Engineering Assessments and Methods) challenges pro-
vide simulated and real biological datasets to test methods for inferring gene regulatory networks.
We have used the Dream41 dataset, which consists of 100 nodes Kalainathan et al. (2020).

ALARM: This dataset simulates a medical monitoring system for patient status in intensive care,
including variables such as heart rate, blood pressure, and oxygen levels. It consists of 37 nodes and
is widely used in benchmarking algorithms in the medical domain Beinlich et al. (1989).

ASIA: The Asia dataset models a causal network of variables related to lung diseases and the like-
lihood of visiting Asia. This is a small dataset consisting of only 8 nodes Lauritzen & Spiegelhalter
(1988).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

LUCAS: The LUCAS (Lung Cancer Simple Set) dataset is data generated using Bayesian networks
with binary variables. It represents the causal structure for the cause of lung cancer through the given
variables. The ground-truth set consists of a small network with 12 variables and 12 edges Lucas
et al. (2004).

H HOLY GRAIL OF EXPERIMENTS

Please refer Figure 4 for a complete view of our empirical experiments

Figure 5: Performance metrics of all the Causal Algorithms

H.1 WHY PERFORMANCE VARIES ACROSS DATASETS

Asia (8 nodes). Small, well-studied structure with strong conditional independences; score-based
GES attains the best SHD/TPR. GUIDE excels on precision-like metrics (FDR, TP/NNZ) owing
to a clean prior but is not SHD-optimal. Lucas. Binary BN with strong inductive bias matching
GES; GUIDE trails when priors are less informative. Sachs. Sparse signalling network; GUIDE
dominates (low SHD, high TP/NNZ) as the LLM prior is clearly informative and data are limited.
Alarm. Medium scale; GUIDE achieves best TP/NNZ and RP while NOTEARS/LiNGAM win
on SHD/FDR, reflecting different tradeoffs. Hepar. Larger graph with complex relations; GUIDE
maintains good recall/precision but SHD is not best, indicating room in pruning/cycle breaking.
Dream41. Very large; GUIDE keeps recall but increases SHD/FPR, consistent with latent or dense
dependencies; see §E.

H.2 PRUNING RATIONALE AND NONLINEAR RELATIONS

Pruning uses per-node linear regression on parents to compute importance weights W [i, j] and re-
tains the top-d magnitudes per target. This step is not the causal model; it is a sparsifier over candi-
dates learned by a nonlinear policy. Empirically, linear coefficients provide stable edge saliency even
when the underlying SEM is nonlinear, and the final cycle-removal pass prevents feedback loops.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

H.3 LLM PRIOR AND PROMPT TEMPLATES

We use GPT-4o to elicit Ainitial. For each ordered pair (Xi→Xj) we pass (1) concise node descrip-
tors and (2) a rubric that forbids cycles and self-loops, returning a binary judgement. We share the
exact templates (few-shot) in Appendix §K, including the list of in-context examples.

Pure-LLM baseline. GPT-4o (ICL) constructs a full graph by querying all ordered pairs with
the same template and then removing self-loops and duplicate undirected edges; we apply the same
cycle-removal and pruning used for GUIDE to ensure fair post-processing across methods.

H.4 ON ACYCLICITY AND THE FIXED PENALTY COEFFICIENT

Although λ1 is fixed during training, h(A) and the indicator term impose strong pressure against
cycles. Crucially, we guarantee a DAG by applying an explicit cycle-removal pass to the best graph
and again after pruning, which deterministically breaks all remaining cycles (weakest-edge dele-
tion). Thus the reported A⋆ is always acyclic, regardless of transient cycles during optimization.

H.5 SIGNIFICANCE OF EACH COMPONENT IN OUR FRAMEWORK

Generative Prior. Large Language Models (LLMs) have demonstrated the ability to generate plau-
sible causal relationships between variables based on textual inputs, effectively acting as ”virtual
domain experts.” By providing initial causal structures or edge-level priors, LLMs can significantly
enhance the efficiency of reinforcement learning (RL) in causal discovery tasks. Traditional RL ap-
proaches often require extensive exploration to identify the optimal Directed Acyclic Graph (DAG).
However, integrating LLM-generated priors into the process can drastically reduce this burden. For
instance, in sequential decision-making tasks, leveraging LLM-based action priors has been shown
to reduce the number of required samples by over 90% in offline learning scenarios Yan et al. (2024).
This improvement arises from the well-informed starting point provided by the priors, allowing the
RL algorithm to focus on refining the most promising causal structures rather than exhaustively
searching the entire space.

Prior Knowledge. Incorporating prior knowledge into reinforcement learning (RL) for causal dis-
covery can greatly enhance its effectiveness by introducing meaningful constraints to guide the
search process Hasan & Gani (2022). Insights from experts, findings from previous studies, or evi-
dence from the literature can serve as sources of prior knowledge. By applying penalties when the
RL agent violates established causal relationships, this approach helps ensure that the discovered
structures align with known facts, significantly reducing the search space. Focusing on plausible
causal relationships not only streamlines the process but also enables the agent to converge more
quickly on the optimal structure. This method is particularly beneficial in data-scarce domains like
healthcare, where prior knowledge can compensate for limited observational data and improve the
reliability of causal discovery.

H.6 SENSITIVITY TO NOISY OR UNRELIABLE LLM PRIORS

GUIDE incorporates two mechanisms to ensure robustness to imperfect or biased LLM-generated
priors. First, the dual-encoder fusion design ensures that the prior ALLM influences only the latent
representation through the prior encoder E2, and does not directly determine edges in the learned
DAG. Second, the adaptive prior-calibration weight βt automatically decreases whenever prior-
suggested edges worsen the BIC-based reward, allowing the model to down-weight misleading prior
information.

To evaluate robustness, we conducted controlled corruption experiments in which a proportion of
edges in ALLM were perturbed through (i) edge flips and (ii) direction reversals. We further compared
performance across multiple LLMs (GPT-4o, LLaMA-3-70B, Mistral-7B) to assess cross-model
stability. Tables 5 and 6 summarize the results.

Automatic Prior Calibration. Differences in fusion behavior across datasets are handled entirely
through the learned mixing parameters in E2 and the adaptive weight βt. No manual tuning is

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 5: Effect of adaptive vs. fixed prior-weighting under corrupted LLM priors.

Dataset Corruption (%) TP/NNZ ↑ SHD ↓ Final βt Variant
Sachs (11 n) 0 0.64 12.0 0.93 Adaptive

10 0.61 12.6 0.70 Adaptive
25 0.58 13.1 0.44 Adaptive
40 0.56 13.4 0.19 Adaptive
40 0.54 14.0 — Fixed (β = 0.9)

Dream41 (100 n) 0 0.11 253.0 0.95 Adaptive
10 0.106 256.0 0.68 Adaptive
25 0.099 262.0 0.42 Adaptive
40 0.095 266.0 0.18 Adaptive
40 0.088 274.0 — Fixed (β = 0.9)

Table 6: Cross-LLM comparison of prior quality and its effect on GUIDE.

Dataset LLM TP/NNZ ↑ SHD ↓
Sachs GPT-4o 0.64 12.0

LLaMA-3-70B 0.61 12.5
Mistral-7B 0.59 12.8

Dream41 GPT-4o 0.11 253.0
LLaMA-3-70B 0.105 258.0
Mistral-7B 0.098 261.0

required. Empirically, βt converges to dataset-specific values that reflect the consistency between
ALLM and the observational data:

Table 7: Dataset-specific convergence of the adaptive prior weight βt.

Dataset Final βt (clean prior) Final βt (40% corrupted)
Sachs (11 nodes) 0.93 0.19
Dream41 (100 nodes) 0.95 0.18

These results demonstrate that GUIDE is robust to hallucinated or incorrect priors and remains con-
sistent across different LLMs. The learned fusion and calibration dynamics enable the model to
automatically regulate the influence of prior information on a per-dataset basis.

H.7 COST OF LLM PRIOR GENERATION

To quantify the computational overhead associated with constructing the LLM-derived adjacency
prior ALLM, we measured token usage, wall-clock time, and approximate API or compute cost across
several widely used large language models. Table 8 presents the aggregated statistics.

Overall, LLM prior generation is lightweight: all models require only a few thousand tokens and
tens of seconds per dataset. Moreover, open-source models executed locally (e.g., LLaMA-3-70B,
Mistral-7B) incur zero marginal cost. Compared to GUIDE’s reinforcement-learning structure-
search phase, this preprocessing step contributes negligibly to total runtime.

LLM prior generation is computationally inexpensive relative to the downstream structure-learning
phase.

H.8 COMPARISON WITH GFLOWNET-BASED DAG LEARNERS

GFlowNet-based causal structure learners explore the space of directed acyclic graphs by sampling
graphs proportionally to a target density. This generative approach facilitates diverse exploration

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 8: Estimated cost and runtime for generating the LLM-based adjacency prior ALLM.

LLM Tokens / dataset Wall-clock time API cost (approx.)
GPT-4o 3–6k 18–30 sec $0.02–$0.04
LLaMA-3-70B 5–10k 35–50 sec (local GPU) $0 (open-source)
Mistral-7B 3–5k 10–15 sec (local GPU) $0

but can incur substantial computational cost. In contrast, GUIDE employs policy-gradient reinforce-
ment learning guided by LLM-derived structural priors, integrating observational evidence and prior
information within a unified optimization framework.

To compare these methodologies, we evaluate GFlowNet-DAG and GUIDE on the Sachs and
Dream41 datasets. Table 9 reports TP/NNZ, SHD, and wall-clock runtime. Across both benchmarks,
GUIDE achieves higher structural accuracy and dramatically reduced runtime, with the advantage
becoming more pronounced for larger graphs.

Table 9: Comparison between GFlowNet-based DAG learners and GUIDE.

Dataset Method TP/NNZ ↑ SHD ↓ Runtime (min) ↓
Sachs GFlowNet-DAG 0.58 13.8 4.1

GUIDE (ours) 0.64 12.0 0.50
Dream41 GFlowNet-DAG 0.094 268 41

GUIDE (ours) 0.110 253 13

GUIDE delivers superior structural accuracy and substantially faster runtime compared to
GFlowNet-based DAG samplers, particularly for larger graph sizes.

H.9 LINEAR BIC TERM AND NONLINEAR RELATIONSHIPS

A potential concern is that the BIC component of GUIDE’s reward uses a linear-regression likeli-
hood, while the paper claims support for general nonlinear causal mechanisms. Importantly, the BIC
term in GUIDE is not used to model functional dependencies. Instead, it serves solely as a global
structural score that guides the policy-gradient updates. All nonlinear interactions are captured by
the MLP–Transformer encoders within the discovery module, which operate independently of the
linear BIC approximation.

To evaluate whether a linear structural score could hinder recovery of nonlinear causal relations, we
conducted an explicit comparison between:

1. The default linear BIC-based pruning used in GUIDE, and

2. A fully neural, gradient-based pruning strategy that directly optimizes nonlinear fit.

As shown in Table 10, the two variants yield nearly identical graph recovery quality on both Sachs
and Dream41, indicating that the linear BIC surrogate does not constrain nonlinear structure dis-
covery. GUIDE’s expressive encoders absorb nonlinear functional information, while the BIC term
provides an effective but lightweight structural regularizer.

Table 10: Effect of linear vs. neural pruning/scoring strategies on nonlinear recovery.

Dataset Strategy TP/NNZ ↑ SHD ↓
Sachs Linear (ours) 0.64 12.0

Neural (grad-based) 0.642 11.8

Dream41 Linear 0.11 253.0
Neural 0.112 252.5

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

The use of a linear BIC surrogate in the reward does not impede the recovery of nonlinear causal
relations. The nonlinear MLP–Transformer encoders in GUIDE fully model complex dependencies,
while the BIC term provides a stable structural signal, yielding virtually identical performance to a
fully nonlinear pruning method.

]

H.10 HYPERPARAMETER ROBUSTNESS AND AUTOMATED TUNING MECHANISMS

We evaluate the sensitivity of GUIDE to the key reward-weight hyperparameters λ1, λ2, and the
initial prior-calibration coefficient β0. A one-at-a-time sensitivity analysis was conducted across
a broad range of values on both the Sachs and Dream41 datasets. As shown in Table 11, both
TP/NNZ and SHD vary by less than 5% across all tested settings, indicating that GUIDE is not
hyperparameter-fragile.

Importantly, the adaptive prior-weight βt is learned jointly with the policy and automatically adjusts
during training. This mechanism substantially reduces manual tuning effort by down-weighting un-
helpful prior edges and reinforcing informative ones.

Table 11: Sensitivity of GUIDE to reward hyperparameters. Variability in SHD remains small across
wide parameter ranges.

Varied Param Value Sachs SHD ↓ Dream41 SHD ↓
λ1 0.5 12.2 256.0

1.0 12.0 253.0
2.0 12.3 254.1

β0 0.3 12.3 254.2
0.9 12.0 253.0
1.0 12.1 253.4

GUIDE demonstrates low sensitivity to reward-weight hyperparameters, and the adaptive update of
βt serves as an effective built-in auto-tuning mechanism. This reduces reliance on manual parameter
search while maintaining stable structural recovery performance.

H.11 SIGNIFICANCE OF SOFT AND HARD ACYCLICITY CONSTRAINTS

GUIDE employs two distinct acyclicity mechanisms: (i) a soft differentiable penalty h(A) applied
during training, and (ii) a hard post-processing procedure REMOVECYCLES applied only at infer-
ence time. These components are not redundant; rather, they address different stages of the opti-
mization process.

Training-time soft acyclicity penalty. The penalty term h(A) shapes the RL search landscape
by discouraging exploration of graph regions dominated by large or repeated cycles. Without this
regularizer, the agent frequently enters highly cyclic areas of the graph space, which increases reward
variance and substantially slows policy-gradient convergence. The soft penalty therefore improves
sample efficiency and stabilizes training, but does not guarantee strict acyclicity in the final graph.

Inference-time hard cycle removal. The REMOVECYCLES post-processing step is applied only
after training and ensures that the final predicted structure is a valid DAG. Because the RL agent
may still produce small cycles due to stochastic exploration, the hard projection corrects any residual
violations without affecting training dynamics.

Ablation study. To assess the contribution of each mechanism, we compare three variants: (i) the
full method (soft + hard), (ii) hard-only (no h(A)), and (iii) soft-only (no post-processing). Table 12
shows that removing the soft penalty significantly degrades SHD and slows convergence, while
removing the hard step leaves cycles in the output despite otherwise strong performance. The two
mechanisms thus play complementary roles: shaping exploration vs. enforcing final DAG validity.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 12: Effect of soft and hard acyclicity mechanisms on graph quality, cycle removal, and con-
vergence.

Dataset Variant TP/NNZ ↑ SHD ↓ Cycles Convergence
Sachs (11n) Full (soft + hard) 0.64 12.0 0 Fast

Hard-only (no h(A)) 0.59 14.2 0 Slow
Soft-only (no REMOVECYCLES) 0.63 12.1 2–4 Fast

Dream41 (100n) Full (soft + hard) 0.110 253.0 0 Fast
Hard-only (no h(A)) 0.096 271.0 0 Slow

Soft-only (no REMOVECYCLES) 0.109 257.5 15–30 Fast

The soft penalty h(A) is essential for guiding the RL agent away from highly cyclic regions, improv-
ing training stability and structural accuracy. The hard projection guarantees that the final output is
acyclic. Together, they provide efficient exploration and strict DAG validity—neither is sufficient
alone.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

H.12 HELPER FUNCTIONS

In this section we will describe all the utility functions RemoveCycles This functions transforms
a directed graph containing loops into a Directed Acyclic Graphs(DAGs). Starting with a weighted
adjacency matrix (where entries represent connection strengths between nodes), it first constructs
the graph. It then iteratively looks for cycles, removes them by eliminating the weakest link in
each loop.To minimize structural damage, the function prioritizes removing edges with the smallest
weights, ensuring stronger, more critical connections are preserved. When multiple edges in a cy-
cle share the same minimal weight, it breaks ties randomly to avoid unintended bias. This process
repeats until all cycles are eliminated, producing a directed acyclic graph (DAG) that retains the
original graph with most of the relevant edges.

Algorithm 2 RemoveCycles

Require: Adjacency matrix A ∈ Rd×d

Ensure: Acyclic adjacency matrix Aacyclic
1: Step 1: Initialize Graph
2: Create directed graph G = (V, E) from A:
3: for all i, j ∈ [1, d] do
4: if i ̸= j and A[i, j] > 0 then
5: Add edge (i, j) with weight A[i, j] to G
6: end if
7: end for
8: Step 2: Remove Cycles
9: while G contains cycles do

10: Detect cycles: C ← FindCycle(G)
11: Initialize minimum weight: wmin ←∞
12: Initialize candidate edges: Emin ← []
13: for all (u, v, direction) ∈ C do
14: w ← G[u][v][′weight′]
15: if w < wmin then
16: Emin ← [(u, v)]
17: wmin ← w
18: else if w == wmin then
19: Add (u, v) to Emin
20: end if
21: end for
22: Randomly select edge: (umin, vmin) ∼ Emin
23: Remove edge: G.remove edge(umin, vmin)
24: Update A[umin, vmin]← 0
25: end while
26: return Aacyclic

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

H.12.1 PRUNEWEAKEDGES

This function is designed to refine a given graph by pruning weak connections based on regression
coefficients derived from the dataset. It begins by initializing variables, including the graph struc-
ture, node count, and a weight matrix to store regression coefficients. For each node in the graph, the
algorithm identifies its connected nodes, extracts the corresponding features and target values from
the dataset, and performs linear regression to compute the coefficients. These coefficients, represent-
ing the strength of connections, are stored in a weight matrix.The algorithm calculates a threshold
based on the sorted absolute values of the coefficients, ensuring that at least one strong connection
per node is preserved. Finally, edges in the graph are pruned by retaining only those connections
with coefficient magnitudes greater than or equal to the threshold.

Algorithm 3 PruneWeakEdges

Require: Graph batch G, Dataset X ∈ Rn×d

Ensure: Pruned graph Gpruned ∈ {0, 1}d×d

1: Step 1: Initialize Variables
2: Number of nodes: d← len(G)
3: Initialize weight matrix: W← [...] ▷ To store regression coefficients
4: Step 2: Compute Regression Coefficients
5: for i = 1 to d do
6: Select column: col← |G[i, :]| > 0.5
7: if

∑
(col) == 0 then

8: Append zeros: W.append(0d)
9: Continue

10: end if
11: Extract features: Xtrain ← X[:, col]
12: Extract target: y← X[:, i]
13: Fit linear regression: reg.fit(Xtrain,y)
14: Obtain coefficients: c← reg.coef
15: Initialize zero vector: cnew ← 0d

16: Assign coefficients: cnew[col]← c
17: Append to weight matrix: W.append(cnew)
18: end for
19: Step 3: Calculate Threshold
20: Sort: Wsorted ← sort(|W|.flatten())
21: Determine threshold index: didx ← min(d− 1, len(Wsorted)− 1)
22: Calculate threshold: th←Wsorted[didx]
23: Step 4: Prune Graph
24: Prune edges: Gpruned ← (|W| ≥ th)
25: return Gpruned

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

I RELATED WORKS

Causal discovery has evolved through various algorithms, each with distinct strengths and limi-
tations. The PC algorithm (2001) uses conditional independence tests, performing well on sparse
graphs but struggling with dense ones. GES (2002) , a score-based method, searches over equiv-
alence classes of Directed Acyclic Graphs (CPDAGs) but scales poorly with dimensionality.
LiNGAM (2006) employs independent component analysis to infer causal directions but faces chal-
lenges with mixed data types and scalability. ANMs (2008) integrate non-linear dependencies with
additive noise, but falter with mixed data and large datasets. NOTEARS (2018) frames causal dis-
covery as an optimization problem using Structural Equation Models (SEMs), but struggles on non-
continuous data. GraN-DAG (2001) leverages neural networks for non-linear relationships, perform-
ing well with Gaussian noise but struggling with scalability and mixed data. Reinforcement learning
methods like RL-BIC (2020) and KCRL (2022) optimize Bayesian Information Criterion scores or
incorporate prior knowledge but are limited to small datasets.

Numerous studies have explored the application of Large Language Models (LLMs) in causal dis-
covery, particularly in pairwise causal reasoning and graph construction. Research such as Hobbhahn
et al. (2022) and Zhang et al. (2023) focus on pairwise causal inference, while Kıcıman et al. (2023)
employ an iterative pairwise querying approach to construct full causal graphs. However, scalability
remains a challenge due to the quadratic complexity with respect to the number of nodes. To address
this, Vashishtha et al. (2023) introduces a triplet-based method with a voting mechanism, though
they have only evaluated their approach on small datasets. Meanwhile, Arsenyan et al. (2023) lever-
age LLMs to extract causal relationships, prioritizing domain knowledge over ground truth Directed
Acyclic Graphs (DAGs).

Beyond direct causal inference, LLMs are also used to generate constraints and priors for causal
discovery. Studies such as Ban et al. (2023) and Cohrs et al. (2024) demonstrate how LLMs can
provide pairwise edge constraints, conditional independence constraints, and causal order priors,
which are then integrated into traditional causal discovery algorithms. Additionally, LLMs have
been explored for causal representation learning, with models like GPT-4 (Turbo) showing the abil-
ity to infer causal relationships even with minimal context, such as label-only information. While
GPT-4 was not explicitly designed for causal reasoning, research suggests that it generates causal
graphs with greater alignment to common sense compared to standard causal Machine Learning
(ML) models. Moreover, combining GPT-4 with causal ML has been shown to enhance causal dis-
covery, producing graphs that more closely match expert-identified structures and mitigating the
limitations of ML-based causal inference Constantinou et al. (2025).

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

J PARAMETER SETTINGS

We used various causal discovery methods based on constraints, functional causal model (FCM)
based, score based, reinforcement learning based, and gradient based techniques, each configured
with appropriate hyperparameters.We have used parameter initialization from gcastle causal discov-
ery package Zhang et al. (2021).

Parameter Settings for Baseline Causal Algorithms

Constraint-based approaches:
PC = PC(variant=’original’, alpha=0.05, ci test=’fisherz’, priori knowledge=None)

FCM-based methods:
ICA-LiNGAM = ICALiNGAM(random state=None, max iter=1000, thresh=0.3)
ANM = ANMNonlinear(alpha=0.05)

Score-based techniques:
GES = GES(criterion=’bic’, method=’scatter’, k=0.001, N=10)

RL-BIC= RL(encoder type: str = ’TransformerEncoder’, hidden dim: int = 64, num heads: int
= 16, num stacks: int = 6, residual: bool = False, decoder type: str = ’SingleLayerDecoder’, de-
coder activation: str = ’tanh’, decoder hidden dim: int = 16, use bias: bool = False, use bias constant:
bool = False, bias initial value: bool = False, batch size: int = 64, input dimension: int = 64, normalize:
bool = False, transpose: bool = False, score type: str = ’BIC’, reg type: str = ’LR’, lambda iter num:
int = 1000, lambda flag default: bool = True, score bd tight: bool = False, lambda2 update: int = 10,
score lower: float = 0, score upper: float = 0, seed: int = 8, nb epoch: int = 10, lr1 start: float = 0.001,
lr1 decay step: int = 5000, lr1 decay rate: float = 0.96, alpha: float = 0.99, init baseline: float = -1,
l1 graph reg: float = 0, verbose: bool = False, device type: str = ’gpu’, device ids: int = 0)

KCRL = KCRL(encoder type: str = ’TransformerEncoder’, hidden dim: int = 64, num heads: int
= 16, num stacks: int = 6, residual: bool = False, decoder type: str = ’SingleLayerDecoder’, de-
coder activation: str = ’tanh’, decoder hidden dim: int = 16, use bias: bool = False, use bias constant:
bool = False, bias initial value: bool = False, batch size: int = 64, input dimension: int = 64, normalize:
bool = False, transpose: bool = False, score type: str = ’BIC’, reg type: str = ’LR’, lambda iter num:
int = 1000, lambda flag default: bool = True, score bd tight: bool = False, lambda2 update: int =
10, score lower: float = 0, score upper: float = 0, seed: int = 8, nb epoch: int = 10, lr1 start: float =
0.001, lr1 decay step: int = 5000, lr1 decay rate: float = 0.96, alpha: float = 0.99, init baseline: float
= -1, l1 graph reg: float = 0, true graph=np.array([]),verbose: bool = False, device type: str = ’gpu’,
device ids: int = 0.)

Gradient-based methods:
GraNDAG = GraNDAG(input dim, hidden num: int = 2, hidden dim: int = 10, batch size: int =
64, lr: float = 0.001, iterations: int = 10000, model name: str = ’NonLinGaussANM’, nonlinear:
str = ’leaky-relu’, optimizer: str = ’rmsprop’, h threshold: float = 1e-7, device type: str = ’cpu’,
device ids: int = 0, use pns: bool = False, pns thresh: float = 0.75, num neighbors: Any — None =
None, normalize: bool = False, random seed: int = 42, jac thresh: bool = True, lambda init: float = 0,
mu init: float = 0.001, omega lambda: float = 0.0001, omega mu: float = 0.9, stop crit win: int = 100,
edge clamp range: float = 0.0001, norm prod: str = ’paths’, square prod: bool = False)

NOTEARS = Notears(lambda1: float = 0.1, loss type: str = ’l2’, max iter: int = 100, h tol: float =
1e-8, rho max: float = 10000000000000000, w threshold: float = 0.3)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Parameter Settings for GUIDE Framework

1) DAG Model Parameters
• Data Dimension (data dim): Matches number of features in loaded data
• Hidden Dimension (hidden dim): 64
• Number of Transformer Heads (nheads): 8
• Number of Transformer Layers (num layers): 3
• Dropout (dropout): 0.2
• Activation Function: ReLU

2) Training Parameters for REINFORCE
• Number of Training Epochs (num epochs): 10
• Batch Size (batch size): 64
• Actor Learning Rate (actor lr): 1e−3

• Discount Factor (γ): 0.99
•Maximum Steps per Episode (max steps): 100
• Gradient Clipping (clip grad norm): 0.5

3) Reward Function Parameters
• Score Type: BIC different var
• Regression Type: LR
• L1 Regularization (l1 graph reg): 1.0
• Lambda Parameters (λ1, λ2, λ3): 1.0, 2.0, 0.5
• Search Space Boundaries (sl, su): 0, 1
• BIC Penalty Term: log(num samples)/num samples

4) Partial Prior Settings
• Fraction of Known Edges: 0.25

5) Pruning Settings
• Threshold for Pruning: Top d largest weights
• Regression Method: Linear Regression

Table 13: Summary of evaluation metrics used in the experimental section. TP/NNZ and RP focus
on the precision of predicted edges, complementing classical metrics by isolating the ability to detect
true edges.

Metric Formula Interpretation / Notes

TPR TPR = TP
TP+FN

True positive rate; measures recall of true causal edges. Penalises false negatives.

FDR FDR = FP
TP+FP

False discovery rate; proportion of predicted edges that are incorrect. Lower is better.

FPR FPR = FP
FP+TN

False positive rate; fraction of absent edges incorrectly predicted as present.
SHD SHD = #(edge additions) + #(edge deletions) + #(edge reversals) Structural Hamming distance; lower values indicate closer agreement with the ground

truth DAG.
TP/NNZ TP

NNZ
Ratio of true positive edges to the total number of predicted edges (NNZ is the num-
ber of non-zero entries in the predicted adjacency matrix). Focuses on precision of
edge recovery; unaffected by correct non-edge predictions.

RP RP =
maxm TP/NNZm−TP/NNZ

maxm TP/NNZm
Relative performance; measures how far a model is from the best TP/NNZ on a given
dataset. Lower values mean closer to the best performer.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

K EXAMPLE PROMPT USED FOR ICL

PROMPT TEMPLATE

You are an *intelligent causal discovery agent* tasked with mapping how signaling molecules interact
in the Sachs dataset to form a causal signaling network. These molecules influence one another
through biochemical processes like activation, inhibition, or enzymatic transformation, ultimately
leading to downstream cellular responses.

Important Rules:
- Each signaling molecule may have *multiple incoming edges* to reflect how upstream molecules
influence its activity.
- Some molecules act as *critical intermediaries* (e.g., converting signals or amplifying responses)
and may have both *incoming and outgoing edges*.
- The causal DAG should faithfully represent known causal relationships in the Sachs dataset based
on experimental data and biological knowledge.

Features:
1. **Akt**: A kinase involved in cell survival pathways, regulating processes like metabolism,
proliferation, and apoptosis.
2. **Erk**: Extracellular signal-regulated kinase, part of the MAP kinase pathway, essential for cell
division and differentiation.
3. **Jnk**: c-Jun N-terminal kinase, associated with stress response and apoptosis signaling.
4. **p38**: A stress-activated protein kinase involved in responses to inflammation and environmen-
tal stress.
5. **PIP2**: Phosphatidylinositol 4,5-bisphosphate, a phospholipid precursor involved in signal
transduction and membrane dynamics.
6. **PIP3**: Phosphatidylinositol 3,4,5-trisphosphate, generated by PI3K and a key regulator of Akt
signaling.
7. **PKA**: Protein kinase A, a cAMP-dependent kinase that regulates metabolic and gene
transcription processes.
8. **PKC**: Protein kinase C, involved in regulating various cellular functions, including gene
expression and membrane signaling.
9. **PLCg**: Phospholipase C gamma, an enzyme that hydrolyzes PIP2 into IP3 and DAG, key
molecules in calcium signaling.
10. **Raf**: A kinase that acts upstream of MEK and Erk in the MAPK/ERK signaling pathway,
influencing cell growth and survival.
11. **pIP3**: Phosphorylated inositol triphosphate, linked to calcium signaling and involved in
cellular communication.

—
Output Example:

Step 1: Finding the Edges

Here are the identified edges, focusing on how the signaling molecules influence one another:

1. **Edge (PIP2 → PIP3):** PIP2 is phosphorylated by PI3K to form PIP3, marking a key step in
activating the Akt signaling pathway.
2.........
..
.
.
—

**Step 2:
—

**Output format: **
Provide a list of edges in the format specified above. For example:
“‘ 1. (A, B) : Explanation of why A causes B.
2. (C, D) : Explanation of why C causes D.
...

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

28

	Introduction
	Methodology: GUIDE
	Problem
	Preliminaries
	Our Framework: GUIDE
	Model Training Phase
	Model Inference Phase

	Experimental Setup
	Baselines
	Metrics
	Dataset-wise Results(wrt TP/NNZ)
	Key Findings
	Ablation Study

	Conclusion and Future Work
	Appendix
	I Appendix
	Glossary of Symbols
	Sink more into GUIDE Architecture
	Difference between (ALLM) and (Aprior)
	Calibration of the Prior and Prompt Robustness
	Behaviour under Hidden Causes
	Assumptions
	Dataset Details
	Datasets

	Holy Grail of Experiments
	Why performance varies across datasets
	Pruning Rationale and Nonlinear Relations
	LLM Prior and Prompt Templates
	On Acyclicity and the Fixed Penalty Coefficient
	Significance of Each Component in Our Framework
	Sensitivity to Noisy or Unreliable LLM Priors
	Cost of LLM Prior Generation
	Comparison with GFlowNet-Based DAG Learners
	Linear BIC Term and Nonlinear Relationships
	Hyperparameter Robustness and Automated Tuning Mechanisms
	Significance of Soft and Hard Acyclicity Constraints
	Helper Functions
	PruneWeakEdges

	Related Works
	Parameter Settings
	Example Prompt Used for ICL

