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Figure 1: Visual results produced by our proposed text-enhanced multi-category virtual try-off archi-
tecture, i.e., TEMU-VTOFF. Given a clothed input person image, the proposed model reconstructs the
clean, in-shop version of the worn garment. Our model handles various garment types and preserves
both structural fidelity and fine-grained textures, even under occlusions and complex poses, thanks to
its multimodal attention and garment-alignment design.

ABSTRACT

Virtual try-on (VTON) has been widely explored for rendering garments onto
person images, while its inverse task, virtual try-off (VTOFF), remains largely
overlooked. VTOFF aims to recover standardized product images of garments
directly from photos of clothed individuals. This capability is of great practical
importance for e-commerce platforms, large-scale dataset curation, and the train-
ing of foundation models. Unlike VTON, which must handle diverse poses and
styles, VTOFF naturally benefits from a consistent output format in the form of
flat garment images. However, existing methods face two major limitations: (i)
exclusive reliance on visual cues from a single photo often leads to ambiguity, and
(ii) generated images usually suffer from loss of fine details, limiting their real-
world applicability. To address these challenges, we introduce TEMU-VTOFF, a
Text-Enhanced MUlti-category framework for VTOFF. Our architecture is built
on a dual DiT-based backbone equipped with a multimodal attention mechanism
that jointly exploits image, text, and mask information to resolve visual ambiguities
and enable robust feature learning across garment categories. To explicitly mitigate
detail degradation, we further design an alignment module that refines garment
structures and textures, ensuring high-quality outputs. Extensive experiments on
VITON-HD and Dress Code show that TEMU-VTOFF achieves new state-of-the-
art performance, substantially improving both visual realism and consistency with
target garments. Code and models will be released to foster future research.

1 INTRODUCTION

Unlike virtual try-on (VTON), whose goal is to dress a given clothing image on a target person
image, in this paper, we focus exactly on the opposite, virtual try-off (VTOFF), whose purpose is
to generate standardized product images from real-world clothed individual photos. Compared to
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VTON, which often struggles with the ambiguity and diversity of valid outputs, such as stylistic
variations in how a garment is worn, VTOFF benefits from a clearer output objective: reconstructing
a consistent, lay-down-style image of the garment. This reversed formulation facilitates a more
objective evaluation of garment reconstruction quality.

The fashion industry, a trillion-dollar global market, is increasingly integrating AI and computer
vision to optimize product workflows and enhance user experience. VTOFF, in this context, offers
substantial value: it enables the automatic generation of tiled product views, which are essential
for tasks such as image retrieval, outfit recommendation, and virtual shopping. However, acquiring
such lay-down images is expensive and time-consuming for retailers. VTOFF provides a scalable
alternative by leveraging images of garments worn by models or customers, transforming them into
standardized catalog views through image-to-image translation techniques.

Despite the success of GANs (Goodfellow et al., 2014) and Latent Diffusion Models (LDMs) (Rom-
bach et al., 2022) in image translation tasks (Siarohin et al., 2019; Ren et al., 2023b; Isola et al., 2017;
Tumanyan et al., 2023), current VTOFF solutions face notable limitations. Existing models (Velioglu
et al., 2024; Xarchakos & Koukopoulos, 2024) struggle to accurately reconstruct catalog images
from dressed human inputs. This limitation arises from a fundamental architectural mismatch: these
approaches repurpose VTON pipelines by merely reversing the input-output roles, without addressing
the unique challenges of the VTOFF task. Moreover, the high visual variability of real-world images
– due to garment wear category (e.g., upper-body), pose changes, and occlusions – makes it difficult
for these models to robustly extract garment features while preserving fine-grained patterns. On the
opposite side, we design a dedicated architecture tailored for the VTOFF task.

Recent advances in diffusion models demonstrate that DiT-based architectures (Peebles & Xie,
2023), especially when combined with flow-matching objectives (Lipman et al., 2023), surpass
traditional U-Net and DDPM-based approaches (Rombach et al., 2022). Inspired by these findings,
we propose TEMU-VTOFF, a Text-Enhanced MUlti-category Virtual Try-OFF architecture based
on a dual-DiT framework. Specifically, we exploit the representational strength of DiT in two distinct
ways: (i) the first Transformer component focuses on extracting fine-grained garment features from
complex, detail-rich person images; and (ii) the second DiT is specialized for generating the clean,
in-shop version of the garment. To support this design, we further adapt the base DiT architecture
to accommodate the task-specific input modalities. To further enhance alignment, we introduce an
external garment aligner module and a novel supervision loss that leverages clean garment references
as guidance, further improving quality of generated images.

Our contribution can be summarized as follows:

• Multi-Category Try-Off. We present a unified framework capable of handling multiple garment
types (upper-body, lower-body, and full-body clothes) without requiring category-specific pipelines.

• Multimodal Hybrid Attention. We introduce a novel attention mechanism that integrates garment
textual descriptions into the generative process by linking them with person-specific features. This
helps the dual-DiT architecture synthesize the garments more accurately.

• Garment Aligner Module. We design a lightweight aligner that conditions generation on clean
garment images, replacing conventional denoising objectives. This leads to better alignment
consistency on the overall dataset and preserves more precise visual retention.

• Extensive experiments on the Dress Code and VITON-HD datasets demonstrate that TEMU-
VTOFF outperforms prior methods in both the quality of generated images and alignment with the
target garment, highlighting its strong generalization capabilities.

2 RELATED WORK

Virtual Try-On. As one of the most popular tasks within the fashion domain, VTON has been
widely studied over the past decades by the computer vision and graphics communities due to its
practical potential (Bai et al., 2022; Cui et al., 2021; Fele et al., 2022; Ren et al., 2023a). Existing
methods are broadly categorized into warping-based (Chen et al., 2023; Xie et al., 2023; Yan et al.,
2023) and warping-free approaches (Zhu et al., 2023; Morelli et al., 2023; Baldrati et al., 2023; Zeng
et al., 2024; Chong et al., 2025), with a growing shift from GAN-based (Goodfellow et al., 2020)
to diffusion-based (Ho et al., 2020; Song et al., 2021) frameworks. VITON (Han et al., 2018) and
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its variants (Wang et al., 2018; Choi et al., 2021; Kang et al., 2021) improve garment alignment and
synthesis quality, but often produce artifacts due to imperfect warping. To mitigate this, warping-free
methods leverage diffusion models to bypass explicit deformation (Zhu et al., 2023; Morelli et al.,
2023; Xu et al., 2025; Choi et al., 2024) employing modified cross-attention or self-attention to
directly condition generation on garment features. However, these pre-trained encoders tend to lose
fine-grained texture details, prompting methods like StableVITON (Kim et al., 2024) to introduce
dedicated garment encoders and attention mechanisms, albeit at a higher computational cost. Lately,
DiT-based works (Jiang et al., 2025; Zhu et al., 2024) show the benefits of Transformer-based
diffusion models for high-fidelity garment to person transfer. Finally, some models adopt more
elaborate conditioning strategies. For instance, LOTS introduces a pair-former module for handling
multiple inputs (Girella et al., 2025), while LEFFA learns a flow field from averaged cross-attention
maps and employs learnable tokens to stabilize attention values (Zhou et al., 2025). While most works
focus on generating dressed images from separate person and garment inputs, the inverse problem
(i.e., reconstructing clean garment representations from worn images) remains underexplored.

Virtual Try-Off. While VTON has been extensively studied for synthesizing images of a person
wearing a target garment, the recently proposed VTOFF task shifts the focus toward garment-
centric reconstruction, aiming to extract a clean, standardized image of a garment worn by a person.
TryOffDiff (Velioglu et al., 2024) introduces this task by leveraging a diffusion-based model with
SigLIP (Zhai et al., 2023) conditioning to recover high-fidelity garment images. Building on this
direction, TryOffAnyone (Xarchakos & Koukopoulos, 2024) addresses the generation of tiled garment
images from dressed photos for applications like outfit composition and retrieval. By integrating
garment-specific masks and simplifying the Stable Diffusion pipeline through selective Transformer
tuning, it achieves both quality and efficiency. In both cases, these works have been designed for
single-category scenarios, thus limiting their potential application to generate wider, more diverse
data collections. Recent efforts have begun to address these limitations. MGT (Velioglu et al.,
2025) extends VTOFF to multi-category scenarios by incorporating class-specific embeddings to
handle diverse clothing types within a unified model. More ambitious approaches aim to unify
both VTON and VTOFF within a single framework. Voost (Lee & Kwak, 2025) proposes a single
diffusion transformer to learn both tasks, while One Model For All (Liu et al., 2025) introduces a
partial diffusion mechanism to achieve a similar goal. On a different line, Any2AnyTryon (Guo
et al., 2025) is not a native VTOFF method, but it leverages a LoRA-based module (Hu et al., 2022)
to fine-tune FLUX (Labs, 2024) for this task. Though these works collectively reflect a growing
shift from person-centric synthesis to garment-centric understanding, there are still limitations like
frequent garment structural artifacts (e.g., in shape, neckline, waist) and on colors and textures of
generated outputs. We hypothesize that this mismatch is due to a too generic architectural choice, not
tailored for the specific needs of the VTOFF setting. In this work, we focus on existing VTOFF open
problems, such as multi-category adaptation, occlusions, and complex human poses, and propose
a novel VTOFF-specific architecture enhanced with text and fine-grained mask conditioning and
optimized with a garment aligner component that can improve the quality of generated garments.

Conditioning Methods in Diffusion Models. To overcome the limitations of text-only conditioning,
many schemes leverage additional visual inputs such as segmentation maps, bounding boxes, poses,
and points (Sun et al., 2024; Li et al., 2023; Chen et al., 2024; Nie et al., 2024; Lin et al., 2024;
Wang et al., 2024). Prominent methods like ControlNet (Zhang et al., 2023) and T2I-Adapter (Mou
et al., 2024) inject spatial conditions via auxiliary networks, while IP-Adapter (Ye et al., 2023) uses
separate attention branches more suited to U-Nets than DiTs. Other works focus on unifying multiple
conditions, either through modular controllers like Uni-ControlNet (Zhao et al., 2023) and dedicated
adapters (Lin et al., 2025), or by concatenating visual embeddings directly into the Transformer input
sequence (Tan et al., 2025; Wang et al., 2025; Xiao et al., 2025). Although these methods are effective
for general personalization tasks (i.e., placing an object from one image into another), they lack the
fine-grained conditioning mechanism necessary to extract specific garment data from person images,
a gap we address to unlock the VTOFF task.

3 METHODOLOGY

Preliminaries. The latest diffusion models are a family of generative architectures that corrupt a
ground-truth image z0 according to a flow-matching schedule (Lipman et al., 2023) defined as

zt = (1− t)z0 + tϵt ϵ ∼ N (0, 1), t ∈ [0, 1]. (1)
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Figure 2: Overview of our method. The feature extractor FE processes spatial inputs (noise, masked
image, binary mask), and global inputs (model image via AdaLN). The intermediate keys and values
Kl

extractor,V
l

extractor are injected into the corresponding hybrid blocks of the garment generator FD.
Then, the main DiT model generates the final garment leveraging the proposed MHA module. We
align our model with a diffusion loss for the noise estimate and an alignment loss with clean, DINOv2
features of the target garment.

Then, a diffusion model estimates back the injected noise ϵt through a Diffusion Transformer
(DiT) (Peebles & Xie, 2023), obtaining a prediction ẑ0. In Stable Diffusion 3 (SD3) (Esser et al.,
2024), the 16-channel latent zt ∈ RH

8 ×W
8 ×16 is obtained projecting the original RGB image

x ∈ RH×W×3 with a variational autoencoder E (Kingma & Welling, 2013), obtaining z = E(x),
with H,W being height and width of the image, and f = 8 the spatial compression ratio of the
autoencoder. Finally, the model is trained according to an MSE loss function Ldiff:

Ldiff = Ez0,ϵt,t

[
∥ϵt − ϵθ(zt, t)∥2

]
. (2)

Overview. An overview of our method is shown in Fig. 2. The objective is to generate an in-
shop version of the garment worn by the person. A critical design choice lies in processing the
dressed person image so as to extract meaningful information for injection into the denoising process.
To this end, we adopt a dual-DiT architecture, built upon SD3, with the two models assigned to
complementary roles. Firstly, we design the first DiT as a feature extractor FE that encodes the model
image xmodel and outputs its intermediate layer features at timestep t = 0 and not from subsequent
timesteps, as we are interested in extracting clean features from FE . This block is trained with a
diffusion loss to generate the person image. Once trained, this model outputs meaningful key and
value features of the dressed person. Secondly, the main DiT generates the garment xg leveraging the
intermediate features from FE in a modified textual-enhanced attention module.

3.1 DIT FEATURE EXTRACTOR

At inference time, the only available input is the clothed person image xmodel ∈ RH×W×3, from
which we also extract the mask. To encode this information, we compute the visual projection

evpool = CLIP(xmodel) ∈ R2048,

which is then used to modulate the latent zt through the AdaLN-estimated scale γ and shift β as
follows:

yt = MLP(t,evpool),

zt ← γ(yt)zt + β(yt). (3)

Existing VTON approaches rely on two visual inputs: the target garment and the person. In our
case, however, the model can rely only on person features, from which it is more complex to extract
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the garment features. This shortcoming makes the CLIP vector evpool the real bottleneck in a unified
architecture setting, as the CLIP projection alone is too coarse to properly encode this information.

To address this, we propose introducing a dedicated feature extractor FE , allowing FD to concentrate
exclusively on the garment generation task. The architecture of FE mirrors that of the main SD3
DiT module FD, with the only difference being its input layer, which is adapted to handle additional
visual inputs in the channel dimension. The inputs are a global input with the person image xmodel ∈
RH×W×3 encoded as evpool and leveraged by the modulation layers of FE , and a local spatial input
as the channel-wise concatenation z′

t = [zt,M,xM ] ∈ Rh×w×33 of the latent zt, the encoded
latent of the masked person image xM = E(xmodel ⊙M) ∈ Rh×w×16, where E is the SD3 VAE
encoder, h = H/f and w = W/f denote the spatial dimensions after downsampling by the factor
f = 8, and the interpolated binary mask M ∈ Rh×w×1 encoded through the Transformer projector
P : Rh×w×33 → RS×d, with S as sequence length and d as embedding dimension.

This design choice is central to our method, as each layer output of the feature extractor FE retains
meaningful intermediate representations of both the person and the garment. Leveraging these
features offers three key advantages: (i) instead of the collapsed CLIP representation, we obtain
expanded features of dimension S × d; (ii) the L layers of FE capture information at multiple
granularities, progressing from coarse to fine (Avrahami et al., 2025; Skorokhodov et al., 2025), so
that each layer l conveys a different level of detail about the same image; (iii) since FE shares the
same architecture as FD, the features extracted at layer l from FE are naturally better aligned with
those of FD. Motivated by these considerations, we extract the keys Kl

extractor and values V l
extractor

from every layer l of FE .

3.2 DUAL-DIT TEXT-ENHANCED GARMENT TRY-OFF

Without loss of generality, we will omit the index l when referring to Ql Kl and V l of FE and
FD, since the conditioning scheme is applied uniformly across all layers. Given the extracted
features Kextractor and Vextractor, we propose to modify the SD3 attention scheme to incorporate such
information, leading to our Multimodal Hybrid Attention (MHA).

Multimodal Hybrid Attention. Our new module seamlessly mix text information, latent features of
the denoising DiT, and intermediate features from FE . Inspired by the key findings in SD3 (Esser
et al., 2024), we concatenate the text features with the visual inputs along the sequence length
dimension, thus obtaining:

Q = [Qzt ,Qtext] K = [Kzt ,Kextractor,Ktext] V = [Vzt ,Vextractor,Vtext]. (4)

This module allows the features Qtext to attend both the latent projection Kzt and the extractor
features Kextractor. The resulting attention matrix AMHA captures three key interactions: (i) Atext↔zt

,
preserving pre-trained alignment between language and latent image tokens, (ii) Azt↔extractor, fa-
cilitating transfer between the input garment and the person representation, and (iii) Atext↔extractor,
grounding the text in the structural features provided by the extractor.

Text embeddings are constructed via the concatenation of CLIP (Radford et al., 2021)1 and T5 (Raffel
et al., 2020) encoders applied to the input caption c as follows:

etext = [CLIP(c),T5(c)], with etext ∈ R77×4096. (5)

Now we pose a relevant question: is it possible to disambiguate the garment category from the
mask alone? A mask input can improve multi-category handling by acting as a hard discriminator
between two garments, in contrast to text, which acts as a soft discriminator since it does not
directly indicate the pixels occupied by the target garment. Therefore, the mask can help to visually
force the model to retain only upper- or lower-body information but it can not tell much about the
appearance of a garment, because it is highly warped together with the person, resulting in visual
artifacts. Textual information is critical, together with mask information, to extract the category
information of the garment. To address this, we decide to use also the global conditioning scheme
provided by AdaLN (Huang & Belongie, 2017) in SD3. As shown in previous works (Garibi et al.,
2025), these layers can be successfully leveraged to adapt “appearance” or “style” information into
existing Transformer-based architectures. For this reason, we extract a pooled textual representation

1Following SD3, we consider the combined embedding from CLIP ViT-L and Open-CLIP bigG/14.
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epool ∈ R2048 of CLIP textual features of the caption c and inject them into the model through
the modulation layers, following Eq. 3. The pooled vector epool ∈ R2048 encapsulates a coarser
representation than the full textual embeddings etext ∈ R77×4096, thus being suitable for high-level
information conditioning.

Training. We employ a two-stage training procedure: we train the module FE alone, detached from
the dual DiT FD, according to the diffusion loss Ldiff defined as follows:

Lextractor = Ez0,ϵt,t

[
∥ϵt − FE(z

′
t,xmodel, t)∥2

]
. (6)

Then, we train the main DiT module (i.e., FD) following a diffusion loss with multiple conditioning
signals:

LDiT = Ezg,ϵt,t

[
∥zg − FD(zt, epool, FE(z

′
0,xmodel, 0), t)∥2

]
, (7)

where zg = E(xg) is the latent representation of the target garment encoded by the VAE, and with
FE(z

′
0,xmodel, 0) being the list of keys and values extracted from FE at timestep t = 0. We extract

this list from FE at t = 0 and re-use them in FD for all subsequent timesteps, as we want to use
key/values from clean data.

3.3 GARMENT ALIGNER

While our model is effective at generating realistic and structurally coherent garments, we observe
occasional failures in preserving high-frequency details such as fine-grained textures and logos. We
hypothesize two primary contributing factors: (i) the diffusion loss Ldiff, defined in the noise space,
optimizes over perturbed latents rather than directly over image-space reconstructions, limiting its sen-
sitivity to fine-grained patterns; and (ii) the inherent generation dynamics of diffusion models, where
errors introduced in early timesteps – typically encoding low-frequency content – can accumulate
and degrade the fidelity of high-frequency details in later stages. To mitigate this, we draw inspiration
from REPA (Yu et al., 2025), and propose to explicitly align the internal feature representation of
our DiT with that of a pre-trained vision encoder. Specifically, we encourage patch-wise consistency
between the eighth Transformer block of our main DiT model FD and the corresponding features
extracted from DINOv2 (Oquab et al., 2023).

Formally, let hDiT ∈ R3072×d denote the token sequence obtained from the eighth Transformer
block of the DiT decoder FD, corresponding to a 64× 48 patch grid with embedding dimension d.
Separately, let henc ∈ R1024×d′

be the 32× 32 token grid extracted from a frozen DINOv2 encoder,
with embedding dimension d′ (where d′ ̸= d). To bridge this mismatch, we introduce a lightweight
garment aligner module composed of a convolutional neural network ϕCNN : R64×48×d → R32×32×d′

which is used to downsample the spatial token grid while preserving local structure and to project
the token embeddings into the DINOv2 feature space. The aligned tokens are defined as h̃DiT =

ϕCNN(hDiT) ∈ R1024×d′
.

We then enforce feature-level consistency via a cosine similarity loss:

Lalign = −Ezg,ϵt,t

[
1

N

N∑
i=1

cos
(
h̃DiT
i ,henc

i

)]
, (8)

where h̃DiT
i and henc

i are the i-th aligned and reference tokens, respectively, i is the patch index, N is
the total number of tokens, and cos is the cosine similarity. It is important to note that the garment
aligner is strictly a training-time component used to compute Lalign. It is discarded during inference,
adding no computational overhead to the generation process.

Overall Loss Function. The garment aligner is applied in the second stage of our training. Our final
training objective combines the standard diffusion loss LDiT with the garment alignment loss Lalign
previously introduced. The overall objective is thus defined as:

Ltotal = LDiT + λ · Lalign, (9)

where λ is a hyperparameter that balances the contribution of the two loss components.
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Table 1: Quantitative results on the Dress Code dataset, considering both the entire test set and the
three category-specific subsets. ↑ indicates higher is better, ↓ lower is better.

All Upper-Body

Method SSIM ↑ PSNR ↑ LPIPS ↓ DISTS ↓ FID ↓ KID ↓ SSIM ↑ PSNR ↑ LPIPS ↓ DISTS ↓ FID ↓ KID ↓
TryOffDiff - - - - - - 76.59 11.54 40.62 29.04 37.97 17.30
Any2AnyTryon 77.56 12.67 35.17 25.17 12.32 3.65 76.61 12.27 38.99 25.78 15.77 3.22
MGT 77.77 11.99 35.37 27.28 13.47 5.28 76.77 11.44 39.70 28.13 19.49 6.87
TEMU-VTOFF 75.95 12.90 31.46 18.66 5.74 0.65 74.54 12.51 35.48 19.75 10.94 0.76

Lower-Body Dresses

Method SSIM ↑ PSNR ↑ LPIPS ↓ DISTS ↓ FID ↓ KID ↓ SSIM ↑ PSNR ↑ LPIPS ↓ DISTS ↓ FID ↓ KID ↓
Any2AnyTryon 78.15 12.42 34.72 25.87 30.06 12.01 77.93 13.32 31.80 23.86 19.20 6.27
MGT 77.29 11.64 36.31 28.00 25.98 9.64 79.26 13.09 30.11 25.70 19.09 5.74
TEMU-VTOFF 73.94 12.14 34.60 19.57 13.83 2.04 79.39 14.36 24.32 16.67 11.29 0.59

Figure 3: Qualitative comparison on the Dress Code dataset between images generated by TEMU-
VTOFF and those generated by competitors.

4 EXPERIMENTS

4.1 COMPARISON WITH THE STATE OF THE ART

We conduct our experiments using two publicly available fashion datasets: VITON-HD (Choi et al.,
2021) and Dress Code (Morelli et al., 2022). VITON-HD contains only upper-body garments and
represents a single-category setting, while Dress Code includes multiple categories (i.e., dresses,
upper-body, and lower-body garments) enabling evaluation of the generalization capabilities of our
methods across diverse garment types. To evaluate the proposed TEMU-VTOFF architecture, we use
a combination of perceptual, structural, and distributional similarity metrics. Specifically, as VTOFF
is a paired generation setting, we mainly rely on reference-based like SSIM (Wang et al., 2004),
PSNR (Wang et al., 2004), LPIPS (Zhang et al., 2018), and DISTS (Ding et al., 2020), alongside
FID (Parmar et al., 2022) and KID (Bińkowski et al., 2018). We compare our approach against
recent VTOFF methods, including TryOffDiff (Velioglu et al., 2024), TryOffAnyone (Xarchakos
& Koukopoulos, 2024), MGT (Velioglu et al., 2025), Voost (Lee & Kwak, 2025), One Model For
All (Liu et al., 2025), and Any2AnyTryon (Guo et al., 2025). For TryOffAnyone, Voost, and One
Model For All, we report the results only on the VITON-HD dataset because they have not been
trained on the Dress Code dataset. Additionally, we retrain TryOffDiff on Dress Code using the
official code and hyperparameters provided by the authors. Since TryOffDiff is not designed to
handle multi-category garments, we report results only for the upper-body category.

Results on the Dress Code Dataset. Table 1 reports the experimental results on the Dress Code
dataset. As observed, our method outperforms existing state-of-the-art approaches across most
evaluation metrics and garment categories. These results indicate that our approach is category-
agnostic and benefits from the joint use of textual garment descriptions and fine-grained masks.
Consequently, our model achieves a better perceptual quality and closer alignment with the ground-
truth distribution compared to competing methods. Performance on lower-body garments is slightly
lower due to the class imbalance in the Dress Code dataset, which contains significantly fewer
lower-body samples (∼9k) compared to upper-body (∼15k) and full-body dresses (∼29k).

In Fig. 3, we provide qualitative results comparing TEMU-VTOFF with competitors. These examples
highlight the challenges posed by the diverse set of categories in Dress Code. As shown, MGT and
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Table 2: Quantitative results on the VITON-HD dataset. ↑ indicates higher is better, ↓ lower is better.
† denotes results taken directly from the original papers.

Method SSIM ↑ PSNR ↑ LPIPS ↓ DISTS ↓ FID ↓ KID ↓
TryOffDiff 75.53 11.65 39.56 25.53 17.49 5.30
TryOffAnyone 75.90 12.00 35.26 23.47 12.74 2.85
Any2AnyTryon 75.72 12.00 37.95 24.32 12.88 3.01

MGT† 78.10 - 36.30 24.70 21.90 8.90
Voost† - - - - 10.06 2.48
One Model for All† - - 22.50 19.20 9.12 1.49

TEMU-VTOFF 77.21 13.38 28.44 18.04 8.71 1.11

Figure 4: Qualitative comparison on the VITON-HD dataset between images generated by TEMU-
VTOFF and those generated by competitors.

Any2AnyTryon frequently struggle to preserve key visual attributes such as color, texture, and shape.
In contrast, our method is able to closely match the target garment across all categories, demonstrating
a clear improvement in generation quality.

Results on the VITON-HD Dataset. In Table 2, we report the quantitative results on VITON-HD. In
this setting, TEMU-VTOFF sets a new state-of-the-art across the majority of metrics, achieving the
best scores for DISTS, FID, and KID. This indicates a superior ability to reconstruct structural details
and to match the distribution of the ground-truth images. Notably, One Model for All achieves a
competitive LPIPS score, which we cite from the original paper as public checkpoints are unavailable.
Our method, however, achieves more robust performance on FID, KID, and DISTS. Since LPIPS
and DISTS are critical in paired settings, we provide a qualitative analysis (Sec. E of the Appendix)
showing LPIPS can diverge from human judgment, while DISTS aligns more reliably.

Overall, our method achieves solid improvements on VITON-HD, although the performance gains
are less pronounced than on Dress Code. This is expected, as VITON-HD focuses exclusively on
upper-body garments and is therefore a simpler benchmark. In contrast, the diverse and multi-category
nature of Dress Code, with dresses, skirts, and pants, highlights the advantages of our approach,
where the joint use of textual descriptions and fine-grained masks proves critical for accurate garment
reconstruction. Accordingly, the strengths of our method are most evident in complex, multi-category
scenarios. A visual comparison on sample VITON-HD images is shown in Fig. 4, which further
demonstrates the improved garment reconstruction quality of our proposed method.

4.2 ABLATION STUDIES

To assess the contribution of each component in our pipeline, we conduct a detailed ablation study on
the Dress Code dataset reported in Table 3. We first investigate the impact of our dual-stream DiT
architecture by removing the feature extractor FE . In this setting, the garment aligner component is
not employed. As shown, without the feature extractor, we experience a clear performance drop. In
contrast, injecting t = 0 keys and values from FE into the generator component through the proposed
MHA operator enables richer, multi-scale conditioning, leading to better results. Then, we analyze
the impact of employing the garment aligner module. As it can be seen, the aligner module helps
to improve perceptual fidelity, particularly in categories with complex structures such as dresses,
confirming that the designed components plays a critical role to the final performance.
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Table 3: Ablation study of the proposed components on the Dress Code dataset.

All Upper-body Lower-body Dresses

SSIM ↑ PSNR ↑ LPIPS ↓ DISTS ↓ FID ↓ KID ↓ DISTS ↓ FID ↓ DISTS ↓ FID ↓ DISTS ↓ FID ↓
Effect of Dual-Stream DiT (w/o Garment Aligner)
w/o feature extractor FE 72.79 11.45 38.61 23.56 9.11 1.70 24.97 14.13 23.20 19.54 22.52 16.82
TEMU-VTOFF 76.01 12.85 30.84 20.63 5.91 0.78 21.77 11.26 22.26 14.22 17.86 11.86

Effect of Garment Aligner Component
w/o garment aligner 76.01 12.85 30.84 20.63 5.91 0.78 21.77 11.26 22.26 14.22 17.86 11.86
TEMU-VTOFF 75.95 12.90 31.46 18.66 5.74 0.65 19.75 10.94 19.57 13.83 16.67 11.29

Effect of Text and Mask Conditioning
w/o text and masks 71.04 10.92 39.68 25.20 9.63 3.17 23.71 19.75 65.85 49.19 20.12 15.47
w/o text modulation 73.88 12.28 34.63 22.54 7.75 1.52 24.02 13.48 24.33 18.13 19.27 13.30
w/o fine-grained masks 74.65 12.30 32.33 20.87 6.58 1.03 20.85 11.31 22.34 15.74 19.42 13.62
TEMU-VTOFF 75.95 12.90 31.46 18.66 5.74 0.65 19.75 10.94 19.57 13.83 16.67 11.29

(a) Evaluation of mask and text joint impact. (b) Evaluation of garment aligner impact.

Figure 5: Qualitative comparisons validating the effectiveness of the proposed components.

Finally, removing garment descriptions or fine-grained masks consistently reduces performance, with
the largest drop when both are absent, confirming that masks act as spatial anchors while text provides
complementary semantic and category-level cues. The best results are obtained when both inputs are
present, highlighting their complementarity.

To better understand the strength of each component proposed in our approach, we provide a visual
comparison on Dress Code in Fig. 5. When our method relies exclusively on visual features from the
person, without any textual guidance, it can struggle to resolve ambiguities in the garment design,
leading to errors in structural elements such as neckline, sleeve length, or overall fit. The introduction
of a textual description provides essential structural cues, enabling the model to capture the intended
garment type and style. The fine-grained mask then imposes a precise spatial boundary, enforcing
a clean silhouette and sharp edges, which improves the overall shape and contour of the garment.
Finally, the garment aligner further improves the visual fidelity by encouraging the reconstruction of
high-frequency details. This results in improved textures and more accurate patterns, ensuring that
the final generated garment is not only structurally correct but also rich in fine-grained detail.

4.3 CROSS-DATASET GENERALIZATION

To evaluate the robustness of TEMU-VTOFF against domain shifts and its ability to generalize to
unseen garment types and poses, we conduct cross-dataset experiments. Specifically, we train our
model on one dataset and evaluate it directly on the test set of the other dataset. We compare against
MGT (Velioglu et al., 2025), TryOffDiff (Velioglu et al., 2024), and TryOffAnyone (Xarchakos &
Koukopoulos, 2024). Note that we exclude Any2AnyTryon (Guo et al., 2025) from this specific
analysis, as it is trained on a mixture of datasets including both Dress Code and VITON-HD,
making the cross-dataset evaluation unfair. In Table 4, we present cross-dataset generalization results
under two transfer settings. When trained on Dress Code and evaluated on VITON-HD, our model
consistently surpasses MGT across both perceptual and distributional metrics, achieving a notably
lower FID (20.39 vs. 23.11). Conversely, when trained on VITON-HD and tested on Dress Code
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Table 4: Quantitative comparison where models are trained on one dataset and tested on another to
evaluate robustness to domain shift. ↑ indicates higher is better, ↓ lower is better.

Method SSIM ↑ PSNR ↑ LPIPS ↓ DISTS ↓ FID ↓ KID ↓
Training on Dress Code→ Test on VITON-HD
MGT 74.26 10.24 42.57 28.73 23.11 10.81
TEMU-VTOFF 72.80 10.85 40.19 24.20 20.39 7.00

Training on VITON-HD→ Test on Dress Code (Upper-Body)
TryOffDiff 75.33 11.50 44.64 32.14 41.91 21.78
TryOffAnyone 71.96 10.52 47.14 27.54 24.45 9.84
TEMU-VTOFF 73.36 11.51 39.74 23.84 18.63 6.31

Table 5: VTON results from CatVTON trained on two Dress Code variants: the original dataset and
the version augmented with TEMU-VTOFF-generated images.

All Upper-Body

Training Dataset SSIM ↑ PSNR ↑ LPIPS ↓ DISTS ↓ FID ↓ KID ↓ SSIM ↑ PSNR ↑ LPIPS ↓ DISTS ↓ FID ↓ KID ↓
Dress Code 90.65 23.03 7.12 9.18 4.56 1.34 92.93 24.32 5.33 7.66 9.58 2.04
Dress Code (Augm.) 90.65 23.36 7.00 9.00 4.15 1.16 90.94 24.39 5.33 7.54 9.26 1.74

Lower-Body Dresses

Method SSIM ↑ PSNR ↑ LPIPS ↓ DISTS ↓ FID ↓ KID ↓ SSIM ↑ PSNR ↑ LPIPS ↓ DISTS ↓ FID ↓ KID ↓
Dress Code 91.46 24.44 6.03 7.84 9.60 1.71 87.50 21.18 10.01 12.04 9.58 1.26
Dress Code (Augm.) 91.48 24.50 5.95 7.63 9.02 1.38 87.50 21.21 10.00 12.02 9.45 1.12

(upper-body), our method again shows stronger generalization, obtaining an FID of 18.63 and clearly
outperforming both TryOffDiff and TryOffAnyone.

4.4 DOWNSTREAM UTILITY

To demonstrate the practical utility of TEMU-VTOFF, we evaluate its effectiveness as a data aug-
mentation tool for the VTON downstream task. High-quality paired data (i.e., person and in-shop
garment) is expensive to acquire; our method addresses this by synthetically generating the “in-shop”
garment directly from images of clothed people.

Experimental Setup. We use the Dress Code dataset (Morelli et al., 2022) and employ TEMU-
VTOFF to generate synthetic in-shop garment images for the training samples. Specifically, for each
person image in the upper- and lower-body categories, we generate the missing in-shop garment:
the lower-body item for upper-body images and the upper-body item for lower-body images. This
procedure augments the dataset with additional person-garment pairs generated by TEMU-VTOFF.
We then employ CatVTON (Chong et al., 2025) (utilizing the SD 3 medium backbone) in two distinct
settings: trained only on the standard Dress Code training set and trained on the Dress Code training
set augmented with the synthetic pairs generated by TEMU-VTOFF.

Results. We evaluate the trained models on the official Dress Code test set. As shown in Table 5,
the model trained with our augmented data achieves consistent improvements across both perceptual
and distributional metrics. Notably, in the upper-body and lower-body categories, the augmented
training yields lower FID scores (9.27 vs. 9.58 and 9.02 vs. 9.60, respectively). This confirms that
the garments generated by TEMU-VTOFF preserve sufficient structural fidelity and texture details to
serve as effective training signals, improving the generalization of state-of-the-art VTON models.

5 CONCLUSION

We presented TEMU-VTOFF, a novel architecture that pushes the boundaries of VTOFF for complex,
multi-category scenarios. While existing methods often struggle with detail preservation and accurate
reconstruction across diverse garment types, our approach is specifically designed to overcome these
limitations. We achieve this through a novel dual-DiT framework that leverages multimodal hybrid
attention to effectively fuse information from the person, the garment, and textual descriptions. To
enhance realism, our proposed garment aligner module refines fine-grained textures and structural
details. The effectiveness of our method is validated by state-of-the-art performance on standard
VTOFF benchmarks, demonstrating its robustness in generating high-fidelity, catalog-style images.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

Our method addresses the VTOFF task by generating flat, in-shop garment images from photos
of dressed individuals. This enables a novel form of data augmentation in the fashion domain,
allowing clean garment representations to be synthesized without manual segmentation or dedicated
photoshoots. By bridging the gap between worn and catalog-like appearances, our approach can
improve scalability for fashion datasets and support downstream applications such as retrieval,
recommendation, and virtual try-on. However, as with any generative technology, there are important
ethical and legal considerations. In particular, our model could be used to reconstruct garments
originally designed by third parties, potentially raising issues of copyright and intellectual property
infringement. We emphasize that our framework is intended for research and responsible use, and
any deployment in commercial settings should ensure compliance with applicable copyright laws and
respect for designer rights.

REPRODUCIBILITY STATEMENT

This work uses only public datasets and open-source models for its training and evaluations. In the
Appendix, we include all the implementation and dataset details to reproduce our results. In addition,
we will publicly release the source code and trained models to further support reproducibility.
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A ADDITIONAL DETAILS

A.1 DATASETS DETAILS

Dress Code. In our experiments, we adopt the Dress Code dataset (Morelli et al., 2022), the largest
publicly available benchmark for image-based virtual try-on. Unlike previous datasets limited to
upper-body clothing, Dress Code includes three macro-categories: upper-body clothes with 15,363
pairs (e.g., tops, t-shirts, shirts, sweatshirts), lower-body clothing with 8,951 pairs (e.g., trousers,
skirts, shorts), and full-body dresses with 29,478 pairs. The total number of paired samples is 53, 792,
split into 48, 392 training images and 5, 400 test images at a resolution of 1024× 768.

VITON-HD. Following previous literature, we also adopt VITON-HD (Choi et al., 2021), a publicly
available dataset widely used in virtual try-on research. It is composed exclusively of upper-body
garments and provides high-resolution images at 1024× 768 pixels. The dataset contains a total of
27, 358 images, structured into 13, 679 garment-model pairs. These are split into 11, 647 training
pairs and 2, 032 test pairs, each comprising a front-view image of a garment and the corresponding
image of a model wearing it.

A.2 IMPLEMENTATION DETAILS

For both the feature extractor and the diffusion backbone, we adopt Stable Diffusion 3 medium (Esser
et al., 2024). All models are trained on a single node equipped with 4 NVIDIA A100 GPUs (64GB
each), using DeepSpeed ZeRO-2 (Rajbhandari et al., 2021) for efficient distributed training. We use
a total batch size of 32 and train each model for 30k steps, corresponding to approximately 960k
images. Optimization is performed with AdamW (Loshchilov & Hutter, 2019), using a learning rate
of 1× 10−4, a warmup phase of 3k steps, and a cosine annealing schedule. We train separate models
per dataset to account for differences in distribution and garment structure. In all experiments, we set
the alignment loss weight λ equal to 0.5.

We evaluate our method both with distribution-based metrics and per-sample similarity metrics. For
the first group, we adopt FID (Parmar et al., 2022) and KID (Bińkowski et al., 2018) implementa-
tions derived from clean-fid PyTorch package2. Concerning the second group, we adopt both
SSIM (Wang et al., 2004), PSNR (Wang et al., 2004), and LPIPS (Zhang et al., 2018) as they are the
standard metrics adopted in the field to measure structural and perceptual similarity between a pair of
images. We reuse the corresponding Python packages provided by TorchMetrics3. Finally, we adopt
DISTS (Ding et al., 2020) as an additional sample-based similarity metric, as it correlates better with
human judgment, as shown in previous works (Fu et al., 2023). We stick to the corresponding Python
package4 to compute it for our experiments.

A.3 CAPTION EXTRACTION DETAILS

We leverage Qwen2.5-VL (Bai et al., 2025) to generate textual descriptions of the garments, which
serve as semantic conditioning for our Dual-DiT architecture.

To ensure no ground-truth information leaks into the testing process, we employ two different
generation pipelines for training and testing:

• Training: We generate captions using the ground-truth in-shop garment images. This ensures the
model learns precise semantic correlations between visual features and textual attributes during
optimization (see Fig. 6).

• Inference: At test time, the ground-truth garment image is strictly unavailable. Instead, the caption
is generated directly from the input person image. Qwen2.5-VL is prompted to analyze the person’s
clothing and extract the relevant structural attributes. This ensures our method is fully applicable to
“in-the-wild” scenarios where only the person image is known (see Fig. 7).

We define a variable category ∈ {dress, upper body, lower body}. To avoid leaking
color or texture information (which should be handled by the visual feature extractor FE) and to

2https://pypi.org/project/clean-fid/
3https://pypi.org/project/torchmetrics/
4https://pypi.org/project/DISTS-pytorch/
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focus solely on structural guidance, we utilize a strict prompt template. The prompt explicitly forbids
the generation of non-structural attributes:

visual_attributes = {
"dresses": ["Cloth Type", "Waist", "Fit", "Hem", "Neckline", "Sleeve

Length", "Cloth Length"],
"upper_body": ["Cloth Type", "Waist", "Fit", "Hem", "Neckline", "

Sleeve Length", "Cloth Length"],
"lower_body": ["Cloth Type", "Waist", "Fit", "Cloth Length"]

}

System: You are Qwen, created by Alibaba Cloud. You are a helpful assistant.

User:

Use only visual attributes that are present in the image. Predict values of the following at-
tributes: {visual_attributes[category]}. It’s forbidden to generate the following
visual attributes: colors, background, and textures/patterns. It’s forbidden to generate unspecified
predictions. It’s forbidden to generate newline characters. Generate in this way: a <cloth
type> with <attributes description>.

Qwen Caption: A denim shirt with a straight fit, long sleeves, and a button-down neckline. The
hem is straight and the shirt appears to be of standard length.

Figure 6: Caption extraction pipeline (training stage).

We decide to generate structural-only attributes because our base model without text can already
transfer colors and textures correctly from the person image to the generated garment image. The
structural attributes are slightly different according to the three categories of clothing, as specified
in visual_attributes. For example, the neckline can be specified for upper body and dresses
(whole body garments), but not for lower body items.

A.4 ALGORITHM

To provide a clear understanding of TEMU-VTOFF, we summarize the core components of our
method in Algorithm 1. The pseudo-code outlines the sequential steps involved in training our
dual-DiT architecture, including multimodal conditioning, the hybrid attention module, and the
garment aligner component.
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System: You are Qwen, created by Alibaba Cloud. You are a helpful assistant.

User:

Use only visual attributes that are present in the image. Predict values of the following attributes:
{visual_attributes[category]}. Do it only for the category garment. It’s forbidden
to generate the following visual attributes: colors, background, and textures/patterns. It’s forbidden
to generate unspecified predictions. It’s forbidden to generate newline characters. Generate in this
way: a <cloth type> with <attributes description>.

Qwen Caption: A leather skirt with a fitted waist and a short length.

Figure 7: Caption extraction pipeline (inference stage).

B ADDITIONAL QUANTITATIVE RESULTS AND ANALYSES

In this section, we report additional quantitative results and analyses on the effectiveness of the
proposed components and design choices.

Effect of Varying λ Parameter. We conducted an ablation study on the Dress Code dataset to assess
the effect of the λ regularization for the alignment of our main diffusion transformer FD and the
DINOv2 features. We report the results in Table 6. As shown, λ = 0.5 is the overall best choice
across all metrics.

Effect of Varying the DiT Block i Used for Lalign. A critical design choice in our garment aligner
module is determining which internal block of the DiT (FD) should be aligned with the semantic
features from DINOv2. To find the optimal depth, we conduct an ablation study on the Dress Code
dataset, varying the block index i ∈ {6, 8, 12, 18} within the 24-block SD 3 medium architecture.

The results are reported in the middle section of Table 6. We observe that aligning the 8th block
yields the best overall performance. These results highlight a trade-off between structural guidance
and generation flexibility, consistent with recent findings in representation alignment (Yu et al., 2025).
The early-to-mid layers of the DiT capture the coarse semantic layout and structural essence of the
image. Aligning these with DINOv2 ensures the generated garment respects the target structure
while leaving subsequent layers free to refine details. As we move to deeper blocks, perceptual
quality degrades. While these layers maintain high structural similarity, the distributional metrics
worsen. This occurs because the deeper layers of a DiT are increasingly specialized in predicting the
high-frequency noise (or flow velocity) required for the diffusion objective. Forcing these “noisy”
layers to align with the “clean”, invariant features of DINOv2 introduces an optimization conflict,
ultimately smoothing out fine-grained textures and degrading realism.

Analysis of Asynchronous Timestep Conditioning. A critical design choice in our architecture
is the use of a fixed timestep t = 0 for the feature extractor FE , while the main denoising DiT
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Algorithm 1 TEMU-VTOFF: Dual-DiT and Garment Alignment for VTOFF
Require: Person image xmodel, garment caption c, binary mask M , target garment image xg

Ensure: Generated garment x̂g

1: Latent encoding:
Encode the target garment: zg ← E(xg)
Sample noise: ϵt ∼ N (0, 1)
Apply flow-matching: zt ← (1− t)zg + t · ϵt

2: Prepare masked spatial input:
Encode masked person image: xM ← E(xmodel ⊙M)
Concatenate inputs: z′

t ← [zt,M,xM ]
3: Extract modulation features:

ev
pool ← CLIP(xmodel)

4: Extract keys and values using feature extractor:
{Kl

extractor,V
l

extractor}Nl=1 ← FE(z
′
0,xmodel, t=0)

5: Encode text information:
Get pooled text embedding: epooled ← CLIP(c)
Get full sequence text features: etext ← [CLIP(c),T5(c)]

6: Noise prediction:
ϵ̂t ← FD(zt, epooled, etext, {Kl

extractor,V
l

extractor}, t)
Compute diffusion loss: LDiT ← ∥ϵ̂t − ϵt∥2

7: Align internal representations:
Extract DiT features: hDiT ← tokens from 8th block of FD

Extract DINOv2 features: henc ← DINOv2(xg)

Align via projection: h̃DiT ← ϕCNN(hDiT)

Compute alignment loss: Lalign ← − 1
N

∑
i cos(h̃

DiT
i ,henc

i )
8: Final objective:

Combine losses: Ltotal ← LDiT + λ · Lalign
9: Decode final garment:

Run reverse process: x̂g ← D(ẑ0)

FD operates on a noisy latent zt at timestep t > 0. This raises an important question: could this
discrepancy in timesteps lead to a misalignment in the feature space? In this section, we provide the
rationale for this design choice, supported by concurrent work and a targeted ablation study.

Our primary motivation is to provide the main generator FD with the cleanest, most semantically rich
conditioning signal possible. By extracting features from FE at t = 0 we ensure the conditioning
information is completely free from stochastic noise inherent to the diffusion process. We hypothesize
that injecting features from a noisy timestep t > 0 would introduce an additional, confounding source
of noise into the generation process, thereby degrading the quality of the final output. The key to
our method is that the MHA module is specifically trained to bridge this temporal gap; it learns to
effectively attend to the clean conditioning features to guide the denoising of the noisy latent zt.

This design philosophy is strongly supported by recent, concurrent research that analyzes the internal
representations of diffusion models:

• The work on CleanDIFT (Stracke et al., 2025) directly argues that adding noise to images before
feature extraction is a performance bottleneck that harms feature quality. Their entire method is
built on the same premise as our FE : that extracting features from clean images leads to superior
performance without needing task-specific timestep tuning.

• Furthermore, ConceptAttention (Helbling et al., 2025) demonstrates that the internal representations
of DiTs are highly interpretable and correspond to semantic concepts, particularly at early timesteps.
This validates our choice to use t = 0 features, as they represent the purest and most semantically
meaningful form of this information.

To validate our design choice, we conducted an ablation study comparing our method with the variant
where the feature extractor FE and the denoising FD use the same synchronous timestep t. The
results on Dress Code are presented in Table 6. As shown in the table, our proposed method with
asynchronous timesteps significantly outperforms the synchronous variant across the majority of
the metrics. This result provides strong empirical evidence for the value of clean conditioning and
confirms the effectiveness of our proposed Multimodal Hybrid Attention.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 6: Additional ablation study results on the Dress Code dataset.

All Upper-body Lower-body Dresses

SSIM ↑ PSNR ↑ LPIPS ↓ DISTS ↓ FID ↓ KID ↓ DISTS ↓ FID ↓ DISTS ↓ FID ↓ DISTS ↓ FID ↓
Effect of Varying λ Parameter
λ = 0.0 (w/o g. aligner) 76.01 12.85 30.84 20.63 5.91 0.78 21.77 11.26 22.26 14.22 17.86 11.86
λ = 0.25 74.29 12.48 33.68 19.41 6.42 0.89 19.65 10.77 21.86 16.53 16.73 11.38
λ = 0.5 (Ours) 75.95 12.90 31.46 18.66 5.74 0.65 19.75 10.94 19.57 13.83 16.67 11.29
λ = 0.75 71.93 11.71 37.03 20.35 7.81 1.41 20.11 11.09 23.85 21.12 17.10 11.69
λ = 1.0 71.76 11.72 37.21 20.45 7.78 1.39 20.07 11.33 24.11 20.59 17.17 11.79

Effect of Varying the DiT Block i Used for Lalign

i = 6 72.11 11.44 38.00 20.62 8.66 1.76 21.21 12.36 23.25 22.15 17.42 12.49
i = 8 (Ours) 75.95 12.90 31.46 18.66 5.74 0.65 19.75 10.94 19.57 13.83 16.67 11.29
i = 12 75.30 12.59 32.71 19.13 6.48 0.87 20.41 11.86 20.01 15.40 16.98 11.72
i = 18 76.16 12.57 31.66 19.17 6.87 1.16 20.27 12.37 19.86 15.52 17.38 12.28

Effect of Asynchronous Timestep Conditioning
w/ same t in FE and FD 77.70 12.66 32.69 22.41 9.78 2.30 23.98 17.85 21.29 17.83 21.95 17.52
w/ t = 0 in FE (Ours) 75.95 12.90 31.46 18.66 5.74 0.65 19.75 10.94 19.57 13.83 16.67 11.29

Table 7: Comparison of CLIP vs. SigLIP 2 as vision encoder for person encoding. ↑ indicates higher
is better, ↓ lower is better.

Method SSIM ↑ PSNR ↑ LPIPS ↓ DISTS ↓ FID ↓ KID ↓
TEMU-VTOFF w/ CLIP 75.95 12.90 31.46 18.66 5.74 0.65
TEMU-VTOFF w/ SigLIP 2 76.62 14.33 28.10 18.77 5.08 0.53

Generalization with Stronger Vision Encoders. We replace our CLIP vision encoder with a
more powerful SigLIP 2 (Tschannen et al., 2025). We adopt the ViT-g 16 model and retrained our
architecture with an additional MLP fMLP : R1536 → R2048 to project SigLIP 2 output dimension
into the SD3 input space. The results are presented in Table 7. As noted in TryOffDiff (Velioglu et al.,
2024), employing a stronger vision encoder improves the final performance. Our experiments further
validate this finding. This improvement is due to the better capacity of SigLIP 2 at extracting more
fine-grained features. As reported in (Tschannen et al., 2025), this model is trained with a binary
contrastive loss that processes each text-image pair separately, thus preventing information corruption
from different image-text pairs. Moreover, fine-grained details are enhanced with a self-distillation
loss and masked prediction. Finally, this ablation further demonstrates that our core contribution
lies in our dual-DiT architecture because this design scheme can be improved with plug-and-play
modules, unlike the architectural alternatives that underperform in the same setting.

C ADDITIONAL QUALITATIVE RESULTS

We report an extended version of the qualitative results presented in our main paper. Specifically,
additional visual comparisons between TEMU-VTOFF and competitors are shown in Fig. 9 and
Fig. 10, on sample images from Dress Code (Morelli et al., 2022) and VITON-HD (Choi et al., 2021),
respectively. Moreover, Fig. 11 presents additional ablation results to analyze the impact of textual
and mask conditioning. Finally, we include in Fig. 12 the full set of inputs used for generating the
target garment, including the model input, the segmentation mask, and the textual caption.

D USER STUDY

To complement our quantitative analysis and address the limitations of automated metrics in capturing
fine-grained texture details, we conduct a human perceptual study.

Experimental Setup. We recruited 42 distinct participants to evaluate the visual quality of the
generated garments. The study followed a pairwise comparison protocol. For each trial, partici-
pants were presented with the input person image and two generated garment results: one from
TEMU-VTOFF and one from a competitor (randomly selected from MGT (Velioglu et al., 2025) or
Any2AnyTryon (Guo et al., 2025)). The position of the images (i.e., left/right) was randomized to
prevent bias. Participants were asked to select the image that best represented a high-fidelity, in-shop
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Table 8: Pairwise comparison showing the percentage of times participants preferred TEMU-VTOFF
over the competing method. “Not Sure” indicates cases where participants found the quality of
generated images indistinguishable.

Comparison Ours Wins (%) Not Sure (%) Competitor Wins (%)

TEMU-VTOFF vs. MGT 75.77 7.85 16.38
TEMU-VTOFF vs. Any2AnyTryon 77.74 5.64 16.62

Figure 8: Additional qualitative results of TEMU-VTOFF and competitors on VITON-HD (Choi
et al., 2021), with per-sample metrics. DISTS emphasizes structural differences between images
better than LPIPS, confirming its higher correlation with human judgments.

version of the garment worn by the model, considering texture preservation, structural integrity, and
overall realism.

Results. We collected a total of 1,920 pairwise judgments. The results, summarized in Table 8,
demonstrate a strong preference for our method. TEMU-VTOFF outperforms MGT with a win
rate of 75.77% and Any2AnyTryon with a win rate of 77.74%. These results strongly corroborate
our quantitative analyses (particularly the DISTS and FID scores), confirming that TEMU-VTOFF
produces results that are perceptually superior to state-of-the-art methods.

E DISCUSSION AND LIMITATIONS

Our method demonstrates strong performance and generalization, yet it inherits some inner problems
of foundational models such as Stable Diffusion 3 (Esser et al., 2024). Although we improve the
rendering of large logos and text, the model still struggles with fine-grained details, including complex
texture patterns, small printed text, and the correct reproduction of small objects such as buttons.
Moreover, as mentioned in the main paper, reconstruction is less reliable for lower-body garments
than for upper-body items or dresses, likely due to class imbalance in the Dress Code dataset. For
completeness, we show a set of failure cases in Fig. 13 and Fig. 14, on sample images from Dress
Code (Cui et al., 2021) and VITON-HD (Lee et al., 2022), respectively.

We further analyze how the adopted perceptual metrics correlate with the presence of visual artifacts
in the generated images (Fig. 8). While quantitative comparisons are reported as averages over the full
test set, inspecting per-sample metric values is particularly informative in VTOFF, as it always lives in
a paired setting. Edge cases, such as missing garment components or incorrect structural details, are
often critical, and VTOFF naturally provides paired person-garment samples. In this context, LPIPS
and DISTS play an important role, as both measure image-to-image distances. It is therefore essential
to verify that these metrics respond reliably to detail discrepancies and appropriately penalize weaker
baselines.
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For each example in Fig. 8, we display three images: the ground-truth target, the output of TEMU-
VTOFF, and the output of TryOffAnyone (Xarchakos & Koukopoulos, 2024). We present four
representative comparisons. The first two (columns 1-3) show cases where TEMU-VTOFF preserves
fine garment details that are lost by the competitor. The remaining two (columns 4-6) contrast accurate
samples from our method with misaligned or rotated outputs produced by TryOffAnyone. For each
pair, we report the corresponding per-sample DISTS and LPIPS values, along with the percentage
improvement of our results over those of TryOffAnyone. In situations where a clear qualitative gap
exists, DISTS consistently reflects the expected difference, whereas LPIPS often fails to penalize
severe distortions and occasionally even assigns worse scores to the better-performing method (e.g.,
row 2, column 5). These observations provide empirical evidence supporting our choice to include
DISTS as part of the overall evaluation protocol. This observation is consistent with findings from
DreamSim (Fu et al., 2023), as discussed in Sec. A.2.

F LLM USAGE

In this work, we employ LLMs (specifically Qwen2.5-VL) to extract garment-related textual descrip-
tions, which serve as conditioning signals for generation. Beyond this, LLMs were employed solely
for minor language refinement. They did not contribute to the design of experiments, the analysis of
results, or the generation of scientific content.
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Figure 9: Additional qualitative results of TEMU-VTOFF and competitors on Dress Code (Morelli
et al., 2022).
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Figure 10: Additional qualitative results of TEMU-VTOFF and competitors on VITON-HD (Choi
et al., 2021).
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Figure 11: Additional qualitative results showing the contribution of each component in TEMU-
VTOFF on Dress Code (Morelli et al., 2022) images.
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Figure 12: Inputs used to generate the target garment with TEMU-VTOFF, using sample images
from Dress Code (Cui et al., 2021)
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Figure 13: An overview of failure cases on the Dress Code (Morelli et al., 2022) dataset.

Figure 14: An overview of failure cases on the VITON-HD (Choi et al., 2021) dataset.
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