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Abstract

Recent findings suggest that consecutive layers of neural networks with the ReLU activation
function fold the input space during the learning process. While many works hint at this
phenomenon, an approach to quantify the folding was only recently proposed by means
of a space folding measure based on the Hamming distance in the ReLU activation space.
Moreover, it has been observed that space folding values increase with network depth when
the generalization error is low, but decrease when the error increases, thus underpinning
that learned symmetries in the data manifold (visible in terms of space folds) contribute
to the network’s generalization capacity. Inspired by these findings, we propose a novel
regularization scheme that enforces folding early during the training process. Further, we
generalize the space folding measure to a wider class of activation functions through the
introduction of equivalence classes of input data. We then analyze its mathematical and
computational properties and propose an efficient sampling strategy for its implementation.
Lastly, we outline the connection between learning with increased folding and contrastive
learning, hinting that the former is a generalization of the latter. We underpin our claims
with an experimental evaluation.

1 Introduction

Biological sensory systems, as well as artificial neural networks, transform the input signal into internal
representations that efficiently and effectively capture information needed for current and future tasks. For
example, in the human eye, the retina removes redundant spatiotemporal structure from incoming light so
that it may be efficiently transmitted through the optic nerve. This representation is then transformed in the
cortical area by extracting frequently occurring features in support of efficient coding and discrimination of
natural images (Barlow, 1961; Atick & Redlich, 1990; van Hateren, 1992; Meister et al., 1995; Balasubrama-
nian & Berry, 2002; Puchalla et al., 2005; Doi et al., 2012). Similarly to biological structures, artificial neural
networks also transform its input signal, allowing for its use for downstream tasks. This transformation can
be analytically studied with tools developed for signal processing, see e.g., Mallat (1989; 2009; 2012).

Motivated by this, we aim to study artificial neural networks (ANNs) through the lens of how they transform
the input space. Recent works indicate that ANNs fold the input space during the training process, meaning
that distant input samples can become close in the activation space (Montúfar et al., 2014; Keup & Helias,
2022). Building on these ideas, Lewandowski et al. (2025) proposed a range-based measure in the discrete
activation space of ReLU neural networks to quantify how much a network folds its input space as it learns.
Their analysis focuses on deviations from convexity when mapping a straight-line path in the Euclidean
input space to the Hamming activation space. Though simple in nature, analyzing paths in the activation
space prove to be insightful as it can be applied to arbitrary paths, and thus statistics derived from these
probes might capture the global nature of folds while remaining computationally tractable (Freeman &
Bruna, 2016). Hence, what appears to be a restrictive slice through the input space, instead functions as
an a stethoscope of sorts that lets us listen to how (and how much) the network convolutes the input space
during learning.

In Lewandowski et al. (2025), the authors rely on the intuition that, if the data manifold learned by a neural
network is flat, then the (Euclidean) distance increases monotonically with respect to the initial point when
walking along a straight line connecting these points. Contrary, when the data manifold is folded, then
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the (Hamming) distance computed between respective activation patterns in the Hamming activation space
(defined in Sec. 3) changes non-monotonically – at some point the network “refolds” such that the Hamming
distance decreases – indicating that two previously distant (in the input space) data points have come closer
(cf. Fig. 1 right and Fig. 2). Originally developed for ReLU networks, this approach leverages the fact that
the ReLU activation function partitions the input space into disjoint linear regions (Makhoul et al., 1989;
Montúfar et al., 2014). In our paper, we firstly show that these regions correspond to equivalence classes
defined by the pre-images of either {0} or the strictly positive interval (0,∞). Extending {0} to (−∞, 0]
provides a straightforward generalization to a broader class of monotonic activation functions. Secondly, we
derive several properties of the space folding measure χ, which do also hold in the general case. Thirdly, since
computing χ relies on sampling from different activation regions, we introduce a non-parametric sampling
algorithm that exploits the structure of the aforementioned equivalence classes, thereby reducing redundant
computations. Lastly, we leverage the fact that space folding values have been observed to increase with
network depth when the generalization error is low, but decrease when the error increases (Lewandowski et al.,
2025). We thus hypothesize that an increased folding enhances the network’s generalization capabilities, and
introduce a novel regularization strategy that applies the folding measure at periodic intervals during training
(e.g., every n training epochs) to induce stronger folding in the early stages and diminish its influence later
in training. Our contributions are as follows.

• Generalized Folding Measure: We generalize the space folding measure beyond the ReLU acti-
vation function. Our approach relies on the fact that the pre-image of the partition {(−∞, 0], (0,∞)}
divides the domain into two connected sets, f (−1)((−∞, 0]) and f (−1)((0,∞)), for any monotonic
and continuous f .

• Theoretical Analysis: We state and prove general properties of the folding measure, such as
(i) its stability under traversing different activation regions, (ii) the sufficient and necessary, i.e.,
characterizing, condition for flatness, (iii) its sensitivity to the direction of the path, (iv) invariance
of flatness to direction of path, (v) non-additivity.

• New Regularization: We introduce a new regularization procedure for training neural networks
by penalizing low space folding values. We aim to exploit the previously observed link between
folding and generalization and enforce folding during the training process. To this goal, we propose
a differentiable approximation of the original folding measure.

The remainder of the paper is organized as follows. Sec. 2 outlines related work; Sec. 3 introduces necessary
concepts and fixes notation for the remainder of the paper; Sec. 4 recalls the definition of the space folding
measure and then provides detailed analysis paired with the introduction of the global folding measure
Sec. 5 contains the performed experiments; Sec. 6 outlines an approach on how to use the folding measure
for regularization during training; and finally, Sec. 7 we conclude our work and outline future research
directions. In Appendices, Sec. A sketches sensitivity analysis of the folding measure to perturbations in
activation patterns along a path; Sec. B introduces a sampling technique from activation paths along a
1D path which relies on the Hamming distances between samples; Sec. C describes an impact of batch
normalization and dropout on the behaviour of the folding measure; lastly, Sec. D provides results of folding
using ELU activation function.

2 Related Work

Folding. The idea of folding the (input) space has been investigated, among others, in computational
geometry (Demaine et al., 2000). In the context of neural networks, Montúfar et al. (2014) argued that each
hidden layer in a ReLU neural network acts as a folding operator, recursively collapsing input-space regions.
In Phuong & Lampert (2020), the authors defined the folds by ReLU networks, but left the exploration
quite early on. Lewandowski et al. (2025) proposed the first measure to quantify the folding by ReLU neural
networks, but it was restricted to ReLU networks and lacked a corresponding theoretical analysis. In our
work, we generalize the measure beyond the ReLU activation function, and then exploit it for regularization.

2



Under review as submission to TMLR

We remark that folding can be seen as a process generating symmetry: When the neural network folds
the input space, it effectively identifies different inputs (e.g., an image and its mirror) by mapping them to
the same activation pattern – a form of learned invariance. Somewhat implicitly, symmetries have been at
the core of some of the most successful deep neural network architectures, e.g., CNNs (Fukushima, 1980;
LeCun et al., 1989) are equivariant to translation invariance characteristic of image classification tasks, while
GNNs (Battaglia et al., 2018) are equivariant to the full group of permutations (see Higgins et al. (2022) for
a detailed overview). Our work analyzes symmetries (reflection groups) that arise by space folding and their
impact on the generalization capacity of the model.

Path Analysis. Fawzi et al. (2018) used path analysis between input data to explore whether there exists
a continuous path that remains in the decision region between any two points of the same label. Hénaff
et al. (2019) proposed that the visual system transforms inputs to follow straighter temporal trajectories,
and developed a methodology for estimating the curvature of an internal trajectory from human perceptual
judgments. In Hosseini & Fedorenko (2023), the authors developed a curvature metric that relies on the
neural trajectory of words (tokens) in a sentence and found a quantitatively behavior of the metric in trained
models. Goujon et al. (2024) showed that along one-dimensional paths, nonlinearity points scale linearly
with depth, width, and activation complexity, while Gamba et al. (2022) proposed a direction-based method
to recover all the linear regions along a path. Similarly to these works, we focus on path analysis and its
descriptive statistics, however, in addition we leverage the underlying geometry of data. In this way, we
capture the transformation of the space by neural networks.

3 Preliminaries

We define a ReLU neural network N : X → Y with the total number of N neurons as an alternating
composition of the ReLU function σ(x) := max(x, 0) applied element-wise on the input x, and affine functions
with weights Wk and biases bk at layer k. An input x ∈ X propagated through N generates non-negative
activation values on each neuron. A binarization is a mapping π : RN → {0, 1}N applied to a vector v =
(v1, . . . , vN ) ∈ RN , resulting in a binary vector by clipping strictly positive entries of v to 1, and non-positive
entries to 0, that is π(vi) = 1 if vi > 0, and π(vi) = 0 otherwise. In our case, the vector v is the concatenation
of all neurons of all hidden layers and its binarization, called an activation pattern, represents an element in a
binary hypercube HN := {0, 1}N where the dimensionality is equal to the number N of (hidden) neurons in
network N . A linear region is an element of a partition covering the input domain where the network behaves
as an affine function (Fig. 1, left). The Hamming distance, dH(u, v) := |{ui ̸= vi for i = 1, . . . , N}|, measures
the difference between u, v ∈ HN , and for binary vectors is equivalent to the L1 norm between those vectors.
Lastly, as we will deal with paths of activation patterns, we denote the operation of joining those paths with
the operator ⊕ : Hk·N ×H(n−k+1)·N → Hn·N such that {π1, . . . , πk} ⊕ {πk, . . . , πn} = {π1, . . . , πk, . . . , πn}.
The operation ⊕ is defined for connected paths, where the last activation pattern of one path matches the
first activation pattern of the other.

4 Space Folding Measure: Construction and Properties

4.1 Construction

Consider a straight line connecting two input points x1, x2 in the Euclidean input space. The intermediate
points are realized by varying the parameter t in a convex combination (1− t)x1 + tx2. For a practical im-
plementation, Lewandowski et al. (2025) spaced the parameter t equidistantly on [0, 1], creating n segments.
Equal spacing, though easy and fast to implement, frequently results in suboptimal choice of the interme-
diate points (we address this issue in Appendix B). To obtain a walk through activation patterns, we map
the straight line [x1, x2] through a neural network N to a path Γ := {π1, . . . , πn} ∈ Hn·N in the Hamming
activation space, where the intermediate activation patterns belong to a binary hypercube, πi ∈ HN for
all i ∈ {1, . . . , n} (see Fig. 2). We consider a change in the Hamming distance with respect to the initial
activation pattern π1 at each step i, ∆i := dH(πi+1, π1)− dH(πi, π1), and then look at the maximum of the
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Figure 1: Left: Illustration of a walk on a straight path in the Euclidean input space and the Hamming
activation space. The dotted line represents the shortest path in the Euclidean space. The arrows represent
a shortest path in the Hamming distance between activation patterns π1 and π4 (in the Hamming space the
shortest path is not unique). Right: Symmetry in the activation space: gray regions are closer to each other
in the Hamming distance than to the region πj that lies between them.

cumulative change maxk

∑k
i=1 ∆i along the path Γ,

r1(Γ) = max
i

i∑
j=1

∆j = max
i

dH(πi, π1). (1)

We further keep track of the total distance traveled on the hypercube when following the path,

r2(Γ) =
n−1∑
i=1

dH(πi, πi+1). (2)

For a measure of space flatness, we consider the ratio r1(Γ)/r2(Γ). Equivalently, the space folding measure
results as

χ(Γ) := 1−max
i

dH(πi, π1)
/ n−1∑

i=1
dH(πi, πi+1). (3)

The folding measure is lower and upper bounded, χ ∈ [0, 1] Lewandowski et al. (2025). We will now formally
define folding of the space, and the we will generalize the folding measure to any monotonic activation
function.
Definition 4.1 (Space Folding). We say that the input space is folded between inputs x1 and x2 with
activation patterns π1 and π2, respectively, if χ(Γ) > 0 for a path Γ spanned between π1 and π2.

4.2 Beyond ReLU

Before stating several properties of the folding measure χ, we interpret a walk through activation regions
in ReLU-based MLP as a walk traversing distinct equivalence classes, and then show how this extends to
any activation function. This makes our study directly applicable to vast range of activation functions. We
start by defining the input equivalence relationship for ReLU neural networks. We will abuse the notation
slightly by using π(x) to denote an activation pattern of an input x.
Definition 4.2. We say that two inputs x1, x2 are in an equivalence relationship with respect to a neural
network N if their activation patterns π1, π2 are the same, i.e.,

x1 ∼N x2 ⇐⇒ dH (π1, π2) = 0.

For ReLU neural networks the equivalence class [x1]N := {z ∈ Rm | z ∼N x1} corresponds to a linear region
which contains point x1. We now show that the relation in Def. 4.2 is that of equivalence. Indeed, reflexivity
holds as x ∼ x ⇒ π(x) = π(x) ⇒ dH(π(x), π(x)) = 0, and vice-versa, dH(π(z), π(x)) = 0 holds for all z
such that z ∈ [x]N , which also contains x. Symmetry is straightforward to check, and transitivity holds as
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Figure 2: 1D straight walk from x1 to x2 in the Euclidean space (black full arrows) and the Hamming
activation space (gray dotted arrows). Observe that in the Hamming activation space it might happen
that dH(π1, πn) < maxi dH(π1, πi), which indicates space folding. The steps are optimized to visit each
equivalence class exactly once (not equidistant).

x ∼ y and y ∼ z implies that dH(π(x), π(y)) = 0 and dH(π(y), π(z)) = 0, thus also dH(π(x), π(z)) = 0, and
inversely, zero Hamming distances between π(x) and π(y) as well as π(y) and π(z) imply that z ∈ [x]N .

Definition 4.2 paves a way to extending the folding analysis to a richer class of activation functions. How-
ever, we lose the geometrical interpretation of equivalence classes as “linear regions”. Henceforth for the
computation of χ, we consider a walk through input equivalence classes, not linear regions, thus extending
the applicability of the space folding measure to much wider class of neural architectures. In order to obtain
binary activation vectors, we clip the values on the hidden layers (after applying the activation function) in
a similar way as with the ReLU function, i.e., for a vector of activation values a ∈ Rn we create an activation
pattern by only considering strictly positive vs. non-positive activation values, and denoting them with 1 and
0, respectively. We remark that Balestriero & Baraniuk (2018) extended a framework originally developed
for studying ReLU neural networks by links to probabilistic Gaussian Mixture Models (GMMs) and Vec-
tor Quantization techniques (VQ). In that interpretation, piecewise affine, convex nonlinearities like ReLU,
absolute value, and max-pooling can be interpreted as solutions to certain natural “hard” VQ inference
problems, while sigmoid, hyperbolic tangent, and softmax can be interpreted as solutions to corresponding
“soft” VQ inference problems. While this is an interesting idea, we believe that our approach is inherently
simpler and more intuitive.

4.3 Properties

In this section, we look at several properties of the folding measure. They will serve as the base for further
analysis.
Lemma 4.3. The folding measure χ has the following properties:

1. (Stability.) Multiple steps in the same activation region do not influence χ.
2. (Flatness Condition.) χ(Γ) = 0 implies that dH(π1, πi) is increasing for i = 1, . . . , n along Γ.
3. (Asymmetry.) The folding measure is sensitive to the direction of traversal, i.e., χ(Γ) ̸= χ(−Γ).
4. (Flatness Invariance.) χ(Γ) = 0 if and only if χ(−Γ) = 0 for a path Γ = {π1, . . . , πn}.
5. (Non-additivity.) The folding measure χ in general is neither sub-additive nor super-additive

over concatenated path, i.e., it neither holds that χ(Γ1 ⊕ Γ2) > χ(Γ1) + χ(Γ2) nor χ(Γ1 ⊕ Γ2) <
χ(Γ1) + χ(Γ2), where the operator ⊕ is as define in Sec. 3.

Proof. We now prove properties listed in Lemma 4.3.

1. (Stability.) The proof is straightforward as staying in the same activation region does not change
either Hamming distance.
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2. (Flatness Condition.) Assume, without loss of generality, that each πi is distinct from πi−1.
By triangle inequality, dH(π1, πn) ≤ dH(π1, πi) + dH(πi, πn). If dH(π1, πi) ≤ dH(π1, πi−1) were
to hold for any i, then by applying triangle inequality again, we would find that dH(π1, πn) <∑n−1

i=1 dH(πi, πi+1). However, χ(Γ) = 0 implies that dH(π1, πn) =
∑n−1

i=1 dH(πi, πi+1), leading to a
contradiction.

3. (Asymmetry.) By counterexample: consider Γ = {π1, π2, π3}, where π1 = (000), π2 = (111), π3 =
(001), and its reverse −Γ = {π3, π2, π1}. Then, r2(Γ) = r2(−Γ) but r1(Γ) = 3 and r1(−Γ) = 2, thus
χ(Γ) ̸= χ(−Γ).

4. (Flatness Invariance.) Observe that it is sufficient to prove it only in way direction as we can
re-index the path Γ to obtain its reverse. If χ(Γ) = 0, then dH(π1, πi) never decreases with increasing
i. Along the reversed path −Γ, this translates to dH(πn, πn−i+1) never decreasing, so χ(−Γ) = 0.
Conversely, if χ(−Γ) = 0, then similarly χ(Γ) = 0.

5. (Non-additivity.) For a counter example of the sub-additivity consider paths Γ1 = {π1, π2} and
Γ2 = {π2, π3, π4} with the activation regions defined as

π1 =

0
0
0

 , π2 =

0
0
1

 , π3 =

1
1
1

 , π4 =

1
0
1

 . (4)

In this case, χ(Γ1 ⊕ Γ2) = 1
4 and χ(Γ1) + χ(Γ2) = 0 + 1

3 = 1
3 , thus χ(Γ1) + χ(Γ2) ≥ χ(Γ1 ⊕ Γ2) (for

connected paths Γ1 and Γ2). To see that we can also construct a counter example for super-additivity,
consider paths as previously with the activation patterns defined as

π1 =

0
0
0

 , π2 =

1
1
1

 , π3 =

0
0
1

 , π4 =

1
0
0

 , (5)

Then, χ(Γ1 ⊕ Γ2) = 4
7 while χ(Γ1) + χ(Γ2) = 0 + 1

2 = 1
2 , thus χ(Γ1) + χ(Γ2) ≤ χ(Γ1 ⊕ Γ2).

In the remainder of this section, we will discuss and interpret properties listed in Lemma 4.3.

Stability: The stability property justifies introducing an equivalence relationship between inputs x1 and x2
with no folding between, which we formalize as follows.
Definition 4.4. We say that input points x1 and x2 are equivalent under χ if

x1 ∼χ x2 ⇔ χ(Γ(x1, x2)) = 0, (6)

where Γ(x1, x2) is a path of activation patterns spanned between x1 and x2.

We will use Def. 4.4 to introduce a space folding-based metric in the Hamming activation space in Sec. 4.4.

Flatness Condition: The Flatness condition stated in Lemma 4.3 implies that folding occurs if r1 (Eq. (1))
decreases at least once along the path. Flatness means that a straight line mapped through a network is
itself a “straight line” in the Hamming space.

Non-additivity. While neither super- nor sub-additivity holds for every path Γ, in our experiments we
have only observed sub-additivity of the folding measure. The counterexample for super-additivity (Eq. (5)),
seems to be a rare occurrence in trained networks, though it can be observed in specially constructed examples
(see CantorNet by Lewandowski et al. (2024)). The general lack of super- or sub-additivity, but empirical
sub-additivity motivates us to introduce the interaction coefficient I (deviation from additivity) for two
paths Γ1 and Γ2 as I : Hn1·N ×Hn2·N → [0, 1], where

I(Γ1, Γ2) := |χ(Γ1 ⊕ Γ2)− χ(Γ1)− χ(Γ2)|. (7)
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I(Γ1, Γ2) = 0 for paths Γ1, Γ2 if and only if additivity holds for those two subpaths; I(Γ1, Γ2) > 0 means some
fold “cancel out” or amplify when combining paths. In Sec. 5 we explore the applicability of the interaction
coefficient I to study the geometry of the decision boundary. Our intuition is as follows: Folding of the
input space is related to deviations from convexity (see Moser et al. (2022); Lewandowski et al. (2025)) and
the increased number of these deviations indicates a decision boundary that is more ragged, and thus more
sensitive to small perturbations of the original data. We hypothesize that I will exhibit sensitivity when
computed between an original sample and its adversarial perturbation, and present preliminary experiments
underpinning our hypothesis in Sec. 5.

While χ proves to be asymmetric in nature, in our experiments we have observed that, as the number of
neurons increases, χ(Γ) and χ(−Γ) seem to converge. We hypothesize that with many neurons, any specific
order of folds can be realized in reverse by alternate paths due to the abundance of intermediate regions.
We express it as Conjecture 4.5.
Conjecture 4.5. As neural network’s total number of neurons N →∞, the folding measure becomes asymp-
totically symmetric, i.e., |χ(Γ)− χ(−Γ)| → 0.

We now introduce the notion of sparsity of folding values as the ratio of paths that exhibit no folding effects,
to the paths along which the folding is positive.
Definition 4.6 (Sparsity). Let |A| denote the cardinality of a set A. The sparsity SN of χ under N is the
ratio

SN := |{Γ : χ(Γ) = 0}|
|{Γ}| ∈ [0, 1]. (8)

We empirically investigate the sparsity as a function of total number of neurons in Sec. 5.

4.4 Space Folding-based Pseudo-metric

In this section we introduce a pseudo-metric whose construction is inspired by χ (Eq. (3)). The path Γ
is spanned between its edge points, i.e., Γ = Γ(x1, x2). Without loss of generality, we assume that every
intermediate step visits exactly one activation pattern.
Proposition 4.7 (Space Folding-based Pseudo-metric). Let dχ be a symmetrized space folding measure, i.e.,

dχ(x1, x2) := χ(Γ(x1, x2)) + χ(Γ(x2, x1))
2 = 1

2
maxj dH(π1, πi) + maxi dH(πi, πn)∑n−1

i=1 dH(πi, πi+1)
, (9)

where Γ(x1, x2) denotes a path in the activation space between x1 and x2. Then, dχ is a pseudo-metric.

Proof. Positivity follows from bounds: dχ ∈ [0, 1], as proved for the measure χ by Lewandowski et al.
(2025), symmetry – dχ(x1, x2) = dχ(x2, x1) – follows from the definition (Eq. (9)). To show the triangle
inequality, we need to show that dχ(x1, x2) + dχ(x2, x3) ≥ dχ(x1, x3) for some Γ(x1, x2) = {π1, . . . , πk}
and Γ(x2, x3) = {πk, . . . , πn} (as described in Sec. 3). It is straightforward to check, and requires using
maxj∈{1,...,k} dH(π1, πj) + maxj∈{k,...,n} dH(πk, πj) ≥ maxj∈{1,...,n} dH(π1, πj).

dχ is a pseudo-metric as x1 = x2 ⇒ dχ(x1, x2) = 0 but the reverse does not hold, i.e., dχ(x1, x2) = 0 ̸⇒
x1 = x2. However, if we restrict x1 and x2 such that x1 ̸∼χ x2 (Def. 4.4), then dχ becomes a metric. Lastly,
note that 1 − dχ ∈ [0, 1] can be used to measure similarity between input points, and thus may be used in
downstream tasks such as clustering or retrieval tasks (see Sec. 7).

4.5 Global Space Folding Measure

In this section we adapt a global measure of folding as a median of space folding values along paths that
exhibit some folding, i.e.,

ΦN := median
{Γ:χ(Γ)>0}

χ(Γ) (10)
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In our experiments on a typical classification task, we have observed that for networks trained to a low
generalization error, the folding values ΦN are statistically significantly higher within one the same class
than when computed between different classes.1 This means that, although there is an increasing number of
linear regions as indicated by the works which provide bounds on this number, e.g., (Montúfar et al., 2014;
Raghu et al., 2017; Serra et al., 2018; Hanin & Rolnick, 2019), the networks fold the space in a very similar
manner if the generalization error is low. We formalize it as Conjecture 4.8.
Conjecture 4.8. If a network N achieves near-zero classification error on training data, then it exhibits
higher folding on average between classes (higher ΦN ) than a network with higher error.

The intuition behind Conjecture 4.8 is as follows. A well-trained network learns to transform intra-class
variations of an object such that their representations are brought closer together in the activation space.
This effectively folds the input manifold for each class into a simpler, more compact structure – an idea
reminiscent of contrastive learning, as will be discussed in Sec. 7.

Moreover, we have observed that the folding values are not influenced by the total number of neurons, which
we formalize as Conjecture 4.9.
Conjecture 4.9. For sufficiently large networks, ΦN approaches a constant that depends only on depth
provided low generalization error.

5 Experiments

5.1 Evolution of Folding During the Training Process

We start by investigating the behaviour of ΦN (see Eq. (10)) as a function of epoch. We train a ReLU-based
MLP (2 × 256) over 100 epochs to a validation accuracy of around 0.5 – the end accuracy is irrelevant as
we are only interested in how its increase affects values of the folding measure. We store the weights and
biases of the model after every epoch of training. We find that the global folding value ΦN is steadily
increasing. Interestingly, we observe that, for networks with lower validation accuracy values, the intra-class
folding values are similar (or lower) than inter-class folding values, while the opposite holds for well-trained
networks. We remark that this is possibly a consequence of the higher concentration of linear regions close
to data for well-trained neural networks, as observed by Zhang & Wu (2020). See Fig. 3 for more details.

Algorithm 1: Interaction Coefficient and Adversarial Attacks.
Input: Input data of a given label, (xi, y1)n

i=1;
Output: Values of the interaction coefficient with the number of points
Step 1: Perturb the input data x using a predefined adversarial attack (e.g., PGD, or FGSM);
Step 2: Assert that the trained network classifies the data wrongly;
Step 3: Compute I between the original and adversarially perturbed samples;
return I

5.2 Interaction Coefficient

In the next step, we investigate the values of the interaction coefficient I (Eq. (7)) on the unperturbed
and adversarially perturbed images of digits from the MNIST dataset (see Alg. 1). Our intuition here is as
follows. Sensitivity of ReLU-based MLPs has been linked to the geometry of their decision boundary (see
e.g., Wong & Kolter (2018)); intuitively, the more ragged the decision boundary, the more susceptible are
the data samples to being mis-classified by the model upon a small perturbation. Such a raggedness of a
decision boundary translates to its non-convexity, and the space folding measure was designed to quantify

1We used the Mann-Whitney test (Mann & Whitney, 1947) to compare intra- and inter-class median folding values in
networks with low generalization error. A statistically significant difference (per thresholds in Cohen (1992)) showed that inter-
class folding values are higher, suggesting that the network folds space within each digit class for more efficient representation,
thus justifying their separate analysis.
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Figure 3: We investigated the values of the global folding measure ΦN (Eq. (10)) as a function of epoch.
We trained a ReLU-based MLP on CIFAR10 over 100 epochs, and after each epoch we recorded the values
of ΦN . The dashed lines represents fitted linear trends, and serve to illustrate the trend. Note that the
folding values keep increasing, even though the end accuracy is around 50%. Note further that we do not
observe higher space folding value for inter-class folding (digits 3− 3 and 9− 9); we posit that it stems from
a relatively low end accuracy (at initialization the hyperplanes do not concentrate close to data points).

Figure 4: Values of the interaction coefficient (Eq. (7)) were computed using images of digits 5 and 7 from
the MNIST test set. The symbol ∗ denotes an adversarially perturbed digit. For visualization, the y-axis
has been scaled by a factor of 102. Each circle is centered at the mean of the points it contains, with its size
reflecting the number of classified observations.

the deviations from convexity (see Lewandowski et al. (2025)), thus studying its non-additivity appears to
be a sensible choice to study adversarial geometry.

Across both adversarial attacks considered, the interaction coefficient I is consistently higher for original
(unperturbed) samples (see Fig. 4). Under the projected gradient descent (PGD) attack, the lowest values
of I occur when computed between two adversarially perturbed samples. In contrast, for the fast gradient
sign method (FGSM), the interaction coefficients are similar to those obtained when only one of the two
samples is perturbed.

5.3 Sparsity

We empirically investigate the sparsity according to Def. 4.6 as a function of the total number of neurons.
We find that, while sparsity for very small networks (60 neurons total) is quite high (oscillating between
0.4 and 0.8), it rapidly drops for even slightly bigger models (it is stable and close to 0 for models with 480
neurons total). See Fig. 5 for a graphical overview. The results are consistent among different number of
layers – the higher total number of neurons N , the more paths Γ feature the folding effects. We averaged the
results over 4 different architectures for each number of total neurons (using dropout or batch-normalization)

9
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Figure 5: We investigate the sparsity of SN (Def. 4.6) as a function of the number of layers with varying
total number of neurons N (denoted by colors).

and found that the variance is very small. Interestingly, the sparsity SN remains remarkably stable across
the number of layers for already 480 neurons total, while it varies strongly for networks with 60 neurons.

6 Folding as a Regularization

6.1 Maximal Folding

Thus far, Lewandowski et al. (2025) observed a strong empirical correlation of space folding values with the
generalization capabilities of ReLU-based MLP, motivating its use as a regularization strategy during the
training process. Inspired by these findings, in this section we describe our new regularization technique.
For the remainder of this section, we will assume that in a path Γ = {π1, . . . , πn} every πi is unique, i.e.,
πi = πj ⇔ i = j. Note that this implies that dH(πi, πi+1) > 0 for all i. As we intend to maximize space
folding we first show that χ(Γ)→ 1 for a path Γ which oscillates, formalized as Prop. 6.1.

Proposition 6.1. The space folding measure χ
n→∞−−−−→ 1, where n is the number of steps in Γ, if for every

π2k, π2k+1 ∈ Γ it holds that the Hamming distance relative to the initial point exhibits oscillatory behaviour:

dH(π1, π2k+1) < dH(π1, π2k) ≤ C, ∀k ∈ N, C ∈ R+.

Proof. Observe that for a path Γ oscillating between two activation pattern, r1(Γ) is upper bounded by
maxk dH(π1, π2k) (i.e., the maximum Hamming distance between the initial activation pattern and all evenly
indexed activation patterns), and r2(Γ)→∞, thus χ(Γ)→ 1.

Proposition 6.2. For the fastest convergence of χ to 1 along a path Γ (as defined by Eq. (12)), we need the
following condition to be satisfied:

lim
n→∞

dH(π1, π2j) = c1, dH(π1, π2j+1) = 0. (11)

Denote such a path with Γ̃. Then, for any other path Γ it holds that

lim
n→∞

χ(Γ̃)
χ(Γ) = 0. (12)

The folding measure χ is not differentiable and thus cannot be used directly during back-propagation based
training (however, there are methods that do not rely on back-propagation, e.g. Li et al. (2025)). For
traditional training (with back-propagation), the non-differentiable nature of χ necessitates the use of a
surrogate as a differentiable approximation, which we introduce in the next section.

10
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6.2 Outline of Implementation

We first remark that χ is proportional to r1 which suffers from two non-differential components: the max
function, and the Hamming distance, and thus is not suitable for a direct use during the training process.
However, we note that increasing space folding is equivalent to maximizing the Hamming distances between
adjacent πi, πi+1, which in turn is equivalent to minimizing the cosine similarity. We thus can simplify the
learning objective as follows:

Loss← D1 · Loss + D2 ·
n−1∑
i=2

(−1)i+1(cos(π1, πi) + 1).

The term
∑n−1

i=2 (−1)i+1 cos(π1, πi) encourages monotonicity changes along the path Γ with respect to the ini-
tial activation pattern π1. D1 and D2 are weighting coefficients computed during the training. The resulting
folding value approximation can be incorporated into the loss function and optimized using backpropagation.
The regularization procedure generalizes to any activation function through equivalence classes (not limited
to ReLU-based MLP, see Sec. 4.2).

7 Conclusion and Future Work

In our work, we have generalized the concept of space folding to any monotonic activation function, and
we have empirically investigated (i) the sparsity of paths as a function of total number of neurons, (ii) the
evolution of global folding measure Eq. (10) during the training process, (iii) the behaviour of the interaction
coefficient I (Eq. (7)) on adversarially perturbed samples of MNIST. Our study deepened the mathematical
understanding of the space folding measure and lays the groundwork for further experimental work. We
have also highlighted key theoretical properties, and suggested its potential as a regularization technique.

We note some parallels between contrastive learning and learning with the space folding regularization. In
short, contrastive learning, accomplished through a contrastive loss, ensures (i) alignment (closeness) of
features between positive pairs, and (ii) uniformity of the induced distribution of the (normalized) features
on a manifold (Wang & Isola, 2020). Note that, by encouraging higher folding during the training process, we
bring data points “closer” in the alignment space, and by penalizing folding between samples from different
classes, we push them “further away” from each other, effectively performing contrastive learning. Unlike
conventional contrastive loss, which operates on final feature vectors and often requires special architectures
or data augmentation, we posit that our approach induces similar benefits (alignment/uniformity) by directly
leveraging the network’s own folding behavior. It can be seen as a form of contrastive regularization that
is naturally available in any labeled training scenario. We will address this hypothesis in an upcoming
submission.
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A Sensitivity Analysis

In this section, we analyze the sensitivity of the folding measure χ along a path Γ to perturbations in
activation patterns along Γ. This analysis paves the way to quantifying the impact of clustering the data
and then using clusters’ centroids to mitigate arising computational complexity (Lewandowski et al., 2025).
Lemma A.1. If each pattern πi ∈ {0, 1}N along path Γ is perturbed by ki ≤ N bits (cumulatively

∑
i ki flips

over the whole path), then the folding measure changes at most by

|χ(Γ)− χ(Γ′′)| ≤ r1 + maxi ki

r2 −
∑

i ki
− r1

r2
, (13)

where χ(Γ′′) denotes a new, perturbed path, and where we used shorthand notation r1 := r1(Γ), r2 := r2(Γ).

Proof. Assume that along a path Γ, a pattern πl has k ≤ N of its N bits changed, and denote the new
pattern by π′

l. By flipping exactly k bits, the maximum change in the Hamming distance between the new
activation pattern π′

l and any other activation pattern πi on the path Γ is k, i.e.,

min
i

dH(πl, πi)− k ≤ max
i

dH(π′
l, πi) ≤ max

i
dH(πl, πi) + k = r1(Γ) + k,

and hence the folding measure on the new path Γ′ satisfies 1− χ(Γ′) ≤ (r1 + k)/(r2 − k), Assume now that
along a path Γ every data point x1, . . . , xn has been perturbed so that their activation patterns π1, . . . , πn

are flipped by k1, . . . , kn, ki ≤ N bits, resulting in a new path Γ′′. By analog reasoning as previously, the
folding measure on the new path satisfies

1− χ(Γ′′) ≤ r1 + maxi ki

r2 −
∑

i ki
. (14)

13
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Figure 6: Intra-class clustering to reduce space folding computation complexity in MNIST. Gray regions
show the cluster radii for input data. Instead of computing the measure for every data pair (dark dots), we
use cluster centroids cij , as described in Alg. 2. In Sec. A we detail the accuracy impact.

Suppose that Γ is the path obtained using the original sample, and Γ′′ is the path obtained using the cluster
centroids. Rewriting Eq. (14) yields

|χ(Γ)− χ(Γ′′)| ≤ r1 + maxi ki

r2 −
∑

i ki
− r1

r2
. (15)

Lemma A.1 implies that the folding measure χ is fairly robust to small Hamming perturbations (especially
when r2 ≫

∑
ki). This justifies clustering input data and using the respective cluster centroids to mitigate

the computational complexity of computing the measure pair-wise between every pair of input data.

Algorithm 2: Inter-class Clustering Procedure.
Input: Dataset D = {(xi, yi)n

i=1}; Number of classes L < n into which we cluster xi ∈ D;
Output: Cluster centroids c1, . . . , cL used to compute the folding measure χ
Step 1: Cluster D into L classes using, e.g., k-NN ; // Complexity: O(C) per inference
return Cluster centroids c1, . . . , cL

We now outline the exact impact of the inter-class clustering on the folding measure. Assume (i) the lack of
sparsity as defined in Def. 4.6 and (ii) symmetrical distribution of maximum value of folding χ(Γ) (observed
empirically). Then, writing Eq. (13) for every path between original samples 1, . . . , j, i.e.,

|χ(Γ1)− χ(Γ′′
1)| ≤r1(Γ1) + maxi k1i

r2(Γ1)−
∑

i k1i
− r1(Γ1)

r2(Γ1)

|χ(Γ2)− χ(Γ′′
2)| ≤r1(Γ2) + maxi k2i

r2(Γ2)−
∑

i k2i
− r1(Γ2)

r2(Γ2)
...

|χ(Γj)− χ(Γ′′
j )| ≤r1(Γj) + maxi kji

r2(Γj)−
∑

i kji
− r1(Γj)

r2(Γj) ,

adding by sides results in∑
j

|χ(Γj)− χ(Γ′′
j )| ≤

∑
j

(
r1(Γj) + maxi kji

r2(Γj)−
∑

i kji
− r1(Γj)

r2(Γj)

)
,

which establishes an upper bound on the impact of using the clusters’ centroids compared to the original
pairs of data points. Using cluster centroids introduces at most the error given by Eq. (13) in χ. Summing
over all paths in a class for j = 1, . . . , J clusters) yields an upper bound on the total deviation introduced
by clustering. Thus, the loss in accuracy from clustering is bounded, and can be made arbitrarily small by
increasing cluster granularity.
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Figure 7: 2D slice of the ReLU tessellation defined by hyperplanes h1, . . . , h6. Left: Equally spaced points
may revisit regions and miss small ones (gray). Right: An optimized path visits each region exactly once.

B Sampling Strategy

In Lemma 4.3, we have shown the importance of an appropriate sampling for computing the folding measure
efficiently (see also Fig. 7). In this section, we introduce a 1D sampling strategy in the Hamming activation
space, presented as Alg. 3. Our method is parameter-free, straightforward to implement and intuitive to
understand. It is based on the binary search in the Euclidean input space and repetitive checks of the
Hamming distance between each of the corresponding activation patterns. We now describe the intuition
behind the method. We iteratively bisect the line segment [xinit, xend] to find intermediate points where the
activation pattern flips. If the direct midpoint causes multiple neurons to change (Hamming distance ≥ 2
between πinit and πmid), we refine closer to xinit until at most one neuron flips at a time. Then we set that
new point as the next milestone and repeat. We successively halve the interval [xinit, xmid] until the pattern
difference drops to 1 bit or we have halved d times (ensuring that we could resolve each differing bit one by
one in the best case).

We start by getting activation patterns πinit and πend of the two edge points of the path, xinit and xend,
respectively. Then, while dH(πinit, πend) ≥ 2, we continuously check dH(πinit, πmid), where xmid = 1

2 (xinit +
xend); if dH(πinit, πmid) ≥ 2, we assign xmid = 1

2 (xinit + xmid), otherwise we accept πmid as the next pattern
on the path, and assign xinit ← xmid. For the detailed procedure, see Alg. 3. We note the following nuance
to consider. It might happen that the adjacent activation regions have the Hamming distance exceeding 1 –
in this case, the corresponding activation pattern might be repeated in the output of our algorithm.

Complexity Analysis. Let n′ be the total number of steps actually taken (including refined steps), O(C)
be the cost of running the network in the inference mode. Hence, the total computational cost is O(n′ · C).
In the worst case, if many boundaries are crossed in very small intervals, the step size keeps halving, leading
to a potentially large n′. In a typical scenario, n′ might be on the order of a few hundred. In a pathological
scenario, it can grow larger but is still upper-bounded by repeated halving.

Our method is sequential (each query depends on the last), so it can’t generate all samples in one batch
like an equal-spaced grid can. However, because it zooms in only where needed, it typically uses far fewer
samples than a dense grid would.

C Impact of Regularization Techniques

In Fig. 8 we present the results on the folding values when using popular regularization techniques (dropout,
batch norm). For the completeness of our study, we have investigated the impact of popular regularization
techniques, dropout (Srivastava et al., 2014) and batch normalization (Ioffe & Szegedy, 2015) on small neural
networks with a total number of hidden neurons trained on MNIST. All the networks were trained to a high
validation accuracy; the values of ΦN increase with the depth of the network as reported by Lewandowski
et al. (2025). We found that, although networks without batch norm feature higher values of space folding,
the differences are small. We thus conclude that the considered regularization techniques do not influence
the space folding values in a significant manner.

D Additional Results for ELU

In this section we leverage the equivalence relationship defined in Def. 4.2 and compute folding measure on
ELU-based MLPs; see Table 2. We train five small neural networks on MNIST to a high validation accuracy

15



Under review as submission to TMLR

Algorithm 3: Binary Sampling Procedure.
Input: Starting point xinit; Ending point xend; A neural network N with inference cost O(C);

Maximum number of iterations T
Output: Intermediate activation patterns under N between xinit and xend
Step 1: Obtain initial and target patterns:
πinit ← GetActivationPattern(N , xinit)
πend ← GetActivationPattern(N , xend); // Complexity: O(C) per inference
P = {πinit} ; // Initialize a list of patterns

while πinit ̸= πend and iterations ≤ T : begin
if dH

(
πinit, πend

)
< 2 then

break ; // They are sufficiently close; no further refinement
else

xmid ← xinit+xend
2 ; // Midpoint in input space

πmid ← GetActivationPattern(N , xmid); // Inference cost: O(C)
if dH

(
πinit, πmid

)
< 2 then

// Accept xmid as the new starting point
xinit ← xmid;
πinit ← πmid;
P ∪ {πinit};

else
// Refine xmid by repeatedly halving the distance to xinit until

dH

(
πinit, πmid

)
< 2 or attempts exhausted

d← dH

(
πinit, πmid

)
;

for i = 1 to d do
xmid ← xinit+xmid

2 ;
πmid ← GetActivationPattern(N , xmid); // Another O(C)
if dH(πinit, πmid) < 2 then
P ∪ {πmid};
break;

xinit ← xmid;
πinit ← GetActivationPattern(N , xinit);
P ∪ {πinit};

return P ∪ {πend}; // Activation patterns between and including πinit to πend

Table 1: Comparison of sampling methods for discovery of activation regions along a 1D path.
Method Vectorizable? Smallest Discoverable Region
Iterative (Gamba et al., 2022) ✗ predetermined λ
Equidistant (Lewandowski et al., 2025) ✓ ∥xinit − xend∥/nsteps
Ours ✗ ∥xinit − xend∥2−T
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Figure 8: We investigated the impact of batch normalization and dropout with varying rate on Φ. We found
that, though there is a small difference, the behaviour remains similar. The thinnest red line corresponds to
a network with neither batch norm nor dropout and thus serves as a baseline.

on MNIST, and report the global folding Φ with MAD (Median Absolute Deviation). We find that Φ displays
similar behaviour to Φ computed on ReLU-based MLPs.

Table 2: Test accuracy and folding measures across different ELU-based MLP architectures on MNIST. Each
model is denoted by nlayers × nneurons.

Architecture Test Accuracy (%) Mean Φ Mean MAD
2×30 95.08 0.3852 0.0964
3×20 95.19 0.3091 0.0806
4×15 95.04 0.3567 0.1034
5×12 93.62 0.4519 0.0611
6×10 93.08 0.4648 0.0370
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