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ABSTRACT
Query Performance Prediction (QPP) estimates the effectiveness of
a search engine’s results in response to a query without relevance
judgments. Traditionally, post-retrieval predictors have focused
upon either the distribution of the retrieval scores, or the coherence
of the top-ranked documents using traditional bag-of-words index
representations. More recently, BERT-based models using dense
embedded document representations have been used to create new
predictors, but mostly applied to predict the performance of rank-
ings created by BM25. Instead, we aim to predict the effectiveness
of rankings created by single-representation dense retrieval mod-
els (ANCE & TCT-ColBERT). Therefore, we propose a number of
variants of existing unsupervised coherence-based predictors that
employ neural embedding representations. In our experiments on
the TREC Deep Learning Track datasets, we demonstrate improved
accuracy upon dense retrieval (up to 92% compared to sparse vari-
ants for TCT-ColBERT and 188% for ANCE). Going deeper, we select
the most representative and best performing predictors to study
the importance of differences among predictors and query types on
query performance. Using existing distribution-based evaluation
QPP measures and a particular type of linear mixed model, we find
that query types further significantly influence query performance
(and are up to 35% responsible for the unstable performance of QPP
predictors), and that this sensitivity is unique to dense retrieval
models. In particular, we find that in the cases where our predictors
perform lower than score-based predictors, this is partially due to
the sensitivity of MAP@100 to query types. Our novel analysis
provides new insights into dense QPP that can explain potential
unstable performance of existing predictors and outlines the unique
characteristics of different query types on dense retrieval models.
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1 INTRODUCTION
Retrieval effectiveness in search engines can vary across different
queries [22, 53]. Being able to accurately predict the likely effective-
ness of a search engine for a given query may facilitate interven-
tions, such as asking the user to reformulate the query [5, 29, 40, 54].
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Figure 1: Schematic representation of recent QPP pipelines,
together with our proposed approach (Step 2, bottom). Top:
A BM25 ranking consisting of TF.IDF vector representations
(Step 2) [1, 16], and fine-tuning BERT-based models on top
of existing rankings (Step 3) [2, 14, 23, 58]. Bottom: Dense re-
trieval ranking with dense embedded representations. Num-
bers denote each step in the pipeline.

To this end, the task of Query Performance Prediction (QPP) aims
to predict the effectiveness of a search result in response to a
query without having access to relevance judgments [7]. In the
last two decades, a number of query performance predictors have
been proposed, which can be grouped in two main categories: Pre-
retrieval predictors estimate query performance using only linguis-
tic or statistical information contained in the queries or the cor-
pus [24, 25, 34, 46, 59]. On the other hand, post-retrieval predictors
use the relevance scores or contents of the top returned documents,
by measuring, for example, the focus of the result list compared
to the corpus [11, 60], or the distribution of the scores of the top-
ranked documents [12, 39, 43, 47, 51]. Predictors based on NQC [49]
(the standard deviation of relevance scores) have been found to
be surprisingly accurate. A further group of predictors examine
the pairwise similarities among the retrieved documents [1, 16].
Thus far, these predictors have been applied using traditional bag-
of-words representations. While examining the coherence between
returned documents is useful, as we show, these representations are
not suitable for predicting the query performance of more advanced
retrieval methods.

More recently, pre-trained language models (PLMs) have intro-
duced neural network architectures that encode the embeddings of
queries and documents [15, 27, 28, 56], and have led to increased
retrieval effectiveness. Often, a BERT-based model is trained for
use as a reranker of the result retrieved by (e.g.) BM25 [41] - such
cross-encoders include BERT_CLS [36] and monoT5 [37]. On the
other hand, dense retrieval approaches [26, 56] are increasingly pop-
ular, whereby embedding-based representations of documents are
indexed, and those with the similar embeddings to the query are
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identified through nearest-neighbour search (e.g. ANCE [56], TCT-
ColBERT [28]). Compared to reranking setups, dense retrieval is
attractive as recall is not limited by the initial BM25 retrieval ap-
proach, and improvements in the PLM can improve all aspects of the
retrieval effectiveness. Therefore, dense retrieval models inspire us
to develop predictors that are effective for predicting their rankings.

In parallel, neural architectures have also been adopted as meth-
ods for predicting query difficulty. These post-retrieval methods are
supervised, and use refined neural architectures in order to produce
a final performance estimate [2, 14, 23, 58]. For instance, BERT-
QPP [2] fine-tunes BERT [15] embeddings for QPP by estimating
the relevance of the top-ranked document retrieved for each query.
However, its performance is lower or outperformed by unsuper-
vised predictors when using advanced retrieval methods and the
TREC Deep Learning datasets [18]. In our view, the problem lies in
the mismatch of representations between predictor and ranking,
which is best described in Figure 1. On top, we see the pipeline
resulting from a BM25 ranking, and, at the bottom, a ranking from a
dense retrieval system [26, 56]. While BERT-based QPP techniques
can be used to predict the effectiveness of BM25 [2, 14, 23, 58],
single-representation dense retrieval models already contain repre-
sentations that can accurately predict their corresponding ranking,
thus eliminating the need to apply step 3 (BERT-QPP). Instead, to
create predictors applicable for dense retrieval, we could use the
existing embedded representations (step 2). Indeed, by consider-
ing patterns among the embeddings of the retrieved documents,
we can update existing unsupervised predictors from traditional
sparse [1, 16] to dense representation-based.

At the same time, the selection of evaluation measure can have
an impact on the conclusions of QPP experimental results. This ob-
servation is more prominent if we consider, for example, that unsu-
pervised QPP predictors such as NQC [47] were primarily optimised
for MAP at deeper cutoffs (100 or 1000); on the other hand, more re-
cent supervised predictors were either optimised for RR@10 [2, 23]
or used both NDCG@10 and RR@10 [14] providing comparable re-
sults between the two measures, but in both cases, results for MAP
were missing. As a result, it is impossible to provide insights that are
fully generalisable, as missing to report either of them can lead to bi-
ased results and incomplete conclusions. We believe that designing
experimental studies should be aligned with the idea that the differ-
ent measures are not interchangeable, and that proposed predictors
could be complemented with the case where the predictor fails,
together with the explanation of the reasons why this happens.

One explanation could be that query performance is further me-
diated by query categorisation. Few works have examined how QPP
varies with query categories [8, 19]. Indeed, knowing which queries
are more difficult to answer may inform us about how to develop
more refined predictors. In a recent query taxonomy [6], certain
categories were found to be more difficult to answer compared
to others. Therefore, we also quantify the extent to which query
categories are responsible for the unstable performance of QPPs
across different evaluation measures.

In short, our contributions are the following: (i) We propose a
number of embedding variants of existing coherence predictors and
our own extension pairRatio, an unsupervised predictor which uses
pairwise relations of embedding vectors. In this way, we create pre-
dictors designed for dense retrieval; (ii) We study existing predictors
to two state-of-the-art single-representation dense retrieval models,

namely ANCE [56] and TCT-ColBERT [28], as well as BM25 using
all three evaluation metrics currently used for QPP, and show that
changing the representations increases performance significantly
not just for dense but also sparse retrieval; (iii) By also comparing
with supervised predictors, we show that applying a BERT-based
model for dense QPP is an unnecessary step in the pipeline that
decreases QPP performance; (iv) We apply multilevel statistical
models [13, 21, 32, 50] in QPP to quantify the relationship between
query categorisation and the unstable QPPs. In our analyses, we
measure the performance of different QPPs in relation to the total
QPP variation that can be attributed to the categorisation or as we
term query types. At the same time, we detect a unique sensitivity
of dense retrieval methods, which are affected by query type (up
to 35% increase in query performance variations due to query cat-
egorisation) and exhibit larger differences between predictors, a
pattern which is not apparent in sparse retrieval.

In addition, we observe: (a) Our proposed predictors provide the
highest correlations for the more precision-oriented NDCG@10
for all retrieval models, while NDCG@10 and MRR@10 provides
similar results. (b) Our multilevel perspective proposes a solution to
correlation instabilities between measures, by showing how the in-
terplay with query types differently influences each of the measures.
In other words, we provide an analytical point that can explain any
predictor, and show how our proposed predictors mainly optimise
the measure that is less influenced by query variations. The struc-
ture of the rest of this paper is as follows: We present related work
in Section 2, and present our new extended predictors in Section 3.
Then, we follow with traditional correlation analysis of QPP pre-
dictors in Sections 4 and 5, continue with an extended linear mixed
model analysis to test for query type in Section 6, and conclude
with some final remarks in Section 7.

2 RELATEDWORK
The focus of this paper is on post-retrieval QPPs, as they are in
general more accurate than pre-retrieval QPPs [24]. Indeed, there
are two main reason why we eliminate pre-retrieval predictors
from our focus. First, existing unsupervised neural pre-retrieval
predictors [3, 44, 45] propose, for example, geometric semantic
similarities of query terms, which indicate query specificity or con-
textual similarity and are based on pre-trained neural embeddings.
Since these predictors examine queries at the token-level, they are
not applicable to single-representation dense retrieval. Second, in-
formation based on queries can, in general, provide quite limited
information with respect to the effectiveness of the ranking.

In terms of post-retrieval QPP, earlier post-retrieval predictors
examined the focus on the result list induced by language models
(probability distributions of all single terms) [11]. For example,
Clarity [11] measures the divergence of the language model of top-
ranked documents from the one of the corpus(irrelevant list) - the
higher the divergence, the better the performance.Utility Estimation
Framework (UEF) [48] uses pseudo-effective reference lists induced
by term probability-based language models and estimates their
relevance using predictors such as NQC (see below in Section 2.1).
Both of these rely upon term probabilities, and are, therefore, not
feasible for extending our predictions to dense retrieval. Query
Feedback (QF) [60] refers to the overlap of the returned documents
with those obtained after applying pseudo-relevance feedback - yet,
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pseudo relevance feedback approaches for dense retrieval are still
in their infancy [55, 57], so we do not consider QF further.

In the remainder of this section, we discuss the main types
of query performance predictors that could be applied to dense
retrieval, specifically score-based unsupervised predictors (Sec-
tion 2.1) and document representation-based predictors (Section 2.2).

2.1 Score-based QPP
Score-based predictors encode certain assumptions about how the
scores should be distributed for high or low-performing queries. For
instance, a simple predictor might be theMaximum Score among the
retrieved documents [42] - the higher the maximum score, the more
confident the retrieval system is that it has found a document that
matches well the query. The most commonly applied score-based
predictor is Normalised Query Commitment (NQC) [47], based on
the standard deviation of the retrieval scores, which is negatively
correlated with the amount of query drift (the non-related infor-
mation in the result list) [33]. Several variations of NQC have been
proposed that further enhance its accuracy [12, 39], incorporate
the scores magnitude [51], or estimate a more robust version of
variance with bootstrapping. Indeed, Robust Standard Deviation
estimator (RSD) [43] extends NQC results to multiple contexts (each
with a bootstrap sample) representing a population of scores [43].
Score-based predictors (step 1 in Figure 1) are easily applicable to
dense retrieval, since scores are computed by each retrieval method.

2.2 Document Representation-based QPP
Predictors based on document representations [1–3, 14, 16, 17, 23,
44, 45] capture semantic relations either between queries, docu-
ments, or their interaction [15, 28] - we discuss unsupervised and
supervised predictors below.

2.2.1 Unsupervised Coherence Predictors. In general, effective un-
supervised predictors that consider document representations are
preferable, since they require less computation than supervised
predictors. One example of an unsupervised predictor that exam-
ines the lexical representations of documents is spatial autocorrela-
tion [16], which considers the spatial proximity of lexical document
representations, by using their pairwise TF.IDF-based similarities
to produce a new set of scores “diffused in space”. The final predic-
tor is obtained by correlating the original scores with the diffused
scores. Indeed, a low correlation between scores of topically-close
documents is assumed to imply a poor retrieval performance.

Another family of recent coherence-based predictors creates a
graph of the most similar documents among the top-ranked doc-
uments [1], based on their TF-IDF representations. Specifically,
metrics such as Weighted Average Neighbour Degree (WAND) and
Weighted Density (WD) were found to enhance the performance of
score-based predictors after linear interpolation. These predictors
(applied step 2 in Figure 1, top) were proposed for sparse document
representations and have not previously been applied to dense
embedded representations.

2.2.2 Supervised & Neural Predictors. In general, supervised mod-
els for QPP can be attractive due to the varying sources of indicators
for inferring query performance [42]. At the same time, they are
computationally complex compared to unsupervised predictors.
For example, Neural-QPP [58] is a multi-component supervised
predictor as the output of existing unsupervised QPP predictors
with weak supervision - we can think of this as a neural supervised

aggregation predictor. More recently, BERT-QPP [2] fine-tunes a
BERTmodel for the QPP task by adding cross-encoder or bi-encoder
layers that estimate an effectiveness measure (e.g. NDCG) based on
the contents of the top returned document in response to the query.
While BERT-QPP can also be applied to the dense retrieval rankings,
it uses a different model to that used by the dense retrieval approach
itself. Out of the two BERT-QPP variants, the bi-encoder version is
closer to the intuition of single-representation dense retrieval. Fi-
nally, qppBERT-PL [14] adds an LSTM network on top of the BERT
representation to model both document contents and the progres-
sion of estimated relevance in the ranking. Compared to BERT-QPP,
this approach has promise as it considers more information than
just the top-ranked document.

To summarise, existing predictors have either focused on sparse
document representations or retrieval scores on the unsupervised
side, or have introduced neural pre-trained architectures to cre-
ate more complex supervised predictors. However, no work has
addressed unsupervised predictors using dense embedded repre-
sentations, as are readily available in dense retrieval configuration.
Instead, we argue that by using simple predictors that consider
document representation resulting from dense models (step 2 of
Figure 1, bottom), we can accurately predict effectiveness without
the need for supervised cross-encoder-based methods (step 3). In
the next section, we detail existing predictors that can be applied
to dense retrieval.

3 COHERENCE PREDICTORS FOR DENSE
RETRIEVAL

In this section, we first describe some existing sparse coherence-
based predictors in Section 3.1, and then show how these can be
adapted to be better suited for dense retrieval settings in Section 3.2.

3.1 Sparse Coherence-based Methods
3.1.1 Spatial Autocorrelation (AC). First, consider 𝑑 to be a docu-
ment’s TF.IDF vector. Then, the inner product of two documents
at ranks 𝑖 and 𝑗 is given by 𝑠𝑖𝑚(𝑑𝑖 , 𝑑 𝑗 ). We can obtain a pairwise
similarity matrix among 𝑘 top-ranked documents as follows:

𝑊 =


𝑠𝑖𝑚(𝑑11) 𝑠𝑖𝑚(𝑑12) ... 𝑠𝑖𝑚(𝑑1𝑘 )

... ... ... ...

𝑠𝑖𝑚(𝑑𝑘1) 𝑠𝑖𝑚(𝑑𝑘2) ... 𝑠𝑖𝑚(𝑑𝑘𝑘 )

 (1)

where 𝑘 is the cutoff number of the top-k documents. For brevity of
notation, let 𝑠𝑖𝑚(𝑑𝑖 𝑗 ) = 𝑠𝑖𝑚(𝑑𝑖 , 𝑑 𝑗 ). Projecting (multiplying) each
element of the matrix𝑊𝑖 𝑗 on the vector of the original retrieved
scores, 𝑆𝑐𝑜𝑟𝑒 ( ®𝑑), we can obtain a new list of diffused scores as:

𝑆𝑐𝑜𝑟𝑒 (𝑑) =𝑊 ∗ 𝑆𝑐𝑜𝑟𝑒 (𝑑) (2)

Thereafter, an estimate of the spatial autocorrelation (AC) [16] is
obtained by using the Pearson correlation between the two vectors:

𝐴𝐶 = 𝑐𝑜𝑟𝑟 (𝑆𝑐𝑜𝑟𝑒 (𝑑), 𝑆𝑐𝑜𝑟𝑒 (𝑑)) (3)

which quantifies the relation between the initial and diffused scores.
Indeed, as mentioned above, a low correlation between the original
retrieval scores (i.e. 𝑆𝑐𝑜𝑟𝑒 (𝑑)) and those weighted by their topical
similarity (the diffused scores, 𝑆𝑐𝑜𝑟𝑒 (𝑑)) was found to imply poor
retrieval performance [16].
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(a) Effective Query (b) Ineffective Query

Figure 2: Heatmap of pairwise similarity matrix of the top-
100 TCT-ColBERT document embeddings for returned for
the best (query id 104861 with NDCG@10=1) and worst per-
forming queries (query id 489204 with NDCG@10=0.189)
from the TREC DL 19 queryset.

3.1.2 Network Metrics. As mentioned above, the matrix𝑊 rep-
resents all pairwise similarities between the top-retrieved docu-
ments. This matrix is equivalent to a fully connected network,
where each node VG corresponds to the 𝑑 TF.IDF vector, and each
edge EG corresponds to each entry 𝑠𝑖𝑚(𝑑𝑖 𝑗 ) [1], or more formally
G(𝑞, 𝐷 (𝑘 )

𝑞 ) = {VG, EG,𝑊 }. In this regard, to avoid all edges being
considered equal without attention to the edge weight, the network
is further pruned via thresholding [9], where the similarities higher
than the mean similarity value are selected as neighbours.

Consequently, we have the following definitions, which corre-
spond to some recently proposed network metrics [1] for QPP:

𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝐷𝑒𝑔𝑟𝑒𝑒 (𝐴𝑁𝐷) = 1
𝑘

𝑘∑︁
𝑖=1

( 1
|𝑁𝑑𝑖 |

∑︁
𝑗∈𝑁𝑑𝑖

|𝑁𝑑 𝑗
|) (4)

where 𝑁𝑑𝑖 is the neighbourhood of document 𝑑𝑖 . Typically, Equa-
tion (4) is applied on the pruned graph that only contains edges
between the most similar documents, and hence corresponds to the
more accurateWeighted AND (WAND) measure [1].

Another way to think about coherence is to count the observed
edges or similarities over the set of all possible edges. This results
in the Density measure, as follows:

𝐷𝑒𝑛𝑠𝑖𝑡𝑦 (𝐷) = 2|EG |
|VG | ( |VG | − 1) (5)

In short, a higher neighbourhood degree and a higher density of
a graph network indicates a more coherent set of top-retrieved
results. The general intuition behind these measures is that the
presence of coherence, as reflected by highly similar documents in
a top-retrieved set indicates the ability of the retrieval method to
distinguish relevant from non-relevant documents, and therefore,
return the relevant ones at the top of the list.

3.2 Dense Coherence-based Methods
We now derive the embedding representation variants of the above
predictors in order to make them suitable for the prediction of
neural dense retrievers. We first create the variants for embedding-
based AC and network metrics, and then introduce a new variant
that extends AC by considering rank groupings.

3.2.1 AC-embs. Let 𝜙𝑑 and 𝜃𝑞 respectively represent the dense em-
bedded representation of a document and a query. Firstly, we adapt
autocorrelation, such that instead of TF.IDF vectors we consider
the embedded document representations. Let the inner product of

two documents at ranks 𝑖 and 𝑗 (with embeddings 𝜙𝑖 and 𝜙 𝑗 ) be
written 𝑠𝑖𝑚(𝜙𝑑𝑖 𝑗 ), then we can define the pairwise similarities of
the top 𝑘 ranked documents as:

𝑊 𝜙 =


𝑠𝑖𝑚(𝜙𝑑11) 𝑠𝑖𝑚(𝜙𝑑12) ... 𝑠𝑖𝑚(𝜙𝑑1𝑘 )

... ... ... ...

𝑠𝑖𝑚(𝜙𝑑𝑘1) 𝑠𝑖𝑚(𝜙𝑑𝑘2) ... 𝑠𝑖𝑚(𝜙𝑑𝑘𝑘 )

 (6)

We can then apply autocorrelation (denoted as AC above) as per
Equations (2) & (3). We denote this as AC-embs.

3.2.2 Network-embs. Similarly, and as we showed that the similar-
ity matrix is equivalent to a fully connected network set of edges,
we can apply WAND and WD as per Equations (4) & (5), denoted
asWAND-embs andWD-embs, respectively.

3.2.3 pairRatio. We now introduce an extension of AC-embs in-
spired by visually exploring embedding relations. Specifically, in
Figure 2, we visualise the pairwise similarity matrix (𝑊𝜙 ) obtained
using TCT-ColBERT [28] embeddings for the top-100 passages for
the one high and one low performing query in the TREC Deep
Learning Track 2019 queryset. For the best performing query, there
is higher pairwise similarity among documents of top ranks (top
left corner, indicated by a group of lighter shading), and lower cor-
relation for lower ranks (darker shading). On the other hand, for the
worst query, elements of darker shading appear at high ranks, indi-
cating that the top-ranked documentsmay not be as coherent). In ad-
dition, there is less dark shading in low ranks compared to the best
query. These observations inspire us to explore the trend of average
top vs. bottom rank pairwise similarities of top-ranked embeddings.

Specifically, let𝑊 𝜙
𝜏1 ..𝜏2 denote the (diagonal) subset of𝑊

𝜙 be-
tween ranks 𝜏1 and 𝜏2. Then, for a given rank threshold 𝜏 , we can
measure the ratio between the mean pairwise similarity above and
below rank 𝜏 , i.e.𝑊 𝜙

0..𝜏 and𝑊 𝜙

𝜏..𝑘
as follows:

𝑝𝑎𝑖𝑟𝑅𝑎𝑡𝑖𝑜 (𝑊 𝜙 ) = (𝑊 𝜙

1..𝜏𝑖 ) · (𝑊
𝜙

𝜏 𝑗 ..𝑘
)−1 (7)

where𝑊 𝜙 denotes the mean of the given matrix, 𝜏𝑖 corresponds
to the end of the upper matrix, and 𝜏 𝑗 symbolises the start of the
lower matrix (we use the two cutoff points as separate hyperpa-
rameters). We called this predictor pairRatio. Unlike WAND and
WD, we consider the magnitude of this contrast as indicative of
query performance. We believe that, since this relates to the re-
trieval method itself, it should be indicative of query performance
especially for advanced retrieval methods.

Still, the similarity matrix 𝑊 𝜙 can only provide information
about the relative similarity of documents. Introducing some in-
formation about the document scores would increase performance
prediction accuracy, since it relates to the absolute ranking of each
document. Let 𝐴 be an adjusted matrix, where each entry, for a
document pair 𝑖 and 𝑗 is multiplied by the final similarity of the
query to each of the documents:

𝐴𝑖 𝑗 =𝑊𝑖 𝑗 · (𝜙𝑖 · 𝜃𝑞) · (𝜙 𝑗 · 𝜃𝑞)
𝐴 better encodes similarity of the query among the pairwise docu-
ment similarities. pairRatio (Equation (7)) can then be applied upon
𝐴, which we denote as adjusted pairRatio, or A-pairRatio.

In short, we are interested in the effectiveness of these predictors
based on dense document representations and how they perform
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in relation to their sparse versions. We test their performance com-
pared to score-based and supervised predictors in Section 5.

4 EXPERIMENTAL SETUP
Our experiments address the following research questions:

RQ1 How do unsupervised coherence-based predictors com-
pare to unsupervised score-based predictors in dense and sparse
retrieval?

RQ2 How do unsupervised predictors perform compared to
supervised predictors in dense and sparse retrieval?
To address these research questions, our setup is as follows:

Datasets:We use the MSMARCO passage ranking corpus, and
apply the TREC Deep Learning track 2019 and 2020 query sets,
containing respectively 43 and 54 queries with relevance judge-
ments. In particular, each query in these querysets contains many
judgements obtained by pooling various distinct retrieval systems.

QPP Predictors: As unsupervised score-based predictors, we
apply Max score (MAX) [42], and NQC [47]. As a representative
variant of NQC, we choose RSD. This bootstrap-based predictor is
the most recent NQC variant and was shown to outperform other
score-based predictors. Specifically, we use the RSD(uni) version
which samples documents uniformly. For each cutoff, we sample
from 0.60 to 0.80 of the initial result list size. We use spatial auto-
correlation (AC) [16], WAND and WD [1], and the interpolation of
WAND and WD with NQC (following the findings of the original
paper [1], which suggest that network metrics further increase
the performance of NQC). We also report our embedding variants
(AC-embs, WAND-embs, WD-embs, PairRatio, A-PairRatio). For
each unsupervised predictor, we tune the hyperparameters of each
dataset on the other. Specifically, to tune the cutoff value for the
top-𝑘 documents all unsupervised predictors including ours, we
use a grid of values [5,10,20,50,100,200,500,1000]. For PairRatio and
A-PairRatio, we also vary the other upper and lower rank threshold
hyperparameters 𝜏𝑖 and 𝜏 𝑗 .

For supervised predictors, we report the bi-encoder and cross-
encoder variants of BERT-QPP [2]. To achieve this, we retrained
the BERT-QPP cross-encoder and bi-encoder models specifically for
each of the dense retrieval models. These supervised predictors ex-
hibit their highest correlations mainly for MRR, which means that
they train models that estimate the relevance of the top document
of a ranking. In this regard, we check whether an alternative super-
vised predictor (which we call top-1(monoT5)) that uses only the
top-retrieved document to a monoT5model [37] – i.e. trained for rel-
evance estimation and ranking rather than performance prediction
– can perform well in dense retrieval. Note that we deliberately use
the term QPP Predictors instead of baselines, since our purpose is not
to demonstrate the superiority of a single predictor, but rather how
a group of predictors behaves under different contexts and retrieval
models.

Retrieval Systems: We deploy three retrieval approaches: BM25
sparse retrieval (applying Porter’s English stemmer and removing
standard stopwords) as implemented by Terrier [38], and two single-
representation dense retrieval approaches, namely ANCE [56], and
TCT-ColBERT [28] with PyTerrier [30] integrations.1

1https://github.com/terrierteam/pyterrier_dr

Measures: Following the TREC 2019 Deep Learning Track Over-
view [10], we measure system effectiveness in terms of NDCG@10
and MAP@100. We further add MRR@10, following some recent
work [2, 23]. To quantify the accuracy of the QPP techniques, we
adopt Kendall’s 𝜏 correlation measure, as typically reported in QPP
literature [11, 16, 24, 47–49, 58].2

5 CORRELATION RESULTS
Tables 1 and 2 show the accuracy of all our examined predictors on
the TREC DL 2019 and 2020 query sets, respectively. Within each
table: groups of columns denote the various retrieval approaches;
the uppermost row reports the mean effectiveness of each ranking
approach for each evaluation measure; the next group of rows
contains the Kendall’s 𝜏 correlation of the score-based predictors,
the next one the unsupervised lexical coherence-based predictors;
then we report the results for the embedding-based predictors; and
finally for the supervised predictors [2].

5.1 RQ1: Score-based vs Coherence-based
Predictors

As expected, for BM25, distribution-based score predictors (NQC
and RSD(uni) show high accuracy for MAP@100 and NDCG@10,
while their accuracy is lower for MRR@10, especially for DL 19.
However, unlike older datasets, sparse coherence predictors are
very low for TREC DL datasets. As for dense coherence predictors,
surprisingly, AC-embs variant is the best performing predictor for
AP@100, and for NDCG@10 on 2020. As for our pairRatio variants,
they are less effective than other unsupervised predictors, such as
NQC and AC-embs (except for MRR@10), as well as supervised
predictors on MRRR@10.

Next we consider the two dense retrieval settings, i.e. ANCE &
TCT-ColBERT. For TCT-ColBERT, we observe that our pairRatio
predictors outperform not only supervised predictors, but also NQC
(the best performing unsupervised predictor) for NDCG@10 and
MRR@10 for both datasets, are only behind RS(uni) for MRR@10
in the DL 2019 dataset, and are competitive for AP@100. Another
observation is that A-pairRatio has increased the accuracy com-
pared to pairRatio, particularly for the TCT-ColBERT model, which
indicates the need for including document-query relations. In sum-
mary, for NDCG@10 and MRR@10, for TREC DL 2020, in all four
cases our dense coherence-based predictors (any of them consid-
ered) outperform score-based predictors; for TREC DL 2019, in
two of the four cases ours are higher, in one case RSD is higher,
and in one case they are identical. For ANCE, WAND-embs and
WD-embs are better than score-based predictors for NDCG@10
and MRR@10 for the 2020 datatset, while they are only slightly be-
hind them in the 2019 dataset. Overall, for MAP@100, NQC or RSD
(uni) consistently outperform coherence-based predictors, while for
NDCG@10 and MRR@10, the picture is more unstable; however,
in most cases, coherence-based predictors win for dense retrieval.
Further, as might be expected, changing the type of representations
from sparse to dense increases the performance of coherence-based
predictors across the dense retrieval settings (for ANCE,in 7 out of

2In general, Kendall’s 𝜏 gives lower scores than Pearson’s and Spearman’s correlation,
but makes the least assumptions about a linear relationship between variables. We
prefer to use the space for reporting three evaluation measures.
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Table 1: Kendall’s 𝜏 correlations of unsupervised and supervised predictors for TREC DL 2019. The highest correlation by an
unsupervised predictor in each column is emphasised in bold and (*) indicates significance at 𝛼 = 0.05.

BM25 ANCE TCT
MAP@100 NDCG@10 MRR@10 MAP@100 NDCG@10 MRR@10 MAP@100 NDCG@10 MRR@10

Effectiveness 0.232 0.479 0.639 0.332 0.643 0.806 0.402 0.720 0.898
Score-based

Max 0.171 0.157 0.087 0.428* 0.316* 0.241* 0.297* 0.250* 0.015
NQC 0.322* 0.281* 0.075 0.499* 0.463* 0.216 0.335* 0.243* 0.171

RSD(uni) 0.328* 0.288* 0.077 0.495* 0.467* 0.264* 0.335* 0.228* 0.227
Sparse Coherence-based

AC 0.156 0.073 0.071 0.111 0.081 0.061 0.080 -0.198 -0.051
WAND 0.209* 0.126 0.111 0.187 0.113 0.025 0.189 0.095 -0.006
WD 0.158 0.101 0.087 0.158 -0.004 -0.009 0.184 0.121 0.015

WAND(NQC) 0.258* 0.148 0.124 0.178 0.113 0.025 0.189 0.095 -0.01
WD(NQC) 0.200* 0.186 0.035 0.158 -0.008 -0.012 0.180 0.135 0.006

Dense Coherence-based
WAND-embs -0.096 -0.232 -0.019 0.138 -0.157 -0.029 -0.036 0.139 0.041
WD-embs 0.224* -0.170 0.014 0.089 -0.219 -0.241* -0.147 -0.033 0.045
AC-embs 0.373* 0.144 0.098 0.437* 0.285* 0.261* 0.056 0.018 -0.129

pairRatio(ours) 0.171 0.270* 0.194 0.295* 0.334* 0.087 0.200 0.248* -0.060
A-pairRatio(ours) 0.446* 0.352* 0.142 0.382* 0.403* 0.216 0.280* 0.259* 0.171

Supervised
BERT-QPP (bi) 0.229* 0.305* 0.260* 0.162 0.144 0.067 0.111 0.048 0.083

BERT-QPP(cross) 0.264* 0.254* 0.174* 0.198 0.117 0.038 0.211* 0.088 0.041
top-1(mono-T5) 0.180 0.294* 0.359* 0.224* 0.294* 0.470* 0.058 0.038 0.086

Table 2: Results on TREC DL 2020. Notation as per Table 1.

BM25 ANCE TCT
MAP@100 NDCG@10 MRR@10 MAP@100 NDCG@10 MRR@10 MAP@100 NDCG@10 MRR@10

Effectiveness 0.275 0.493 0.614 0.363 0.607 0.803 0.454 0.686 0.831
Score-based

Max 0.215* 0.214* 0.184 0.213* 0.285* 0.337* 0.342* 0.243* 0.062
NQC 0.526* 0.438* 0.281* 0.443* 0.082 0.172* 0.454* 0.246* 0.133

RSD(uni) 0.568* 0.431* 0.288* 0.403* 0.275* 0.155 0.335* 0.341* 0.208*
Sparse Coherence-based

AC -0.199* 0.017 -0.097 -0.115 -0.022 -0.014 0.018 -0.118 0.030
WAND 0.189* -0.031 -0.026 0.130 0.009 -0.065 0.208* 0.220* 0.023
WD 0.183* 0.006 -0.036 0.158 0.044 0.010 0.225* 0.216* 0.018

WAND(NQC) 0.220* 0.101 -0.024 0.130 0.005 -0.067 0.202* 0.213* 0.188
WD(NQC) 0.253* 0.160 0.036 0.148 0.023 -0.010 0.223* 0.192* 0.004

Dense Coherence-based
WAND-embs 0.038 0.137 0.042 0.291* 0.300* 0.077 -0.05 0.107 -0.066
WD-embs 0.099 0.158 0.028 0.213* 0.289* 0.394* 0.127 0.127 -0.161
AC-embs 0.607* 0.443* 0.339* 0.324* 0.219* 0.149 0.121 0.137 -0.002

pairRatio(ours) 0.271* 0.203* 0.130 0.178 0.186 -0.132 0.364* 0.318* -0.280*
A-pairRatio(ours) 0.482* 0.316* 0.189 0.348* 0.270* 0.115 0.429* 0.363* -0.244*

Supervised
BERT-QPP (bi) 0.322* 0.315* 0.351* 0.274* 0.047 0.058 0.353* 0.195* 0.083

BERT-QPP(cross) 0.375* 0.345* 0.403* 0.180 0.043 0.012 0.261* 0.173 0.041
top-1(mono-T5) 0.371* 0.400* 0.534* 0.259* 0.237* 0.365* 0.279* 0.240* 0.159

9 (QPP, Measure) cases in TREC 2019, and 9 out of 9 for TREC 2020;
for TCT-ColBERT, our pairRatio variants are more effective), as the

updated representations match those of the retrieval methods. To
answer RQ1, for dense retrieval, score-based predictors perform
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well for MAP@100, while coherence-based predictors show in-
creased accuracy for NDCG@10 and MRR@10. For sparse retrieval,
dense coherence predictors are in general better than score-based
predictors.

5.2 RQ2: Unsupervised vs. Supervised Predictors
Next, we compare the performance of unsupervised with super-
vised QPP predictors for each retrieval method. For BM25, we are
able to reproduce the results of the bi-encoder and cross-encoder
variants of BERT-QPP, as reflected by the higher values in MRR and
the competitive correlation on the other two metrics. For BM25, we
used the authors’ checkpoints, while we re-trained the method for
ANCE & TCT-ColBERT. However, their values are still lower than
NQC, (a simple score-based unsupervised predictor), and RSD(uni)
(NDCG@10 on the TREC 2019 queryset), our pairRatio (MRR@10
on the 2019 queryset), AC-embs (AP@100 on 2019, AP@100 on
2020, NDCG@10 on 2020), and top-1 monoT5 (MRR@10 on both
datasets). Most importantly, for the two dense retrieval methods, su-
pervised predictors are not as effective as unsupervised predictors,
such as Max and NQC. For TCT-ColBERT, supervised predictors
are less effective than our pairRatio variants for NDCG@10 and
MRR@10, and NQC and RSD(uni) for all metrics. The strongest
observed correlations of BERT-QPP variants in dense retrieval are
for AP@100. However, they have a cost to deploy (applying a BERT
model on the top-ranked result). We argue that this resource would
be better spent to re-rank the top results. In addition, the simpler
"supervised" variant, top-1(mono-T5), which uses the monoT5 score
of the top-ranked document is a more accurate predictor than BERT-
QPP across all retrieval methods, particularly for MRR@10, which
is the metric that BERT-QPP is most competitive. This surprising
result shows that BERT-QPP is itself just a relevance estimator for
the top-ranked document that has been trained to predict MRR@10;
using any effective relevance estimator can do as good a job, if not
better. To answer RQ2, we find that the existing BERT-QPP su-
pervised predictors are less accurate than unsupervised predictors
(existing and ours) for dense retrieval.

6 MODELING QUERY DIFFERENCES IN QPP
The performance of dense coherence-based predictors is particu-
larly accurate in certain dense retrieval settings (for TCT-ColBERT:
pairRatio and A-pairRatio, for ANCE: WAND-embs and WD-embs)
and shows superior performance for especially NDCG@10. Still,
score-based predictors are often better for MAP@100. This differ-
ence in QPP correlations among evaluation metrics motivates us to
explore whether the relationship between QPPs and retrieval effec-
tiveness is mediated by the type of query (for instance queries of an
Experience type have been found difficult to answer [6]). For this
purpose, we apply a distribution-based QPP evaluation approach
based on the scaled Absolute Rank Error (sARE) [20]. Specifically,

the sARE value each query is calculated as: 𝑠𝐴𝑅𝐸𝑞𝑖 =
|𝑟𝑝
𝑖
−𝑟𝑒

𝑖
|

|𝑄 | where
𝑟
𝑝

𝑖
and 𝑟𝑒

𝑖
are the ranks assigned to query 𝑖 by the QPP predictor

and the evaluation metric, respectively (one sARE value is obtained
per query, instead of a point estimate). This further allows using
sARE in statistical models [18, 20]. Unlike [18, 20] who use ANOVA,
we use Linear Mixed Effects (LME) models [13, 21, 32, 50], which
also belong to Generalised Linear Models (GLM) [31, 35], but split
the total explained variance in 𝑠𝐴𝑅𝐸 into 2 levels.

Specifically, Level 1 specifies the within-query variations (how
each query changes or the per query variance over different QPP
predictors). Level 2 specifies the between-query differences; it fur-
ther explains each part of Level 1 by showing, how it changes ac-
cording to a between-query factor - here we use the type of query
or query type as proposed in [6]. A 2-Level approach is necessary
to model the interplay of QPPs with query types; while each query
receives a separate sARE value for each QPP predictor, multiple
queries in the same type share the same sARE, and are, therefore,
nested within their group (each query belongs to only one level
of query type). Thus, the multilevel approach allows splitting the
total variation in sARE into within (due to QPPs - Level 1)- and
between-query (due to query types - Level 2) variation. Using sep-
arate models for each evaluation measure allows to check which
measure is more affected by query types. Next, we describe LMEs
in detail.

Table 3: Explanation of terms included in the linear mixed
effects full model.

Parameter Interpretation
Fixed effects

𝛾00
average true sARE for the reference QPP predictor for
the reference (without the effect of) query type

𝛾01
average difference in sARE between different query
types for the reference QPP predictor

𝛾10

average true rate of change in sARE per unit change
in QPP predictor for the reference (without the effect of)
query type

𝛾11
average difference in sARE between different query
types per unit change in QPP predictor

Random effects

𝜁0𝑖 , 𝜁1𝑖
allow individual true query trajectories to be scattered
around the average query true change trajectory

𝜖𝑖 𝑗
allows individual query data to be scattered around
individual query true change trajectory

Variance Components

𝜎2𝜖
level 1 (residual) variance, variability around each
query’s true change trajectory

𝜎20 , 𝜎
1
1

level 2 variance in reference predictor and rate of
change per predictor measurement, how much between-
query variability is left after accounting for query type

𝜎01

residual covariance between true sARE for the reference
(initial) predictor and rate of change, controlling for
query type, across all queries

6.1 Linear Mixed Model Definitions
First, our full model, denoted as 𝐿𝑀𝐸𝑓 𝑢𝑙𝑙 , is defined as :
Level 1

𝑠𝐴𝑅𝐸𝑖 𝑗 = 𝜋0𝑖 + 𝜋1𝑖 (𝑄𝑃𝑃𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 ) + 𝜖𝑖 𝑗 (8)
with 𝜖𝑖 𝑗 ∼ 𝑁 (0, 𝜎2𝜖 )
where 𝑠𝐴𝑅𝐸𝑖 𝑗 is the sARE of query 𝑖 at QPP predictor measurement
𝑗 , 𝜋0𝑖 is the intercept (initial status) of query 𝑖’s change trajectory
(reference QPP predictor, i.e., the first QPP measurement), 𝜋1𝑖 is the
slope (rate of change) in sARE (per predictor unit), and 𝜖𝑖 𝑗 are the
deviations of a query’s equation on each measurement. This is also
a way for Level 1 to check for statistically significant differences
between predictors.
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Table 4: LMEs comparison and corresponding variance reduc-
tion type. Each row shows the 𝑃𝑠𝑒𝑢𝑑𝑜 −𝑅2 of interest together
with its definition.

Models compared Quantity Definition

𝐿𝑀𝐸𝑎𝑣𝑒𝑟𝑎𝑔𝑒 , 𝐿𝑀𝐸𝑄𝑃𝑃 𝑃𝑠𝑒𝑢𝑑𝑜 − 𝑅2𝜖
𝜎2
𝜖𝐿𝑀𝐸𝑎𝑣𝑒𝑟𝑎𝑔𝑒

−𝜎2
𝜖𝐿𝑀𝐸𝑄𝑃𝑃

𝜎2
𝜖𝐿𝑀𝐸𝑎𝑣𝑒𝑟𝑎𝑔𝑒

𝐿𝑀𝐸𝑄𝑃𝑃 , 𝐿𝑀𝐸𝐹𝑢𝑙𝑙 𝑃𝑠𝑒𝑢𝑑𝑜 − 𝑅20

𝜎2
0𝐿𝑀𝐸𝑄𝑃𝑃

−𝜎3
0𝐿𝑀𝐸𝑓 𝑢𝑙𝑙

𝜎2
0𝐿𝑀𝐸𝑄𝑃𝑃

𝐿𝑀𝐸𝑄𝑃𝑃 , 𝐿𝑀𝐸𝐹𝑢𝑙𝑙 𝑃𝑠𝑒𝑢𝑑𝑜 − 𝑅21

𝜎2
1𝐿𝑀𝐸𝑄𝑃𝑃

−𝜎3
1𝐿𝑀𝐸𝑓 𝑢𝑙𝑙

𝜎2
1𝐿𝑀𝐸𝑄𝑃𝑃

Level 2 {
𝜋0𝑖 = 𝛾00 + 𝛾01 (𝑄𝑢𝑒𝑟𝑦𝑇𝑦𝑝𝑒) + 𝜁0𝑖
𝜋1𝑖 = 𝛾10 + 𝛾11 (𝑄𝑢𝑒𝑟𝑦𝑇𝑦𝑝𝑒) + 𝜁1𝑖

(9)

with 𝜁0𝑖
𝜁1𝑖

∼ 𝑀𝑉𝑁

[ [
0
0

]
,

[
𝜎20𝜎01
𝜎01𝜎11

] ]
where 𝛾00 and 𝛾10 are the average true sARE for the reference query
type in the initial status and rate of change, respectively. Similarly,
𝛾01 and 𝛾11 show the effect of the between-query factor on sARE,
for the initial status and rate of change. For convenience, we use
𝐿𝑀𝐸𝑓 𝑢𝑙𝑙 in an equivalent compact form (Levels 1 and 2) as:

𝑠𝐴𝑅𝐸𝑖 𝑗 = [𝛾00 + 𝛾10 (𝑄𝑃𝑃𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑖 𝑗 ) + 𝛾01 (𝑄𝑢𝑒𝑟𝑦𝑇𝑦𝑝𝑒𝑖 )
+𝛾11 (𝑄𝑢𝑒𝑟𝑦𝑇𝑦𝑝𝑒𝑖 ) (𝑄𝑃𝑃𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑖 𝑗 )]

+[𝜁0𝑖 + 𝜁1𝑖 (𝑄𝑃𝑃𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑖 𝑗 ) + 𝜖𝑖 𝑗 ]
(10)

Table 3 shows the interpretation of each of the 𝐿𝑀𝐸𝑓 𝑢𝑙𝑙 parameters.
Next, we introduce two reduced models. We start with 𝐿𝑀𝐸𝑎𝑣𝑒𝑟𝑎𝑔𝑒
that only assumes an average sARE value:

𝑠𝐴𝑅𝐸𝑖 𝑗 = 𝛾00 + 𝜁0𝑖 + 𝜖𝑖 𝑗 (11)

Finally, we obtain 𝐿𝑀𝐸𝑄𝑃𝑃 as follows:

𝑠𝐴𝑅𝐸𝑖 𝑗 = 𝛾00+𝛾10 (𝑄𝑃𝑃𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑖 𝑗 )+𝜁0𝑖+𝜁1𝑖 (𝑄𝑃𝑃𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑖 𝑗 )+𝜖𝑖 𝑗
(12)

In what follows, we use a model selection strategy, as indicated
in Table 4, where each row shows the models being compared,
the quantity of interest, and its definition. The difference between
𝐿𝑀𝐸𝑎𝑣𝑒𝑟𝑎𝑔𝑒 and 𝐿𝑀𝐸𝑄𝑃𝑃 is the effect of QPP predictor; 𝑃𝑠𝑒𝑢𝑑𝑜−𝑅2𝜖
tells us how much of the total variability within queries can be at-
tributed to QPPs. Similarly, when comparing 𝜎20 and 𝜎21 of 𝐿𝑀𝐸𝑓 𝑢𝑙𝑙
with the ones of 𝐿𝑀𝐸𝑄𝑃𝑃 , these two models differ in the inclusion
of the terms𝛾01 (𝑄𝑢𝑒𝑟𝑦𝑇𝑦𝑝𝑒) and𝛾11 (𝑄𝑢𝑒𝑟𝑦𝑇𝑦𝑝𝑒). 𝑃𝑠𝑒𝑢𝑑𝑜−𝑅20 and
𝑃𝑠𝑒𝑢𝑑𝑜−𝑅21 tell us howmuch of the total variability between queries
in initial status and rate of change, respectively, are due to query
type. Starting from 𝐿𝑀𝐸𝑎𝑣𝑒𝑟𝑎𝑔𝑒 , we sequentially move to 𝐿𝑀𝐸𝑄𝑃𝑃

and 𝐿𝑀𝐸𝑓 𝑢𝑙𝑙 , if needed. At each step, we compare between the
model that contains the added factor and the one that does not. The
decision is made based on the significance of fixed effects and the
model Deviance [32, 50], indicating the goodness-of-fit (the lower,
the better). The deviance in this case is: 𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒 = −2𝐿𝐿𝑀𝑎𝑥 ,
where 𝐿𝐿𝑀𝑎𝑥 is the maximised log-likelihood of each model. We
implement the proposed LMEs using the lme4 R package [4, 52],
with Full Maximum Likelihood Estimation. We now address the
following research questions:

RQ3 Is the accuracy of query performance prediction influenced
by query type more for dense retrieval than sparse retrieval?

RQ4 How sensitive are the different evaluation measures to (a)
query types and (b) QPPs?

6.2 RQ3 - Importance of Query Type
Table 5 provides the resulting LMEs from our model comparison
strategy, as outlined in Section 6.1. For the dense retrieval models,
Equations with 𝑠𝐴𝑅𝐸𝑀𝐴𝑃 contain a coefficient that indicates sensi-
tivity to a particular type of query, (the first line of ANCE refers to
Not-A-Question queries, and the first two lines in TCT-ColBERT
refer to Experience and Reason queries). The corresponding BM25
LMEs do not contain a query type coefficient).

Most importantly, in Table 6, the top half of shows the propor-
tions of gained explained variance for both levels (with ✗ indicating
no significant gains), while the bottom half highlights the included
effect terms. The first row shows that variations due to QPPs are
similar for the three retrieval methods (similar 𝑃𝑠𝑒𝑢𝑑𝑜 −𝑅2𝜖 values).
However, the next two rows have much higher relative gain in
explained variance for the two dense models than BM25, especially
for 𝑃𝑠𝑒𝑢𝑑𝑜−𝑅21 , reaching 35% and 23% for ANCE and TCT-ColBERT,
respectively. Indeed, as 𝑃𝑠𝑒𝑢𝑑𝑜−𝑅21 includes query type, this means
that a noticeable proportion of the variance is attributed to query
type. Therefore, for dense retrieval, some query types are more
accurately predicted by certain QPPs, and other query types work
better for other QPPs. This indicates that QPP performance cannot
be judged in isolation from query taxonomies, which in some cases
are more influential than the predictor itself. To answer RQ3, the
accuracy of query performance is influenced by query type more
for dense retrieval than sparse retrieval.

6.3 RQ4 - Sensitivity of Evaluation Measures
Figure 3 plots the TCT-ColBERT 𝐿𝑀𝐸𝐹𝑢𝑙𝑙 of 𝑠𝐴𝑅𝐸 prediction for
both 𝑠𝐴𝑅𝐸𝑀𝐴𝑃 (a) and 𝑠𝐴𝑅𝐸𝑁𝐷𝐶𝐺 (b). In each plot, the 𝑠𝐴𝑅𝐸 (y-
axis) values are plotted as a function of QPP predictor (x-axis),
with each query type as a separate plot, and colouring indicate
different QPP predictors (from left: starting with dense coherence-
based predictors, then supervised, and score-based on the right).
For 𝑠𝐴𝑅𝐸𝑀𝐴𝑃 , the trends for two query types, Experience and Rea-
son, behave differently than the rest; these two types show better
performance (lower 𝑠𝐴𝑅𝐸) for coherence-based than score-based
predictors, while the opposite holds for Instruction and Not-A-
Question queries. As for Evidence-based and Factoid queries, there
is higher variance in 𝑠𝐴𝑅𝐸 among different queries, but for dense
coherence-based predictors, the variance is smaller than score-
based predictors, as indicated by the corresponding colours. In
general, for 𝑠𝐴𝑅𝐸𝑀𝐴𝑃 , performance seems to be affected by the
different types of queries, which make QPPs more unstable. Indeed,
Experience and Reason were found as harder questions in the orig-
inal categorisation study [6]. This result reflects the selected model
for 𝑠𝐴𝑅𝐸𝑀𝐴𝑃 , which was 𝐿𝑀𝐸𝐹𝑢𝑙𝑙 (effect of query type across QPP
measurements).

On the other hand, for 𝑠𝐴𝑅𝐸𝑁𝐷𝐶𝐺 , QPP performance for differ-
ent query types seems more uniform. The trend still looks different
for Experience and Not-A-Question queries compared to the rest,
but those represent only a small portion of the total queries. For
the remaining types, the structure is similar, with some variations
in strength. Importantly, for Evidence-based, Factoid, Instruction,
and Reason queries, there is increasing variance across queries for
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Table 5: Resulting LME models for each retrieval method and all metrics.

BM25
𝑠𝐴𝑅𝐸𝑀𝐴𝑃 𝑠𝐴𝑅𝐸𝑖 𝑗 = [0.29 − 0.009(𝑄𝑃𝑃𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑖 𝑗 )] + [𝜁0𝑖 + 𝜁1𝑖 (𝑄𝑃𝑃𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑖 𝑗 ) + 𝜖𝑖 𝑗 ]
𝑠𝐴𝑅𝐸𝑁𝐷𝐶𝐺 𝑠𝐴𝑅𝐸𝑖 𝑗 = 0.26 + 𝜁0𝑖 + 𝜖𝑖 𝑗
𝑠𝐴𝑅𝐸𝑀𝑅𝑅 𝑠𝐴𝑅𝐸𝑖 𝑗 = 0.30 + 𝜁0𝑖 + 𝜖𝑖 𝑗

ANCE
𝑠𝐴𝑅𝐸𝑀𝐴𝑃 𝑠𝐴𝑅𝐸𝑖 𝑗 = [0.28 − 0.008(𝑄𝑃𝑃𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑖 𝑗 ) + 0.25(𝑁𝑜𝑡𝐴𝑄𝑖 ) + 0.05(𝑁𝑜𝑡𝐴𝑄𝑖 ) (𝑄𝑃𝑃𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑖 𝑗 )] + [𝜁0𝑖 + 𝜁1𝑖 (𝑄𝑃𝑃𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑖 𝑗 ) + 𝜖𝑖 𝑗 ]
𝑠𝐴𝑅𝐸𝑁𝐷𝐶𝐺 𝑠𝐴𝑅𝐸𝑖 𝑗 = 0.25 + 𝜁0𝑖 + 𝜖𝑖 𝑗
𝑠𝐴𝑅𝐸𝑀𝑅𝑅 𝑠𝐴𝑅𝐸𝑖 𝑗 = [0.35 − 0.008(𝑄𝑃𝑃𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑖 𝑗 )] + [𝜁0𝑖 + 𝜁1𝑖 (𝑄𝑃𝑃𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑖 𝑗 ) + 𝜖𝑖 𝑗 ]

TCT-ColBERT
𝑠𝐴𝑅𝐸𝑀𝐴𝑃 𝑠𝐴𝑅𝐸𝑖 𝑗 = [0.32 − 0.01(𝑄𝑃𝑃𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑖 𝑗 ) + 0.05(𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑖 ) (𝑄𝑃𝑃𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑖 𝑗 )] + [𝜁0𝑖 + 𝜁1𝑖 (𝑄𝑃𝑃𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑖 𝑗 ) + 𝜖𝑖 𝑗 ]
𝑠𝐴𝑅𝐸𝑀𝐴𝑃 𝑠𝐴𝑅𝐸𝑖 𝑗 = [0.32 − 0.01(𝑄𝑃𝑃𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑖 𝑗 ) + 0.02(𝑅𝑒𝑎𝑠𝑜𝑛𝑖 ) (𝑄𝑃𝑃𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑖 𝑗 )] + [𝜁0𝑖 + 𝜁1𝑖 (𝑄𝑃𝑃𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑖 𝑗 ) + 𝜖𝑖 𝑗 ]
𝑠𝐴𝑅𝐸𝑁𝐷𝐶𝐺 𝑠𝐴𝑅𝐸𝑖 𝑗 = [0.32 − 0.008(𝑄𝑃𝑃𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑖 𝑗 )] + [𝜁0𝑖 + 𝜁1𝑖 (𝑄𝑃𝑃𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑖 𝑗 ) + 𝜖𝑖 𝑗 ]
𝑠𝐴𝑅𝐸𝑀𝑅𝑅 𝑠𝐴𝑅𝐸𝑖 𝑗 = 0.32 + 𝜁0𝑖 + 𝜖𝑖 𝑗

Table 6: Proportion of explained variance per component
and included fixed effects in each LME for all three retrieval
methods. ✓ indicates the presence of a fixed effect in LMEs,
while ✗ shows the absence of either an important contribu-
tion of a factor (top) or a fixed effect (bottom).

BM25 ANCE TCT-ColBERT
sARE → MAP NDCG MAP NDCG MAP NDCG

𝑃𝑠𝑒𝑢𝑑𝑜 − 𝑅2𝜖 13.4% ✗ 7.5% ✗ 12.4% 14.6%
𝑃𝑠𝑒𝑢𝑑𝑜 − 𝑅20 ✗ ✗ 17.2% ✗ 2.2% 9.9%
𝑃𝑠𝑒𝑢𝑑𝑜 − 𝑅21 ✗ ✗ 35.6% ✗ 22.8% 8.1%

𝛾00 ✓ ✓ ✓ ✓ ✓ ✓

𝛾01 ✗ ✗ ✓ ✗ ✓ ✗

𝛾10 ✓ ✗ ✓ ✗ ✗ ✓

𝛾11 ✗ ✗ ✓ ✗ ✓ ✗

(a) MAP@100

(b) NDCG@10

Figure 3: LME results from the full model for TCT-ColBERT.

score-based compared to dense coherence-based predictors. This
indicates that our proposed predictors are less sensitive to query

type compared to score-based and supervised predictors. Note that
while we plot the full model, for 𝑠𝐴𝑅𝐸𝑁𝐷𝐶𝐺 , 𝐿𝑀𝐸𝑄𝑃𝑃 was pre-
ferred, i.e., only an effect of QPP predictor. This is complemented
by Table 5, where 𝑠𝐴𝑅𝐸𝑁𝐷𝐶𝐺 contain a coefficient for QPPs, but
not for query types or their interaction with QPPs.

To summarise, in Section 5.1, we observed that score-based pre-
dictors showed improved performance for MAP@100, but our LME
analysis showed that this result is susceptible to influential query
types. Instead, our dense coherence-based predictors showed higher
correlations mainly for NDCG@10, and with the LME analysis (lack
of query type terms and 𝑃𝑠𝑒𝑢𝑑𝑜 − 𝑅2 terms at Level 2), we showed
that this is more stable across different query types. Therefore, our
predictors provide promising evidence for generalisability com-
pared to existing predictors. In other words, while both MAP@100
and NDCG@10 are sensitive to QPPs, NDCG@10 is less sensitive
to query type variations than MAP@100, thereby answering RQ4.

7 CONCLUSIONS
We examined the accuracy of QPP upon two single-representation
dense retrieval methods (ANCE and TCT-ColBERT). In particular,
we proposed new variants of unsupervised coherence-based predic-
tors and managed to increase their performance for dense retrieval.
In this way, we showed that changing the representations from
TF.IDF to neural embeddings provided by the dense retrieval models
together with some further modifications is enough to generalise
performance of unsupervised predictors in relation to supervised
ones. Indeed, with increasing effectiveness brought by dense re-
trieval methods, our proposed predictors becomes more compet-
itive, especially for NDCG@10 and MRR@10. Also, we highlighted
that focusing on a single evaluation measure to optimise a proposed
predictor can be problematic and may falsely inform future studies,
since MAP@100 and NDCG@10 cannot be used interchangeably.
At the same time, we demonstrated the interplay between the dif-
ferent QPP predictors, evaluation metrics, and the particular types
of queries. Importantly, we showed that while score-based predic-
tors still remain very competitive for MAP@100, our examined
statistical models indicate that MAP@100 is highly influenced by
the type of query. Instead, using NDCG@10, QPP performance is
more stable across queries, and since our proposed predictors show
higher performance on this metric, this is a promising result for
more generalisable performance in dense retrieval.
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