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Abstract
Large language models (LLM) exhibit strong
in-context learning (ICL) ability, which allows
the model to make predictions on new examples
based on the given prompt. Recently, a line of
research (Von Oswald et al., 2023; Akyürek et al.,
2023; Ahn et al., 2023; Mahankali et al., 2023;
Zhang et al., 2024) considered ICL for a simple
linear regression setting and showed that the for-
ward pass of Transformers is simulating some
variants of gradient descent (GD) algorithms on
the in-context examples. In practice, the input
prompt usually contains two types of informa-
tion: in-context examples and the task description.
Therefore, in this research, we will try to theoret-
ically investigate how the task description helps
ICL. Specifically, our input prompt contains not
only in-context examples but also a “task descrip-
tor”.We empirically show that the trained trans-
former can achieve significantly lower loss for
ICL when the task descriptor is provided. We
further give a global convergence theorem, where
the converged parameters match our experimental
result.

1. Introduction
In recent years, Transformer-based large language models
(LLM) have exhibited surprising abilities. One of the most
remarkable abilities is to perform well universally, even
for the tasks that they are not explicitly trained on. This is
partially attributed to in-context learning (ICL) mechanism,
where in-context examples are provided to significantly im-
prove the prediction of LLM on a new query input (Brown
et al., 2020).

To obtain a better understanding of ICL mechanism, the
problem of learning a function class H in-context is pro-
posed (Garg et al., 2022). Specifically, given an input se-
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quence S = (x1, h(x1), . . . , xn, h(xn), xquery), the model
f can output a prediction f(S). Here the data xi, xquery
are i.i.d. samples from an underlying distribution DX
and ground truth function h is drawn from a distribution
DH over functions in H. We say the model f in-context
learn the function class H up to ϵ, if we have the expected
loss Exi,xquery,h[ℓ(f(S), h(xquery))] ≤ ϵ for large enough n,
where ℓ(·, ·) is some loss function, e.g., the mean square
error. It has been observed that Transformers can in-context
learn linear models. Several studies have followed this line
of research to explore the mechanism of ICL by solving
least-square linear regressions (Von Oswald et al., 2023;
Akyürek et al., 2023; Ahn et al., 2023; Mahankali et al.,
2023; Zhang et al., 2024). In their works, the input prompts
take the form (x1, w

⊤x1, x2, w
⊤x2, . . . , xn, w

⊤xn, xquery)
where xi, xquery are i.i.d. samples from some Gaussian dis-
tribution N (µ,Λ) and w is independently sampled from
N (0, Id). It was then proposed that there are some specific
parameters under which one forward pass of Transformers
is equivalent to one step of some variant of gradient descent
of a linear model (Von Oswald et al., 2023; Ahn et al., 2023;
Mahankali et al., 2023). Zhang et al. (2024) investigated
how Transformers can be trained to exhibit ICL ability by
proving that single-layer linear Transformers with appro-
priate initialization, will converge to the global minimum
under the gradient flow dynamics. These works revealed
that trained Transformers can express universal algorithms,
such as variants of gradient descent.

While the existing analysis relies purely on in-context ex-
amples, is that the only information in context? In practice,
the context usually contains task descriptions. For instance,
one may explicitly instruct LLM to translate before giving
English-French pairs (see Figure 1).

Please translate English into French: 

hello => boujour 
  

many => beaucoup 

apple => 

task description

in-context example #1

in-context example #2

query example

Figure 1. An input with both task descriptions and in-context ex-
amples.

It has been widely observed that models can make use of
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natural language task descriptions to better perform ICL
(Brown et al., 2020). For example, by adding a token indi-
cating which domain the data comes from, LLM can learn
knowledge from the context more efficiently (Allen-Zhu &
Li, 2024). In this paper, we will investigate how Transform-
ers can leverage task descriptions in context. Specifically,
our input prompt contains not only in-context examples but
also a “task descriptor” for each task τ .

2. Setup: Mean-Varying Linear Regressions
Following the previous line of work (Von Oswald et al.,
2023; Akyürek et al., 2023; Ahn et al., 2023; Mahankali
et al., 2023; Zhang et al., 2024), we introduce the mean-
varying linear regressions problem. For each linear regres-
sion task τ , we independently sample in-context examples
xτ,i and the query example xτ,query from some Gaussian dis-
tribution N (µτ ,Λ). Here the mean µτ is τ -dependent and
µτ is independently sampled from N (0, Id) for each task τ .
The covariance matrix Λ is a diagonal matrix independent of
τ . A valid descriptor for above defined task is the mean µτ .
There are many other variants of task descriptors, but as we
will see later, this setting allows efficient ICL with linear self-
attention. Therefore, input sequence with task descriptors
is Sτ = (µτ , xτ,1, w

⊤
τ xτ,1, . . . , xτ,n, w

⊤
τ xτ,n, xτ,query).

Specifically, input sequence Sτ can be generated from the
following process:

Input sequence with descriptors for task τ .

1. Draw the input mean µτ from N (0, Id);

2. Draw the weight vector wτ from N (0, Id);

3. For i = 1, . . . , n, draw xτ,i from N (µτ ,Λ);

4. Return the sequence

Sτ = (µτ , xτ,1, w
⊤
τ xτ,1, . . . , xτ,n, w

⊤
τ xτ,n, xτ,query).

Embedding matrix Eτ . Since it is flexible to construct
the input embedding matrix Eτ from the input token se-
quence Sτ , in this paper, we consider the following embed-
ding matrix Eτ which duplicates the task descriptor before
each stack of (x, y)⊤. That is,

Eτ =

 µτ µτ . . . µτ µτ

xτ,1 xτ,2 . . . xτ,n xτ, query
yτ,1 yτ,2 . . . yτ,n 0

 . (1)

Here we set the last query stack to be (µτ , xτ,query, 0)
⊤ and

the zero entry remains to be filled with the prediction of the
model. 1

1Note that the format of the embedding matrix is flexible, hence
it is not necessary to duplicate task descriptors and pair x, y as a
stack.

Model architecture. The softmax self-attention Trans-
former is

f(E;W ) = E +WPWV E · softmax(
E⊤WKWQE

ρ
)

where ρ is a normalizing factor and E is the input embed-
ding matrix. In this paper, we will consider a simplified
version of one-layer linear self-attention (LSA) Transformer,
which is adopted from Zhang et al. (2024). Specifically, the
projection matrix and the value matrix are merged into a
projection-value matrix WPV ∈ Rd×d, and the key ma-
trix and query matrix are merged into a key-query matrix
WKQ ∈ Rd×d:

fLSA(E;W ) = E +WPV E · E
⊤WKQE

n
. (2)

Here W =
(
WKQ,WPV

)
and the normalizing factor is set

to be the number of in-context examples n. For the input
with task descriptors E = Eτ , the prediction is given by the
right-bottom entry ŷτ,query = fLSA(Eτ ;W )2d+1,n+1.

Initialization. We make the following assumption on the
initialization. The assumption is motivated by the initializa-
tion in Zhang et al. (2024).

Assumption 2.1 (Initialization). We assume the initializa-
tion of the Transformer satisfies

WKQ(0) =

 Σ11 Σ12 0d
Σ21 Σ22 0d
0⊤d 0⊤d 0

 ,WPV (0) =

 0d×d 0d×d 0d
0d×d 0d×d 0d
0⊤d 0⊤d σ


where Σ11,Σ22,Σ12,Σ21 are PSD matrices such that the
sum of the Frobenius norms

σ := ∥Σ11∥2F + ∥Σ12∥2F + ∥Σ21∥2F + ∥Σ22∥2F > 0.

A simple way to satisfy the requirement is to take Σ11 =
Σ12 = Σ21 = Σ22 = Id and σ = 4d.

Training procedure. Let ℓ(W, τ) be the expected least-
square error for task τ . That is,

ℓ(W, τ) :=
1

2
Exτ,i,xτ,query,wτ

[(ŷτ,query−w⊤
τ xτ,query)

2]. (3)

We consider the population loss

L(W ) := Eµτ∼N (0,Id)[ℓ(W, τ)] (4)

and our training algorithm is the gradient flow:

dW

dt
= −∇L(W ). (5)

In next section, we will both theoretically and empirically
show that task descriptors help Transformers learn mean-
varying linear regressions in-context.
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3. Task Descriptors Help Transformers Learn
In-Context

We investigate both the optimal parameters W∗ and the
training dynamics of gradient flow (5). Our main result can
be summarized as the following theorem.

Theorem 3.1 (Main result). Under Assumption 2.1, if the
number of samples n → ∞ and σ satisfies 0 < σ < α
for some contant α 2, then the gradient flow (5) will con-
verge3 to the global minimizer W∗ = (WKQ

∗ ,WPV
∗ ) and

the corresponding loss lim
n→∞

L(W∗) = 0. Here we have

WKQ
∗ =

 0d×d − 1
w∗Λ

−1 0d
0d×d

1
w∗Λ

−1 0d
0⊤d 0⊤d 0

 (6)

and

WPV
∗ =

 0d×d 0d×d 0d
0d×d 0d×d 0d
0⊤d 0⊤d w∗

 (7)

where w∗ =
(
2∥Λ−1∥2F

) 1
4 .

Remark 3.2. Theorem 3.1 is proved by showing a error
bound (Luo & Tseng, 1993) of population loss (4), which
is presented in Lemma A.3. Noting that scaling WKQ by a
factor ρ and scaling WPV by 1/ρ will not affect the output,
which implies there are infinite global minimizers. Hence
we show that WPV and WKQ are balanced in Lemma A.1,
which implies that gradient flow converges to the balanced
minimizer among infinite minimizers.

Standardization Operator Comparing Theorem 3.1 with
the result of Zhang et al. (2024), we found that when re-
ceiving the input with the mean µτ as the task description
component, well-trained Transformers will perform an addi-
tional “standardization” operator

C =

 0d×d 0d×d 0d
−Id Id 0d
0⊤d 0⊤d 1

 ∈ R(2d+1)×(2d+1) (8)

on the key matrix in the Theorem 4.1 of Zhang et al. (2024).
Specifically, letting W̃KQ

∗ and W̃PV
∗ ∈ R(d+1)×(d+1) be

the converged key-query matrix and projection-value matrix
in the Theorem 4.1 of Zhang et al. (2024). We have

WKQ
∗ = C⊤

(
0d×d 0d×(d+1)

0(d+1)×d W̃KQ
∗

)
(9)

and

WPV
∗ =

(
0d×d 0d×(d+1)

0(d+1)×d W̃PV
∗

)
. (10)

2Please see Lemma A.2 in the appendix for the value of α.
3Here the gradient flow becomes dW

dt
= −∇ lim

n→∞
L(W ).

This observation implies that provided with µτ in the task
descriptions, well-trained Transformers will first use the task
descriptions to standardize the input data and then perform
one step of preconditioned GD (Ahn et al., 2023; Zhang
et al., 2024), which is a natural way to convert the current
task into the “standard” task using task descriptions.

Now we give some calculations showing why W∗ works and
why task descriptors are needed. For an input embedding
matrix Eτ , denote Ēτ := CEτ the standardized embedding
matrix and x̄ := x − µτ the standardized data. Then we
have

Ēτ =

 0 0 · · · 0 0
x̄1 x̄2 · · · x̄n x̄query
y1 y2 · · · yn 0

 . (11)

Then we perform one step of preconditioned GD on the stan-
dardized data to get the prediction ŷquery. Here by Theorem
4.1 of Zhang et al. (2024), the preconditioner is Λ−1 if n
goes to infinity. Therefore we have

ŷquery = x⊤
queryΛ

−1 1

n

n∑
i=1

x̄iyi

= x⊤
queryΛ

−1

(
1

n

n∑
i=1

x̄ix
⊤
i

)
w

→ x⊤
queryΛ

−1Λw as n → ∞.

(12)

If the input does not contain task descriptors and Transform-
ers directly perform one step of preconditioned GD on the
original data using some preconditioner A, the prediction is

ŷquery = x⊤
queryA(

1

n

n∑
i=1

xiyi)

= x⊤
queryA(

1

n

n∑
i=1

xix
⊤
i )w

→ x⊤
queryA

(
Λ + µτµ

⊤
τ

)
w as n → ∞.

(13)

We can see the prediction will depend on mean µ, which is
problematic since in our setting µτ is not fixed across input
sequences. Note that if µτ is fixed then a preconditioner
A = (Λ + µτµ

⊤
τ )

−1 works.

4. Experiments
We train one-layer LSA Transformers which do not merge
key-query and projection-value:

f(E;W ) = E +WPWV E · (E
⊤WKWQE

n
).

Our weight matrices WP ,WV ,WK and WV are all (2d+
1)× (2d+ 1) matrices. We use embedding matrices with
task descriptor Eτ in (1) and embedding matrices without
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task descriptors respectively. To construct embedding ma-
trices without task descriptors, we simply replace µτ with
zero vector 0d in (1) hence the input dimension of two em-
beddings are the same. In our experiments, we use Adam
optimizer (Kingma & Ba, 2015) to train the one-layer LSA
Transformers. We set n = 500,d = 5 and Λ = Id. We
generate 2048 i.i.d. input sequences for each episode of
training. We train each Transformer for 1000 epochs.

We plot the ICL loss curves during training in Figure 2,
which shows there is a separation between the Transformers
trained with and without task descriptors.

Figure 2. The training mean squared error for one-layer LSA Trans-
formers .

We also plot heat maps of the weight matrices WKQ and
WPV of the well-trained Transformers with task descriptors
in the input (see Figure 3). From Figure 3 we can see there
is a clear pattern in the WKQ and also a non-trivial value in
the right-bottom entry of WPV which matches our global
convergence result Theorem 3.1. It is worth noting that
the prediction ŷquery only depends on the last row of WPV

and the first 2d columns of WKQ, hence the pattern looks
random in WPV except for the last row.

Figure 3. The heat map of WKQ and WPV for a well-trained
Transformer with task descriptors µτ in the training sequences.

5. Conclusions and Limitations
In this work, we investigate how Transformers leverage task
descriptions in-context by adding task descriptors concate-
nated to the input embedding matrices. Specifically, we
consider the mean-varying linear regression problem where
the task descriptors can be set to be the mean µτ for each
task τ . We give a global convergence result for Transform-
ers trained with task descriptors under infinite samples. Our
theoretical result shows that in the forward pass, Transform-
ers standardize the input data using task descriptors before
performing the key mapping. We empirically show that
Transformers can achieve much lower loss for ICL when
task descriptors are provided. We also find a clear pattern
in the parameters of well-trained Transformers, which veri-
fies our theoretical result. However, our embedding matrix
duplicates the task descriptors, which might not align with
the real-world scenario. Our theoretical result relies on
the infinite-sample assumption. We leave resolving these
limitations as future work.
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A. Omitted proofs
A.1. Proof Sketch

Here we give the sketch of our proof to Theorem 3.1, which follows the proof framework in Zhang et al. (2024). Before we
start, let’s write WPV and WKQ into blocks:

WPV =

 WPV
11 WPV

12 wPV
13

WPV
21 WPV

22 wPV
23

(wPV
31 )⊤ (wPV

32 )⊤ wPV
33

 (14)

and

WKQ =

 WKQ
11 WKQ

12 wKQ
13

WKQ
21 WKQ

22 wKQ
23

(wKQ
31 )⊤ (wKQ

32 )⊤ wKQ
33

 (15)

where all the W11,W12,W21,W22 ∈ Rd×d, w13, w23, w31, w32 ∈ Rd and w33 ∈ R. By expanding the
prediction ŷτ,query = fLSA(Eτ ;W )2d+1,n+1, we know the prediction only depends on the weight blocks
WKQ

11 ,WKQ
12 , wPV

31 ,WKQ
21 ,WKQ

22 , wPV
32 , wKQ

31 , wKQ
32 and wPV

33 . Therefore we will only consider the training dynamics of
these relevant blocks. To simplify notation we gather all the relevant parameters in the following block matrix U . U11 U12 u13

U21 U22 u23

u⊤
31 u⊤

32 u−1

 :=

 WKQ
11 WKQ

12 wPV
31

WKQ
21 WKQ

22 wPV
32

(wKQ
31 )⊤ (wKQ

32 )⊤ wPV
33

 . (16)

We start with the dynamics of u13, u23, u31 and u32, which shows that these parameters stick to 0 during the training
phase so the dynamics of U could be simplified. Then we show that there is a balance between u−1 and U11, U12, U21, U22.
Specifically, we have the following lemma.

Lemma A.1. If our initialization satisfies Assumption 2.1, then we have both

u13(t) = u23(t) = u31(t) = u32(t) = 0 (17)

and
u−1(t)

2 = ∥U11(t)∥2F + ∥U12(t)∥2F + ∥U21(t)∥2F + ∥U22(t)∥2F (18)

for all t ≥ 0.

Given the balanced condition, we can prove u−1 could be lower bounded by some positive constant during the training
phase in Lemma A.2, which suggests the trajectory of u−1 is away from the saddle point u−1 = 0.

Lemma A.2. If our initialization satisfies Assumption 2.1, n → ∞ and σ satisfies 0 < σ < α where α is equal to(
d+ 2

2∥Λ∥F (∥Λ∥2F + 2 tr (Λ) + 3d2) + 28d tr (Λ) + 60d3

) 1
2

, (19)

then we have u−1(t) ≥ β > 0 for all t ≥ 0. Here

β =
(d+ 2)σ(

4 + 2
√
2
)
(∥Λ∥2F + 2 tr(Λ) + d2 + 2d)

. (20)

With the lower bound β of u−1, we are finally able to give an error bound (Luo & Tseng, 1993) of our loss L(U) in Lemma
A.3, which is the main lemma of this work.

Lemma A.3. Let Ā := 1
2 (A+A⊤) for any real square matrix A. If our initialization satisfies Assumption 2.1 and n → ∞,

then we have
∥∇L(U)∥2F

≥c

(∥∥U11 + U12 + Ū22 + Ū21

∥∥2
F
+

∥∥∥∥U22 + U21 −
Λ−1

u−1

∥∥∥∥2
F

+∥U12 +
Λ−1

u−1
∥2F + ∥U22 −

Λ−1

u−1
∥2F
) (21)
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where

c = β2 min

(
λmin(Λ)

2

30d
,

1

30d
,
λmin(Λ)

4

10
,
1

10

)
.

With Lemma A.3 in hand, we can finally prove Theorem 3.1.

Proof of Theorem 3.1. Since L(U) ≥ 0 is bounded below, we know L(Ut) the loss over gradient flow will converge. Any
stationary point U∗ of the gradient flow must satisfy ∇L(U∗) = 0. Therefore, combining with the error bound (21) we
have ∥U∗

22 + U∗
21 − Λ−1

u∗
−1

∥2F = ∥U∗
11 + U∗

12 + Ū∗
22 + Ū∗

21∥2F = ∥U∗
12 +

Λ−1

u∗
−1

∥2F = ∥U∗
22 − Λ−1

u∗
−1

∥2F = 0, which implies that

U∗
22 = Λ−1

u∗
−1

, U∗
12 = −Λ−1

u∗
−1

, U∗
21 = 0d×d and U∗

11 = 0. Finally by direct computation we know the corresponding loss is

L(U∗) = 0, which implies that U∗ is a global minimizer. Combining (18), we have u∗
−1 =

(
2∥Λ−1∥2F

) 1
4 . Translating U

back to W according to (16), we obtain Theorem 3.1.

Proof of Equation (17) in Lemma A.1. The gradient of the loss is ∂ℓ(U,τ)
∂U = E[(ŷτ,query − w⊤

τ xτ,query)
∂ŷτ,query

∂U ].

To give the detailed gradient formulation, we need to expand ŷτ,query in terms of U first. Denote Λ̂τ = 1
n

∑n
i=1 xτ,ix

⊤
τ,i and

µ̂τ = 1
n

∑n
i=1 xτ,i. Then we have

ŷτ,query =
(
u⊤
13 u

⊤
23 u−1

) (1 + 1
n )µτµ

⊤
τ µτ µ̂

⊤
τ + 1

nµτx
⊤
τ,query µτ · w⊤

τ µ̂τ

µ̂τµ
⊤
τ + 1

nxτ,queryµ
⊤
τ Λ̂ + 1

nxτ,queryx
⊤
τ,query Λ̂wτ

µ⊤
τ · w⊤

τ µ̂τ w⊤
τ Λ̂ w⊤

τ Λ̂wτ

 U11 U12

U21 U22

u⊤
31 u⊤

32

( µτ

xτ,query

)

= u⊤
13

(
(
1

n
+ 1)µτµ

⊤
τ U11 +

(
µτ µ̂

⊤
τ +

1

n
µτx

⊤
τ,q

)
U21 + w⊤

τ µ̂τµτu
⊤
31

)
µτ

+ u⊤
13

(
(
1

n
+ 1)µτµ

⊤
τ U12 +

(
µτ µ̂

⊤
τ +

1

n
µτx

⊤
τ,q

)
U22 + w⊤

τ µ̂τµτu
⊤
32

)
xτ,query

+ u⊤
23

(
µ̂τµ

⊤
τ +

1

n
xτ,queryµ

⊤
τ U11 +

(
Λ̂ +

1

n
xτ,queryx

⊤
τ,query

)(
U21 + Λ̂wτu

⊤
31

))
µτ

+ u⊤
23

((
µ̂τµ

⊤
τ +

1

n
xτ,queryµ

⊤
τ

)
U12 +

(
Λ̂ +

1

n
xτ,queryx

⊤
τ,query

)
U22 + Λ̂wτu

⊤
32

)
xτ,query

+ u−1 · (µ⊤
τ w

⊤
τ µ̂τU11µτ + w⊤

τ Λ̂U21µτ + w⊤
τ Λ̂wτu

⊤
31µτ )

+ u−1 · (µ⊤
τ w

⊤
τ µ̂τU12xτ,query + w⊤

τ Λ̂U22xτ,query + w⊤
τ Λ̂wτu

⊤
32xτ,query).

(22)
If letting u13 = u23 = u31 = u32 = 0, then we have

ŷτ,query = u−1(µ
⊤
τ w

⊤
τ µ̂τU11µτ + w⊤

τ Λ̂U21µτ + µ⊤
τ w

⊤
τ µ̂τU12xτ,query + w⊤

τ Λ̂U22xτ,query). (23)

The gradient on u13 is

∂ℓ(U, τ)

∂u13
= E

[
(ŷτ,query − w⊤

τ xτ,query)

(
(
1

n
+ 1)µτµ

⊤
τ U11 +

(
µτ µ̂

⊤
τ +

1

n
µτx

⊤
τ,q

)
U21 + w⊤

τ µ̂τµτu
⊤
31

)
µτ

]
= E

[
(ŷτ,query − w⊤

τ xτ,query)

(
(
1

n
+ 1)µτµ

⊤
τ U11 +

(
µτ µ̂

⊤
τ +

1

n
µτx

⊤
τ,q

)
U21

)
µτ

]
.

Note that

ŷτ,query − w⊤
τ xτ,query = u−1w

⊤
τ · (µ̂τµ

⊤
τ U11µτ + Λ̂U21µτ + µ̂τµ

⊤
τ U12xτ,query + Λ̂U22xτ,query −

xτ,query

u−1
)

and (
(
1

n
+ 1)µτµ

⊤
τ U11 +

(
µτ µ̂

⊤
τ +

1

n
µτx

⊤
τ,q

)
U22

)
µτ

7
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does not contain wτ . Since E[wτ ] = 0 and wτ is independent with all other random variables, we have ∂ℓ(U,τ)
∂u13

= 0.

Similarly, we have ∂ℓ(U,τ)
∂u23

= 0 given that u13 = u23 = u31 = u32 = 0.

Let ∆ := (µ̂τµ
⊤
τ U11µτ + Λ̂U21µτ + µ̂τµ

⊤
τ U12xτ,query + Λ̂U22xτ,query − xτ,query

u−1
)µτ . Then the gradient on u31 is

∂ℓ(U, τ)

∂u31
= E

[
u−1w

⊤
τ Λ̂τwτ (ŷτ,query − w⊤

τ xτ,query)µτ

]
= E

[
u2
−1w

⊤
τ Λ̂τwτw

⊤
τ ∆
]

= E
[
u2
−1 Ewτ

[w⊤
τ Λ̂τwτw

⊤
τ ]∆

]
= 0.

Similarly, we have ∂ℓ(U,τ)
∂u32

= 0 given that u13 = u23 = u31 = u32 = 0. Taking expectation over µτ , we have ∂L(U)
∂u13

=
∂L(U)
∂u23

= ∂L(U)
∂u31

= ∂L(U)
∂u32

= 0 given that u13 = u23 = u31 = u32 = 0, which finishes the proof.

Proof of Equation (18) in Lemma A.1. Now we can simplify the prediction ŷτ,query by letting u13 = u23 = u31 = u32 = 0

in (22), which gives the prediction ŷτ,query = u−1wτ
⊤
((

µ̂τµ
⊤
τ U11 + Λ̂τU21

)
µτ +

(
µ̂τµ

⊤
τ U12 + Λ̂τU22

)
xτ,query

)
. This

implies that

ŷτ,query − yτ,query = u−1w
⊤
τ (
(
µ̂τµ

⊤
τ U11 + Λ̂τU21

)
µτ +

(
µ̂τµ

⊤
τ U12 + Λ̂τU22 −

1

u−1
Id

)
xτ,query). (24)

Now we can compute the dynamics of U by the chain rule ∂ℓ(U,τ)
∂U = E

[
(ŷτ,query − yτ,query)

∂(ŷτ,query−yτ,query)
∂U

]
.

Therefore, we have the dynamics of U11, U12, U21, U22 and u−1 as follows:

•
∂ℓ(U, τ)

∂U11
= E

[
(ŷτ,query − yτ,query)u−1w

⊤
τ µ̂τµτµ

⊤
τ

]
; (25)

•
∂ℓ(U, τ)

∂U21
= E

[
(ŷτ,query − yτ,query)u−1Λ̂τwτµ

⊤
τ

]
(26)

•
∂ℓ(U, τ)

∂U12
= E

[
(ŷτ,query − yτ,query)u−1w

⊤
τ µ̂τµτx

⊤
τ,query

]
(27)

•
∂ℓ(U, τ)

∂U22
= E

[
(ŷτ,query − yτ,query)u−1Λ̂τwτx

⊤
τ,query

]
(28)

•
∂ℓ(U, τ)

∂u−1
= E

[
(ŷτ,query − yτ,query)wτ

⊤
(
M2µτ +

(
M1 +

1

u−1
Id

)
xτ,query

)]
. (29)

Here M1 := µ̂τµ
⊤
τ U12 + Λ̂τU22 − 1

u−1
Id and M2 := µ̂τµ

⊤
τ U11 + Λ̂τU21. Therefore we have

∂ℓ (U, τ)

∂u−1
· u−1 = tr

(
U⊤
11

∂ℓ(U, τ)

∂U11
+ U⊤

12

∂ℓ (U, τ)

∂U12
+ U⊤

21

∂ℓ (U, τ)

∂U21
+U⊤

22

∂ℓ(U, τ)

∂U22

)
. (30)

Taking expectation over µτ , we have the same thing holds for L(U)

∂L (U)

∂u−1
· u−1 = tr

(
U⊤
11

∂L(U)

∂U11
+ U⊤

12

∂L (U)

∂U12
+ U⊤

21

∂L (U)

∂U21
+U⊤

22

∂L(U)

∂U22

)
. (31)

8
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This implies that

du2
−1(t)

dt
=

d

dt
tr
(
U11(t)U

⊤
1 (t) + U12(t)U

⊤
22(t) + U21(t)U

⊤
21(t) + U22(t)U

⊤
22(t)

)
. (32)

Therefore if we set u−1(0)
2 = ∥U11(0)∥2F + ∥U12(0)∥2F + ∥U21(0)∥2F + ∥U22(0)∥2F at initialization, we have

u−1(t)
2 = ∥U11(t)∥2F + ∥U12(t)∥2F + ∥U21(t)∥2F + ∥U22(t)∥2F (33)

for all t ≥ 0.

Proof of Lemma A.2. We will decompose the loss ℓ(U, τ) into ℓ(U, τ) = ℓ1(U, τ) + ℓ2(U, τ) and bound the coefficients of
u−1 in ℓ1 and ℓ2 separately. Recall M1 = µ̂τµ

⊤
τ U12 + Λ̂τU22 − 1

u−1
Id and M2 = µ̂τµ

⊤
τ U11 + Λ̂τU21. Then we have

ℓ(U, τ) =
1

2
E[(ŷτ,query − yτ,query)

2] (34)

=
u2
−1

2

(
E
[
µ⊤
τ M

⊤
2 wτw

⊤
τ M2µτ

]
+ E

[
x⊤
τ,queryM

⊤
1 wτw

⊤
τ M1xτ,query

]
+ 2E

[
x⊤
τ,queryM

⊤
1 wτw

⊤
τ M2µτ

])
(35)

=
u2
−1

2

(
E
[
µ⊤
τ M

⊤
2 M2µτ

]
+ E

[
x⊤
τ,queryM

⊤
1 M1xτ,query

]
+ 2E

[
x⊤
τ,queryM

⊤
1 M2µτ

])
(36)

=
u2
−1

2

(
E
[
tr
(
M⊤

2 M2µτµ
⊤
τ

)]
+ E

[
tr(M⊤

1 M1xτ,queryx
⊤
τ,query)

]
+ 2E

[
tr(M⊤

1 M2µτx
⊤
τ,query)

])
(37)

=
u2
−1

2

(
E
[
tr(M⊤

2 M2µτµ
⊤
τ )
]
+ E

[
tr
(
M⊤

1 M1

(
Λ + µτµ

⊤
τ

))]
+ 2E

[
tr
(
M⊤

1 M2µτµ
⊤
τ

)])
(38)

=
u2
−1

2
E
[
tr
(
M⊤

1 M1Λ
)]

︸ ︷︷ ︸
ℓ1(U,τ)

+
u2
−1

2
E
[
tr
(
(M2 +M1)

⊤
(M2 +M1)µτµ

⊤
τ

)]
︸ ︷︷ ︸

ℓ2(U,τ)

. (39)

Now we compute the expectation in ℓ1 and ℓ2. Define a positive value γ = ∥µτ∥2 + 1
n tr(Λ) and a positive definite matrix

Γ = n+1
n

(
Λ + µτµ

⊤
τ

)
+ 1

n

(
tr (Λ) + ∥µτ∥2

)
Id. By direct computation we have

ℓ1(U, τ) =
1

2
u2
−1 tr

(
γU⊤

12µτµ
⊤
τ U12Λ + U⊤

22Γ
(
Λ + µτµ

⊤
τ

)
U22Λ + 2U⊤

12µτµ
⊤
τ

(
Γ− 2

n
µτµ

⊤
τ

)
U22Λ

)
− u−1 tr

((
µτµ

⊤
τ U12Λ +

(
Λ + µτµ

⊤
τ

)
U22Λ

))
+

1

2
tr (Λ)

:=− c1,1u−1 + c1,2u
2
−1 +

1

2
tr (Λ)

(40)

where −c1,1 is the coefficient of 1st degree term u−1 and c1,2 is the coefficient of 2nd degree term u2
−1 in ℓ1.

Similarly we have

ℓ2(U, τ) =
1

2
u2
−1 tr

(
γ (U12 + U11)

⊤
µτµ

⊤
τ (U12 + U11) + (U22 + U21)

⊤
Γ
(
Λ + µτµ

⊤
τ

)
(U22 + U21)µτµ

⊤
τ

+2 (U12 + U11)
⊤
µτµ

⊤
τ

(
Γ− 2

n
µτµ

⊤
τ

)
(U22 + U21)µτµ

⊤
τ

)
− u−1 tr

(
µτµ

⊤
τ (U12 + U11)µτµ

⊤
τ +

(
Λ + µτµ

⊤
τ

)
(U22 + U21)µτµ

⊤
τ

)
+

1

2
tr
(
µτµ

⊤
τ

)
:=− c2,1u−1 + c2,2u

2
−1 +

1

2
tr
(
µτµ

⊤
τ

)
(41)

where −c2,1 is the coefficient of 1st degree term u−1 and c2,2 is the coefficient of 2nd degree term u2
−1 in ℓ2.

Then we have
L(U) = Eµτ

[ℓ1 (U, τ) + ℓ2 (U, τ)]

= Eµτ

[
(c1,2 + c2,2)u

2
−1 − (c2,1 + c1,1)u−1

]
+

1

2
Eµτ

[
∥µτ∥2

]
+

1

2
tr (Λ)

(42)

9
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Now we give several useful lower and upper bounds on c1,2 + c2,2 and c2,1 + c1,1. Denote ci,j(t) as the corresponding
coefficient at time t under the gradient flow. We have the following claim.

Claim 1. We have the following three bounds:

1.
E[c1,1(0) + c2,1(0)] ≥ (d+ 2)u−1(0), (43)

2.
c1,2 + c2,2 ≤ u2

−1∥Λ + µτµ
⊤
τ ∥2F

(
2∥µτ∥2 + ∥Λ∥F

)
, (44)

3.
c1,1 + c2,1 ≤ (2 +

√
2)u−1∥Λ + µτµ

⊤
τ ∥2F . (45)

Now we can upper bound L(U(0)).

L(U(0)) = E [ℓ1 (U(0), τ) + ℓ2 (U(0), τ)]

= E
[
(c1,2 + c2,2)u−1(0)

2 − (c2,1 + c1,1)u−1(0)
]
+

1

2
E
[
∥µτ∥2

]
+

1

2
tr (Λ)

≤ u2
−1(0)E

[∥∥Λ + µτµ
⊤
τ

∥∥2
F

(
∥Λ∥F + 2∥µτ∥2

)
u2
−1(0)− (d+ 2)

]
+

1

2
E
[
∥µτ∥2

]
+

1

2
tr (Λ) ((43) and (44))

≤ −1

2
(d+ 2)u2

−1(0) +
1

2
E
[
∥µτ∥2

]
+

1

2
tr (Λ)

(46)

The last inequality comes from that u−1(0) < α =

(
d+2

2E[∥Λ+µτµ⊤
τ ∥2

F (∥Λ∥F+2∥µτ∥2)]

) 1
2

.

Note that when u−1 = 0, the loss L(U) = 1
2 Eµτ

[
∥µτ∥2

]
+ 1

2 tr (Λ) . Therefore, u−1 is non-zero whenever L(U) <
1
2 Eµτ

[
∥µτ∥2

]
+ 1

2 tr (Λ) . Since L(U) is non-increasing and by (46) we know L(U(0)) < 1
2 Eµτ

[
∥µτ∥2

]
+ 1

2 tr (Λ), we
have L(U) < 1

2 Eµτ

[
∥µτ∥2

]
+ 1

2 tr (Λ) for all t ≥ 0, which implies that u−1 is non-zero for all t ≥ 0. Further since we
have u−1(0) > 0 and u−1(t) is continuous on t, we have u−1 > 0 for all t ≥ 0.

Now we lower bound L(U).

L(U) = E
[
(c1,2 + c2,2)u

2
−1 − (c2,1 + c1,1)u−1

]
+

1

2
E
[
∥µτ∥2

]
+

1

2
tr (Λ)

≥ −u−1 E [c2,1 + c1,1] +
1

2
E
[
∥µτ∥2

]
+

1

2
tr (Λ)

≥ −u2
−1 E

[
(2 +

√
2)∥Λ + µτµ

⊤
τ ∥2F

]
+

1

2
E
[
∥µτ∥2

]
+

1

2
tr (Λ) (u−1 > 0 and (45))

(47)

Since L(U) ≤ L(U(0)), combining (46) and (47) we have

u−1 ≥ (d+ 2)u−1(0)

(4 + 2
√
2)E [∥Λ + µτµ⊤

τ ∥2F ]
=

(d+ 2)u−1(0)(
4 + 2

√
2
)
(∥Λ∥2F + 2 tr(Λ) + d2 + 2d)

= β > 0. (48)

It remains to prove Claim 1.

Proof of (43). Recall that
c1,1 = tr

((
µτµ

⊤
τ U12Λ +

(
Λ + µτµ

⊤
τ

)
U22Λ

))
(49)

and
c2,1 = tr

(
µτµ

⊤
τ (U12 + U11)µτµ

⊤
τ +

(
Λ + µτµ

⊤
τ

)
(U22 + U21)µτµ

⊤
τ

)
. (50)

Computing the expectation, we have
E[c1,1] = tr

(
U12Λ + U22Λ + U22Λ

2
)

(51)

10



Task Descriptors Help Transformers Learn Linear Models In-Context

and

E[c2,1] = (d+ 2) tr(U12 + U11 + U22 + U21) + tr((U22 + U21) Λ). (52)

By Assumption 2.1, at time t = 0 we have U12(0), U11(0), U22(0) and U21(0) are PSD matrices. Therefore we have
E[c1,1(0)] ≥ 0 and E[c2,1(0)] ≥ (d+ 2) tr (U12(0) + U11(0) + U22(0) + U21(0)) , which implies that

E[c1,1(0) + c2,1(0)]
2 ≥ (d+ 2)2

(
∥
√
U12(0)∥2F + ∥

√
U11(0)∥2F + ∥

√
U22(0)∥2F + ∥

√
U21(0)∥2F

)2
≥ (d+ 2)2

(
∥
√
U12(0)∥4F + ∥

√
U11(0)∥4F + ∥

√
U22(0)∥4F + ∥

√
U21(0)∥4F

)
≥ (d+ 2)2

(
∥U12(0)∥2F + ∥U11(0)∥2F + ∥U22(0)∥2F + ∥U21(0)∥2F

)
(submultiplicativity)

= (d+ 2)2u−1(0)
2 (Assumption 2.1)

(53)

Therefore we have E[c1,1(0) + c2,1(0)] ≥ (d+ 2)u−1(0).

Proof of (44). Recall that

c1,2 =
1

2
tr

(
γU⊤

12µτµ
⊤
τ U12Λ + U⊤

22Γ
(
Λ + µτµ

⊤
τ

)
U22Λ + 2U⊤

12µτµ
⊤
τ

(
Γ− 2

n
µτµ

⊤
τ

)
U22Λ

)
(54)

and

c2,2 =
1

2
tr
(
γ (U12 + U11)

⊤
µτµ

⊤
τ (U12 + U11)µτµ

⊤
τ + (U22 + U21)

⊤
Γ
(
Λ + µτµ

⊤
τ

)
(U22 + U21)µτµ

⊤
τ

+2 (U12 + U11)
⊤
µτµ

⊤
τ

(
Γ− 2

n
µτµ

⊤
τ

)
(U22 + U21)µτµ

⊤
τ

)
.

(55)

Note that Γ → Λ + µτµ
⊤
τ and γ → ∥µτ∥2 if n → ∞. Therefore we have

c2,2 =
1

2
tr
(
∥µτ∥2 (U12 + U11)

⊤
µτµ

⊤
τ (U12 + U11)µτµ

⊤
τ + (U22 + U21)

⊤ (
Λ + µτµ

⊤
τ

)2
(U22 + U21)µτµ

⊤
τ

+2 (U12 + U11)
⊤
µτµ

⊤
τ

(
Λ + µτµ

⊤
τ

)
(U22 + U21)µτµ

⊤
τ

)
≤1

2
∥µτ∥2∥U12 + U11∥2F ∥µτµ

⊤
τ ∥2F +

1

2
∥U22 + U21∥2F ∥Λ + µτµ

⊤
τ ∥2F ∥µτµ

⊤
τ ∥F

+ ∥U12 + U11∥F ∥U22 + U21∥F ∥µτµ
⊤
τ ∥2F ∥Λ + µτµ

⊤
τ ∥F (Cauchy-Schwartz inequality)

≤
∥∥Λ + µτµ

⊤
τ

∥∥2
F

∥∥µτµ
⊤
τ

∥∥
F

(
1

2
∥U12 + U11∥2F +

1

2
∥U22 + U21∥2F + ∥U12 + U11∥F ∥U22 + U21∥F

)
=
1

2

∥∥Λ + µτµ
⊤
τ

∥∥2
F

∥∥µτµ
⊤
τ

∥∥
F
(∥U12 + U11∥F + ∥U22 + U21∥F )2

≤2
∥∥Λ + µτµ

⊤
τ

∥∥2
F

∥∥µτµ
⊤
τ

∥∥
F

(
∥U12∥2F + ∥U11∥2F + ∥U22∥2F + ∥U21∥2F

)
(Triangle inequality)

=2
∥∥Λ + µτµ

⊤
τ

∥∥2
F
∥µτ∥2 u2

−1 (Lemma A.1)

(56)

Here the second last inequality comes from ∥µτ∥2 = ∥µτµ
⊤
τ ∥F ≤ ∥Λ + µτµ

⊤
τ ∥F .
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Similarly, for c1,2 we have

c1,2 =
1

2
tr
(
∥µτ∥2U⊤

12µτµ
⊤
τ U12Λ + U⊤

22

(
Λ + µτµ

⊤
τ

)2
U22Λ + 2U⊤

12µτµ
⊤
τ

(
Λ + µτµ

⊤
τ

)
U22Λ

)
≤1

2
∥µτ∥2∥U12∥2F ∥Λ∥2F +

1

2
∥U22∥2F ∥Λ + µτµ

⊤
τ ∥2F ∥Λ∥F + ∥µτµ

⊤
τ ∥2F ∥Λ∥F ∥U11∥F ∥U12∥F (Cauchy-Schwartz inequality)

≤
∥∥Λ + µτµ

⊤
τ

∥∥2
F
∥Λ∥F

(
1

2
∥U12∥2F +

1

2
∥U22∥2F + ∥U12∥F ∥U22∥F

)
=
1

2

∥∥Λ + µτµ
⊤
τ

∥∥2
F
∥Λ∥F (∥U12∥F + ∥U22∥F )2

≤1

2

∥∥Λ + µτµ
⊤
τ

∥∥2
F
∥Λ∥F

(
∥U12∥F + ∥U22∥F + ∥U11∥2F + ∥U21∥2F

)2
≤
∥∥Λ + µτµ

⊤
τ

∥∥2
F
∥Λ∥F

(
∥U12∥2F + ∥U11∥2F + ∥U22∥2F + ∥U21∥2F

)
(Cauchy-Schwartz inequality)

=
∥∥Λ + µτµ

⊤
τ

∥∥2
F
∥Λ∥F u2

−1 (Lemma A.1)
(57)

Here the second inequality comes from ∥µτ∥2 ≤ ∥Λ + µτµ
⊤
τ ∥F and ∥Λ∥F ≤ ∥Λ + µτµ

⊤
τ ∥F .

Adding (57) and (56) up, we have

c1,2 + c2,2 ≤ u2
−1∥Λ + µτµ

⊤
τ ∥2F

(
2∥µτ∥2 + ∥Λ∥F

)
. (58)

Proof of (45). Recall that
c1,1 = tr

((
µτµ

⊤
τ U12Λ +

(
Λ + µτµ

⊤
τ

)
U22Λ

))
(59)

and
c2,1 = tr

(
µτµ

⊤
τ (U12 + U11)µτµ

⊤
τ +

(
Λ + µτµ

⊤
τ

)
(U22 + U21)µτµ

⊤
τ

)
. (60)

We have

c1,1 = tr
((
µτµ

⊤
τ U12Λ +

(
Λ + µτµ

⊤
τ

)
U22Λ

))
≤ ∥µτµ

⊤
τ ∥F ∥Λ∥F ∥U12∥F + ∥Λ + µτµ

⊤
τ ∥F ∥Λ∥F ∥U22∥F (Cauchy-Schwartz inequality)

≤ (∥U12∥F + ∥U22∥F )
∥∥Λ + µτµ

⊤
τ

∥∥2
F

≤
√

2
(
∥U12∥2F + ∥U22∥2F

)∥∥Λ + µτµ
⊤
τ

∥∥2
F

(Cauchy-Schwartz inequality)

≤
√
2
(
∥U12∥2F + ∥U22∥2F + ∥U11∥2F + ∥U21∥2F

)∥∥Λ + µτµ
⊤
τ

∥∥2
F

=
√
2u−1

∥∥Λ + µτµ
⊤
τ

∥∥2
F

(Lemma A.1).

(61)

Here the second inequality comes from ∥µτµ
⊤
τ ∥F ≤ ∥Λ + µτµ

⊤
τ ∥F and ∥Λ∥F ≤ ∥Λ + µτµ

⊤
τ ∥F .

Similarly we have

c2,1 = tr
(
µτµ

⊤
τ (U12 + U11)µτµ

⊤
τ +

(
Λ + µτµ

⊤
τ

)
(U22 + U21)µτµ

⊤
τ

)
≤ ∥µτµ

⊤
τ ∥2F ∥U12 + U11∥F + ∥Λ + µτµ

⊤
τ ∥F ∥µτµ

⊤
τ ∥F ∥U22 + U21∥F (Cauchy-Schwartz inequality)

≤ (∥U12 + U11∥F + ∥U22 + U21∥F )
∥∥Λ + µτµ

⊤
τ

∥∥2
F

≤ (∥U12∥F + ∥U11∥F + ∥U22∥F + U21∥F )
∥∥Λ + µτµ

⊤
τ

∥∥2
F

(Triangle inequality)

≤ 2

√
∥U12∥2F + ∥U22∥2F + ∥U11∥2F + ∥U21∥2F

∥∥Λ + µτµ
⊤
τ

∥∥2
F

(Cauchy-Schwartz inequality)

= 2u−1

∥∥Λ + µτµ
⊤
τ

∥∥2
F
. (Lemma A.1)

(62)

Here the second inequality comes from ∥µτµ
⊤
τ ∥F ≤ ∥Λ + µτµ

⊤
τ ∥F .

12
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Adding (61) and (62) up, we have

c1,1 + c2,1 ≤ (2 +
√
2)u−1∥Λ + µτµ

⊤
τ ∥2F . (63)

Proof of Lemma A.3. We take a new parameterization Ũ12 := u−1U12 and Ũ22 := u−1U22. Denote L1(U) = E[ℓ1(U, τ)]
and L2(U) = E[ℓ2(U, τ)]. Then we can simply write L1(U) in the new parameterization Ũ = (Ũ12, Ũ22) as L1(Ũ).
Specifically, we have

L1(U) =L1(Ũ)

=
1

2
E
[
tr
(
∥µτ∥2Ũ⊤

12µτµ
⊤
τ Ũ12Λ + Ũ⊤

22

(
Λ + µτµ

⊤
τ

)
Ũ22Λ + Λ

+2Ũ⊤
12µτµ

⊤
τ

(
Λ + µτµ

⊤
τ

)
Ũ22Λ− 2µτµ

⊤
τ Ũ12Λ− 2

(
Λ + µτµ

⊤
τ

)
Ũ22Λ

)]
.

(64)

First we want to show that

∥∥∥∇L1(Ũ)
∥∥∥
F
≥ 1

10
λmin(Λ)min{λmin(Λ)

3, 1}∥Ũ − Ũ∗∥F (65)

for all t ≥ 0, where Ũ∗ := (−Λ−1,Λ−1).

By direct computation, we have the gradients

• ∂L1(Ũ)

∂Ũ12
=
(
(d+ 2)Ũ12 + (d+ 2)Ũ22 + ΛŨ22 − I

)
Λ;

• ∂L1(Ũ)

∂Ũ22
=
(
(d+ 2)Ũ22 +

(
Λ2 + 2Λ

)
Ũ22 + (d+ 2)Ũ12 + ΛŨ12 − I − Λ

)
Λ.

13
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Therefore we have

∥∇L1(Ũ)∥F · ∥Ũ − Ũ∗∥F

≥

〈(
∂L1(Ũ)

∂Ũ12

,
∂L1(Ũ)

∂Ũ22

)
,
(
Ũ12 + Λ−1, Ũ22 − Λ−1

)〉

=tr

(
d
(
Ũ12 + Ũ22

)
Λ
(
Ũ⊤
12 + Ũ⊤

22

)
+ Λ

[
2
(
Ũ22 + Ũ22

)⊤ (
Ũ12 + Ũ22

)
+
(
Ũ22 − Λ−1

)
Λ
(
Ũ⊤
12 + Λ−1

)
+ (Λ + 2I)

(
Ũ22 − Λ−1

)
Λ
(
Ũ⊤
22 − Λ−1

)
+
(
Ũ12 + Λ−1

)
Λ
(
Ũ⊤
22 − Λ−1

)])
≥ tr

(
Λ

(
2
(
Ũ12 + Ũ22

)⊤ (
Ũ12 + Ũ22

)
+
(
Ũ22 − Λ−1

)
Λ
(
Ũ⊤
12 + Λ−1

)
+ (Λ + 2I)

(
Ũ22 − Λ−1

)
Λ
(
Ũ⊤
22 − Λ−1

)
+
(
Ũ12 + Λ−1

)
Λ
(
Ũ⊤
22 − Λ−1

)))
=tr

(
Λ

(
2
(
Ũ12 + Λ−1

)⊤ (
Ũ12 + Λ−1

)
+ 2

(
Ũ22 − Λ−1

)⊤ (
Ũ22 − Λ−1

)
+ 4

(
Ũ12 + Λ−1

)(
Ũ22 − Λ−1

)
+
(
Ũ12 + Λ−1

)⊤
Λ
(
Ũ22 − Λ−1

)
+
(
Ũ⊤
22 − Λ−1

)
Λ(Λ + 2I)

(
Ũ22 − Λ−1

)
+
(
Ũ⊤
12 + Λ−1

)
Λ
(
Ũ22 − Λ−1

)))
=tr

(
Λ

(
2
(
Ũ2 + Λ−1

)⊤ (
Ũ2 + Λ−1

)
+
(
Ũ12 + Λ−1

)⊤
(2Λ + 4I)

(
Ũ22 − Λ−1

)
+
(
Ũ22 − Λ−1

) (
Λ⊤ + 2Λ + 2I

) (
Ũ22 − Λ−1

)))

=tr

Λ

V V ⊤ +
(
Ũ12 + Λ−1

) 1

2
Λ2
(
Λ2 + 2Λ + 2I

)−1︸ ︷︷ ︸
P1

(
Ũ12 + Λ−1

)⊤

+
(
Ũ22 − Λ−1

)(
Λ2 + 2Λ + 2I − (Λ + 2I)2

(
2I − 1

2
Λ2
(
Λ2 + 2Λ + 2I

)−1
))

︸ ︷︷ ︸
P2


 .

(66)
In the last equation the matrix V is defined as

V :=
(
Ũ2 + Λ−1

)(
2I − 1

2
Λ2
(
Λ2 + 2Λ + 2I

)−1
) 1

2

+
(
Ũ22 − Λ−1

)
(Λ + 2I)

(
2I − 1

2
Λ2
(
Λ2 + 2 + 2I

)−1
)− 1

2

.

(67)
It is easy to see P1 is a diagonal PSD matrix and P2 is a diagonal matrix. Actually P2 is also PSD. To see this, for

any diagonal entry a in Λ, the corresponding diagonal entry in P2 is a2 + 2a + 2 − 2(a2+2a+4)(a2+2a+2)
3a2+8a+8 ≥ 1

4a
2 ≥ 0.

Furthermore we have λmin(P2) ≥ 1
4λmin(Λ)

2. Similarly, we have λmin(P1) ≥ 1
10 min{λmin(Λ)

3, 1}. Removing the term
containing V in (66), we have

∥∇L1(Ũ)∥F · ∥Ũ − Ũ∗∥F

≥ tr

(
Λ
(
Ũ12 + Λ−1

)
P1

(
Ũ12 + Λ−1

)⊤
+ Λ

(
Ũ22 − Λ−1

)
P2

(
Ũ22 − Λ−1

)⊤)
≥ 1

10
λmin(Λ)min{λmin(Λ)

3, 1}∥Ũ12 + Λ−1∥2F +
1

4
λmin(Λ)

2∥Ũ22 − Λ−1∥2F

≥ 1

10
λmin(Λ)min{λmin(Λ)

3, 1}
(
∥Ũ12 + Λ−1∥2F + ∥Ũ22 − Λ−1∥2F

)
=

1

10
λmin(Λ)min{λmin(Λ)

3, 1}∥Ũ − Ũ∗∥2F .

(68)

14
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Therefore we have

∥∇L1(Ũ)∥F ≥ 1

10
λmin(Λ)min{λmin(Λ)

3, 1}∥Ũ − Ũ∗∥F . (69)

Now we derive a gradient lower bound for L2. Define Ā := 1
2 (A + A⊤) for any d × d matrix A. We define a new

parameterization U1 := u−1(Ū11+Ū12+Ū21+Ū22) and U2 := u−1(U21+U22). By checking the dynamics of U11 and U12

in (25) and (27), we can find that U11 and U12 keep symmetric for all t ≥ 0. Therefore U1 := u−1(U11+U12+ Ū21+ Ū22).
Note that for any d×d matrix A, it holds that µ⊤

τ Aµτ = µ⊤
τ Āµτ . Therefore we can write L2 under the new parameterization

as L2(U1, U2):

L2(U) = L2(U1, U2) =
1

2
E
[∥∥(ΛU2 − I + µτµ

⊤
τ U1

)
µτ

∥∥2] . (70)

Therefore we know L2 is convex in terms of U1 and U2 since ΛU2 − I + µτµ
⊤
τ U1 is an affine function of (U1, U2),

f(X) = ∥Xµτ∥2 is a convex function and the expectation reserves convexity. By setting U∗
2 = Λ−1 and U∗

1 = 0d×d in
(70), we have L2(U

∗
1 , U

∗
2 ) = 0. Denote Û = (U1, U2), Û∗ = (U∗

1 , U
∗
2 ).

By convexity, we have 〈
∇L2(Û), Û − Û∗

〉
+ L2(U

∗
1 , U

∗
2 ) =

〈
∇L2(Û), Û − Û∗

〉
≥ L2(Û). (71)

Therefore expanding the expectation in (70), we have

L2(Û) = ∥ΛU2 − I∥2F + (d+ 4)
(
tr (U1)

2
+ tr

(
U2
1

)
+ ∥U1∥2F

)
+ 2

(
tr ((ΛU2 − I) (U1)) + tr

(
(ΛU2 − I) (U1)

⊤
)
+ tr (ΛU2 − I) tr (U1)

)
=

∥∥∥∥ 1√
d+ 4

(
ΛU2 + U⊤

2 Λ− 2I
)
+
√
d+ 4 (U1)

∥∥∥∥2
F

+
d

d+ 4
∥ΛU2 − I∥2F + (d+ 4) ∥U1∥2F

+ (d+ 4) tr (U1)
2
+ 2 tr (ΛU2 − I) tr (U1)

≥
∥∥∥∥ 1√

d+ 4

(
ΛU2 + U⊤

2 Λ− 2I
)
+
√
d+ 4 (U1)

∥∥∥∥2
F

+

(
d

d+ 4
− d

d+ 5

)
∥ΛU2 − I∥2F +

1

d+ 5
tr (ΛU2 − I)

2

+ 4 ∥U1∥2F + (d+ 5) tr (U1)
2
+ 2 tr (ΛU2 − I) tr (U1)

=

∥∥∥∥ 1√
d+ 4

(
ΛU2 + U⊤

2 Λ− 2I
)
+
√
d+ 4 (U1)

∥∥∥∥2
F

+

(
d

d+ 4
− d

d+ 5

)
∥ΛU2 − I∥2F + 4 ∥U1∥2F

+

(
1√
d+ 5

tr (U2 − I) +
√
d+ 5 tr (U1)

)2

≥
(

d

d+ 4
− d

d+ 5

)
∥ΛU2 − I∥2F + 4 ∥U1∥2F

≥ 1

30d

(
∥ΛU2 − I∥2F + ∥U1∥2F

)
≥ min (λmin(Λ), 1)

2

30d

(
∥U1∥2F +

∥∥U2 − Λ−1
∥∥2
F

)
=

min (λmin(Λ), 1)
2

30d
∥Û − Û∗∥2F .

(72)

Here the second equation comes from that U1 is symmetric hence tr
(
U2
1

)
= ∥U1∥2F . The first inequality comes from that

∥A∥2F ≥ 1
d tr(A)2 for any d× d real matrix A. The last inequality comes from that∥∥∥∥(U2 − Λ−1

U1

)∥∥∥∥
F

=

∥∥∥∥( Λ−1 0
0 I

)(
ΛU2 − I

U1

)∥∥∥∥
F

≤ 1

min (λmin(Λ), 1)

∥∥∥∥(ΛU2 − I

U1

)∥∥∥∥
F

.
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Combining (71) by Cauchy-Schwartz inequality we have

∥∇L2(Û)∥F ∥Û − Û∗∥F ≥
〈
∇L2(Û), Û − Û∗

〉
≥ L2(Û) ≥ λmin(Λ)

2

30d
∥Û − Û∗∥2F , (73)

which yields that

∥∇L2(Û)∥F ≥ min (λmin(Λ), 1)
2

30d
∥Û − Û∗∥F . (74)

Combine two types of parameterizations to get Θ = (Ũ⊤
12, Ũ

⊤
22, U

⊤
2 , U⊤

1 )⊤. Let Vec(A) be the vectorization operator in

row-wise order. For example, Vec
(

1 2
3 4

)
= (1, 2, 3, 4)⊤. Define W = (u−1U

⊤
12, u−1U

⊤
22, u−1U

⊤
21, u−1U

⊤
11)

⊤

Then we have

Vec(W ) =


Id2

Id2

−Id2 Id2

−Id2 − 1
2 (Id2 + T ) Id2

Vec(Θ) =: J Vec(Θ). (75)

Here T ∈ Rd2×d2

is the transpose operator. That is T Vec(A) = Vec(A⊤) for any d× d matrix A. Hence by chain rule we
have ∇L(Vec(Θ)) = J−1∇L(Vec(W )). Therefore we have

∥∇L(Θ)∥2F = ∥∇L(Vec(Θ))∥2 = ∥J−1∇L(Vec(W ))∥2 ≤ ∥∇L(Vec(W ))∥2 ≤ 1

u2
−1

∥∇L(Vec(U))∥2 =
1

u2
−1

∥∇L((U))∥2F .

(76)
Adding (69) and (74) we have

∥∇L(Θ)∥2F
=∥∇L2(Û)∥2F + ∥∇L1(Ũ)∥2F

≥min

(
λmin(Λ)

2

30d
,

1

30d
,
λmin(Λ)

4

10
,
1

10

)(
∥U1∥2F +

∥∥U2 − Λ−1
∥∥2
F
+ ∥Ũ12 + Λ−1∥2F + ∥Ũ22 − Λ−1∥2F

)
.

(77)

Combining it with (76), we finally obtain

∥∇L((U))∥2F

≥u2
−1 min

(
λmin(Λ)

2

30d
,

1

30d
,
λmin(Λ)

4

10
,
1

10

)(
∥U1∥2F +

∥∥U2 − Λ−1
∥∥2
F
+ ∥Ũ12 + Λ−1∥2F + ∥Ũ22 − Λ−1∥2F

)
≥β2 min

(
λmin(Λ)

2

30d
,

1

30d
,
λmin(Λ)

4

10
,
1

10

)(
∥U1∥2F +

∥∥U2 − Λ−1
∥∥2
F
+ ∥Ũ12 + Λ−1∥2F + ∥Ũ22 − Λ−1∥2F

)
=c

(∥∥U11 + U12 + Ū22 + Ū21

∥∥2
F
+

∥∥∥∥U22 + U21 −
Λ−1

u−1

∥∥∥∥2
F

+ ∥U12 +
Λ−1

u−1
∥2F + ∥U22 −

Λ−1

u−1
∥2F

)
.

(78)
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