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ABSTRACT

We propose a simple yet effective Bayesian extractor for multi-frame video water-
marking that can be plugged into any existing image-based watermarking method,
such as HiDDeN, CIN, MBRS, TrustMark, WAM, or VideoSeal. In particular,
we focus on challenging real-world conditions where videos undergo repeated or
strong compression (e.g., H.264, H.265) or frame-rate changes that typically de-
grade watermark signals severely. When all frames carry the same hidden bits, our
Bayesian extractor treats each frame’s output as an independent observation and
aggregates the log-likelihood ratios across frames, in contrast to naive averaging.
Despite only modifying the extraction phase, this approach consistently boosts bit
accuracy under moderate-to-aggressive compression, frame-rate conversions, and
other distortions—while preserving the same watermark imperceptibility and em-
bedding efficiency as the baseline. Experiments on diverse transformations and
watermarking models show that these benefits are particularly pronounced when
frames encounter uneven or heavy distortions, making our Bayesian extraction a
lightweight but potent upgrade for robust video watermarking.

1 INTRODUCTION

Ensuring authenticity and traceability of digital videos is increasingly important, especially as on-
line platforms frequently re-encode or downsample user uploads. Deep learning-based image wa-
termarking has made significant progress in embedding robust and imperceptible signals into static
images (Zhu, |2018; Jia et al., |2021; Bui et al., |2023; [Sander et al.l |2024). However, applying these
methods directly to video highlights additional challenges:

1. Repeated Compression: Popular streaming services (YouTube, Vimeo) and social media
apps (Instagram, TikTok) commonly re-encode uploaded videos multiple times at different
bitrates or resolutions, which can drastically weaken or remove watermark signals.

2. Frame-Rate Changes: Videos recorded at one frame rate (e.g., 24 fps) may be transcoded
to 12 fps, 30 fps, or 60 fps, creating uneven or unpredictable distortions frame by frame
(Wang et al., 2022).

3. Heavy Computation & Real-Time Constraints: Watermarking each frame individually
can be computationally heavy for long videos, and real-time scenarios often have strict
latency requirements.

A common baseline approach is to embed the same bits in each frame and then aggregate the ex-
tracted signals across frames (Zhu, [2018; Fernandez et al., [2024). However, this aggregation is
often done via naive averaging of probabilities, which fails to adequately discount heavily corrupted
frames. Our primary contribution is a Bayesian extraction strategy that:

* Summation of Log-Likelihood Ratios: Instead of naive averaging, each frame’s output
(logits) is converted into a log-likelihood ratio (LLR), then summed across frames. This
approach inherently downweights uncertain frames, providing more robust bit recovery
under heavy compression or partial corruption.

* No Changes to Embedding: Our method requires no modifications to existing 2D water-
marking pipelines—such as HiDDeN (Zhu, 2018)), CIN (Ma et al.,2022), MBRS (Jia et al.,
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2021), TrustMark (Bui et al., 2023), WAM (Sander et al., [2024)), or VideoSeal (Fernandez
et al., [2024)—thus serving as a simple plug-and-play upgrade in the extraction phase.

* Better Handling of Frame-Level Variance: By weighting frames according to their con-
fidence, the Bayesian aggregator becomes more reliable precisely when distortions vary
across frames, such as with repeated compression or frame-rate transformations.

Through experiments on five-second clips from the SA-V dataset (Ravi et al. 2024), we find
that Bayesian extraction—yvia log-likelihood summation—consistently outperforms naive averag-
ing. Specifically, our method recovers more bits under repeated or strong compression (e.g., high
CRF values, multiple re-encodes) and shows marked gains when the output frame rate diverges
from the original (e.g., 24 fps to 12 fps). Under uniform, mild distortions, improvements are modest
but still positive. These results indicate that applying Bayesian aggregation during extraction alone
substantially enhances watermark robustness in real-world video pipelines, where re-encoding and
frame-rate changes are common.

2 RELATED WORK

Image Watermarking. Deep watermarking for images has been widely studied (Zhul 2018;
Jia et all [2021; [Bui et al.| 2023), typically treating each image independently. These methods
demonstrate strong resilience to typical image-level edits (JPEG compression, mild rotations, color
changes), but few handle advanced geometric or partial inpainting scenarios (Sander et al., [2024)).
In principle, any of these 2D approaches can be extended to a video by embedding the same bits in
each frame.

Video Watermarking Extensions. Adapting image-based watermarking networks to video has
been approached via 3D CNNs (Luo et al., |2023) or by reshaping frames into pseudo-batches (Ye
et al., 2023). Nonetheless, extending image-based watermarking to video has become attractive
for two reasons: (1) the lightweight nature of these models allows high-resolution videos to be
watermarked, and (2) well-defined image watermarking models can be leveraged directly for video
applications (Fernandez et al.,|2024). Our Bayesian aggregator summation is a purely extract-time
improvement that is orthogonal to the embedding process.

Temporal Watermark Propagation. Watermarking each frame can be computationally expen-
sive for long videos. |Xian et al.| (2024) suggest a shortcut of watermarking every k frames, leaving
other frames un-watermarked, but this can reduce extraction accuracy. [Fernandez et al.|(2024) pro-
pose temporal watermark propagation: they embed once every k frames and copy the resulting
watermark distortion to the £ — 1 subsequent frames. This is a process that preserves overall con-
sistency and helps mitigate per-frame cost while keeping all frames watermarked. In this paper, we
adopt the same temporal propagation strategy at inference time to produce a watermarked video,
reusing the original model weights from existing 2D networks.

3 METHOD: BAYESIAN EXTRACTION WITH TEMPORAL PROPAGATION

Preliminary Notation. Throughout this section, we designate the networks for watermark em-
bedding and extraction as E and D, respectively. Each originally operates on a single image
x € R3X256x256 " embedding or extracting N bits.

3.1 FRAME-WISE EMBEDDING

We reuse the model weights from open-source watermarking networks (e.g., VideoSeal (Fernandez
et al.,|2024), CIN (Ma et al.,[2022), HiDDeN (Zhu, 2018)), MBRS (Jia et al., 2021}, TrustMark (Bui
et al.,[2023), WAM (Sander et al., 2024)).

(D

E(:L'i,m), if¢ mod k=0,
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wi_1, otherwise,



Published at the 1% workshop on GenAI Watermarking, collocated with ICLR 2025

where w; is the watermark distortion for the ith frame, x; € R3*256x256

and m € {0, 1}% is the bitstring.

is the ith (resized) frame,

We then add w; to x; (optionally scaling by a factor o). Unless otherwise stated, we set k = 4,
balancing cost and consistency. Hence, every frame is watermarked, though only one out of every k
frames is passed through the embedder E.

3.2 BAYESIAN MULTI-FRAME EXTRACTION

Naive Averaging (Baseline). Averaging simply combines per-frame probabilities p; ; (for bit in-
dex 7) across all T" frames:

T

~ (av, 1

m§_ 8 _1 [T > pij > 0.5], 2)
=1

where p; ; = o(/m; ;) is the predicted probability from the extractor’s logit 772; ;. While this often
outperforms single-frame extraction, heavily corrupted frames (near-random logits) can skew the
average.

Bayesian Extraction (Ours). During extraction, we treat each frame independently through the
original 2D extractor network D, yielding a logit vector m; € R™ per frame. Unlike naive averag-
ing, which simply sums probabilities, the Bayesian aggregator reinterprets each frame’s logit as a
log-likelihood ratio (LLR), then sums across frames:

T
LLR;; = log(i1 f”;_ _), LLRS™™ = Y LLR; ;. 3)
J i=1

Finally, we threshold each LLRgsum) at zero to obtain the predicted bit:

m;BayeS) -1 [LLR;-S“m) > O} ) @)

Because uncertain frames (where p; ; ~ 0.5) contribute near-zero LLR, the aggregator naturally
discounts heavily corrupted frames.

4 EXPERIMENTAL SETUP

Dataset for Inference. We follow |[Fernandez et al.|(2024) and select the first 5 seconds clip from
the SA-V dataset (Ravi et al. 2024), covering diverse real-world conditions (240p—4K, various
scenes). We do not perform any training ourselves, since we rely on the pretrained weights of
each watermarking model. We simply run temporal propagation (kK = 4) to embed the same bits in
these 5-second clips, then apply either the Bayesian or naive extraction method for all models and
transformations.

Baseline Models. Following VideoSeal (Fernandez et al., [2024), we use state-of-the-art image
watermarking models as baselines for video watermarking. In particular, we consider HiDDeN (Zhu,
2018)) (48 bits), MBRS (Jia et al., 2021)) (256 bits), CIN (Ma et al.,[2022) (30 bits), TrustMark (Bui
et al.,[2023)) (100 bits), and WAM (Sander et al.,[2024) (32 bits), using the official pretrained weights
from VideoSeal for all except HiDDeN. VideoSeal itself operates with 96 bits and a watermark
strength of «,, = 2.0. All methods are applied at 256 x 256 (with CIN at 128 x 128, extended as
needed) and use temporal watermark propagation with & = 4, ensuring a fair comparison with our
proposed Bayesian extraction.

Transformations. We follow the transformations described in VideoSeal (Fernandez et al., 2024)
(see Table[I). Additionally, we conduct experiments on frame-rate conversion and re-compression
to better reflect real-world scenarios, as detailed in the Experiments section.

5 RESULTS AND ANALYSIS
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Figure 1: Bit accuracy comparison of the naive average, Bayesian aggregator, and A (Ours—
Baseline) for H.264, H.265, and combined transformations across all models: CIN, HiDDeN,
MBRS, TrustMark, WAM, and VideoSeal.

Table 1: Transformation types and parameters

We focus our evaluation on video compres-
sion scenarios, where repeated encoding (e.g.,

nandez et al}, [2024)

Transformation

Parameters

Identity - -
H.264, H.265) often degrades waterma'rks Hots Video Compression  CRF=30, 50, 60
severely. Since we do not alter the embedding  H264 (RGB) Video Compression  CRF=30, 40, 50, 60
. : : H.265 Video Compression CRF=30, 40, 50
process and instead reuse pretr.al.n.ed weights  ppf Valnometrie Quality=40
(§B.1). the watermark imperceptibility (, PSNR, o onarmip Goometric -
SSIM, LPIPS, VMAF) and embedding com-  Rotate Geometric 10,90
. .. . Resize Geometric 0.55,0.71
plexity follow the original baselines [Fernandez,  crop Geometric 055
et al.l 2024, Furthermore, the overhead from _Perspective Geometric 0.5
our Bayesian extractor at inference is minimal g“ghm_e” Valuemetric 1.5
. . N ) ontrast Valuemetric 05,15
(nearly identical to naive extraction). Saturation Valuemetric 05,15
Hue Valuemetric 0.25
Gaussian Blur Valuemetric Kernel=9
Compression Results Across All Mod-  Median Filter Valuemetric Kernel=9
: - : - H.264 + Crop + Brightness Combined (CRF=30, 0.71, 0.5)
els. As illustrated in Fig. [0l our Bayesian 11567 crop+ Brighines Combined (CRF=40, 071, 0.5)
extraction method consistently outperforms — H.264 + Crop + Brightness Combined (CRF=50,0.71, 0.5)

naive averaging across various compression

settings—including H.264, H.264rgb, and

H.265—when applied to all evaluated wa-

termarking models (CIN, HiDDeN, MBRS,

TrustMark, WAM, and VideoSeal). Although the absolute improvements in bit accuracy are
modest, they are consistent and most pronounced at moderate-to-strong compression levels.
These results confirm that our Bayesian aggregator provides a systematic advantage in reliably
extracting watermark bits from videos subjected to diverse compression transformations across all
state-of-the-art image watermarking models.

Model-Agnostic Gains. Figure 2[a) shows that Bayesian extraction yields consistent improve-
ments across diverse watermarking models. While some models (e.g., CIN, HiDDeN, MBRS) ex-
hibit only marginal gains (with A on the order of 0.0001-0.0005), others such as TrustMark and
WAM see larger improvements (e.g., A = 0.0027 and 0.0057, respectively). These model-agnostic
gains demonstrate that the Bayesian extraction method is a broadly applicable, drop-in enhancement
for various watermarking systems.

Frame Rate Conversion. In practice, videos are often re-encoded at different frame rates (e.g.,
a 24 fps video uploaded to YouTube may be converted to 60fps). As Fig. [2{b) shows, when the
embedding rate remains at 24 fps, Bayesian extraction offers little gain. However, under frame-rate
conversion (e.g., 24 fps to 12 fps or 60 fps), its advantage grows. For example, at 12 fps the mean
bit accuracy increases from 0.7656 to 0.7792, compared to only a +0.0010 gain at 24 fps. This
demonstrates that Bayesian aggregation is especially beneficial when frame-rate changes disrupt
temporal consistency.

Temporal Propagation Step Size Ablation. As shown in Fig.[2{(c), a smaller step size (e.g., k =
2)—with more frequent embedding and fewer propagated frames—yields a larger gain (around A ~
0.0038). In contrast, increasing k (to 4 or 8) introduces more propagation noise, reducing the gain
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Figure 2: (a) Bit accuracy and A for each model under video compression transformations. (b) Bit
accuracy and A for WAM under frame-rate conversion using H.264 (CRF=40) with embedding at
24 fps. (c) Relationship between step size k and A for VideoSeal under H.265 (CRF=40) compres-
sion.

to A =~ 0.0024 and A ~ 0.0007, respectively. Thus, Bayesian aggregation is most effective when
fewer frames are independently watermarked.

Re-compresswn Rgsults. .In ’real—world, Step Compression Bascline _Owrs A
Vldeqs undergo multiple, unintentional com- | H.264 (CRF=23.FPS=24) 09990 0.9990 0.0000
pression steps—for example, when saving a 2 +H265 (CRF=24, FPS=60) 0.9688 0.9719 0.0031

video, uploading it to a platform like YouTube, 3 +H264 (CRF=30,FPS=30) 09052 09167 00115

and then downloading it.  Although these
operations are not malicious, each re-encoding
stage can severely degrade the embedded wa-
termark. Table 2] shows results for a three-stage
re-compression pipeline. With each added stage, naive averaging drops further, while Bayesian
extraction gains 0.0031 and 0.0115 bit accuracy at stages 2 and 3, respectively. We hope this
showcase motivates future research into robust watermarking methods that can better handle such
multi-stage, non-adversarial re-compression pipelines.

Table 2: Cumulative re-compression results for WAM.
Step 1 is the initial compression; subsequent steps (de-
noted by ’+’) apply additional re-compression.

Other Results. Table 8] summarizes the
baseline bit accuracy using naive averag-
ing and the corresponding improvements

Model Identity Valuetric Geometric

Bit Acc. A Bit Acc. A Bit Acc. A

hieved b Bavesi tractor f HiDDeN 0997  +led 0983 00776 40
achieved by our bayesian extractor Tor — ypgs 1000 40 0994 40 0627  +2e4
non-compression transformations (Iden-  CIN 1000 40 1000 40 0626 40
. : : I TrustMark 1000 40 0998  +led 0700 40
tity, Valuetric, Geometric). The gains in  y,y 1000 40 0998 +led 0855  +led
these scenarios are generally modest, re-  VideoSeal 0988 +0 0.984 +0 0870 +3e-4

flecting that such transformations are often

mild or uniformly applied across frames. Table 3: Baseline bit accuracy (Bit Acc.) and improvement
This indicates that our primary advantage (A) from Bayesian extraction for non-compression transfor-
is realized under uneven or strong distor- Mations.

tions (e.g., compression). Overall, these results confirm that Bayesian extraction is especially ben-
eficial when frames experience uneven or strong distortions, such as repeated compression, while
maintaining at least comparable performance in milder conditions.

6 CONCLUSION

We have presented a Bayesian extraction method for multi-frame watermarking that is entirely plug-
and-play: it requires no modifications to existing 2D embedding models, yet it can yield consistent
gains in robustness, particularly when different frames are subject to uneven or repeated distortions.
Under mild edits, improvements may be small; however, under more pronounced compression or
partial corruption, the difference can be significant. Our experiments on diverse transformations
confirm the generality of this approach as a simple yet valuable upgrade for video watermarking.
‘We hope these findings encourage further research into multi-frame inference strategies that enhance
the reliability of deep watermarking in real-world, compressed, and frame-varying video pipelines.
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