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ABSTRACT

Class imbalance, present in many real-world tabular datasets, may cause machine-
learning models to under-classify minority samples, which are often highly sig-
nificant. This work proposes a new oversampling method called Tabular Deep-
SMOTE (TD-SMOTE), which harnesses the class labels to improve synthetic
sample generation via autoencoders. The method is based on oversampling in
an alternative space shaped by a metric-learning loss. Such spaces tend to be
more semantic and obtain higher class separation and density, which improves the
quality of samples generated by linear interpolations over the observed minority
samples. In addition, we propose a synthetic samples filtering scheme based on
the decision boundary of a pre-trained tabular classifier to guarantee the quality
of synthetic samples. Compared to common and leading oversampling methods,
the method achieves improved classification performance in an extensive set of
experiments that includes over 36 publicly available datasets.

1 INTRODUCTION

Class imbalances are common in real-world tabular datasets and occur across many domains (Yu
et al., 2012; Tek et al., 2010; Horta et al., 2008; Chan & Stolfo, 1998). Class imbalances tend to lead
to predictive biases in standard classifiers, resulting in poor performance over classes with fewer
instances (He & Garcia, 2009). This tendency is detrimental as less frequent classes are often vital
events, such as system failure or a rare disease. As a result, the class imbalance problem has been
considered important for many years and is intensively researched (He & Garcia, 2009).

Several methods have been proposed to improve classifiers in the class-imbalance setting (Johnson
& Khoshgoftaar, 2019). These methods can be categorized into two groups: algorithmic-oriented
and data-oriented approaches. The algorithmic-oriented approaches modify the classifier to handle
the class imbalance better (Lee et al., 2021; Jo & Japkowicz, 2004). The most basic example of
such an approach would be loss re-weighting, namely increasing the minority class weight in the
loss function used during the classifier training. The data-oriented approaches modify the training
set such that the resulting set has a lower class-imbalance ratio. The data-oriented approach can
be categorized into two sub-categories - under-sampling of majority samples (Tomek, 1976; Barua
et al., 2013a) and over-sampling of minority samples (More, 2016; Batista et al., 2004). The most
basic example of such an approach would be random oversampling, in which random minority
samples in the training set are duplicated.

Synthetic Minority Oversampling Technique (SMOTE)(Chawla et al., 2002) was one of the first
methods to propose dataset balancing by adding synthetic minority samples. The synthetic samples
are generated by interpolating minority samples and their nearest minority neighbors. Throughout
the years, more than 100 variations of the original SMOTE algorithm were proposed (More, 2016).
Several of these variations are based on a SMOTE oversampling in an alternative space (Wang et al.,
2006; Tang & Chen, 2008; Gu et al., 2009; Pérez-Ortiz et al., 2016). In these methods; the data
is mapped to a desired alternative space, oversampled, and inversely mapped back to the original
space. In recent years, neural-network-based models achieved substantial success in various fields
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(Alam et al., 2020). This success led to several autoencoder (AE) based oversampling techniques
that follow the same oversampling principle in the latent space of a trained AE (Bellinger et al.,
2015; Darabi & Elor, 2021). Denoising Autoencoder-Based Generative Oversampling (DEAGO)
(Bellinger et al., 2015) demonstrates promising results by training a Denoising-AE over the minority
samples. Tabular AutoEncoder Interpolator (TAEI) (Darabi & Elor, 2021) went a step further by
training AE-based models over the entire training set (minority and majority). In addition, TAEI
adds support for categorical features as interpolating in the latent space avoids interpolating over
categories (which is a non-trivial task). One key limitation of DEAGO and TAEI is that they do not
use the available labels to shape the AE’s latent space.

This work presents a new oversampling scheme called Tabular Deep-SMOTE or TD-SMOTE (out-
line in Fig. 1). Similarly to DEAGO and TAEI, the proposed method is based on interpolations in a
latent space of an ad-hoc trained AE ( 1 in Fig. 1). Contrary to them, our method trains the AE in
a supervised fashion; namely, it utilizes the labels to train the AE. A metric learning loss is applied
over the latent representations of minority and majority samples in the training stage. Such a loss
encourages the learned latent space to be highly class-separated, class-dense, and with Euclidean
distances that better reflect the similarities (semantic latent space). Thus, interpolations of minority
sample embeddings generated by SMOTE are closer to high density minority regions.

In addition, our method introduces into the AE framework an importance-oversampling scheme
that prioritizes oversampling near class domain boundaries ( 2 in Fig. 1). This approach has
been proven to improve down-stream classifiers (More, 2016) and is used by several oversampling
techniques (Han et al., 2005; Gradstein et al., 2022; Barua et al., 2013b). TD-SMOTE adapts a
priority weight algorithm used in Proximity Weighted Synthetic Oversampling (ProWSyn)(Barua
et al., 2013b). The adaptation associates with each minority sample a weight or probability reflecting
its importance (hence, the term importance-oversampling). At the oversampling stage, a minority
latent representation is sampled according to the set of probabilities, and then it is interpolated with
one of its k-nearest-neighbors (NNs), similar to SMOTE. We name this SMOTE variation Weighted-
SMOTE and the overall oversampling approach importance-oversampling.

The third and last element of our method is a synthetic sample filtering scheme ( 3 in Fig. 1). The
metric-learning loss added over the AE’s latent space encourages class separation. Nevertheless, a
fully class-separated space is not guaranteed, and interpolations between minority representations
may cross minority-majority domain boundaries. By filtering synthetic samples that are remote from
high density minority regions, the overall quality of the oversampled training set is improved (Sáez
et al., 2015; Lee et al., 2015). We introduce a new approach for filtering that uses a baseline classifier
trained over the original data. The motivation for using a classifier stems from experimental results,
provided in Section 4, which demonstrate that current state-of-the-art classifiers, such as Catboost
(Prokhorenkova et al., 2017), achieve reasonable to good results even over highly class-imbalanced
datasets. The filtering scheme is based on creating a minimal threshold score below which synthetic
samples are discarded. The threshold is determined based on the interpolated minority samples
and the interpolation factor (i.e., distance from each point). If the score of the synthetic sample
degrades below this local threshold, the sample is considered to have crossed class boundaries and
is discarded.

We provide the following contributions:

1. Demonstrate that by training with a metric-learning loss, class information (labels) can be
utilized to learn a latent space that is more suitable than the original space for oversampling
with SMOTE (Section 3.1.1);

2. Introducing into the AE oversampling framework an importance-oversampling scheme
(Section 3.2.1);

3. Present a unique approach to filter synthetic samples based on a trained baseline-classifier
and local thresholding (Section 3.2.2);

4. Demonstrate that the TD-SMOTE model, which comprises all three parts - training with a
metric-learning loss, importance-oversampling, and baseline classifier filtering - achieves
better prediction quality in downstream classification tasks compared to common and lead-
ing schemes, such as SMOTE (Chawla et al., 2002), SMOTE-IPF (Sáez et al., 2015) and
ProWSyn (Barua et al., 2013b).
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Figure 1: TD-SMOTE outline - the model gets as inputs the data samples, x, and their associated
labels, y. New minority samples, xsyn, are generated and filtered using the three components of the
model - the ad-hoc trained autoencoder, importance oversampling and filtering based on the decision
boundary of a pre-trained tabular classifier.

2 RELATED WORK

Synthetic Minority Oversampling Technique (SMOTE)(Chawla et al., 2002) was one of the first
methods to propose dataset balancing by adding synthetic minority samples. The synthetic samples
are generated by interpolating minority samples and their nearest minority neighbors. Interpolating
based solely on the nearest minority neighbors is a local operation that does not take into account the
entire minority or majority distribution. Ignoring these distributions may render the oversampling
either less effective when oversampling is done in an already overly populated minority domain
or even detrimental when oversampling crosses into the majority domain. This drawback, among
others, led to the proposal of more than 100 variations of the original SMOTE algorithm (More,
2016). TD-SMOTE, which can be categorized as an advanced SMOTE variation, is based on three
principles - (a) importance-oversampling, (b) filtering of the generated synthetic samples, and (c)
oversampling in an alternative space.

Importance-oversampling, as referred to in this work, is the principle of prioritizing oversampling
based on certain minority samples over others. This approach is used in oversampling techniques
prioritizing sampling near minority-majority domain boundaries (Han et al., 2005; He et al., 2008;
Li et al., 2014; Gradstein et al., 2022). Seeing that this principle demonstrates improvements in
down-stream classifiers (More, 2016), TD-SMOTE adapts into the AE framework an importance es-
timation scheme presented in Proximity Weighted Synthetic Oversampling (ProWSyn)(Barua et al.,
2013b). ProWSyn partitions the minority samples into clusters according to their proximity to ma-
jority class samples. A weight is assigned to each cluster of minority samples, such that clusters
closer to the majority class have higher weights and vice versa. These weights determine how many
data points will be generated from each cluster. Synthetic samples are then generated within each
cluster via SMOTE.

Synthetic Sample Filtering is another approach that has proven beneficial in minority oversampling
(More, 2016). Such oversampling techniques use filtering schemes to filter out synthetic samples
that are estimated to be remote from the minority distribution. Two high-performing oversampling
schemes that use such filtering are - SMOTE Iterative-Partitioning Filter (SMOTE-IPF) (Sáez et al.,
2015) and Oversampling Technique with Rejection (OTR) (Lee et al., 2015). SMOTE-IPF oversam-
ples the dataset with SMOTE and uses a noise-filtering scheme named Iterative-Partitioning Filter
(IPF) (Khoshgoftaar & Rebours, 2007) combined with a trained decision tree classifier to filter out
synthetic samples that appear non-consistent with the original data. OTR oversamples the dataset
with SMOTE and uses a k-NNs classifier to filter out synthetic samples for which most of their
nearest neighbors are non-minority samples. Our proposed method follows these techniques by
proposing a new filtering scheme based on a pre-trained tabular classifier.

Oversampling in an Alternative Space is the third principle on which TD-SMOTE is based. Sev-
eral oversampling techniques oversample in a space alternative to the original features. In these
methods, the data is mapped to the alternative representation, oversampling is done, and the gener-
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Figure 2: ML-AE training outline - includes (1) the data representation stage, (2) the encoder-
decoder pair, and (3) the metric-learning loss in the latent representation. The metric learning loss
consists of a fully connected layer and the Normalized SoftMax loss (Zhai & Wu, 2018). Applying
the metric learning loss results in better class separation and denser class cluster representation
where Euclidean distances reflect similarity, thus improving the effectiveness of SMOTE.

ated synthetic samples are then inverse-mapped back to the original data space. Such methods in-
clude dimensionality reduction via PCA (Tang & Chen, 2008), Locally Linear Embedding (Roweis
& Saul, 2000; Wang et al., 2006) and Isomap (Tenenbaum et al., 2000; Gu et al., 2009). In re-
cent years, neural networks achieved substantial success in various fields (Alam et al., 2020). This
success led to several autoencoder (AE) based oversampling techniques which follow the same prin-
ciple by using the AE’s latent space as the alternative space for oversampling (Bellinger et al., 2015;
2016; Darabi & Elor, 2021). As detailed in Section 1, these methods do not use the labels for
training the AE. One exception is DeepSMOTE (Dablain et al., 2021) - an AE-based oversampling
method for image datasets that uses labels with an intra-class permutation loss ”designed to insert
variance into the encoding/decoding process and therefore obviate the need for a discriminator”.
The proposed permutation loss proved ineffective in this work’s scope (see Appendix A); therefore,
we have introduced an alternative metric-learning loss.

3 TD-SMOTE

This section presents the TD-SMOTE method. The first stage involves feature preprocessing. This
stage includes data imputation, feature scaling, and representation of categorical features. Further
details are provided in Appendix B. The second stage involves training the metric-learning AE that
we denote by ML-AE. The ML-AE training procedure, architecture, and the chosen metric learning
loss are presented in Section 3.1. The third and last stage involves oversampling the dataset using
the trained ML-AE (Section 3.2).

3.1 MODEL TRAINING

The model training stage uses the preprocessed features (see 1 in Fig. 2) extracted as described in
Appendix B. Each sample in the batch, denoted by x, is encoded into its representation in the latent
space, denoted by z, via the encoder Eϕ : X → Z . The latent representation is then decoded into
the reconstructed sample, denoted by x̂, via the decoder Dψ : Z → X . The total loss per sample,
denoted byLtot is a combination of the reconstruction loss, denoted byLrec, and the metric-learning
loss over z, denoted by Lmetric learn. Balancing Lrec with Lmetric learn is done using a factor
denoted by λmetric. The training algorithm is described in Algorithm 1. The ML-AE architecture
(see 2 in Fig. 2), which comprises both the encoder and decoder, is described in Appendix C. The

metric-learning loss (see 3 in Fig. 2) is described in Section 3.1.1.

3.1.1 METRIC LEARNING LOSS CHOICE

Metric Learning aims at learning a metric from high-dimensional data such that the distance be-
tween two data samples, as measured by the metric, reflects their semantic similarity (Lu et al.,
2017; Kaya & Bilge, 2019). In other words, it aims at learning a class discriminative representation
such that embeddings of data samples from the same class are encouraged to be similar. In contrast,
embeddings of data samples from different classes should be dissimilar. We hypothesize that over-
sampling in a latent space shaped by a metric learning loss can improve the quality of synthetically
generated samples for several reasons:
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Algorithm 1 ML-AE Training
Input: (xtrain, ytrain) - data samples and their labels.
Output: θ - model parameters (encoder and decoder parameters ϕ and ψ, respectively, and the
metric-learning loss’s fully connected layer weights)

1: Initialize parameters: θ ← random parameters
2: Data representation:

3: x′train =

{
onehot(xi,train) categorical feature

xi,train numeric feature
4: repeat
5: for each batch do:
6: xbatch, ybatch ← next batch of (x′train, ytrain)
7: zbatch = Eϕ(xbatch)
8: x̂batch = Dψ(zbatch)
9: Lrec =

10: mean

{
cross entropy(x̂i,batch, xi,batch) categorical feature

l2(x̂i,batch, xi,batch) numeric feature
11: Ltot =
12: Lrec + λmetricLmetric−learn(zbatch, ybatch) ▷ See eq.1
13: θ ← AdamOptimizer(θ,∇θLtot)
14: end for
15: until Ltot convergence (or maximal number of epochs)
16: return θ

1. Improving the similarity metric between minority samples: SMOTE generates synthetic
samples by interpolating minority samples with their k-NNs. Interpolation with the k-
NNs is based on the assumption that Euclidean distances reflect similarity. Metric learning
may provide a framework in which a more semantic similarity metric is learned and used
as an alternative for Euclidean distances in the original data space. Using an alternative
similarity measure has proven beneficial for interpolation-based oversampling (Bej et al.,
2019; 2021b).

2. Class separability (contrastive): interpolation-based oversampling methods may generate
samples that cross into the majority class domain (see illustration in Fig.4 Appendix D).
Metric learning losses encourage class separation in the learned latent space. This may
alleviate the risk of generating false minority samples.

3. Class density (tightness): metric learning lossses encourage intra-class representations to
be close. As a result, the latent space is denser, and interpolations may represent much
higher probability minority samples once they are decoded back to the original space (see
illustration in Fig.5 in Appendix D). This is beneficial as the downstream learned classifier
may be more accurate when trained using synthetic samples that are closer to high density
minority regions.

We have explored several metric-learning losses for our purpose1, namely, improving the oversam-
pling effectiveness for downstream classification tasks. In the scope of this evaluation, a linear layer
followed by the Normalized Softmax loss (Zhai & Wu, 2018) demonstrated the best performance.
For the rest of our experiments, we use this loss. Another justification for using the Normalized Soft-
max loss Boudiaf et al. (2020) is that it avoids the increased complexity of mining pairs or triplets,
which are commonly used by other metric losses (Chopra et al., 2005; Schroff et al., 2015).

The high-class imbalance may be detrimental when using a standard metric learning loss that is not
accustomed to handling the class imbalance (Gautheron et al., 2019; Gui & Zhang, 2021; Wang
et al., 2021). To alleviate the effect of class imbalance, we apply loss re-weighting by class. Each
class is re-weighted with a factor, wRW0 for the majority class and wRW1 for the minority one. We

1based on the PyTorch Metric Learning library- https://kevinmusgrave.github.io/pytorch-metric-learning/
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chose the following common factors:

imb ratio
def
=

#majority samples

#minority samples
; wRW0 :=

√
1

imb ratio
; wRW1 :=

√
imb ratio

It is worth mentioning that in the scope of our experiments re-weighting the reconstruction loss,
Lrec, by class did not demonstrate any significant improvement and was not used. The class re-
weighted Normalized Softmax is the loss used for the metric learning purpose (see Algorithm 1):

Lmetric−learn(z,y) = −
m∑
i=1

wRWyi log
ecos(w

′
yi
,zi)

ecos(w
′
0,zi) + ecos(w

′
1,zi)

(1)

Where z are the latent representations of the batch, y are the batch labels, m is the batch size, cos
denotes the cosine similarity measure, and w′

0 and w′
1 are the linear layer weights associated with

the majority and minority classes, respectively.

3.2 OVERSAMPLING

The minority oversampling is done by running the following steps: (a) the minority samples are
encoded using the trained encoder, (b) the encodings are oversampled in the latent space using
importance-oversampling (Section 3.2.1), (c) the interpolations are decoded using the trained de-
coder and, finally, (d) synthetic samples that are remote from high density minority regions are
filtered out (Section 3.2.2). The complete oversampling procedure is described in Algorithm 2.

Algorithm 2 Oversample
Inputs: trained ML-AE, (x, y) - imbalanced dataset, λos - oversample ratio, classifier type -
classifier type used for the baseline filtering (e.g. SVM / CatBoost)
Output: (xos, yos) - oversampled dataset

1: num required← sum(y == 0) · λos − sum(y == 1)
2: weights← GetImportance(x, y) ▷ Algorithm 3
3: baseline classifier ← train a baseline classifier of type classifier type over (x, y)
4: xfinalsyn ← [ ]

5: x′ ←
{

onehot(xi) ith feature is categorical

xi ith feature is numeric
6: z ← Eϕ(x

′)
7: zsyn ←WeightedSMOTE(z, weights, num required) ▷ Algorithm 4
8: x′syn ← Dψ(zsyn)

9: xsyn ←
{

argmax(x′i) ith feature is categorical

x′i ith feature is numeric
10: xsyn ← Filter(baseline classifier, xsyn, ...) ▷ Algorithm 5
11: xfinalsyn ← xfinalsyn || xsyn ▷ concatenate new samples
12: if |xsyn| < num required then:
13: num required −= |xsyn|
14: go to 7
15: end if
16: xos = x || xfinalsyn

17: yos = y || 1num required ▷ minority label is 1
18: return (xos, yos)

3.2.1 IMPORTANCE-OVERSAMPLING

Oversampling near minority-majority domain boundaries has proven effective for downstream clas-
sification tasks (More, 2016). Many methods, such as borderline-smote (Han et al., 2005), ADASYN
(He et al., 2008), and ProWSyn (Barua et al., 2013b), are partly or entirely based on it. We adopt
an importance sampling method based on the one used in ProWSyn (Barua et al., 2013b). The algo-
rithm comprises two parts: GetImportance presented in Algorithm 3 and WeightedSMOTE presented
in Algorithm 4. Both parts are used separately in the oversampling stage, as shown in Algorithm 2.
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GetImportance assigns each minority sample an importance value that represents the sample’s prob-
ability of being used in generating a new synthetic sample. The importance value assigned to each
minority sample is determined according to the minority sample’s proximity to the majority samples.
The higher the proximity, the higher the importance. The method is presented in detail in Algorithm
3, accompanied by an illustration in Fig. 6 in Appendix E.

WeightedSMOTE, the second part of the importance oversampling scheme, is a SMOTE extension
that supports prioritizing specific minority samples according to the importance distribution pro-
vided by GetImportance. WeightedSMOTE selects a minority sample according to the importance
values and then interpolates it with one of its k-NNs to generate a new synthetic sample. This
scheme is similar to SMOTE except for the fact that SMOTE chooses a minority sample uniformly,
while WeightedSMOTE samples according to the importance distribution. The method is detailed
in Algorithm 4 in Appendix F.

Algorithm 3 GetImportance
Input: (x, y) - labeled dataset
Output: weights - importance weights for minority samples

1: k ← 5 ▷ used as the default value
2: M ← x[y == 0] ▷ set of majority samples
3: m← x[y == 1] ▷ set of minority samples
4: weights← zeros(size(m)) ▷ initialize with zeros
5: for level in [1, ..., 4] do
6: k neighbors← set() ▷ does not include duplicates
7: for maj sample in M do
8: k neighbors.add(k nearest-neighbors of maj sample from m)
9: end for

10: weights[k neighbors]← explevel−1

11: m← m \ k neighbors ▷ update minority set
12: end for
13: weights[m]← exp5−1 ▷ assign the remaining minority samples the weight of the last level (5)
14: weights← weights/sum(weights) ▷ transform weights into probabilities
15: return weights

3.2.2 CLASSIFIER FILTERING

Although the latent space is trained to be contrastive, the inherent problem of synthetic samples
crossing into the majority domain may still exist. This results from the fact that perfect class sep-
aration is rarely achievable. We proposed another effective method to address this issue - baseline
classifier filtering. This approach filters the synthetic samples using a baseline classifier trained over
the original dataset. The underlying assumption is that the classifier has a somewhat reasonable
ability to classify the data regardless of the imbalance and can be used as a ”sanity” check for the
quality of new synthetic samples.

Most classifiers, including Catboost (Prokhorenkova et al., 2017) and SVM used in our experiments,
can estimate the probability of a given sample belonging to each one of the classes. We refer to the
probability of a given sample belonging to the minority class as the sample’s score. Scores may
range from 0 to 1, representing complete confidence in the sample being a majority or minority
instance. We use the trained baseline classifier to assign each synthetic sample a score in the over-
sampling stage. Synthetic samples with a score less than a predetermined threshold are discarded,
and the oversampling continues until the required amount of synthetic samples is generated. The
threshold presented in eq. 2, is determined according to the two scores of the minority samples
being interpolated, denoted by base score and nhbr score, and the interpolation factor, denoted by
λ. Because these two scores may have different scales (e.g., 0.05 and 0.5), the threshold is based on
a logarithmic interpolation, namely, log x = log x1 + λ(log x2 − log x1)→ x = x1−λ1 xλ2 .

Threshold Score (λ, base score, nhbr score) =
(base score)1−λ(nhbr score)λ

margin
(2)
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Themargin in eq. 2 is added as a leeway margin to avoid over-filtering. The chosen default value is
2. The proposed threshold is relatively simple yet effective (as demonstrated in the ablation studies
in Appendix M). The filtering algorithm is detailed and visually demonstrated in Appendix G.

4 EXPERIMENTAL RESULTS

A comparison is performed over 36 publicly available tabular datasets2 3. Experiments include
the state-of-the-art CatBoost (Prokhorenkova et al., 2017) and SVM as down-stream classifiers and
several evaluation metrics - Average Precision (AP), F1, and ROC-AUC. Further details are provided
in Appendix I.

We evaluate the performance of several leading oversampling techniques on the purely numeric
datasets, namely, we use (More, 2016) - borderline smote (bsmote) (Han et al., 2005), Polynomial-
Fit SMOTE (poly fit) (Gazzah & ESSOUKRI BEN AMARA, 2008), Prowsyn (Barua et al., 2013b)
and SMOTE IPF (Sáez et al., 2015). CTGAN (Xu et al., 2019), a state-of-the-art tabular generative
model, is also included in the evaluation. The classification results with a down-stream CatBoost
classifier (Prokhorenkova et al., 2017) are presented in Table 1. TD-SMOTE achieves the lowest AP
rank among the used baselines (Fig. 3).

For datasets with categorical features we only benchmark a smaller set of methods that support
the synthetic generation of categorical values. These include - SMOTE Nominal-Continuous and
SMOTE Nominal (SMOTENC / SMOTEN) (Chawla et al., 2002) and CTGAN. The CatBoost clas-
sifier supports categorical features without additional modification or alternative data representation.
Classification results are presented in Table 2. The results and overall rank, as presented in Fig. 3,
indicate that TD-SMOTE can successfully support categorical features.

Table 1: Classification AP results for numerical datasets using CatBoost
no smote bsmote1 bsmote2 poly fit prowsyn smote ipf random loss ctgan td-smote
oversample oversample reweight

glass-0-1-6 vs 2 0.434 0.439 0.384 0.455 0.177 0.479 0.375 0.380 0.376 0.315 0.379
glass2 0.234 0.276 0.256 0.331 0.250 0.245 0.261 0.237 0.350 0.252 0.279
glass4 0.809 0.700 0.467 1.000 0.411 0.533 0.589 0.639 0.806 0.444 0.756
page-blocks-1-3 vs 4 0.967 0.967 0.967 1.000 0.943 0.943 0.967 1.000 1.000 1.000 0.967
yeast-0-5-6-7-9 vs 4 0.783 0.737 0.682 0.707 0.796 0.667 0.769 0.782 0.674 0.692 0.634
yeast-1 vs 7 0.586 0.224 0.350 0.361 0.159 0.253 0.249 0.311 0.288 0.518 0.523
yeast-1-2-8-9 vs 7 0.209 0.201 0.214 0.209 0.093 0.125 0.205 0.207 0.216 0.148 0.254
yeast-1-4-5-8 vs 7 0.085 0.371 0.454 0.300 0.104 0.384 0.393 0.281 0.274 0.072 0.118
yeast-2 vs 4 0.925 0.948 0.900 0.861 0.903 0.943 0.915 0.911 0.946 0.975 0.927
yeast-2 vs 8 0.524 0.528 0.317 0.232 0.526 0.526 0.522 0.533 0.521 0.543 0.535
yeast4 0.417 0.385 0.324 0.264 0.443 0.386 0.384 0.431 0.393 0.429 0.502
yeast5 0.905 0.800 0.877 0.928 0.900 0.808 0.855 0.849 0.815 0.960 0.932
yeast6 0.722 0.734 0.649 0.681 0.713 0.731 0.669 0.701 0.754 0.690 0.772
ecoli 0.564 0.415 0.320 0.321 0.471 0.392 0.418 0.488 0.438 0.508 0.463
letter img 0.981 0.986 0.979 0.972 0.985 0.986 0.989 0.994 0.993 0.979 0.987
libras move 0.798 0.645 0.677 0.630 0.657 0.661 0.652 0.629 0.650 0.742 0.637
mammography 0.699 0.707 0.672 0.614 0.717 0.679 0.708 0.723 0.702 0.581 0.690
ozone level 0.351 0.323 0.304 0.282 0.275 0.349 0.301 0.294 0.302 0.217 0.239
pen digits 1.000 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000
satimage 0.755 0.772 0.735 0.729 0.781 0.780 0.796 0.777 0.739 0.702 0.783
spectrometer 0.989 0.963 0.972 1.000 0.989 1.000 0.930 0.977 0.980 0.989 1.000
us crime 0.388 0.476 0.368 0.381 0.432 0.442 0.417 0.420 0.420 0.389 0.474
webpage 0.698 0.590 0.665 0.678 0.692 0.672 0.607 0.663 0.663 0.707 0.684
wine quality 0.323 0.209 0.182 0.117 0.119 0.146 0.200 0.279 0.228 0.169 0.162
yeast me2 0.601 0.654 0.584 0.525 0.704 0.657 0.679 0.666 0.695 0.606 0.621
yeast ml8 0.138 0.088 0.100 0.108 0.109 0.099 0.099 0.111 0.083 0.106 0.108
coil 2000 0.169 0.190 0.164 0.163 0.181 0.184 0.167 0.154 0.167 0.173 0.180
oil 0.347 0.463 0.425 0.459 0.563 0.410 0.342 0.722 0.653 0.477 0.764
optical digits 0.996 0.992 0.993 0.988 0.994 0.994 0.995 0.990 0.993 0.994 0.993
arrhythmia 0.877 0.810 0.877 0.629 0.810 0.877 0.810 0.810 0.877 0.810 0.877
car eval 34 0.746 0.991 0.968 0.979 0.906 1.000 0.996 0.990 0.885 0.775 0.894
#Best 9 3 2 3 2 4 2 4 4 5 7
#Worst 2 2 3 9 5 1 2 2 1 4 1

2https://sci2s.ugr.es/keel/imbalanced.php?order=ins#sub30
3https://imbalanced-learn.org/stable/datasets/index.html
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Table 2: Classification AP results for categorical and mixed datasets using Catboost
no smoten / random loss ctgan td-smote
oversample smotenc oversample reweight

abalone 0.400 0.405 0.418 0.488 0.380 0.434
abalone 19 0.050 0.016 0.045 0.025 0.053 0.027
sick euthyroid 0.878 0.879 0.882 0.879 0.812 0.898
thyroid sick 0.961 0.958 0.964 0.964 0.959 0.966
solar flare m0 0.101 0.122 0.123 0.104 0.190 0.187
#Best 0 0 0 1 2 2
#Worst 1 2 0 0 2 0

Figure 3: Critical Difference Diagram - Wilcoxson significance analysis over datasets with numeric
features (left figure, based on Table 1) and datasets with categorical features (right figure, based on
Table 2). Methods connected via a bold bar indicate that performances are not significantly different,
namely that p > 0.05. Average AP scores are presented above lines.

4.1 ADDITIONAL EXPERIMENTS

A toy example using a synthetic dataset is provided in Appendix H. The oversampled datasets
demonstrate the difference between oversampling techniques and TD-SMOTE’s advantage over
them.

A performance evaluation may be done using several different measures. To further demonstrate
the effectiveness of TD-SMOTE, the same evaluations presented in this section were done using the
F1-scores and ROC-AUC values. F1-scores are presented in Appendix K.1 and ROC-AUC values
in Appendix K.2. Classification results with a RBF-Kernel SVM are presented in Appendix L. In
all cases, TD-SMOTE achieves leading or competitive scores.

Ablation studies, provided in Appendix M, indicate that using the different model components,
namely, the metric learning loss, importance oversampling, and baseline-classifier filtering, are ben-
eficial for the oversampling task.

5 CONCLUDING REMARKS, LIMITATIONS, AND FUTURE WORK

This work explores the potential of using autoencoders in a supervised manner for minority over-
sampling. We presented ML-AE - an autoencoder trained with a class-reweighted metric learning
loss over its latent space. In addition, we proposed a new approach for filtering synthetic samples
using a baseline tabular classifier and an adaptation of an importance-oversampling scheme for the
AE framework. Combining these elements results in the proposed model named TD-SMOTE.

The proposed oversampling technique was evaluated over 36 datasets, achieving competitive, and in
many cases leading, score ranks (AP, F1, and ROC-AUC) for both downstream classifications with
Catboost and SVM classifiers.

The model poses two main limitations. The first is the scalability of the importance-oversampling
component. The oversampling importance of each minority sample is determined, as presented in
Algorithm 3, on the KNN algorithm which is not scalable with growing dataset sizes (Weber et al.,
1998; Pestov, 2013). The second model limitation is that the filtering baseline classifier must be able
to estimate the probability distribution of a sample to belong to each one of the classes.

Future works may include a simple extension for the multi-class setting, the adoption of more ad-
vanced tabular-oriented architectures, such as SAINT (Somepalli et al., 2021) and TabNet (Arik
& Pfister, 2019), exploring additional filtering schemes based on pre-trained tabular classifiers and
scalable importance estimation algorithms.
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A DEEP SMOTE WITH PERMUTATION LOSS RESULTS

Table 3 demonstrates the performance of deep smote (Dablain et al., 2021) which uses a proposed
intra-class permutation loss for improving the quality of the generated synthetic samples. The model
was adjusted to tabular data by replacing convolutional layers with fully-connected ones.

Table 3: Classification AP results using CatBoost (Deep SMOTE)

smote bsmote-1 bsmote-2 random oversampling loss reweight deep smote
glass-0-1-6 vs 2 0.439 0.383 0.455 0.379 0.375 0.341
glass2 0.275 0.256 0.331 0.237 0.35 0.288
glass4 0.7 0.466 1 0.638 0.805 0.411
page-blocks-1-3 vs 4 0.966 0.966 1 1 1 1
yeast-0-5-6-7-9 vs 4 0.737 0.682 0.707 0.781 0.673 0.445
yeast-1 vs 7 0.224 0.350 0.360 0.311 0.287 0.24
yeast-1-2-8-9 vs 7 0.201 0.213 0.208 0.207 0.215 0.124
yeast-1-4-5-8 vs 7 0.371 0.453 0.300 0.281 0.273 0.127
yeast-2 vs 4 0.948 0.900 0.861 0.911 0.945 0.877
yeast-2 vs 8 0.527 0.316 0.232 0.532 0.521 0.548
yeast4 0.385 0.324 0.264 0.431 0.393 0.347
yeast5 0.8 0.877 0.927 0.848 0.814 0.869
yeast6 0.733 0.649 0.681 0.700 0.754 0.135
AP Mean 0.562 0.526 0.563 0.558 0.570 0.442
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B FEATURE PREPROCESSING AND REPRESENTATION

Tabular datasets may include both numerical and categorical features. In addition, they may include
missing values. The first step involves imputing missing values. Numerical features are imputed
with the mean value of the feature, and categorical features are represented by a 0-vector (instead
of a one-hot vector). Continuous and discrete numeric features are scaled using a standard scal-
ing per feature, calculated over the training set. More complex numerical representations such as
mode-specific normalization(Xu et al., 2019) demonstrated marginal to no improvement. Categor-
ical features are one-hot encoded as it is a more meaningful representation for representing the
different categories (line 3 in Algorithm 1 and line 5 in Algorithm 2). Some tabular classifiers (e.g.,
Catboost) support categorical features. For this reason, the synthetically generated minority samples
should be represented with categorical values similar to the original data. Hence, the fields associ-
ated with the one-hot encodings in the synthetic samples are translated back to categories according
to the maximal value (line 9 in Algorithm 2).

C ML-AE ARCHITECTURE

One architecture was used over all datasets for simplicity and proof of concept. This approach is
common in many deep tabular models, such as CTGAN(Xu et al., 2019) and TTGAN(Gradstein
et al., 2022). The sole hyperparameter of the architecture is the latent space dimension, denoted by
|z|. Adjusting the number of layers and widths per dataset (i.e., hyperparameters) may improve the
results.

Eϕ(x) =


h0 = LReLU0.2

(
FC|x|→32·|x|(x)

)
h1 = LReLU0.2

(
FC32·|x|→16·|x|(h0)

)
z = FC16·|x|→|z|(h1)

Dψ(z) =



h0 = SiLU
(
FC|z|→8·|x|(z)

)
h1 = SiLU

(
FC8·|x|→16·|x|(h0)

)
h2 = SiLU

(
FC16·|x|→32·|x|(h1)

)
x̂i = FC32·|x|→1(h2) i ∈ Nn
x̂i = SoftMax(FC32·|x|→mi

(h2)) i ∈ Nc

Notations:

1. FC - fully connected layer.

2. SiLU(Ramachandran et al., 2017) and LReLU - the non-linear activations.

3. Nn and Nc - the indices of numeric and categorical features, respectively.

4. mi - the number of categories in the i’th categorical feature.

D METRIC LEARNING ILLUSTRATIONS

Figure 4: Class separation example - original vs. latent spaces
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Figure 5: Class density example - original vs. latent spaces

E GETIMPORTANCE ILLUSTRATION

Figure 6: GetImportance (Algorithm 3) illustration - in each iteration, the k-NNs minority samples
of each majority sample are found (blue arrows). These minority samples are assigned the iteration
index, which reflects the proximity level to majority points, and removed from the set of minority
samples used in the next iteration. In this manner, each minority sample is assigned a proximity
level by which its importance is determined.

F WEIGHTED SMOTE ALGORITHM

Algorithm 4 WeightedSMOTE
Inputs: xmin - minority samples,

weights - importance-weights,
num required - number of required samples

Outputs: interpolations,
base indices - interpolation bases,
neighbors indices - interpolation neighbors

1: k ← 5 ▷ default number of k-NNs is 5
2: k neighbors← k nearest-neighbors of xmin from xmin ▷ returns |xmin| × k matrix
3: base indices← choose num required samples from [0, ..., |xmin| − 1] w.p. weights
4: neighbors indices← uniformly sample num required neighbor indices from [0, ..., k − 1]
5: λ← choose num required samples from a Uniform[0, 1] probability
6: xbase ← xmin[base indices]
7: xneighbors ← k neighbors[base indices][neighbors indices]
8: interpolations← xbase + λ(xbase − xneighbors)
9: return interpolations, base indices, neighbors indices

G FILTERING ALGORITHM

The filtering algorithm is detailed in Algo.5. A visual demonstration of the filtering is provided in
Fig.7
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Algorithm 5 Filter
Inputs: trained baseline classifier- classifier, synthetic samples- xsyn, interpolation factors- λ,
original data- x, base samples- base indices, neighbor samples- nhbr indices
Output: filtered xsyn

1: base score← classifier(x[base indices])
2: nhbr score← classifier(x[nhbr indices])
3: syn score← classifier(xsyn)

4: thr score← (base score)1−λ(nhbr score)λ

margin

5: return xsyn[syn score ≥ thr score]

Figure 7: Example - yeast 2-vs-8 dataset - the figures show the 2D & 3D PCAs of the ML-AE
latent space. The bold red dots marked by xbase and xneighbor are a random pair of minority near-
neighbors. Nine evenly-spaced interpolations between the latent samples are marked with black
dots. These interpolations are decoded and filtered using a pre-trained Catboost classifier with the
proposed threshold. Three decoded interpolations got very low scores for belonging to the minority
class (∼ 0.01) and are filtered. Not surprisingly, they seem to be positioned close to the majority
domain as opposed to the rest of the interpolations.

H TOY EXAMPLE

Simple synthetic datasets may exemplify the benefits of TD-SMOTE for minority oversampling. For
this purpose, a synthetic 2D class imbalanced dataset was generated. The circles dataset, illustrated
in Fig.8, is sampled from a multi-circle shaped distribution where each class is associated with
distinct radii.

Figure 8: Circles dataset - both minority and majority samples are generated with evenly spaced
angles and radii sampled from a bi-normal distribution (two circles per class). The minority and
majority radii are sampled from - 0.5 · N (0.8, 0.03) + 0.5 · N (1.28, 0.03) and 0.5 · N (1, 0.03) +
0.5 · N (1.6, 0.03), respectively. The class imbalance ratio is set to be 0.1.

The circle dataset is oversampled using SMOTE and TD-SMOTE. The oversampled datasets, illus-
trated in Fig.9, clearly demonstrates how SMOTE generates synthetic samples that may cross into
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the majority domain, a phenomenon that appears less frequent in the oversampled with TD-SMOTE
dataset.

Figure 9: Circles oversampled dataset - both SMOTE (left) and TD-SMOTE without metric learning
loss (λmetric = 0, middle) generate samples in the inner circle of the majority distribution. This
does not occur in the TD-SMOTE oversampling (right). TD-SMOTE achieves the highest AP in a
downstream classification with Catboost compared to other baseline oversampling techniques.

Figure 10: Circles Dataset - oversampling with different schemes. TD-SMOTE achieves the highst
AP score for downstream classification with Catboost.

I EVALUATION

Evaluation of oversampling methods is done according to the quality of a downstream classification
task using the oversampled data. The following section elaborates on the different facets of the
implemented evaluation process.

I.1 PERFORMANCE MEASURE

The most widely used empirical measure for classifier training and performance evaluation is ac-
curacy. Accuracy does not distinguish between the number of correct labels from different classes,
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which may lead to erroneous conclusions in the case of imbalanced datasets. For example, in ex-
treme class imbalance cases, a classifier that always predicts the majority class will have high accu-
racy, not reflecting its erroneous predictions over the minority class. In addition to accuracy, there
are several other performance metrics, such as precision, recall, and false-positive-rate (FPR), which
are defined as:

Accuracy := TP+TN
P+N , P recision := TP

TP+FP ,

Recall := TP
TP+FN , FPR := FP

FP+TN = FP
N .

Where: T , F , P , and N represent True, False, Positive, and Negative, respectively. These measures
are informative in class-imbalance cases and are the basis of the actual measures that are used for
evaluation (e.g., AP). In the scope of this work, evaluation is done using three measures commonly
used for classification tasks over class-imbalanced datasets (More, 2016; Johnson & Khoshgoftaar,
2019):

1. Average Precision (AP) - a numeric approximation of the Precision-Recall plot AUC.
2. F1 Score = 2 · Precision·RecallPrecision+Recall with a decision threshold of 0.5.

3. ROC-AUC - a numeric approximation of the Recall-FPR plot AUC. FPR is based, by def-
inition, on the number of negatives (N ). For imbalanced datasets, N may be substantially
larger than False-Positive (PN ), rendering the changes in PN to have less of an impact
over the final ROC-AUC. Nevertheless, this metric will also be presented in the results, as
it is commonly used in previous research (More, 2016; Darabi & Elor, 2021).

I.2 OVERSAMPLING STRATEGY

Oversampling is done to achieve a 1:1 ratio between classes. This is the default oversampling
strategy for the library baselines (e.g., SMOTE). Other approaches may include lower oversampling
rates combined with undersampling of the majority class. Because the experiments are focused on
comparing the oversampling methods and not the sampling strategy, all experiments are conducted
under a 1:1 ratio oversampling strategy.

I.3 DOWN-STREAM CLASSIFIERS

As of this research, the gradient-boosting decision-tree family is the go-to model for tabular clas-
sifications (Shwartz-Ziv & Armon, 2021; Kadra et al., 2021a). One of the best classifiers in this
family, and overall, is CatBoost(Prokhorenkova et al., 2017; Ibrahim et al., 2020). For this reason,
CatBoost was used as the main downstream classifier in the experiments. Its parameter values are
specified in appendix-J.2. In the research field of oversampling methods, it is well documented that
the performances of oversampling methods are classifier dependent (Bej et al., 2021a; More, 2016).
Comparisons are also conducted with an SVM classifier to align with previous research.

I.4 BASELINES

TD-SMOTE is compared to a set of oversampling techniques and generative models.

1. Generative Models One may hypothesize that using a good tabular generative model may
be a straightforward and simple solution for minority oversampling. The generative model
is trained to learn the data distribution (either solely of the minority samples or of the entire
data) and then used to generate new synthetic minority samples. To check the validity of
this hypothesis, a state-of-the-art tabular generative model called CTGAN (Xu et al., 2019)
is added as an additional baseline for comparison. In the scope of this work, CTGAN
is trained over all the data by representing the class as an additional categorical feature.
At inference, the model is conditioned to generate samples from the minority class. It is
worth mentioning that the CTGAN paper presents good results when evaluated on class-
imbalanced datasets, rendering it a viable option without special adaptations. For further
details regarding hyperparameter selection, see - appendix J.1.

2. Datasets with Categories Modern and state-of-the-art tabular classifiers such as CatBoost
support categorical features. For this reason, in the scope of this work, oversampling tech-
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niques are expected to generate synthetic samples with categorical values when generat-
ing a categorical feature. Some oversampling methods do not support categorical fea-
tures as they can not generate samples with categorical values. For this reason, evaluation
over purely numerical datasets and mixed/fully categorical datasets is done with differ-
ent oversampling methods. Purely-numeric dataset oversampling is evaluated with loss-
reweighting, random oversampling, and the common and high-performing SMOTE varia-
tions (Section 2), CTGAN (Xu et al., 2019) and the proposed model TD-SMOTE. Datasets
with categories are evaluated with loss-reweighting, random oversampling, SMOTE-NC,
SMOTE-N, CTGAN, and TD-SMOTE.

I.5 HYPERPARAMETERS

The choice of hyperparameters can significantly affect the experiment results. This is evident in
previous works and our experiments as well (More, 2016; Darabi & Elor, 2021). A persistent un-
derlying question is how much effort was put into optimizing the proposed model compared to the
alternative baselines. To alleviate this issue, the number of hyperparameters in the proposed model
was intentionally intended to be low. For example, a single encoder-decoder architecture is used
for all datasets. Assuming no prior or domain knowledge, the hyperparameters are chosen (solely)
according to their 5-fold cross-validation score over the training set. For further details, including
hyperparameters and search ranges, see appendix J.1.

I.6 STATISTICAL SIGNIFICANCE

The Friedman test is performed over all methods to assess the statistical significance, followed by
a post hoc analysis based on the Wilcoxon signed rank test (for pairwise comparisons). These tests
are a standard metric for comparing classifiers across multiple datasets (Demšar, 2006; Bej et al.,
2019; Tarawneh et al., 2020; Kadra et al., 2021b). The Friedman test compares all the methods. The
H0 hypothesis is that all methods are similar, while the H1 hypothesis is that at least one method
is superior to some other method. The H0 hypothesis of the Wilcoxson signed rank test is that the
observations of the two methods are similar, while the H1 hypothesis is that one is superior to the
other.

I.7 DATASETS

A set of 36 datasets with high class-imbalance ratios are used for evaluation. The dataset size,
imbalance ratio, and the number of features are specified in Table 4. The datasets are publicly
available under the Keel4 and Imblearn5 libraries. In the case of the Webpage and Arrhythmia
datasets, the high number of features (300 and 278, respectively) resulted in the SVM classifier
training failing; hence, these two datasets are excluded in experiments using SVM.

4https://sci2s.ugr.es/keel/imbalanced.php?order=ins#sub30
5https://imbalanced-learn.org/stable/datasets/index.html
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Table 4: Dataset Characteristics
Dataset #Samples Imbalance Ratio #Features

(Categorical)

Purely Numeric

Glass-0-1-6 vs 2 192 10.3 9 (0)
Glass2 214 11.6 9 (0)
Glass4 214 15.5 9 (0)
Page-Blocks-1-3 vs 4 472 15.9 10 (0)
Yeast-0-5-6-7-9 vs 4 528 9.4 8 (0)
Yeast-1 vs 7 459 14.3 7(0)
Yeast-1-2-8-9 vs 7 947 30.6 8(0)
Yeast-1-4-5-8 vs 7 693 22.1 8 (0)
Yeast-2 vs 4 514 9.1 8 (0)
Yeast-2 vs 8 482 23.1 8 (0)
Yeast4 1484 28.1 8 (0)
Yeast5 1484 32.7 8 (0)
Yeast6 1484 41.4 8 (0)
Ecoli 336 8.6 7(0)
Letter Image 20,000 26.5 16 (0)
Libras Move 360 14.0 90 (0)
Mammography 11,183 42.2 6 (0)
Ozone Levels 2536 34.0 72 (0)
Pen Digits 10,992 9.5 16 (0)
Satimage 6,435 9.3 36 (0)
Spectrometer 531 10.8 93 (0)
US Crime 1,994 12.3 100 (0)
Webpage 34,780 35.0 300 (0)
Wine Quality 4,898 15.9 85 (0)
Yeast ME2 1,484 28.1 8 (0)
Yeast ML8 2,417 12.6 103 (0)
Coil 2000 9,822 15.9 85 (0)
Oil Spill 937 21.9 49 (0)
Optical Digits 5,620 9.2 64 (0)
Arrhythmia 452 17.1 278 (0)
Car Evaluation 1728 12.0 21 (0)

With Categories

Abalone 4177 9.7 8 (1)
Abalone19 4177 129.5 8 (1)
Sick Euthyroid 3163 9.8 24 (18)
Thyroid Sick 3772 15.3 28 (21)
Solar Flare 1389 19.4 10 (10)
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J HYPERPARAMETER SELECTION APPENDIX

J.1 BASELINES

Table 5: Hyperparameter selection
Model Hyperparameter Values Note

TDSMOTE latent dimension
size

0.75 ML-AE latent space dimension relative to
the number of features in the original data
space.

λmetric 1 The factor of Lmetric−learn in Ltot.
SMOTE Chawla et al.
(2002)

n neighbors 3, 5, 7 Number of nearest neighbors to interpolate
with.

Borderline-SMOTE Han
et al. (2005)

n neighbors 3, 5, 7 Number of nearest neighbors to interpolate
with.

m neighbors 5, 10 Number of nearest neighbors according to
which to determine type.

PolyFit Gazzah & ES-
SOUKRI BEN AMARA
(2008)

- - The star topology is chosen as best candi-
date according to previous results.

ProWSyn Barua et al.
(2013b)

L 3, 5, 7 Number of proximity levels.

n neighbors 3, 5, 7 Number of nearest neighbors according to
which to determine type.

SMOTE-IPF Sáez et al.
(2015)

n folds 5, 9 Number of folds when filtering (see paper).

n neighbors 3, 5, 7 Number of nearest neighbors to interpolate
with.

SMOTENC Chawla et al.
(2002)

n neighbors 3, 5, 7 Number of nearest neighbors to interpolate
with.

SMOTEN Chawla et al.
(2002)

- -

CTGAN

Xu et al. (2019) embedding dim 16, 32, 64 Embedding dim (normal distribution from
which latent is. sampled)

batch size 8, 16, 32
pac 8, 16 See details in PAC-GAN paper Lin et al.

(2018)
epochs 100, 150

J.2 CATBOOST PARAMETERS

100 iterations (trees), learning rate=0.2, depth of each tree = 6.
Rest are default - loss = NLL.
Auto class reweight is used when class reweighting is checked.
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K ADDITIONAL PERFORMANCE MEASURES APPENDIX

K.1 F1 RESULTS

Table 6: Classification F1 results for numerical datasets using CatBoost
no os smote bsmote1 bsmote2 poly fit prowsyn smote ipf ros rw ctgan td-smote

glass-0-1-6 vs 2 0.000 0.333 0.286 0.286 0.286 0.333 0.286 0.333 0.333 0.286 0.400
glass2 0.000 0.333 0.364 0.400 0.000 0.222 0.364 0.364 0.364 0.222 0.286
glass4 0.667 0.667 0.667 0.667 0.667 0.667 0.667 0.667 0.750 0.500 0.667
page-blocks-1-3 vs 4 0.800 0.833 0.909 0.909 0.833 0.833 0.909 0.833 0.909 0.889 0.800
yeast-0-5-6-7-9 vs 4 0.500 0.818 0.727 0.783 0.500 0.741 0.783 0.727 0.727 0.286 0.400
yeast-1 vs 7 0.250 0.286 0.400 0.250 0.000 0.222 0.267 0.308 0.267 0.000 0.250
yeast-1-2-8-9 vs 7 0.250 0.143 0.143 0.133 0.143 0.118 0.133 0.200 0.167 0.250 0.222
yeast-1-4-5-8 vs 7 0.000 0.286 0.500 0.375 0.000 0.400 0.364 0.182 0.286 0.000 0.000
yeast-2 vs 4 0.857 0.846 0.720 0.769 0.833 0.846 0.846 0.857 0.833 0.957 0.880
yeast-2 vs 8 0.667 0.571 0.500 0.400 0.667 0.571 0.571 0.667 0.667 0.667 0.667
yeast4 0.286 0.414 0.320 0.294 0.286 0.378 0.353 0.364 0.364 0.154 0.400
yeast5 0.824 0.842 0.889 0.643 0.889 0.800 0.842 0.842 0.750 0.842 0.889
yeast6 0.667 0.588 0.500 0.632 0.615 0.571 0.556 0.533 0.600 0.667 0.714
ecoli 0.588 0.417 0.417 0.370 0.471 0.414 0.435 0.444 0.462 0.471 0.471
letter img 0.972 0.966 0.960 0.945 0.958 0.955 0.963 0.960 0.942 0.951 0.966
libras move 0.571 0.667 0.462 0.500 0.462 0.667 0.500 0.429 0.667 0.750 0.545
mammography 0.626 0.597 0.597 0.442 0.673 0.567 0.567 0.615 0.587 0.507 0.617
ozone level 0.118 0.296 0.286 0.357 0.118 0.250 0.250 0.273 0.333 0.174 0.111
pen digits 0.998 0.998 0.984 0.979 0.991 0.993 0.995 0.998 0.995 0.988 0.995
satimage 0.669 0.641 0.635 0.642 0.688 0.642 0.691 0.636 0.605 0.609 0.658
spectrometer 0.875 0.889 0.800 0.941 0.875 0.941 0.750 0.824 0.941 0.875 0.941
us crime 0.200 0.393 0.339 0.345 0.279 0.400 0.364 0.392 0.310 0.158 0.400
webpage 0.661 0.543 0.583 0.635 0.658 0.655 0.552 0.409 0.400 0.657 0.672
wine quality 0.170 0.239 0.214 0.219 0.209 0.243 0.239 0.313 0.260 0.263 0.215
yeast me2 0.533 0.540 0.438 0.381 0.533 0.450 0.500 0.471 0.516 0.625 0.588
yeast ml8 0.000 0.000 0.133 0.127 0.093 0.068 0.000 0.050 0.000 0.000 0.145
coil 2000 0.015 0.128 0.103 0.073 0.076 0.062 0.123 0.245 0.246 0.032 0.047
oil 0.455 0.412 0.444 0.390 0.667 0.421 0.410 0.621 0.583 0.615 0.643
optical digits 0.967 0.977 0.977 0.973 0.959 0.977 0.977 0.968 0.986 0.967 0.982
arrhythmia 0.909 0.909 0.909 0.769 0.800 0.909 0.833 0.909 0.833 0.909 0.909
car eval 34 0.412 0.540 0.579 0.615 0.412 0.500 0.500 0.683 0.683 0.500 0.500
#Best 6 4 5 4 4 3 2 5 7 6 9
#Worst 8 1 2 8 5 1 2 1 4 7 3

Figure 11: Critical Difference Diagram - Wilcoxson significance analysis over the purely numerical
datasets using Catboost. Ranks connected via a bold bar indicate that performances are not signifi-
cantly different, namely that p > 0.05. Average F1 scores are presented above lines.
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K.2 ROC-AUC RESULTS

Table 7: Classification ROC results for numerical datasets using CatBoost
no os smote bsmote1 bsmote2 poly fit prowsyn smote ipf ros rw ctgan td-smote

glass-0-1-6 vs 2 0.671 0.729 0.657 0.786 0.536 0.836 0.650 0.571 0.614 0.807 0.643
glass2 0.718 0.660 0.795 0.744 0.750 0.737 0.692 0.654 0.827 0.795 0.699
glass4 0.967 0.967 0.942 1.000 0.933 0.958 0.967 0.975 0.983 0.942 0.975
page-blocks-1-3 vs 4 0.998 0.998 0.998 1.000 0.996 0.996 0.998 1.000 1.000 1.000 0.998
yeast-0-5-6-7-9 vs 4 0.944 0.962 0.928 0.939 0.965 0.941 0.964 0.954 0.933 0.943 0.922
yeast-1 vs 7 0.952 0.839 0.915 0.868 0.752 0.861 0.874 0.907 0.897 0.950 0.930
yeast-1-2-8-9 vs 7 0.611 0.568 0.653 0.634 0.593 0.601 0.595 0.600 0.629 0.707 0.744
yeast-1-4-5-8 vs 7 0.585 0.811 0.737 0.706 0.712 0.758 0.792 0.743 0.663 0.556 0.723
yeast-2 vs 4 0.993 0.993 0.985 0.981 0.986 0.992 0.989 0.985 0.992 0.997 0.992
yeast-2 vs 8 0.618 0.680 0.642 0.613 0.664 0.653 0.583 0.691 0.581 0.745 0.723
yeast4 0.932 0.934 0.916 0.883 0.944 0.936 0.930 0.931 0.934 0.953 0.957
yeast5 0.995 0.994 0.996 0.998 0.992 0.995 0.996 0.996 0.996 0.998 0.996
yeast6 0.970 0.960 0.980 0.979 0.982 0.974 0.954 0.974 0.986 0.988 0.971
ecoli 0.883 0.876 0.848 0.836 0.917 0.871 0.888 0.900 0.895 0.936 0.912
letter img 0.998 0.999 0.997 0.998 0.999 0.999 0.999 1.000 1.000 0.998 0.999
libras move 0.970 0.773 0.887 0.675 0.839 0.851 0.815 0.660 0.812 0.943 0.731
mammography 0.943 0.916 0.944 0.937 0.951 0.930 0.936 0.917 0.916 0.953 0.937
ozone level 0.906 0.874 0.819 0.862 0.935 0.909 0.906 0.917 0.917 0.890 0.887
pen digits 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
satimage 0.948 0.949 0.948 0.950 0.952 0.955 0.952 0.951 0.947 0.933 0.947
spectrometer 0.999 0.997 0.997 1.000 0.999 1.000 0.992 0.998 0.998 0.999 1.000
us crime 0.882 0.878 0.883 0.875 0.890 0.887 0.855 0.882 0.861 0.864 0.886
webpage 0.961 0.963 0.960 0.957 0.956 0.959 0.964 0.967 0.968 0.964 0.956
wine quality 0.804 0.806 0.816 0.770 0.761 0.795 0.820 0.815 0.828 0.805 0.819
yeast me2 0.941 0.972 0.912 0.933 0.949 0.968 0.972 0.970 0.972 0.922 0.934
yeast ml8 0.606 0.584 0.558 0.612 0.592 0.581 0.595 0.596 0.511 0.555 0.541
coil 2000 0.766 0.753 0.745 0.738 0.766 0.767 0.748 0.736 0.758 0.754 0.755
oil 0.954 0.948 0.948 0.935 0.977 0.951 0.940 0.980 0.959 0.965 0.981
optical digits 1.000 0.998 0.999 0.995 0.999 0.999 0.999 0.997 0.999 0.999 0.999
arrhythmia 0.993 0.991 0.993 0.981 0.991 0.993 0.991 0.991 0.993 0.991 0.993
car eval 34 0.954 0.999 0.995 0.996 0.988 1.000 1.000 0.999 0.984 0.971 0.984
#Best 5 3 2 4 4 7 1 3 6 7 6
#Worst 1 2 3 7 7 1 3 3 3 3 1

Figure 12: Critical Difference Diagram - Wilcoxson significance analysis over the purely numerical
datasets using Catboost. Ranks connected via a bold bar indicate that performances are not signifi-
cantly different, namely that p > 0.05. Average ROC-AUC scores are presented above lines.
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L SVM DOWN-STREAM CLASSIFIER

Table 8: Classification AP results for numerical datasets using SVM
no smote bsmote1 bsmote2 poly fit prowsyn smote ipf random loss ctgan td-smote
oversample oversample reweight

glass-0-1-6 vs 2 0.164 0.410 0.408 0.654 0.472 0.530 0.402 0.431 0.486 0.172 0.428
glass2 0.283 0.444 0.307 0.291 0.513 0.442 0.444 0.444 0.399 0.091 0.370
glass4 0.756 0.639 0.639 1.000 0.639 0.639 0.639 0.639 0.917 0.319 0.806
page-blocks-1-3 vs 4 1.000 0.596 0.967 0.927 0.927 0.810 0.596 0.596 0.686 0.925 0.629
yeast-0-5-6-7-9 vs 4 0.650 0.599 0.585 0.488 0.575 0.616 0.609 0.575 0.575 0.414 0.647
yeast-1 vs 7 0.609 0.345 0.259 0.257 0.255 0.232 0.359 0.301 0.316 0.253 0.409
yeast-1-2-8-9 vs 7 0.237 0.104 0.146 0.138 0.064 0.079 0.128 0.114 0.157 0.213 0.095
yeast-1-4-5-8 vs 7 0.239 0.307 0.363 0.430 0.388 0.392 0.298 0.299 0.280 0.097 0.313
yeast-2 vs 4 0.963 0.908 0.874 0.751 0.927 0.915 0.926 0.916 0.916 0.944 0.906
yeast-2 vs 8 0.548 0.444 0.186 0.135 0.534 0.527 0.529 0.527 0.443 0.273 0.388
yeast4 0.442 0.354 0.323 0.247 0.316 0.324 0.352 0.267 0.284 0.238 0.451
yeast5 0.815 0.758 0.764 0.718 0.769 0.764 0.764 0.762 0.706 0.500 0.781
yeast6 0.660 0.618 0.591 0.666 0.723 0.683 0.655 0.600 0.643 0.339 0.686
ecoli 0.496 0.527 0.363 0.247 0.432 0.405 0.426 0.521 0.507 0.271 0.438
letter img 0.990 0.996 0.995 0.861 0.997 0.992 0.996 0.995 0.993 0.919 0.996
libras move 0.863 0.856 0.856 0.733 0.794 0.722 0.853 0.863 1.000 0.883 0.846
mammography 0.634 0.575 0.536 0.291 0.581 0.560 0.579 0.567 0.545 0.507 0.509
ozone level 0.218 0.268 0.240 0.130 0.256 0.242 0.216 0.279 0.291 0.180 0.257
pen digits 1.000 1.000 1.000 0.998 1.000 1.000 1.000 1.000 1.000 0.998 1.000
satimage 0.457 0.437 0.402 0.553 0.512 0.469 0.484 0.509 0.669 0.451 0.731
spectrometer 1.000 1.000 1.000 1.000 0.989 1.000 1.000 1.000 1.000 1.000 1.000
us crime 0.445 0.418 0.413 0.315 0.461 0.492 0.418 0.438 0.421 0.482 0.420
wine quality 0.167 0.110 0.132 0.080 0.090 0.096 0.104 0.112 0.111 0.143 0.138
yeast me2 0.617 0.650 0.584 0.523 0.556 0.545 0.670 0.641 0.627 0.422 0.647
yeast ml8 0.138 0.107 0.116 0.130 0.122 0.103 0.106 0.102 0.101 0.080 0.101
coil 2000 0.128 0.133 0.134 0.125 0.135 0.145 0.152 0.138 0.142 0.089 0.144
oil 0.520 0.774 0.788 0.835 0.723 0.768 0.763 0.821 0.887 0.813 0.762
optical digits 1.000 1.000 0.998 0.997 1.000 1.000 1.000 0.999 0.999 0.995 0.999
car eval 34 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.345 1.000
#Best 14 4 2 5 5 3 5 3 5 1 5
#Worst 2 1 1 8 2 2 1 1 0 13 0

Figure 13: Critical Difference Diagram - Wilcoxson significance analysis over the purely numerical
datasets using SVM. Ranks connected via a bold bar indicate that performances are not significantly
different, namely that p > 0.05. Average AP scores are presented above lines.

.

M ABLATION STUDIES

Ablation tests were done for downstream classification with Catboost and evaluation with AP val-
ues. The tests were done over all datasets relative to the standard TD-SMOTE training and model
(with all its components). The first ablation tests were conducted to examine the ML-AE training
methodology and presented in Table 9.

Training w/o majority w/o loss reweight w/o metric learn loss
Performance -15.7% -2.1% -20.1%

Table 9: Training Ablation

The tests clearly demonstrate that using the majority samples is beneficial when training the ML-
AE. This was demonstrated in previous works, such as TAEI(Darabi & Elor, 2021), and reaffirmed
in our tests. In addition, it is evident that both a loss reweighted by class sizes and adding a metric
learning loss that uses the labels to shape the latent space are beneficial.
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The second set of tests explores the contribution of importance oversampling (i.e., ”importance”)
and classifier filtering (i.e., ”filtering”). They are presented in Table 10.

Oversample w/o importance w/o filtering w/o importance & filtering
Performance -3.9% -3.3% -12.0%

Table 10: Oversample Ablation

The results demonstrate that the combination of importance-oversampling and classifier filtering
is beneficial. Importance weights are determined by proximities to the majority samples. Hence,
high-weighted minority samples are near class-domain borders, which inherently increases the
hazard of crossing class domains when interpolating. For this reason, it is not surprising that filtering
synthetic samples is even more necessary and effective when such importance-oversampling is used.

A central aspect of TD-SMOTE is the hypothesis that oversampling in a learned latent space shaped
by a metric-learning loss is more suited for oversampling with SMOTE (Section 3.1.1). To evaluate
this hypothesis, a TD-SMOTE version that does not apply importance-oversampling or filtering,
which we name Plain-TD-SMOTE, is compared to SMOTE. Recall that TD-SMOTE oversamples
in the latent space using SMOTE; hence, the Plain-TD-SMOTE version differs from SMOTE only in
the space where the oversampling is done. In such a comparison, the Plain-TD-SMOTE got a better
rank, as shown in Fig. 14. The complete set of results is provided in Fig. 11. In this case, improving
over SMOTE supports the hypothesis that oversampling in the learned latent space results in better
samples for downstream classification.

Figure 14: Critical Difference Diagram - Plain-TD-SMOTE
.
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Table 11: Classification AP results for numerical datasets using CatBoost - SMOTE vs. Plain-TD-
SMOTE

smote plain-td-smote
glass-0-1-6 vs 2 0.434 0.445
glass2 0.234 0.377
glass4 0.809 0.589
page-blocks-1-3 vs 4 0.967 0.967
yeast-0-5-6-7-9 vs 4 0.783 0.648
yeast-1 vs 7 0.586 0.407
yeast-1-2-8-9 vs 7 0.209 0.253
yeast-1-4-5-8 vs 7 0.085 0.141
yeast-2 vs 4 0.925 0.927
yeast-2 vs 8 0.524 0.533
yeast4 0.417 0.498
yeast5 0.905 0.932
yeast6 0.722 0.785
ecoli 0.564 0.483
letter img 0.981 0.986
libras move 0.798 0.642
mammography 0.699 0.674
ozone level 0.351 0.260
pen digits 1.000 1.000
satimage 0.755 0.777
spectrometer 0.989 0.989
us crime 0.388 0.432
webpage 0.698 0.685
wine quality 0.323 0.174
yeast me2 0.601 0.641
yeast ml8 0.138 0.091
coil 2000 0.169 0.198
oil 0.347 0.812
optical digits 0.996 0.995
arrhythmia 0.877 0.810
car eval 34 0.746 0.894

26


	Introduction
	Related Work
	TD-SMOTE
	Model Training
	Metric Learning Loss Choice

	Oversampling
	Importance-Oversampling
	Classifier Filtering


	Experimental Results
	Additional Experiments

	Concluding Remarks, Limitations, and Future Work
	Deep SMOTE with Permutation Loss Results
	Feature Preprocessing and Representation
	ML-AE Architecture
	Metric Learning Illustrations
	GetImportance Illustration
	Weighted SMOTE Algorithm
	Filtering Algorithm
	Toy Example
	Evaluation
	Performance Measure
	Oversampling Strategy
	Down-Stream Classifiers
	Baselines
	Hyperparameters
	Statistical Significance
	Datasets

	Hyperparameter Selection Appendix
	Baselines
	CatBoost Parameters

	Additional Performance Measures Appendix
	F1 Results
	ROC-AUC Results

	SVM Down-Stream Classifier
	Ablation Studies

