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Abstract
Causal representation learning promises to extend
causal models to hidden causal variables from
raw entangled measurements. However, most
progress has focused on proving identifiability
results in different settings, and we are not aware
of any successful real-world application. At
the same time, the field of dynamical systems
benefited from deep learning and scaled to count-
less applications but does not allow parameter
identification. In this paper, we draw a clear
connection between the two and their key assump-
tions, allowing us to apply identifiable methods
developed in causal representation learning to
dynamical systems. At the same time, we can
leverage scalable differentiable solvers developed
for differential equations to build models that
are both identifiable and practical. Overall, we
learn explicitly controllable models that isolate
the trajectory-specific parameters for further
downstream tasks such as out-of-distribution
classification or treatment effect estimation. We
experiment with a wind simulator with partially
known factors of variation. We also apply the
resulting model to real-world climate data and
successfully answer downstream causal questions
in line with existing literature on climate change.

1. Introduction
Causal representation learning (CRL) (Schölkopf et al.,
2021) focuses on provably retrieving high-level latent vari-
ables from low-level data. Recently, there have been many
casual representation learning works compiling, in various
settings, different theoretical identifiability results for these
latent variables (Brehmer et al., 2022; Kivva et al., 2022;
Lachapelle et al., 2024; Lippe et al., 2022a;b; Squires et al.,
2023; Sturma et al., 2024; Varici et al., 2023; Von Kügelgen
et al., 2021; von Kügelgen et al., 2024; Xu et al., 2024;
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Zhang et al., 2024). The main open challenge that remains
for this line of work is the broad applicability to real-world
data. Following earlier works in disentangled representa-
tions (see (Locatello et al., 2019) for a summary of data
sets), existing approaches have largely focused on visual
data . This is challenging for various reasons. Most notably,
it is unclear what the causal variables should be in computer
vision problems and what would be interesting or relevant
causal questions. The current standard is to test algorithms
on synthetic data sets with “made-up” latent causal graphs,
e.g., with the object class of a rendered 3d shape causing its
position, hue, and rotation (Von Kügelgen et al., 2021).

In parallel, the field of machine learning for science (Mjol-
sness and DeCoste, 2001; Raghu and Schmidt, 2020) shows
promising results on various real-world time series data
collected from some underlying dynamical systems. Some
of these works primarily focus on time-series forecasting,
i.e., building a neural emulator that mimics the behavior of
the given times series data (Chen et al., 2018; 2021; Kidger
et al., 2021); while others try to additionally learn an explicit
ordinary differential equation simultaneously (Brunton et al.,
2016a;b; d’Ascoli et al., 2024; d’Ascoli et al., 2022; Kahe-
man et al., 2020; Schröder and Macke, 2023). However, to
the best of our knowledge, none of these methods provide
explicit identifiability analysis indicating whether the discov-
ered equation recovers the ground truth underlying govern-
ing process given time series observations; or even whether
the learned representation relates to the underlying steering
parameters. At the same time, many scientific questions
are inherently causal, in the sense that physical laws gov-
ern the measurements of all the natural data we can record,
e.g., across different environments and experimental set-
tings. Identifying such an underlying physical process can
boost scientific understanding and reasoning in numerous
fields; for example, in climate science, one could conduct
sensitivity analysis of layer thickness parameter on atmo-
sphere motion more efficiently, given a neural emulator that
identifies the layer thickness in its latent space. However,
whether mechanistic models can be practically identified
from data is so far unclear (Schölkopf et al., 2021, Table 1).

This paper aims to identify the underlying time-invariant
physical parameters from real-world time series, such as
the previously mentioned layer thickness parameter, while
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Marrying Causal Representation Learning with Dynamical Systems for Science

still preserving the ability to forecast efficiently. Thus, we
connect the two seemingly faraway communities, causal
representation learning and machine learning for dynamical
systems, by phrasing parameter estimation problems in dy-
namical systems as a latent variable identification problem
in CRL. The benefits are two folds: (1) we can import all
identifiability theories for free from causal representation
learning works, extending discovery methods with addi-
tional identifiability analysis and, e.g., multiview training
constructs; (2) we showcase that the scalable mechanistic
neural networks (Pervez et al., 2024) recently developed for
dynamical systems can be directly employed with causal
representation learning, thus providing a scalable imple-
mentation for both identifying and forecasting real-world
dynamical systems.

Starting by comparing the common assumptions in the field
of parameter estimation in dynamical systems and causal
representation learning, we carefully justify our proposal
to translate any parameter estimation problem into a latent
variable identification problem; we differentiate three types
of identifiability: full identifiability, partial identifiability
and non-identifiability. We describe concrete scenarios in
dynamical systems where each kind of identifiability can be
theoretically guaranteed and restate exemplary identifiability
theorems from the causal representation learning literature
with slight adaptation towards the dynamical system setup.
We provide a step-by-step recipe for reformulating a param-
eter estimation problem into a causal representation learning
problem and discuss the challenges and pitfalls in practice.
Lastly, we successfully evaluate our parameter identification
framework on various simulated and real-world climate
data. We highlight the following contributions:

• We establish the connection between causal representation
learning and parameter estimation for differential equa-
tions by pinpointing the alignment of common assump-
tions between two communities and providing hands-on
guidance on how to rephrase the parameter estimation
problem as a latent variable identification problem in
causal representation learning.

• We equip discovery methods with provably identifiable
parameter estimation approaches from the causal repre-
sentation learning literature and their specific training
constructs. This enables us to maintain both the theo-
retical results from the latter and the scalability of the
former.

• We successfully apply causal representation learning ap-
proaches to simulated and real-world climate data, demon-
strating identifiability via domain-specific downstream
causal tasks (OOD classification and treatment-effect esti-
mation), pushing one step further on the applicability of
causal representation for real-world problems.

Remark on the novelty of the paper: Our main contri-
bution is establishing a connection between the dynamical
systems and causal representation learning fields. As such,
we do not introduce a new method per se. Meanwhile, this
connection allows us to introduce CRL training constructs
in methods that otherwise would not have any identifica-
tion guarantees. Further, it provides the first avenue for
causal representation learning applications on real-world
data. These are both major challenges in the respective com-
munities, and we hope this paper will serve as a building
block for cross-pollination.

2. Parameter Estimation in Dynamical
Systems

We consider dynamical systems in the form of

ẋ(t) = fθ(x(t)) x(0) = x0, θ ∼ pθ, t ∈ [0, tmax]
(1)

where x(t) ∈ X ⊆ Rd denotes the state of a system at
time t, fθ ∈ C1(X ,X ) is some smooth differentiable vector
field representing the constraints that define the system’s
evolution, characterized by a set of physical parameters
θ ∈ Θ = Θ1 × · · · × ΘN , where Θ ⊆ RN is an open,
simply connected real space associated with the probability
density pθ. Formally, fθ can be considered as a functional
mapped from θ through M : Θ → C1(X ,X ). In our setup,
we consider time-invariant, trajectory-specific parameters
θ that remain constant for the whole time span [0, tmax], but
variable for different trajectories. For instance, consider a
robot arm interacting with multiple objects of different mass;
a parameter θ could be the object’s masses m ∈ R+ in New-
ton’s second law ẍ(t) = F(t)/m, with F(t) denote the force
applied at time t. Depending on the object the robot arm in-
teracts with, m can take different values, following the prior
distribution pθ. x(0) = x0 ∈ X denotes the initial value
of the system. Note that higher-order ordinary differential
equations can always be rephrased as a first-order ODE. For
example, a ν-th order ODE in the following form:

x(ν)(t) = f = (x(t), x(1)(t), . . . , x(ν−1)(t),θ),

can be written as ẋ(t) = fθ(x(t)), where x(t) =
(x(t), x(1)(t), . . . , x(ν−1)(t)) ∈ Rν·d denotes state vector
constructed by concatenating the derivatives. Formally, the
solution of such a dynamical system can be obtained by inte-
grating the vector field over time: x(t) =

∫ t

0
f(x(τ),θ)dτ .

What do we mean by “parameters”? The parameters θ
that we consider can be both explicit and implicit. When the
functional form of the ODE is given, like Newton’s second
law, the set of parameters is defined explicitly and uniquely.
For real-world physical processes where the functional form
of the state evolution is unknown, such as the sea-surface
temperature change, we can consider latitude-related
features as parameters. Overall, we use parameters to
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Marrying Causal Representation Learning with Dynamical Systems for Science

generally refer to any time-invariant, trajectory-specific
components of the underlying dynamical system.

Assumption 2.1 (Existence and uniqueness). For every
x0 ∈ X , θ ∈ Θ, there exists a unique continuous solution
xθ : [0, tmax] → X satisfying the ODE (eq. (1)) for all
t ∈ [0, tmax] (Ince, 1956; Lindelöf, 1894).

Assumption 2.2 (Structural identifiability). An
ODE (eq. (1)) is structurally identifiable in the sense that
for any θ1,θ2 ∈ Θ, xθ1(t) = xθ2(t)∀t ∈ [0, tmax] holds
if and only if θ1 = θ2 (Bellman and Åström, 1970; Walter
et al., 1997; Wieland et al., 2021).

Remark 2.1. Asm. 2.2 implies that it is in principle possible
to identify the parameter θ from a trajectory xθ (Miao et al.,
2011). Since this work focuses on providing concrete algo-
rithms that guarantee parameter identifiability given infinite
number of samples, the structural identifiability assumption
is essential as a theoretical ground for further algorithmic
analysis. It is noteworthy that a non-structurally identifiable
system can become identifiable by reparamatization. For
example, linear ODE ẋ(t) = abx(t) with parameters
a, b ∈ R2 is structurally non-identifiable as a, b are
commutative. But if we define c := ab as the overall growth
rate of the linear system, then c is structurally identifiable.

Problem setting. Given an observed trajectory
x := (xθ(t0), . . . ,xθ(tT )) ∈ X T over the discretized
time grid T := (t0, . . . , tT ), our goal is to investigate
the identifiability of structurally identifiable parameters
by formulating concrete conditions under which the
parameter θ is (i) fully identifiable, (ii) partially identifi-
able, or (iii) non-identifiable from the observational data.
We establish the identifiability theory for dynamical
systems by converting classical parameter estimation
problems (Bellman and Åström, 1970) into a latent
variable identification problem in causal representation
learning (Schölkopf et al., 2021). For both (i) and (ii),
we empirically showcase that existing CRL algorithms
with slight adaptation can successfully (partially)
identify the underlying physical parameters.

3. Identifiability of Dynamical Systems
This section provides different types of theoretical state-
ments on the identifiability of the underlying time-invariant,
trajectory-specific physical parameters θ, depending on
whether the functional form of fθ is known or not. We
show that the parameters from an ODE with a known
functional form can be fully identified while parameters
from unknown ODEs are in general non-identifiable.
However, by incorporating some weak form of supervision,
such as multiple similar trajectories generated from certain
overlapping parameters (Daunhawer et al., 2023; Locatello
et al., 2020; Von Kügelgen et al., 2021; Yao et al., 2024),

parameters from an unknown ODE can also be partially
identified. Detailed proofs of the theoretical statements are
provided in App. A.

3.1. Identifiability of dynamical systems with known
functional form

We begin with the identifiability analysis of the physical
parameters of an ODE with known functional form. Many
real-world data we record are governed by known physical
laws. For example, the bacteria growth in microbiology
could be modeled with a simple logistic equation under cer-
tain conditions, where the parameter of interest in this case
would be the growth rate r ∈ R+ and maximum capacity
K ∈ R+. Identifying such parameters would be helpful for
downstream analysis. To this end, we introduce the defini-
tion of full identifiability of a physical parameter vector θ.

Definition 3.1 (Full identifiability). A parameter vector
θ ∈ Θ is fully identified if the estimator θ̂ converges to the
ground truth parameter θ almost surely.

Definition 3.2 (ODE solver). An ODE solver F : Θ → X T

computes the solution x of the ODE fθ = M(θ) (eq. (1))
over a discrete time grid T = (t1, . . . , tT ).

Corollary 3.1 (Full identifiability with known functional
form). Consider a trajectory x ∈ X T generated from a
ODE fθ(x(t)) satisfying Asms. 2.1 and 2.2, let θ̂ be an
estimator minimizing the following objective:

L(θ̂) =
∥∥∥F (θ̂)− x

∥∥∥2
2

(2)

then the parameter θ is fully-identified (Defn. 3.1) by the
estimator θ̂.

Remark 3.1. The estimator θ̂ of eq. (2) is considered as some
learnable parameters that can be directly optimized. If we
have multiple trajectories x generated from different realiza-
tions of θ ∼ pθ , we can also amortize the prediction θ̂ using
a smooth encoder g : X T → Θ. In this case, the loss above
can be rewritten as: L(g) = Ex,t[∥F (g(x))− x(t)∥22], then
the optimal encoder g∗ ∈ argminL(g) can generalize to un-
seen trajectories x that follow the same class of physical law
f and fully identify their trajectory-specific parameters θ.

Remark 3.2. In Cor. 3.1, we consider an ideal setup glossing
over several practical challenges: (i) Although closed-form
solution of θ∗ is provided by linear least squares when f
is linear in θ (see App. A.1 for details), finding the global
optimum θ∗ in the nonlinear case using gradient descent is
challenging in practice, both computationally and, despite
the guarantee of theoretical full identifiability, it ignores
non-convexity. (ii) Since the functional form fθ is known,
we assume that the ODE solver is exact in the sense that
the generated solution of the ground truth parameter F (θ)
perfectly aligns with the observation x, i.e., L(θ) = 0.
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However, in practice, numerical solvers preserve certain
approximation errors (Lötstedt and Petzold, 1986). Al-
though recent advances propose neural network-based ODE
solvers (Chen et al., 2018) to alleviate this issue, end-to-end
training that involves solving an ODE in the forward pass
is not trivial. Most of the differentiable ODE solvers (Chen,
2018; Chen et al., 2018; 2021) solve the ODE autoregres-
sively; thus, the time dimension cannot be parallelized in the
GPU. To tackle this problem, Pervez et al. (2024) provided
a highly efficient ODE solver that can be utilized in our
framework. A more extensive discussion about different
types of neural network-based solvers is provided in § 5.

Discussion. Many works on machine learning for dynam-
ical system identification follow the principle presented
in Cor. 3.1, and most of them solely differ concerning the
architecture they choose for the ODE solver. For example,
SINDy-like ODE discovery methods (Brunton et al.,
2016a;b; Kaheman et al., 2020; Kaptanoglu et al., 2021; Per-
vez et al., 2024) approximate the ground truth vector field f
using a linear weighted sum over a set of library functions
and learn the linear coefficients by sparse regression. For
any ODE f that is linear in θ, i.e., the ground truth vector
field is in the form of fθ(x, t) =

∑m
i=1 θiϕi(x) for a set of

known base functions {ϕi}i∈[m], SINDy-like approaches
can fully identify the parameters by imposing some sparsity
constraint. Another line of work, gradient matching (Wenk
et al., 2019), estimates the parameters probabilistically by
modeling the vector field fθ using a Gaussian Process (GP).
The modeled solution x(t) is thus also a GP since GP is
closed under integrals (a linear operator). Given the func-
tional form of fθ, the model aims to match the estimated
gradient ẋ and the evaluated vector field fθ(x(t)) by maxi-
mizing the likelihood, which is equivalent to minimizing the
least-squares loss (eq. (2)) under Gaussianity assumptions.
Hence, the gradient matching approaches can theoretically
identify the underlying parameters under Cor. 3.1. Formal
statements and proofs for both SINDy-like and gradient
matching approaches are provided in App. A. Note that
most ODE discovery approaches (Brunton et al., 2016a;b;
Kaheman et al., 2020; Kaptanoglu et al., 2021; Pervez et al.,
2024; Wenk et al., 2019) refrain from making identifiability
statements and explicitly states it is unknown which settings
yield identifiability.

3.2. Identifiability of dynamical systems without known
functional form

In traditional dynamical systems, identifiability analysis usu-
ally assumes the functional form of the ODE is known (Miao
et al., 2011); however, for most real-world time series data,
the functional form of underlying physical laws remains
uncovered. Machine learning-based approaches for dynam-
ical systems work in a black-box manner and can clone the
behavior of an unknown system (Chen et al., 2018; 2021;

Norcliffe et al., 2020), but understanding and identifiabil-
ity guarantees of the learned parameters are so far missing.
Since most of the physical processes are inherently steered
by a few underlying time-invaraint parameters, identifying
these parameters can be helpful in answering downstream
scientific questions. For example, identifying climate zone-
related parameters from sea surface temperature data could
improve understanding of climate change because the im-
pact of climate change significantly differs in polar and
tropical regions. Hence, we aim to provide identifiabil-
ity analysis for the underlying parameters of an unknown
dynamical system by converting the classical parameter esti-
mation problem of dynamical systems into a latent variable
identification problem in causal representation learning. We
start by listing the common assumptions in CRL and com-
paring the ground assumptions between these two fields.

Assumption 3.1 (Determinism). The data generation pro-
cess is deterministic in the sense that observation x is gener-
ated from some latent vector θ using a deterministic solver
F (Defn. 3.2).

Assumption 3.2 (Injectivity). For each observation x, there
is only one corresponding latent vector θ, i.e., the ODE
solve function F (Defn. 3.2) is injective in θ.

Assumption 3.3 (Continuity and full support). pθ is
smooth and continuous on Θ with pθ > 0 a.e.

Assumption justification. We observe strong alignment
between the ground assumptions in CRL and system
identification (Tab. 2) that justifies our idea of employing
causal representation learning methods in parameter es-
timation problems for dynamical systems: (1) Asm. 2.1
implies that given a fixed initial value x0 ∈ X , there
exists a unique solution x(t), t ∈ [0, tmax] for any fθ
with θ ∈ Θ. In other words, parameter domain Θ is
fully supported (Asm. 3.3), and these ODE solving
processes from F (θ) (Defn. 3.2) are deterministic,
which aligns with the standard Asm. 3.1 in CRL. Since
the ODE solution F (θ) (§ 2) is continuous by definition,
the continuity assumption from CRL (Asm. 3.3) is also
fulfilled. (2) Asm. 2.2 emphasizes that each trajectory
x can only be uniquely generated from one parameter
vector θ ∈ Θ, which means the generating process F
(Defn. 3.2) is injective in θ (Asm. 3.2).

Next, we reformulate the parameter estimation problem in
the language of causal representation learning. We first cast
the generative process of the dynamical system fθ(x(t))
as a latent variable model by considering the underlying
physical parameters θ ∼ pθ as a set of latent variables.
Given a trajectory x generated by a set of underlying
factors θ based on the vector field fθ(x(t)), we consider
the observed trajectory as some unknown nonlinear mixing
of the underlying θ, with the mixing process specified
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by individual vector field fθ(x(t)). This interpretation of
observations aligns with the standard setup of causal rep-
resentation learning; for instance, high-dimensional images
are usually generated from some lower-dimensional latent
generating factors through an unknown nonlinear process.
Thus, estimating the parameters of unknown dynamical
systems becomes equivalent to inferring the underlying
generating factors in causal representation learning.

After transforming the parameter estimation into a latent
variable identification problem in CRL, we can directly in-
voke the identifiability theory from the literature. Based
on Locatello et al. (2019, Theorem 1.), we conclude that
the underlying parameters from an unknown system are in
general non-identifiable. Nevertheless, several works pro-
posed different weakly supervised learning strategies that
can partially identify the latent variables (Ahuja et al., 2022;
Brehmer et al., 2022; Daunhawer et al., 2023; Locatello
et al., 2020; Von Kügelgen et al., 2021; Yao et al., 2024). To
this end, we define partial identifiability in the context of dy-
namical systems by slightly adapting the definition of block-
identifiability proposed by Von Kügelgen et al. (2021):

Definition 3.3 (Partial identifiability). A partition θS :=
(θi)i∈S with S ⊆ [N ] of parameter θ ∈ Θ is partially
identified by an encoder g : X T → Θ if the estimator θ̂S :=
g(x)S contains all and only information about the ground
truth partition θS , i.e. θ̂S = h(θS) for some invertible
mapping h : ΘS → ΘS where ΘS := ×i∈SΘi.

Note that the inferred partition θ̂S can be a set of entangled
latent variables rather than a single one. In the multivariate
case, one can consider the θ̂S as a bijective mixture of the
ground truth parameter θS .

Corollary 3.2 (Identifiability without known functional
form). Assume a dynamical system f satisfying Asms. 2.1
and 2.2, a pair of trajectories x, x̃ generated from the same
system f but specified by different parameters θ, θ̃, respec-
tively. Assume a partition of parameters θS with S ⊆ [N ] is
shared across the pair of parameters θ, θ̃. Let g : X T → Θ
be some smooth encoder and F̂ : Θ → X T be some left-
invertible smooth solver that minimizes the following objec-
tive:

L(g, F̂ ) = Ex,x̃ ∥g(x)S − g(x̃)S∥22︸ ︷︷ ︸
Alignment

+
∥∥∥F̂ (g(x))− x

∥∥∥2
2
+
∥∥∥F̂ (g(x̃))− x̃

∥∥∥2
2︸ ︷︷ ︸

Sufficiency

,
(3)

then the shared partition θS is partially identified (Defn. 3.3)
by g in the statistical setting.

Discussion. We remark that an implicit ODE solver F̂ is
introduced in eq. (3) because the functional form fθ is un-
known. Intuitively, Cor. 3.2 provides partial identifiability

results for the shared partition of parameters between two
trajectories. We can consider the trajectories to be different
simulation experiments but with certain sharing conditions,
such as two wind simulations that share the same layer
thickness parameter. This partial identifiability statement
is mainly concluded from the theory in the multiview
CRL literature (Ahuja et al., 2022; Brehmer et al., 2022;
Daunhawer et al., 2023; Locatello et al., 2020; Schölkopf
et al., 2021; Von Kügelgen et al., 2021; Yao et al., 2024).
Note that this corollary is one exemplary demonstration of
achieving partial identifiability in dynamical systems. Many
identifiability results from the causal representation works
can be reformulated similarly by replacing their decoder
with a differentiable ODE solver F̂ . The high-level idea of
multiview CRL is to identify the shared part between differ-
ent views by enforcing alignment on the shared coordinates
while preserving a sufficient information representation.
Alignment can be obtained by either minimizing the L2 loss
between the encoding from different views on the shared
coordinates (Daunhawer et al., 2023; Von Kügelgen et al.,
2021; Yao et al., 2024) or maximizing the correlation on the
shared dimensions correspondingly (Lyu and Fu, 2022; Lyu
et al., 2021); Sufficiency of the learned representation is of-
ten prompted by maximizing the entropy (Daunhawer et al.,
2023; Von Kügelgen et al., 2021; Yao et al., 2024; Zim-
mermann et al., 2021) or minimizing the reconstruction er-
ror (Ahuja et al., 2022; Brehmer et al., 2022; Locatello et al.,
2020; Schölkopf et al., 2021). Other types of causal rep-
resentation learning works will be further discussed in § 5.

4. CRL-construct of Identifiable Neural
Emulators for Dynamical Systems

This section provides a step-by-step construct of a neural
emulator that can (1) identify the time-invariant, trajectory-
specific physical parameters from some unknown dynamical
systems if the identifiability conditions are met and (2) ef-
ficiently forecast future time steps. Identifiability can be
guaranteed by employing causal representation learning ap-
proaches (§ 3) while forecasting ability can be obtained by
using an efficient mechanistic solver (Pervez et al., 2024)
as a decoder. For the sake of simplicity, we term these iden-
tifiable neural emulators as identifiers. We remark that the
general architecture remains consistent for most CRL ap-
proaches, while the learning object differs slightly in latent
regularization, which is specified by individual identifiabil-
ity algorithms. Intuitively, the latent regularization can be
interpreted as an additional constraint put on the learned en-
codings imposed by the setting-specific assumptions, such
as the alignment term in multiview CRL (Cor. 3.2). In the
following, we demonstrate building an identifier in the multi-
view setting from scratch and showcase how it can be easily
generalized to other CRL approaches with slight adaptation.

Architecture. Since the parameters of interest are
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time-invariant and trajectory-specific (§ 2), we input the
whole trajectory x = (x(t1), . . . ,x(tT )) to a smooth
encoder g : X T → Θ, as shown in Fig. 5. Then, we
decode the trajectory x̂ from estimated parameter vector
θ̂ := g(x) using a mechanistic solver (Pervez et al., 2024).
The high-level idea of mechanistic neural networks is to
approximate the underlying dynamical system using a set of
explicit ODEs Uθ̂ : C(α, θ̂) = 0 with learnable coefficients
α ∈ Rdα . The explicit ODE family Uθ̂ can then be
interpreted as a constrained optimization problem and can
thus be solved using a neural relaxed linear programming
solver (Pervez et al., 2024, Sec 3.1).

In more detail, the original design of MNN predicts the
coefficients from the input trajectory x using an MNN en-
coder gmnn; however, as we enforce the estimated parameter
θ to preserve sufficient information of the entire trajectory
x, we instead predict the coefficients α from the estimated
parameter θ̂ with the encoder gmnn : Θ → Rdα . Formally,
the coefficients α are computed as α = gmnn(θ̂) where
θ̂ = g(x). The resulting ODE family Uθ̂ provides a broad
variability of ODE parametrizations. A detailed formulation
of Uθ̂ at t (Pervez et al., 2024, eq. (3)) is given by∑l

i=0 ci(t; θ̂)u
(i)︸ ︷︷ ︸

linear terms

+
∑r

j=0 ϕk(t; θ̂)gk(t, {u(j)})︸ ︷︷ ︸
nonlinear terms

= b(t; θ̂),

(4)
where u(i) is i−th order approximations of the ground truth
state x. Like in any ODE solving in practice, solving eq. (4)
requires discretization of the continuous coefficients in time
(e.g., ci(t; θ̂)). Discretizing the ODE representation Uθ̂:

l∑
i=0

ci,tu
(i)
t +

r∑
j=0

ϕk,tgk({u(j)
t }) = bt

s.t. (ut1 , u
′
t1 , . . . ) = ω,

(5)

where ω denotes the initial state vector of the ODE repre-
sentation Uθ̂ . To this end, we present the explicit definition
of the learnable coefficients α := (ci,t, ϕk,t, bt, st, ω) with
t ∈ T , i ∈ [l], k ∈ [r], which is a concatenation of linear
coefficients ci,t, nonlinear coefficients ϕi,k, adaptive step
sizes st and initial values ω. Note that we dropped the θ̂
in the notation for simplicity, but all of these coefficients
α are predicted from θ̂, as described previously. At last,
MNN converts ODE solving into a constrained optimization
problem by representing the Uθ̂ using a set of constraints, in-
cluding ODE equation constraints, initial value constraints,
and smoothness constraints (Pervez et al., 2024, Sec 3.1.1).
This optimization problem is then solved by neural relaxed
linear programming solver (Pervez et al., 2024, Sec 3.1) in
a time-parallel fashion, thus making the overall mechanistic
solver scalable and GPU-friendly.

Learning objective and latent regularizers. Depending
on whether the functional form of the underlying dynamical

system is known or not, the proposed neural emulator can
be trained using the losses given in Cor. 3.1 or Cor. 3.2,
respectively. When the functional form is unknown, we
employ CRL approaches to partially identify the physical
parameters. We remark that the causal representation
learning schemes mainly differ in the latent regularizers,
specified by the assumptions and settings. Therefore, we
provide a more extensive summary of different causal
representation learning approaches and their corresponding
latent regularizer in Tab. 6.

5. Related Work
Multi-environment CRL. Another important line of
work in causal representation learning focuses on the
multi-environment setup, where the data are collected from
multiple different environments and thus non-identically dis-
tributed. One common way to collect multi-environmental
data is to perform single node interventions (Ahuja et al.,
2023; Buchholz et al., 2024; Squires et al., 2023; Varici
et al., 2023; Von Kügelgen et al., 2021; Zhang et al., 2024).
Identifiability proofs were provided for different settings,
varying from types of mixing functions, causal models
and interventions. Squires et al. (2023) considers linear
Gaussian model and linear mixing functions, showing iden-
tifiability under both hard and soft interventions; Ahuja et al.
(2023) considers a more general causal model with bounded
support, together with finite degree polynomial mixing
function, and provides identifiability proof for do and hard
interventions. Buchholz et al. (2024) extends Squires et al.
(2023) to general nonlinear mixing functions and linear
Gaussian latent model. Zhang et al. (2024) show identifiabil-
ity guarantee for a nonlinear causal model with polynomial
mixing functions under soft interventions. Jin et al. (2023)
considers linear mixing function with nonlinear model
or linear non-Gaussian model under soft interventions.
Overall, given the fruitful literature in multi-environment
causal representation learning, we believe applying
multi-environments methods to build identifiable neural
emulators (§ 4) would be an exciting future avenue.

ODE discovery. The ultimate goal of ODE discovery is
to learn a human-interpretable equation for an unknown
system, given discretized observations generated from this
system. Recently, many machine learning frameworks
have been used for ODE discovery, such as sparse linear
regression (Brunton et al., 2016a;b; Kaheman et al.,
2020; Rudy et al., 2017), symbolic regression (Becker
et al., 2023; d’Ascoli et al., 2024; d’Ascoli et al., 2022),
simulation-based inference (Cranmer et al., 2020; Schröder
and Macke, 2023). Becker et al. (2023); d’Ascoli et al.
(2022) exploit transformer-based approaches to dynamical
symbolic regression for univariate ODEs, which is extended
by d’Ascoli et al. (2024) to multivariate case. Schröder
and Macke (2023) employs simulation-based variational
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inference to jointly learn the operators (like addition or
multiplication) and the coefficients. However, this approach
typically runs simulations inside the training loop, which
could introduce a tremendous computational bottleneck
when the simulator is inefficient. On the contrary, our
approach works offline with pre-collected data, avoiding
simulating on the fly. Although ODE discovery methods
can provide symbolic equations for data from an unknown
trajectory, the inferred equation does not have to align with
the ground truth. In other words, theoretical identifiability
guarantees for these methods are still missing.

Identifiability of dynamical systems. Identifiability of
dynamical systems has been studied on a case-by-case
basis in traditional system identification literature (Åström
and Eykhoff, 1971; Miao et al., 2011; Villaverde et al.,
2016). Liang and Wu (2008) studied ODE identifiability
under measurement error. Scholl et al. (2023) investigated
the identifiability of ODE discovery with non-parametric
assumption, but only for univariate cases. More recently,
several works have advanced in identifiability analysis of
linear ODEs from a single trajectory (Duan et al., 2020;
Qiu et al., 2022; Stanhope et al., 2014). Overall, current
theoretical results cannot conclude whether an unknown
nonlinear ODE can be identified from observational data.
Hence, in our work, we do not aim to identify the whole
equation of the dynamical systems but instead focus on
identifying the time-invariant parameters.

6. Experiments
This section provides experiments and results on both
simulated and real-world climate data. In both cases, the
true functional form of the underlying physical process
is unknown, so we employ the multiview CRL approach
together with mechanistic neural networks to build our
identifiable neural emulator (termed as mechanistic iden-
tifier), following the steps in § 4. We compare mechanistic
identifier with three baselines: (1) Ada-GVAE (Locatello
et al., 2020), a traditional multiview model that uses
a vanilla decoder instead of a mechanistic solver. (2)
Time-invariant MNN, proposed by (Pervez et al., 2024).
We choose this variant of MNN as our baseline for a
fair comparison. (3) Contrastive identifier, a contrastive
loss-based CRL approach without a decoder (Daunhawer
et al., 2023; Von Kügelgen et al., 2021; Yao et al., 2024). We
train mechanistic identifier using eq. (3) and other baselines
following the steps given in the original papers. After
training, we evaluate these methods on their identifiability
and long-term forecasting capability.

6.1. Wind simulation
Experimental setup. Our experiment considers longitu-
dinal and latitudinal wind velocities (also termed u, v wind
components) from the global wind simulation data gen-

erated by various layer-thickness parameters. To train the
multiview approaches, we generate a tuple of three views:
After sampling the first view x1 randomly throughout the
whole training set, we sample another trajectory x2 from
a different location which shares the same simulation con-
dition as the first one, compared to the first view, the third
view x3 is then sampled from another simulation but at the
same location. Overall, x1,x2 share the global simulation
conditions like the layer thickness parameter while x1,x3

only share the local features. All three views share global
atmosphere-related features that are not specified as sim-
ulation conditions. More details about the data generation
process and training pipeline are provided in App. B.2.

Parameter identification. In this experiment, we use
the learned representation to classify the ground-truth
labels generated by discretizing the generating factor layer
thickness, and report the accuracy in Fig. 1. In more detail,
we use latent dim=12 for all models and split the
learned encodings into three partitions S1, S2, S3, with four
dimensions each. Then, we individually predict the ground
truth layer thickness labels from each partition. According
to the previously mentioned view-generating process, the
layer thickness parameter should be encoded in S1 for both
contrastive and mechanistic identifiers. This hypothesis is
verified by Fig. 1 since both contrastive and mechanistic
identifiers show a high accuracy of acc≈1 in the first parti-
tion S1 and low accuracy in other partitions. On the contrary,
Ada-GVAE and TI-MNN performed significantly worse
with an average acc. of 60% everywhere. Overall, Fig. 1
shows both the necessity of explicit time modeling using
MNN solver (compared to Ada-GVAE) and identifiability
power of multiview CRL (compared to TI-MNN).

6.2. Real-world sea surface temperature
Experimental setup. We evaluate the models on sea
surface temperature dataset SST-V2 (Huang et al., 2021).
For the multiview training, we generate a pair trajectories
from a small neighbor region (±5◦) along the same latitude.
We believe these pairs share certain climate properties
as the locations from the same latitude share roughly the
amount of direct sunlight which will directly affect the sea
surface temperature. Further infromation about the dataset
and training procedure is provided in App. B.2.

Time series forecasting. We chunk the time series into
slices of 4 years in training while keeping last four years
as out-of-distribution forecasting task. To predict the last
chunk, we input data from 2015 to 2018 to get the learned
representation θ̂. Since we assume θ̂ to be time-inavriant,
we decode θ̂ together with 10 initial steps of 2019 to predict
the last chunk. Note that contrastive identifier is excluded
from this task as it does not have a decoder. As shown
in Tab. 1, the forecasting performance of mechanistic Identi-
fier surpasses Ada-GVAE by a great margin, showcasing the
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Figure 1: Prediction ac-
curacy on layer thickness
parameter on wind simulation
data, evaluated on encoding
partitions S1, S2, S3.

Table 1: Performance evaluation on the SST-V2 data
on various types of tasks. Results averaged over three ran-
dom seeds with standard deviation, provided as (m ± std).

SST V2

Acc.(ID)(↑) Acc.(OOD)(↑) Forecast. error(↓)

Ada-GVAE 0.468 ± 0.001 0.467 ± 0.000 0.043 ± 0.044

TI-MNN 0.697 ± 0.049 0.668 ± 0.074 0.024 ± 0.016

Contr. Identifier 0.904 ± 0.011 0.861 ± 0.022 ✗

Mech. Identifier 0.902 ± 0.005 0.824 ± 0.016 0.007 ± 0.003
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Figure 2: Causal effect es-
timation on SST-V2 from
1990 to 2023, with climate
zone as treatment and zonal
average temp. as outcome.

superiority of integrating scalable mechanistic solvers in
real-world time series datasets. At the same time, TI-MNN
performed worse and unstably despite the MNN component,
verifying the need of the additional information bottleneck
(parameter encoder g) and the multiview learning scheme.

Climate-zone classification. Since there is no ground
truth latitude-related parameters available, we design a
downstream classification task that verifies our learned
representation encodes the latitude-related information.
The goal of the task is to predict the climate zone (tropical,
temperate, polar) from the learned shared representation
because the latitude uniquely defines climate zones. We
evaluated the methods in both in-distribution (ID) and out-
of-distribution (OOD) setup for all baselines. In the OOD
setting, we input data from longitude 10◦ to longitude 360◦

when training the classifier while keeping the first 10 degree
as our out-of-distribution test data. Tab. 1 show that both
contrastive and mechanistic identifiers perform decently,
supporting the applicability of identifiable multiview CRL
algorithms in dynamical systems. Overall, the performance
of multiview CRL-based approaches (contrastive and mech-
anistic identifiers) far exceeds Ada-GVAE and TI-MNN,
again showcasing the superiority of the combination of
causal representation learning and mechanistic solvers.

Average treatment effect estimation. We further investi-
gate the effect of climate zone on average temperature along
one specific latitude through average treatment effect (ATE)
estimation. Formally, we consider the latitudinal average
temperature as outcome Y , two climate zones (tropical
(T = 0), polar(T = 1)) as binary treatments, and the
predicted latitude-specific features as unobserved mediators.
Formally, ATE is defined as: ATE := E[Y |do(T =
1)] − E[Y |do(T = 0)]. Since ATE cannot be computed
directly (Holland, 1986), we estimate it using the popular
AIPW estimator (Robins et al., 1994). Fig. 2 illustrates the
estimated ATE change ratio from 1990 to 2020, computed
by ATE(year)−ATE(1990)/ATE(1990). We observe that the
recent ATE ratio has risen to 2x compared to the year 1990,
which surprisingly aligns with the fact that the Arctic Ocean

recently became at least twice as warm as before (Rantanen
et al., 2022).

7. Limitations and Conclusion
In this paper, we build a bridge between causal representa-
tion learning and dynamical system identification. By virtue
of this connection, we successfully equipped existing mech-
anistic models (focusing on (Pervez et al., 2024) in practice
for scalability reasons) with identification guarantees. Our
analysis covers a large number of papers, including (Brun-
ton et al., 2016a;b; Kaheman et al., 2020; Kaptanoglu et al.,
2021; Pervez et al., 2024; Wenk et al., 2019) explicitly
refraining from making identifiability statements. At the
same time, our work demonstrated that causal representa-
tion learning training constructs are ready to be applied
in the real world, and the connection with dynamical sys-
tems offers untapped potential due to its relevance in the
sciences. This was an overwhelmingly acknowledged lim-
itation of the causal representation learning field (Ahuja
et al., 2023; Buchholz et al., 2024; Daunhawer et al., 2023;
Locatello et al., 2020; Squires et al., 2023; Varici et al.,
2023; Von Kügelgen et al., 2021; Yao et al., 2024). Hav-
ing clearly demonstrated the mutual benefit of this connec-
tion, we hope that future work will scale up identifiable
mechanistic models and apply them to even more complex
dynamical systems and real scientific questions. Neverthe-
less, this paper has several technical limitations that could
be addressed in future work. First of all, the proposed
theory explicitly requires determinism as one of the key
assumptions (Asm. 3.1), which directly excludes another
important type of differential equation: Stochastic Differen-
tial Equations. Second, we assume we directly observe the
state x without considering measurement noise. Although
the empirical results were promising on real-world noisy
data (§ 6.2), we believe explicitly modeling measurement
noise would elevate the theory. Finally, our identifiabil-
ity analysis focuses on the infinite data regime, which is
unrealistic in real-world scenarios.
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A. Proofs
A.1. Proofs for full identifiability
Corollary 3.1 (Full identifiability with known functional
form). Consider a trajectory x ∈ X T generated from a
ODE fθ(x(t)) satisfying Asms. 2.1 and 2.2, let θ̂ be an
estimator minimizing the following objective:

L(θ̂) =
∥∥∥F (θ̂)− x

∥∥∥2
2

(2)

then the parameter θ is fully-identified (Defn. 3.1) by the
estimator θ̂.

Proof. We begin by showing the global minimum of L(θ̂)
exists and equals zero. Then, we show by contradiction that
any estimators θ̂ that obtains this global minimum has to
equal the ground truth parameters θ.

Step 1. We show that the global minimum zero can be
obtained for L(θ̂). Consider the ground truth parameter
θ ∈ Θ, then by definition of the ODE solver F (Defn. 3.2),
we have:

L(θ) = ∥F (θ)− x∥22 = ∥x− x∥22 = 0. (6)

Step 2. Suppose for a contraction that there exists a θ∗ ∈ Θ
that minimizes the loss eq. (2) but differs from the ground
truth parameters θ, i.e., θ∗ ̸= θ. This implies:

L(θ∗) = ∥F (θ∗)− x∥22 = 0 (7)

Note that L(θ∗) can be rewritten as:

L(θ∗) =

T∑
k=1

∥F (θ∗)tk − x(tk)∥22 = 0 (8)

To make sure the sum is zero, each individual term has to be
zero, that is F (θ∗)tk = x(tk),∀t ∈ {t1, . . . , tT }. Accord-
ing to the uniqueness assumption of the ODE (Asm. 2.1),
this implies θ∗ = θ, which leads to a contradiction.

Thus, we have shown that minimizing eq. (2) will yield the
ground truth parameter θ. In other words, any estimator θ̂
that minimizes eq. (2) fully identifies θ.

Full identifiability with closed form solution when fθ is
linear in θ. We show that a closed-form solution can be
obtained through linear least squares when the vector field
fθ is linear in θ and if we observe a first-order trajectory.
A first-order trajectory means the first-order derivatives
are included in the state-space vector. This statement is
formalized as follows:

Observation A.1. Given a first-order trajectory (x, ẋ) =
(x(t), ẋ(t))t∈T generated from a dynamical system
fθ(x(t)) satisfying Asms. 2.1 and 2.2. In particular, this

ODE fθ can be written as a weighted sum of a set of base
functions {ϕ1, . . . , ϕm}, i.e., fθ is linear in θ:

fθ(x(t)) =
∑m

i=1 θiϕi(x). (9)

Define Φx := [ϕi(x(t))]i∈[m],t∈T ∈ Rm×T , then the
global optimum of the loss eq. (2) is given by

θ∗ = (Φ⊺
xΦx)

−1
ϕxẋ (10)

As a direct implication, SINDy-like approaches (Brunton
et al., 2016a;b; Lu et al., 2022) and gradient matching (Wenk
et al., 2019) can fully identify the underlying physical param-
eters θ even with a closed-form solution if the underlying
vector field fθ is can be represented as a sparse weighted
sum of the given base functions {ϕi}i∈[m].

A.2. Proofs for partial identifiability

Corollary 3.2 (Identifiability without known functional
form). Assume a dynamical system f satisfying Asms. 2.1
and 2.2, a pair of trajectories x, x̃ generated from the same
system f but specified by different parameters θ, θ̃, respec-
tively. Assume a partition of parameters θS with S ⊆ [N ] is
shared across the pair of parameters θ, θ̃. Let g : X T → Θ
be some smooth encoder and F̂ : Θ → X T be some left-
invertible smooth solver that minimizes the following objec-
tive:

L(g, F̂ ) = Ex,x̃ ∥g(x)S − g(x̃)S∥22︸ ︷︷ ︸
Alignment

+
∥∥∥F̂ (g(x))− x

∥∥∥2
2
+

∥∥∥F̂ (g(x̃))− x̃
∥∥∥2
2︸ ︷︷ ︸

Sufficiency

,
(3)

then the shared partition θS is partially identified (Defn. 3.3)
by g in the statistical setting.

Proof. This proof can be directly adapted from the proofs
with by Daunhawer et al. (2023); Von Kügelgen et al. (2021);
Yao et al. (2024) with slight modification. So we briefly
summarize the Step 1. and Step 2. that are imported from
previous work and focus on the modification (Step 3.).

Step 1. We show that the loss function eq. (3) is lower
bounded by zero and construct optimal encoder g∗ : X T →
Θ that reach this lower bound. Define g∗ : X T → Θ :=
F−1 as the inverse of the ground truth data generating pro-
cess, i.e., for all trajectories x = F (θ) that generated from
parameter θ, it holds:

g∗(x) = θ (11)

Thus, we have shown that the global minimum zero exists
and can be obtained by the inverse mixing function F−1 :
X T → Θ (Defn. 3.2).
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Table 2: Comparing typical assumptions of parameter estimation for dynamical systems and latent variable identification
in causal representation learning. We justify that the common assumptions in both fields are aligned, providing theoretical
ground for applying identifiable CRL methods to learning-based parameter estimation approaches in dynamical systems.

param. estimation CRL Explanation
ref assumption assumption ref

2.1 existence & uniqueness determ. gen. 3.1 Both 2.1 and 3.1 implies deterministic
generative process.

supp(θ) = Θ 3.3 2.1 implies 3.3 as xθ uniquely exists for
all θ ∈ Θ.

2.2 structural identifiability injectivity 3.2 2.2 implies 3.2 of the solution xθ.

Step 2. We show that any optimal encoders g that mini-
mizes eq. (3) must have the alignment equal zero, in other
words, it has to satisfy the invariance condition, which is
formalized as

g(x)S = g(x̃) a.s. (12)

Following Yao et al. (2024, Lemma D.3), we conclude
that both g(x)S and g(x̃)S can only depend on information
about the shared partition about the ground truth parameter
θS . In other words,

g(x)S = g(x̃)S = h(θS) (13)

for some smooth h : ΘS → ΘS .

Step 3. At last, we show that h is invertible. Note that
any optimal encoders g that minimizes eq. (3) must have
zero reconstruction error on both x and x̃. Taking x as an
example, we have

E
∥∥∥F̂ (g(x))− x

∥∥∥2
2
= 0 (14)

which implies

F̂ (g(x)) = x a.s. (15)

If two continuous functions F̂ (g(x)) and x equals almost
everywhere on Θ, then they are equal everywhere on Θ,
which implies:

F̂ (g(x)) = x ∀θ ∈ Θ (16)

Substituting x with the ground truth generating process F :

F̂ (g(x)) = F (θ) ∀θ ∈ Θ, (17)

applying the left inverse of F̂ , we have:

F̂−1 ◦ F̂ (g(x)) = F̂−1 ◦ F (θ) ∀θ ∈ Θ, (18)

i.e.,

g(x) = F̂−1 ◦ F (θ) = F̂−1 ◦ F (θS ,θS̄) ∀θ ∈ Θ,
(19)

Define h∗ := F̂−1 ◦F , note that h∗ is bijective as a compo-
sition of bijections. Imposing the invariance constraint, we
have g(x)S = h∗(θS ,θS̄)S . Since g(x)S cannot depend on
θS̄ , we have g(x)S = h∗

S(θS) with h := h∗
S : ΘS → ΘS .

Thus we have shown that g(x)S partially identifies θS .

B. Experimental results
General remarks. All models used in the experiments (§ 6)
(Ada-GVAE, TI-MNN, contrastive identifier, mechanistic
identifier) were built upon open-sourced code provided by
the original works (Locatello et al., 2020; Pervez et al., 2024;
Yao et al., 2024), under the MIT license. For mechanistic
identifiers, we add a regularizer multiplier on the alignment
constraint (Defn. 3.3), which is shown in Tabs. 3 and 5.

B.1. Wind simulation: SpeedyWeather.jl
We simulate global air motion using using the
ShallowWaterModel from speedy weather
Julia package (Klöwer and the SpeedyWeather.jl Contribu-
tors, 2023). We consider a layer thickness as the primary
generating factor in ShallowWaterModel varying from
8e3[m] to 2e4[m], which is a reasonable range given by the
climate science literature. Taking the minimal and maximal
values, we simulate the wind in a binary fashion and obtain
9024 trajectories across the globe under different conditions.
Each trajectory constitutes three output variables discretized
on ts=121 time steps, on a 3D resolution grid of size:
latitude lat=47; longitude lon=96; level lev=1. The
three output variables represent u wind component (parallel
to longitude), v wind component (parallel to latitude), and
relative vorticity, respectively. An illustrative example of all
three components is depicted in Fig. 3. further details about
the simulation output are provided in Tab. 4. In particular,
to train more efficiently, we pre-process the data using a
discrete cosine transform (DCT) proposed by Ahmed et al.
(1974) and only keep the first 50% frequencies. This is
feasible as the original data possesses a certain periodic
pattern, as shown in Fig. 4. For all baselines, we train the
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Figure 3: Example of wind simulation: Left: longitudinal wind velocity (u) [m/s]. Middle: latitudinal wind velocity
(v)[m/s], Right: relative vorticity (vor) [1/s].

model till convergence. More training and test details for
the tasks in § 6.1 are summarized in Tab. 3. To validate
identifiability, we use LogisticRegression model
from scikit-learn in its default setting to evaluate the
classification accuracy in Fig. 1.

B.2. Sea surface temperature: SST-V2
The sea surface temperature data SST-V2 (Huang et al.,
2021) contains the weekly sea surface temperature data from
1990 to 2023, on a resolution grid of 180× 360 (latitudes
× longitudes). An example input is depicted in Fig. 7. Each
time series contains 1727 times steps. To generate multiple
views that share specific climate properties, we sample two
different trajectories from a small neighbor region (±5◦)
along the same latitude, as the latitude differs in the amount
of direct sunlight thus directly affecting the sea surface
temperature.

Fig. 5 gives an overview of mechnistic identifier’s working
pipeline and potential applicability in causal downstream
task. For a fair comparison, we train all baselines till conver-
gence following the setup summarized in Tab. 5. Similar to
the wind simulation data, we pre-process the SST-V2 data
using DCT and keep the first 25% frequencies. We only
keep 1/4 of the frequencies because sea surface temperature
data is highly periodic due to seasonality patterns. Fig. 6
shows an example of predicted trajectories over three ran-
domly sampled locations. As for the downstream classifi-
cation task, we use LogisticRegression model from
scikit-learn in its default setting to evaluate the clas-
sification accuracy in Tab. 1.

B.3. Experiments and compute
In this paper, we train four different models, each over three
independent seeds. All 12 jobs ran with 24GB of RAM,
8 CPU cores, and a single node GPU, which is, in most

cases, NVIDIA GeForce RTX2080Ti. Given different
model sizes and convergence rates, the required amount of
compute could vary slightly, despite the pre-fixed training
epochs. Thus, we report an upper bound of the compute
hours on NVIDIA GeForce RTX2080Ti. On average,
all runs converge within 22 GPU hours. Therefore, the
experimental results in this paper can be reproduced with
264 GPU hours.

C. Discussion
Why mechanistic neural networks (Pervez et al., 2024).
As mentioned in § 4, the ODE solver F given in Cors. 3.1
and 3.2 can be interpreted as the decoder in a traditional
representation learning regime; however, several challenges
arise when integrating ODE solving in the training loop:
First of all, the ODE solver must be differentiable to
utilize the automatic differentiation implementation of the
state-of-the-art deep learning frameworks; this obstacle
has been tacked by the line of work termed NeuralODE,
which models the ODE vector field using a neural network
thus enable differentiability (Chen et al., 2018; 2021;
Kidger et al., 2021). Nevertheless, most differentiable
ODE solvers solve the ODE autoregressively and thus
cannot be parallelized by the GPU very efficiently. Dealing
with long-term trajectories (for example, weekly climate
data during the last few decades) would be extremely
computationally heavy. Therefore, we advocate for a
time- and memory-efficient differentiable ODE solver: the
mechanistic neural networks (Pervez et al., 2024).

Latent regularizers in CRL. The framework proposed
in § 4 can be generalized to many causal representation
learning works, by specifying the latent regularizes accord-
ing to individual assumptions and settings. For example,
in the multiview setting, the latent regularizer can be the L2

alignment between the learned representations on the shared
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Table 3: Training setup for wind simulation in § 6.1. Non-applicable fields are marked with ✗.

Ada-GVAE TI-MNN Cont. Identifier Mech. Identifier

Pre-process DCT DCT DCT DCT
Encoder 6-layer MLP 6-layer MLP 6-layer MLP 6-layer MLP
Decoder 6-layer MLP 6-layer MLP ✗ 3 proj. × 6-layer MLP
Time dim 121 121 121 121
State dim 2 2 2 2
Hidden dim 1024 1024 1024 1024
Latent dim 12 12 12 12
Optimizer Adam Adam Adam Adam
Adam: learning rate 1e−5 1e−5 1e−5 1e−5
Adam: beta1 0.9 0.9 0.9 0.9
Adam: beta2 0.999 0.999 0.999 0.999
Adam: epsilon 1e−8 1e−8 1e−8 1e−8
Batch size 1128 1128 1128 1128
Temperature τ ✗ ✗ 0.1 ✗
Alignment reg. ✗ ✗ ✗ 10
# Initial values 10 10 ✗ 10
# Iterations < 30,000 < 30,000 < 30,000 < 30,000
# Seeds 3 3 3 3
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Figure 4: Wind simulation: mechanistic identifier reconstruction of highly irregular time series. The first half of the
trajectory is provided as initial values, while the second half is predicted.

Intervene

C

C

Figure 5: Our mechanistic identifier learns the underlying physical parameters θ, providing a versatile neural emulator for
downstream causal analysis.

16



880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

Marrying Causal Representation Learning with Dynamical Systems for Science

Table 4: Wind simulation: output variables.

Output variable [unit] Shape

Longitudinal wind velocity (u) [m/s] (ts, lev, lat, lon)
Latitudinal wind velocity (v) [m/s] (ts, lev, lat, lon)
Relative vorticity (vor) [1/s] (ts, lev, lat, lon)
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Figure 6: SST-V2: mechanistic identifier reconstruction over long-term time series. Results are produced by concatenating
subsequently predicted chunks.

partition eq. (3), as it was assumed that the paired views are
generated based on this overlapping set of latents (Locatello
et al., 2019; Von Kügelgen et al., 2021; Yao et al., 2024); in
sparse causal representation learning the underlying genera-
tive process assumes observations are generated from sparse
latent variables; therefore, the proposed algorithms actively
enforce some sparsity constraint on the learned representa-
tion (Lachapelle and Lacoste-Julien, 2022; Lachapelle et al.,
2023; Moran et al., 2022; Xu et al., 2024), We provide a
more extensive summary of different causal representation
learning approaches and their corresponding latent regu-
larizer in Tab. 6. By replacing the alignment term (Cor. 3.2)
with the specific latent constraints, one can plug in many
causal representation learning algorithms to construct an
identifiable neural emulator using our framework.

Identifying time-varying parameters Time-varying
parameters θ(t) could also be potentially identified when
they change sparsely in time. For example, a time-varying
parameter θk remains constant between (tk, tk+1). Then,
the states in between x(t),x(t + 1), . . . ,x(t + k) can
be considered as multiple views that share the same
parameter θk. Following this perspective, the time-invariant
parameters considered in the scope of this paper remain
consistent through the whole timespan (0, tmax, thus all
discretized states x(t1), . . . ,x(tT ) are views that share
this parameter. This inductive bias is directly built into the
architecture design by inputting the whole trajectory into

the encoder instead of doing so step by step (where the time
axis is considered as batch dimension). From another angle,
the time-varying parameters θ(t) could be interpreted as
a hidden part of the state space vector x(t) without an
explicitly defined differential equation, which gives rise to a
partial observable setup. This direction has been studied in
the context of sparse system identification without explicit
identifiability analysis (Lu et al., 2022).

Model evaluation on real-world data. A great obsta-
cle hindering causal representation learning scaling to
real-world data is that no ground truth latent variables
are available. Since the methods aim to identify the latent
variables, it is hard to validate the identifiability theory
without ground truth-generating factors. However, properly
evaluating the CRL models on real-world data can be
conducted by carefully designing causal downstream tasks,
such as climate zone classification and ATE estimation
shown in § 6.2. Overall, we believe by incorporating
domain knowledge of the applied datasets, we can use CRL
to answer important causal questions from individual fields,
thus indirectly validating the identifiability.
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Table 5: Training setup for sea surface temperature in § 6.2. Non-applicable fields are marked with ✗.

Ada-GVAE TI-MNN Cont. Identifier Mech. Identifier

Pre-process DCT DCT DCT DCT
Encoder 6-layer MLP 6-layer MLP 6-layer MLP 6-layer MLP
Decoder 6-layer MLP 6-layer MLP ✗ 3 proj. × 6-layer MLP
Time dim 208 208 208 208
State dim 1 1 1 1
Hidden dim 1024 1024 1024 1024
Latent dim 20 20 20 20
Optimizer Adam Adam Adam Adam
Adam: learning rate 1e−5 1e−5 1e−5 1e−5
Adam: beta1 0.9 0.9 0.9 0.9
Adam: beta2 0.999 0.999 0.999 0.999
Adam: epsilon 1e−8 1e−8 1e−8 1e−8
Batch size 2160 2160 2160 2160
Temperature τ ✗ ✗ 0.1 ✗
Alignment reg. ✗ ✗ ✗ 10
# Initial values 10 10 ✗ 10
# Iterations < 30,000 < 30,000 < 30,000 < 30,000
# Seeds 3 3 3 3

Table 6: A non-exhaustive summary of latent regularizers in recent CRL approaches.

Principle Assumption Latent regularizer References

multiview part. shared latents
∥g(x)S − g(x̃)S∥22

Locatello et al. (2020); Von Kügelgen et al. (2021)

Daunhawer et al. (2023); Yao et al. (2024)

∥g(x̃)− g(x)− δ∥22 Ahuja et al. (2022)

sparsity
sparse causal graph

∥g(x)∥1 Lachapelle et al. (2023); Xu et al. (2024)

Spike and Slab prior Moran et al. (2022); Tonolini et al. (2020)

temporal sparsity KL (q(zt | xt)||p̂(zt|z<t, a<t)) Lachapelle and Lacoste-Julien (2022)
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Figure 7: Example of global sea surface temperature in January, 1990.
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