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ABSTRACT

A major challenge in reinforcement learning is specifying tasks in a manner that
is both interpretable and verifiable. One common approach is to specify tasks
through reward machines—finite state machines that encode the task to be solved.
We introduce skill machines, a representation that can be learned directly from
these reward machines that encode the solution to such tasks. We propose a
framework where an agent first learns a set of base skills in a reward-free setting,
and then combines these skills with the learned skill machine to produce composite
behaviours specified by any regular language and even linear temporal logics. This
provides the agent with the ability to map from complex logical task specifications
to near-optimal behaviours zero-shot. We demonstrate our approach in both a
tabular and high-dimensional video game environment, where an agent is faced with
several of these complex, long-horizon tasks. Our results indicate that the agent is
capable of satisfying extremely complex task specifications, producing near optimal
performance with no further learning. Finally, we demonstrate that the performance
of skill machines can be improved with regular off-policy reinforcement learning
algorithms when optimal behaviours are desired.

1 INTRODUCTION

Reinforcement learning (RL) is a promising framework for developing truly general agents capable
of acting autonomously in the real world. Despite recent successes in the field, ranging from video
games (Badia et al., 2020) to robotics (Levine et al., 2016), there are several shortcomings to existing
approaches that hinder RL’s real-world applicability. One issue is that of sample efficiency—while it
is possible to collect millions of data points in a simulated environment, it is simply not feasible to do
so in the real world. This inefficiency is exacerbated when a single agent is required to solve multiple
tasks (as we would expect of a generally intelligent agent). One approach of generally intelligent
agents to overcoming this challenge is their ability to reuse learned behaviours to solve new tasks (Tay-
lor & Stone, 2009), preferably without further learning. That is, to rely on composition, where an agent
first learns individual skills and then combines them to produce novel behaviours. There are several
notions of compositionality in the literature, such as temporal composition, where skills are invoked
one after the other ("pickup a blue object then a box") (Sutton et al., 1999; Barreto et al., 2019), and
spatial composition, where skills are combined to produce a new behaviour to be executed ("pickup
a blue box") (Todorov, 2009; Saxe et al., 2017; Van Niekerk et al., 2019; Alver & Precup, 2022).

Notably, work by Nangue Tasse et al. (2020) has demonstrated how an agent can learn skills that can
be combined using Boolean operators, such as negation and conjunction, to produce semantically
meaningful behaviours without further learning. An important, additional benefit of this compositional
approach is that it provides a way to address another key issue with RL: tasks, as defined by reward
functions, can be notoriously difficult to specify. This may lead to undesired behaviours that are not
easily interpretable and verifiable. Composition that enables simpler task specifications and produces
reliable behaviours thus represents a major step towards safe AI (Cohen et al., 2021).

Unfortunately, these compositions are strictly spatial. Thus, another issue arises when an agent is
required to solve a long horizon task. In this case, it is often near impossible for the agent to solve the
task, regardless of how much data it collects, since the sequence of actions to execute before a learning
signal is received is too large (Arjona-Medina et al., 2019). This can be mitigated by leveraging higher-
order skills, which shorten the planning horizon (Sutton et al., 1999). One specific implementation
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of this is reward machines—finite state machines that encode the tasks to solve (Icarte et al., 2018).
While reward machines obviate the sparse reward problem, used in isolation, they still require the
agent to learn how to solve a given task through environment interaction, and the subsequent solution
is monolithic, resulting in the afore mentioned problems with applicability to new tasks and reliability.

In this work, we combine these two approaches to develop an agent capable of zero-shot spatial and
temporal composition. We particularly focus on temporal logic composition, such as linear temporal
logic (LTL) (Pnueli, 1977), allowing agents to sequentially chain and order their skills while ensuring
certain conditions are always or never met. We make the following contributions: (a) we propose skill
machines, a finite state machine that can be autonomously learned by a compositional agent, and which
can be used to solve any task expressible as a finite state machine without further learning; (b) we prove
that these skill machines are satisficing—given a task specification, an agent can successfully solve
it while adhering to any constraints; and (c) we demonstrate our approach in several environments, in-
cluding a high-dimensional video game domain. Having learned a set of base skills in a reward-free set-
ting (in the absence of task rewards from a reward machine) , our results indicate that our method is ca-
pable of producing near-optimal behaviour for a variety of long-horizon tasks without further learning.

To describe our approach to temporal composition, we use the Office Gridworld (Icarte et al., 2018)
as a running example. In the environment, illustrated by Figure 1a, an agent (blue circle) can move
to adjacent cells in any of the cardinal directions. It can also pick up coffee or mail at locations
K or B respectively, and it can deliver them to the office at location x. Cells marked ✽ indicate
decorations that are broken if the agent collides with them, and cells marked A–D indicate the centres
of the corner rooms. The reward machines that specify tasks in this environment are defined over 10
propositions: P = {A,B,C,D,✽,K,B, x,B+, x+}, where the first 8 propositions are true when
the agent is at their respective locations,B+ is true when the agent is atB and there is mail to be
collected, and x+ is true when the agent is at x and there is someone in the office.

(a) Office Gridworld

0.5

(b) Reward and Skill Machine
Figure 1: Illustration of (a) the office gridworld where the blue circle represents the agent and (b)
the finite state machine representing both the reward and skill machine for the task “deliver coffee
and mail to the office without breaking any decoration” where the black dots labeled t represent
terminal states. The reward machine gives rewards (δr) to the agent for each FSM state and the
skill machine gives the composed skills δQ that maximises those rewards. For example at u0,
δr(u0) = 0.5(RB∧¬✽) + 0.5(RK∧¬✽

) and δQ(u0) = 0.5(QB ∧ ¬Q✽) + 0.5(QK ∧ ¬Q✽).

2 BACKGROUND

We model the agent’s interaction with the world as a Markov Decision Process (MDP), given by
(S,A, P,R, γ), where (i) S ⊆ Rn is the n-dimensional state space; (ii) A is the set of (possibly
continuous) actions available to the agent; (iii) P (s′|s, a) is the dynamics of the world, representing
the probability of the agent reaching state s′ after executing action a in state s; (iv) R is a
reward function bounded by [RMIN, RMAX] that represents the task the agent needs to solve; and
(v) γ ∈ [0, 1] is a discount factor. The aim of the agent is to compute a Markov policy π from S
to A that optimally solves a given task. Instead of directly learning a policy, an agent will often
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instead learn a value function that represents the expected return following policy π from state s:
V π(s) = Eπ [

∑∞
t=0 γ

tR(st, at)]. A more useful form of value function is the action-value function
Qπ(s, a), which represents the expected return obtained by executing a from s, and then following π.
The optimal action-value function is given by Q∗(s, a) = maxπ Q

π(s, a) for all states s and actions
a, and the optimal policy follows by acting greedily with respect to Q∗ at each state.

2.1 LOGICAL COMPOSITION IN THE MULTITASK SETTING

We are interested in the multitask setting, where an agent is required to reach a set of goals in
some goal space G ⊆ S. We assume that all tasks share the same state space, action space and
dynamics, but differ in their reward functions. We model this setting by defining a background MDP
M = ⟨S,A, P,R, γ⟩ with its own state space, action space, transition dynamics and background
reward function: R. Any individual task τ is then specified by a task-specific reward function Rτ that
is non-zero only for states in G. The reward function for the resulting task MDP is then simply R+Rτ .

Nangue Tasse et al. (2020) consider the case where Rτ (g, a) ∈ {RMIN, RMAX} and develop a
framework that allows agents to apply the Boolean operations of conjunction (∧), disjunction (∨)
and negation (¬) over the space of tasks and value functions. This is achieved by first defining the
goal-oriented reward function R̄ which extends the task rewards (R+Rτ ) to penalise an agent for
achieving goals different from the one it wished to achieve:

R̄(s, g, a) :=

{
RMISS if g ̸= s; where g ∈ G and s is absorbing
R(s, a) +Rτ (s, a) otherwise,

(1)

RMISS is a large negative penalty that can be derived from the bounds of the reward function. Using
Equation 1, we can define the related goal-oriented value function as:

Q̄(s, g, a) = R̄(s, g, a) + γ

∫
S
V̄ π̄(s′, g)P(s,a)(ds

′), (2)

where V̄ π̄(s, g) = Eπ̄

[∑∞
t=0 γ

tR̄(st, g, at)
]
.

If a new task can be represented as the logical expression of previously learned tasks, Nangue Tasse
et al. (2020) prove that the optimal policy can immediately be obtained by composing the learned
goal-oriented value functions using the same expression. For example, the union (∨), intersection (∧),
and negation (¬) of two goal-reaching tasks A and B can be solved as follows (we omit the value
functions’ parameters for readability):

Q̄∗
A∨B = Q̄∗

A ∨ Q̄∗
B := max{Q̄∗

A, Q̄
∗
B}; Q̄∗

A∧B = Q̄∗
A ∧ Q̄∗

B := min{Q̄∗
A, Q̄

∗
B};

Q̄∗
¬A = ¬Q̄∗

A :=
(
Q̄∗

SUP + Q̄∗
INF

)
− Q̄∗

A

where Q̄∗
SUP and Q̄∗

INF are the goal-oriented value functions for the maximum task (Rτ = RMAX
for all G) and minimum task (Rτ = RMIN for all G), respectively. Following Nangue Tasse et al.
(2022), we will also refer to these goal-oriented value functions as world value functions (WVFs).

2.2 REWARD MACHINES

One difficulty with the standard MDP formulation is that the agent is often required to solve a complex
long-horizon task using only a scalar reward signal as feedback from which to learn. To overcome
this, Icarte et al. (2018) propose reward machines (RMs), which provide structured feedback to the
agent in the form of a finite state machine (FSM). RMs encode a reward function using a set of
propositional symbols P that represent abstract environment features as follows:
Definition 1 (Reward Machine). Given a set of states S and actions A, a reward machine is a tuple
RSA = ⟨U, u0, F, δu, δr⟩ where (i) U is a finite set of states; (ii) u0 ∈ U is an initial state; (iii) F is
a finite set of terminal states; (iv) δu : U × [S × A× S]→ U ∪ F is the state-transition function;
and (v) δr : U → [S ×A× S → R] is the state-reward function.

RMs consist of a finite set of states U where transitions between RM states are governed by δu,
and where each RM state emits a reward function according to δr. To incorporate RMs into the RL
framework, the agent must be able to determine a correspondence between abstract RM propositions
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(P = {A,B,C,D,✽,K,B, x,B+, x+} for example) and states in the environment. To achieve
this, the agent is equipped with a labelling function L : S ×A× S → 2P that assigns truth values to
the propositions based on the agent’s interaction with its environment. Thus, 2P ⊂ S×A×S depicts
an equivalence class from S×A×S. A particular instantiation of an RM that is used in practice—for
example when converting an LTL specification to an RM—is a simple reward machine (SRM denoted
similarly as RPA), which restricts the form of the state-reward function to be δr : U → [2P → R]
(Icarte et al., 2018). In other words, the SRM state-reward function emits a function which maps the
simpler equivalence class of states to a scalar reward.

The agent’s aim then is to learn a policy π : S × U → A over the joint background MDP and RM
(MDPRM), which is defined by the tuple T = ⟨S,A, P, γ,P, L, U, u0, F, δu, δr⟩. However, the
rewards from the reward machine are not necessarily Markov with respect to the environment. Icarte
et al. (2018) shows that a product MDPRM (Definition 2 below) guarantees that the rewards are
Markov such that the policy can be learned with standard algorithms like Q-learning(Icarte et al.,
2018). This is because the product MDPRM uses the cross-product to consolidate how actions in the
environment result in simultaneous transitions in the environment and state machine. Thus, product
MDPRMs take the form of standard, learnable MDPs.
Definition 2 (Product MDPRM). Let T = ⟨S,A, P, γ,P, L, U, u0, F, δu, δr⟩ be an MDPRM. The
product MDPRM is then defined by the tuple MT = ⟨ST ,A, PT , RT , γ⟩ where ST := S × (U ∪ F ),
RT (⟨s, u⟩, a, ⟨s′, u′⟩) := δr(u)(s, a, s

′),

PT (⟨s, u⟩, a) :=
{
⟨s′, u′⟩ if u ∈ U

⟨s′, u⟩ otherwise
, s′ ∼ P (·|s, a) and u′ = δu(u, (s, a, s

′)).

3 LEVERAGING SKILL COMPOSITION FOR TEMPORAL LOGIC TASKS

Since we are interested in temporal logic tasks, we will restrict our attention to RMs whose rewards
per node are specified by linear preferences over Boolean expressions (instead of arbitrary real-valued
functions that are not grounded in achieving goals in an environment):
Definition 3 (Tasks). Let M = ⟨S,A, P,R, γ⟩ be a background MDP. A task is a product MDPRM
MT = ⟨ST ,A, PT , RT , γ⟩ over M and a reward machine with reward function

δr(u) ∈
{
Rw(s, a, s′) =

∑
p∈22P

wpRp(s, a, s
′) : Rp(s, a, s

′)
∑

p∈22P

wp = 1 and w ∈ R
∣∣∣22P ∣∣∣}

, where

Rp(s, a, s
′) :=


RMAX if L(s, a, s′) ∈ p

RMIN if L(s, a, s′) ̸∈ p

R(s, a) otherwise.

We will assume that the rewards Rp(s, a, s
′) are such that the policies that maximises them are

guaranteed to reach states where the corresponding propositions p are true—a common example is to
have R(s, a) = RMIN = 0 and RMAX = 1. This definition of RMs provides a general notion of tasks
that are still grounded in achieving goals. Figure 1b illustrates an example of an RM in the office
gridworld for solving the task “deliver coffee and mail to the office without breaking any decoration”.

3.1 FROM ENVIRONMENT TO PRIMITIVES

In order to solve temporal logic tasks zero-shot, we propose to first learn a set of primitive skills
which can later be composed to maxise the rewards per RM node without further learning. To achieve
this, we first introduce the concept of constraints C ⊆ P , which are the set of propositions that an
agent should avoid setting to true and corresponds to the global operator G in a linear temporal logic
(LTL) specification. An example of a constraint might be that the agent should complete a task, but
avoid breaking any decorations while doing so (C = {✽} and in the LTL we say G ¬✽). We can now
define the notions of task primitives and skill primitives such as “Pick up coffee” (F K in LTL) or
“don’t break any decoration” (¬(F✽) = G ¬✽ in LTL).
Definition 4 (Primitives). Let M = ⟨S,A, P,R, γ⟩ be a background MDP. We define a task primitive
in this domain as Mp = ⟨SG ,AG , PG , Rp, γ⟩, p ∈ 22

P
, with absorbing goal space G = 2P and

labelling function L, where
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SG := (S × 2C) ∪ 2P ,where C is the set of constraints;
AG := A×Aτ , where Aτ = {0, 1} represents whether or not to terminate a task;

PG(⟨s, c⟩, ⟨a, aτ ⟩) :=
{
L(s, a, s′) if aτ = 1

⟨s′, c′⟩ otherwise
,

where s′ ∼ P (·|s, a) and c′ = c ∪ (C ∩ L(s, a, s′));

Rp(⟨s, c⟩, ⟨a, aτ ⟩) :=


RMAX if aτ = 1 and L(s, a, s′) ∈ p

RMIN if aτ = 1 and L(s, a, s′) ̸∈ p

R(s, a) otherwise.

A skill primitive Q̄∗
p is defined as the WVF for the task primitive Mp.

The above defines the state space of primitives to be the product of the environment states and the
set of constraints, incorporating the set of propositions that are currently true. The action space is
augmented with a terminating action following Barreto et al. (2019) and Nangue Tasse et al. (2020),
which indicates that the agent wishes to achieve the goal it is currently at, and is similar to an option’s
termination condition (Sutton et al., 1999). The transition dynamics update the environment state and
constraints set to true when a regular action is taken, and use the labelling function to return the set of
propositions achieved when the agent decides to terminate. Finally, the agent receives the regular
background reward when taking an action, but a primitive-specific goal reward when it terminates.

Importantly, primitives are temporally atomic, that is, they correspond to tasks with a single
non-terminal RM state. They are, thus, the smallest unit of temporal logic. However, since the goal
space of task primitives are defined by Boolean propositions, we can leverage prior work to solve
any logical composition over them by composing their corresponding skill primitives (Nangue Tasse
et al., 2020). We will denote the set of base task primitives to beMP and the corresponding base
skill primitives Q̄∗

P , which can be composed to obtain any other primitive. For example: “Pick up
coffee without breaking any decoration” ((FK) ∧ ¬(F ✽)) is another primitive by Definition 4.
As we discuss in Section 3.2, this solves the primary problem with Reward Machines - they suffer
from the curse of dimensionality when all possible primitives must be relearned at all states in the
FSM. Skill Machines in contrast leverage primitive composition within and across FSM states.
Theorem 1 below demonstrates that a linear combination of skill primitives maximise the task (in
terms of Definition 3) rewards per RM node without further learning (proofs of all theorems are
presented in the Appendix). This is also demonstrated experimentally in Figure 8 in Appendix A.5.
Theorem 1. Let RG be a vector of rewards for each task primitive, and Q̄∗

G be the corresponding
vector of optimal WVFs. Then, for an MDP m = ⟨SG ,AG , PG , Rw, γ⟩ with linear preference reward
function Rw = w ·RG , we have Q̄∗

m = w · Q̄∗
G .

3.2 FROM TASKS TO SKILL MACHINES

We now have agents capable of solving any logical and linear composition of base task primitives
MP by only learning their corresponding base skill primitives Q̄∗

P . Given this compositional ability
over skills, and reward machines that expose the structure of tasks, agents can solve temporally
extended tasks with little or no further learning. To achieve this, we define a skill machine (SM) as a
representation of logical and temporal knowledge over skills.
Definition 5 (Skill Machine). Given a task MT = ⟨ST ,A, PT , RT , γ⟩ defined by a reward machine
RSA = ⟨U, u0, F, δu, δr⟩, a set of propositional symbols P with constraints C ⊆ P , and their cor-
responding base skill primitives Q̄∗

P , a skill machine is a tuple Q̄∗
SA = ⟨U, u0, F, δu, δQ,wU ,wG⟩

where (i) wU : U ×U → R is a preference function over transitions; (ii) wG : SG ×G → R is a pref-
erence function over goals; and (iii) δQ : U → [SG ×AG → R] is the state-skill function defined by:

δQ(u)(⟨s, c⟩, ⟨a, 0⟩) 7→
∑
g∈G

∑
u′∈U

wG(⟨s, c⟩, u, g)wU (u, u
′)Q̄∗

u,u′(⟨s, c⟩, g, ⟨a, 0⟩),

where Q̄∗
u,u′ is the WVF obtained by composing the skill primitives Q̄∗

G according to the Boolean
expression for the transition δu(u)(s, a, s

′) = u′.

For a given state s ∈ S in the environment, true constraints c ∈ C, and state u in the skill ma-
chine, the skill machine uses its preference over transitions wU and goals wG to compute a skill
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Q(⟨s, c⟩, ⟨a, 0⟩) := δQ(u)(⟨s, c⟩, ⟨a, 0⟩) that an agent can use to take an action a. The environment
then transitions to the next state s′ where ⟨s′, c′⟩ ← PG(⟨s, c⟩, ⟨a, 0⟩) and the skill machine transitions
to u′ ← δu(u, L(s, a, s

′)). wU represents cases where there is not necessarily a single desirable
transition to follow given the current SM state. This is illustrated by the SM in Figure 1b, where mail
(B) and coffee (K) are equally desirable at the initial state. Similarly, wG represents cases where
there may be a single desirable task, but its goals are not necessarily equally desirable given the
environment state—for example when the agent needs to first pick up coffee but there are two coffee
locations. Remarkably, there always exists a choice for wU and wG that is optimal with respect to
the corresponding reward machine, as shown in Theorem 2:
Theorem 2. Let π∗(s, u) be the optimal policy for a task MT , and let C = P . Then there exists a cor-
responding skill machine with a wG and wU such that π∗(s, u) ∈ argmaxa∈A δQ(u)(⟨s, c⟩, ⟨a, 0⟩),
where δQ is given by wG and wU as per Definition 5.

Theorem 2 shows that skill machines can be used to solve tasks without having to relearn action level
policies. The next section shows how an agent can approximate a skill machine by planning over
simple reward machines.

3.3 FROM SIMPLE REWARD MACHINES TO SKILL MACHINES

(a) Simple reward machine (b) Value iterated RM (c) Skill machine

Figure 2: The SRM, value iterated RM and skill machine for the task “Deliver coffee to the office with-
out breaking any decoration”. This task is specified using LTL as (F (K∧X(F x)))∧(G¬✽)), where
F = Finally,X = neXt,G = Globally are LTL operators. The corresponding RM is obtained by
converting the LTL into a finite state machine (Duret-Lutz et al., 2016) and then giving a reward
of 1 for accepting transitions and 0 otherwise. The black dots labeled t represent terminal states.

In the previous section, we introduced skill machines and showed that they can be used to represent
the logical and temporal composition of skills needed to solve reward machines. We now show how
for simple RMs (RMs returning scalar rewards as defined in Section 2.2) their approximate SM can
be obtained zero-shot without further learning. To achieve this, we first plan over the reward machine
(using value iteration, for example) to obtain Q-values for each transition. We then select the skills for
each SM state greedily. This process is illustrated in Figure 2. While this only holds for cases where
the greedy skills are always satisfice-able from any environment state, this still covers many tasks
of interest. In particular, this holds for any RM with non-zero rewards of RMAX only at accepting
transitions,1 as shown in Theorem 3.
Theorem 3. Let RPA = ⟨U, u0, F, δu, δM⟩ be a satisfice-able simple reward machine with non-zero
rewards RMAX only for accepting transitions, and for which all valid transitions (u, u′) are achievable
from any state s ∈ S. Define the skill machine Q̄∗

SA = ⟨U, u0, F, δu, δQ,wU ,wG⟩ with

wU (u, u
′) := 1 if u′ = argmax

u′′
Q∗(u, u′′), 0 otherwise

wG(⟨s, c⟩, u, g) := 1 if g = argmax
g′

max
a

∑
u′

wU (u, u
′)Q̄∗

u,u′(⟨s, c⟩, g′, ⟨a, 0⟩), 0 otherwise

where Q∗ is the optimal transition-value function for RPA. Then following the policy π(s, u) ∈
argmaxa∈A δQ(u)(⟨s, c⟩, ⟨a, 0⟩), will reach an accepting transition.

1Accepting transitions are transitions at which the high level task—described, for example, by linear temporal
logics—is satisfied.
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Theorem 3 is critical as it provides soundness guarantees, ensuring that the policy derived from the
skill machine will always satisfice the task requirements. Finally, in cases where the composed skill
δQ obtained from the approximate SM is not sufficiently optimal, we can use any off-policy algorithm
to learn a new skill QT few-shot. This is achieved by using the maximising Q-values max{βQT , (1−
β)δQ} in the exploration policy during learning. Here, β ∈ (0, 1) is a parameter that determines how
much of the composed policy to use. It can also be seen as decreasing the potentially overestimated
values of δQ, since δQ is greedy with respect to both goals and RM transitions. Consider Q-learning
with β = γ. During the ϵ-greedy exploration, we use a← argmaxA max{γQT , (1−γ)δQ} to select
greedy actions, hence improving the initial performance of the agent where γQT < (1− γ)δQ, and
guaranteeing convergence in the limit like regular Q-learning. Appendix A.2 illustrates this process.

4 EXPERIMENTS

We consider the Office Gridworld (Figure 1a) and the Moving Targets (Figure 4) domains:
(i) Office Gridworld Icarte et al. (2018): The tasks here are specified over 10 propositions
P = {A,B,C,D,✽,K,B, x,B+, x+} and 1 constraint C = {✽}. We learn the base skill primi-
tives Q̄∗

P (Figure 7 in Appendix A.5) using goal oriented Q-learning Nangue Tasse et al. (2020), where
the agent keeps track of reached goals and uses Q-learning (Watkins, 1989) to update the WVF with
respect to all seen goals at every time step. (ii) Moving Targets Domain Nangue Tasse et al. (2020):
This is a canonical object collection domain with high dimensional pixel observations (84× 84× 3
RGB images). The agent here needs to pick up objects of various shapes and colors; picked objects
respawn at random empty positions similarly to previous object collection domains (Barreto et al.,
2020). There are 3 object colours—beige ( ), blue ( ), purple ( )—and 2 object shapes—squares ( ),
circles ( ). The tasks here are defined over 6 propositions and constraints P = C = { , , , , }.
We learn the corresponding base skill primitives with goal oriented Q-learning Nangue Tasse et al.
(2020) but using deep Q-learning (Mnih et al., 2015) to update the WVFs.

4.1 ZERO-SHOT TEMPORAL LOGICS

Task Description | LTL

1 Deliver coffee to the office without breaking decorations |
(
F
(
K ∧X

(
F x

)))
∧ (G ¬✽)

2 Patrol rooms A, B, C, and D without breaking any decoration
| (F (A ∧X (F (B ∧X (F (C ∧X (FD))))))) ∧ (G ¬✽)

3 Deliver coffee and mail to the office without breaking any decoration
|
((
F
(
K ∧X

(
F
(
B ∧X

(
Fx

)))))
||
(
F
(
B ∧X

(
F
(
∧X

(
Fx

))))))
∧ (G¬✽)

4 Deliver mail to the office until there is no mail left, then deliver coffee to office while there
are people in the office, then patrol rooms A-B-C-D-A, and never break a decoration
|
(
F
(
B ∧X

(
F
(
x ∧X

(
¬BU

(
¬B+ ∧B ∧X

(
F
(
K ∧X

(
¬xU

(
¬x+ ∧ x ∧X

(FA ∧X (F (B ∧X (F (C ∧X (F (D ∧X (FA)))))))) ∧ (G ¬✽)

Table 1: Tasks in the Office Gridworld. The RMs are generated from the LTL expressions.

We use the Office Gridworld as a multitask domain, and we evaluate how long it takes an agent
to learn a policy that can solve the four tasks described in Table 3. The agent iterates through the
tasks, changing from one to the next after each episode. In all of our experiments, we compare
the performance of skill machines with that of state-of-the-art RM-based learning approaches
like counterfactual RMs (CRM)—where the Q-functions are updated with respect to all possible
RM transitions from a given environment state—and hierarchical RMs (HRM)—where an agent
learns options per RM state that are grounded in the environment states (Icarte et al., 2018). In
addition to learning all four tasks, we also experiment with Tasks 3 and 4 in isolation. In these single
task domains, the difference between CRM, HRM, skill machines and Q-learning should be less
pronounced, since CRM, HRM and few-shot with skill machines now cannot leverage the shared
experience across multiple tasks. Thus, the comparison between multi-task and single-task learning
in this setting will evaluate the benefit of the compositionality afforded by skill machines.

The results of these three experiments (each ran for 2 × 105 time steps) are shown in Figure 3.
Regular Q-learning struggles to learn Task 3 and completely fails to learn the hardest task (Task 4).
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Additionally, notice that while QL and CRM can theoretically learn the tasks optimally given infinite
time, only HRM and SM are able to learn hard long horizon tasks in practice. It is important to note
that we train all algorithms for the same amount of time during these experiments and previous work
(Nangue Tasse et al., 2020) has shown that learning the WVFs takes longer than learning task-specific
skills. In addition, the skill machines are being used to zero-shot generalise to the office tasks using
skill primitives. Thus using the skill machines in isolation (labelled SM on Figure 3) may provide
sub-optimal performance compared to the task-specific agents, since the skill machines have not been
trained to optimality and are not specialised to the domain. Even under these conditions, we observe
that skill machines perform near-optimally in terms of final performance, and due to the amortised
nature of learning the WVF will achieve its final rewards from the first epoch.
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Figure 3: Average (over 80 independent trials) returns during training in the Office Gridworld.

4.2 FEW-SHOT TEMPORAL LOGICS

It is possible to pair the skill machines with a learning algorithm such as Q-learning to achieve few-
shot generalisation. From the results shown in Figure 3, it is apparent that skill machines paired with
Q-learning (labelled QL-SM on Figure 3) achieves the best performance for both the single-task and
multi-task setting. While it is not clear from the rewards that adding Q-learning provides significant
improvements to the skill machine, their trajectories show that Q-learning does indeed improve on
the skill machine policies when they are not optimal (Appendix 9). Additionally, skill machines with
Q-learning always begin with a significantly higher reward and converge on their final performance
faster than all benchmarks—except the zero-shot one which is (near) optimal in all cases. The speed
of learning is due to the compositionality of the skill primitives with skill machines, and the high final
performance is due to the generality of the learned primitives being paired with the domain specific
Q-learner. In sum, skill machines provide fast composition of skills and achieve optimal performance
compared to all benchmarks when paired with a learning algorithm.

4.3 FUNCTION APPROXIMATION
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Figure 4: The Moving Targets domain (left) and
the average returns over 100 runs for tasks in Ta-
ble 2 (right), where B,P, S = , , .

We now demonstrate our temporal logic com-
position approach in Moving Targets domain
where function approximation is required. Fig-
ure 4 shows the average returns of the optimal
policies and SM policies for the four tasks de-
scribed in Table 2 with a maximum of 50 steps
per episode. Our results show that even when
using function approximation with sub-optimal
skill primitives, the zero-shot policies obtained
from skill machines are very close to optimal on
average. We also observe that for very challeng-
ing tasks like Tasks 3 and 4 (where the agent
must satisfice difficult temporal constraints), the
compounding effect of the sub-optimal policies sometimes leads to failures. In such cases, learning
new skills few-shot using tabular Q-learning by leveraging the SM would guarantee convergence to op-
timal policies as demonstrated in Section 4.2, but that is not guaranteed using function approximation.
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Task Description | LTL

1 Pick up any object. Repeat this forever. | F ( ∨ )
2 Pick up blue then purple objects, then objects that are neither blue nor purple. Repeat this

forever. | F ( ∧X(F ( ∧X(F (( ∨ ) ∧ ¬( ∨ ))))))
3 Pick up blue objects or squares, but never blue squares. Repeat this forever.

| (F ( ∨ )) ∧ (G ¬( ∧ ))
4 Pick up non-square blue objects, then non-blue squares in that order. Repeat this forever.

| F ((¬ ∧ ) ∧X(F ( ∧ ¬ )))

Table 2: Tasks in the Moving Targets domain. To repeat forever, the terminal states of the RMs
generated from LTL are removed, and transitions to them are looped back to the start state.

5 RELATED WORK

One family of approaches to spatial composition leverages forms of regularisation to achieve seman-
tically meaningful disjunction (Todorov, 2009; Van Niekerk et al., 2019) or conjunction (Haarnoja
et al., 2018; Hunt et al., 2019). Weighted composition has also been demonstrated; for example,
Peng et al. (2019) learn weights to compose existing policies multiplicatively to solve new tasks.
Approaches that leverage the successor feature (SF) framework (Barreto et al., 2017) are capable of
solving tasks defined by linear preferences over features (Barreto et al., 2020). Alver & Precup (2022)
show that an SF basis can be learned that is sufficient to span the space of tasks under consideration,
while Nemecek & Parr (2021) determine which policies should be stored in limited memory so as to
maximise performance on future tasks. In contrast to these approaches, our framework allows for
both spatial composition (including operators such as negation that other approaches do not support)
and temporal composition such as LTL.

A popular way of achieving temporal composition is through the options framework (Sutton et al.,
1999; Bacon et al., 2017). Here, high-level skills are first discovered and then executed sequentially
to solve a task (Konidaris & Barto, 2009; Bagaria & Konidaris, 2019). Barreto et al. (2019) leverage
the SF and options framework and learn how to linearly combine skills, chaining them sequentially
to solve temporal tasks. However, these options-based approaches offer a relatively simple form of
temporal composition. By contrast, we are able to solve tasks expressed through regular languages
zero-shot, while providing soundness guarantees.

Work has also centred on approaches to defining tasks using human-readable logic operators. For
example, Li et al. (2017) and Littman et al. (2017) specify tasks using LTL, which is then used to
generate a standard reward signal for an RL agent. Camacho et al. (2019) show how to perform
reward shaping given LTL specifications, while Jothimurugan et al. (2019) develop a formal language
that encodes tasks as sequences, conjunctions and disjunctions of subtasks. This is then used to obtain
a shaped reward function that can be used for learning. All of these approaches focus on how an
agent can improve learning given such specifications or structure, but we show how an explicitly
compositional agent can immediately solve such tasks using WVFs without further learning.

6 CONCLUSION

We proposed skill machines—finite state machines that can be learned from reward machines—that
allow agents to solve extremely complex tasks involving temporal and spatial composition. We demon-
strated how skills can be learned and encoded in a specific form of goal-oriented value function that,
when combined with the learned skill machines, are sufficient for solving subsequent tasks without
further learning. Our approach guarantees that the resulting policy adheres to the logical task specifi-
cation, which provides assurances of safety and verifiability to the agent’s decision making, important
characteristics that are necessary if we are to ever deploy RL agents in the real world. While the
resulting behaviour is provably satisficing, empirical results demonstrate that the agent’s performance
is near optimal; further fine-tuning can be performed should optimality be required, which greatly im-
proves the sample efficiency. We see this approach as a step towards truly generally intelligent agents,
capable of immediately solving human-specifiable tasks in the real world with no further learning.
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A APPENDIX

A.1 PROOFS OF THEORETICAL RESULTS

Theorem 1. Let RG be a vector of rewards for each task primitive, and Q̄∗
G be the corresponding

vector of optimal WVFs. Then, for an MDP m = ⟨SG ,AG , PG , Rw, γ⟩ with linear preference reward
function Rw = w ·RG , we have

Q̄∗
m = w · Q̄∗

G .

Proof.

Q̄∗
m(s, g, a) = Eπ̄∗

[ ∞∑
t=0

γtw · R̄G(st, g, at)

]

= w · Eπ̄∗

[ ∞∑
t=0

γtR̄G(st, g, at)

]
;

since the world policies are independent of task Nangue Tasse et al. (2020)[Lemma 2].

= w · Q̄∗
G

Theorem 2. Let π∗(s, u) be the optimal policy for a task MT , and let C = P . Then there exists a
corresponding skill machine with a wG and wU such that

π∗(s, u) ∈ argmax
a∈A

δQ(u)(⟨s, c⟩, ⟨a, 0⟩),

where δQ is given by wG and wU as per Definition 5.

Proof. Let wU (u, ·) = 1
Nδu

where Nδu is the number of possible RM transitions from u.
Also let wG(s, u, ·) be 1 for the set of propositions g ∈ 2C that are satisfied when following
π∗(s, u), and zero everywhere else. Then π∗(s, u) ∈ argmaxa∈A δQ(u)(⟨s, c⟩, ⟨a, 0⟩) since
wU (u, u

′)Q̄∗
u,u′(⟨s, c⟩, g, ⟨a, 0⟩) is optimal using Theorem 1 and optimal policies are assumed to

reach task goals.

Theorem 3. Let RPA = ⟨U, u0, F, δu, δM⟩ be a satisfice-able simple reward machine with non-zero
rewards RMAX only for accepting transitions, and for which all valid transitions (u, u′) are achievable
from any state s ∈ S. Define the skill machine Q̄∗

SA = ⟨U, u0, F, δu, δQ,wU ,wG⟩ with

wU (u, u
′) := 1 if u′ = argmax

u′′
Q∗(u, u′′), 0 otherwise

wG(⟨s, c⟩, u, g) := 1 if g = argmax
g′

max
a

∑
u′

wU (u, u
′)Q̄∗

u,u′(⟨s, c⟩, g′, ⟨a, 0⟩), 0 otherwise

where Q∗ is the optimal transition-value function for RPA. Then following the policy π(s, u) ∈
argmaxa∈A δQ(u)(⟨s, c⟩, ⟨a, 0⟩), will reach an accepting transition.

Proof. This follows from the optimality of π∗(s, u) and Q∗, since each transition of the RM is
satisfice-able from any environment state.
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A.2 PSEUDO-CODE FOR FEW-SHOT Q-LEARNING USING SKILL MACHINES

Algorithm 1: Few-shot Q-learning using skill machines
Input : γ, α,P, C, L, U, u0, F, δu, δQ
Initialise : Q(s, u, a)
foreach episode do

Observe initial state s ∈ S, get initial u← u0, and c = 0
while episode is not done do

/* Using the composed skill δQ in the behaviour policy */
a←{

argmax
a∈A

(max{γQ(s, u, a), (1− γ)δQ(u)(⟨s, c⟩, ⟨a, 0⟩)}) if Bernoulli(1− ϵ) = 1

a random action otherwise

Take action a and observe next state s′ and true constraints c← c ∪ (C ∩ L(s, a, s′))
Get reward r ← δr(u)(s, a, s

′) and the next RM state u′ ← δu(u, L(s, a, s
′))

Q(s, u, a)
α←− r if s′ is terminal or u′ ∈ F else

[
r + γmax

a′
Q(s′, u′, a′)

]
s← s′

A.3 FUNCTION APPROXIMATION WITH CONTINUOUS ACTIONS AND STATES

Task Description | LTL

1 Navigate to a button and then to a cylinder. | (F (B ∧X (F C)))
2 Navigate to a button and then to a cylinder while never entering hazard regions

| (F (B ∧X (F C))) ∧ (G ¬H)
3 Navigate to a button, then to a cylinder without entering hazard regions, then to a button

inside a hazard region, and finally to a cylinder again.
| F (B ∧X (F ((C ∧ ¬H) ∧X (F ((B ∧H) ∧X(FH)))))))

4 Navigate to a button and then to a cylinder in a hazard region. | (F (B ∧X (F C ∧H)))
5 Navigate to a cylinder, then to a button in a hazard region, and finally to a cylinder again.

| (F (C ∧X (F ((B ∧H) ∧X (C))))
6 Navigate to a hazard, then to a cylinder, and finally to a cylinder again while avoiding

hazards. | (F (H ∧X (F (C ∧X (F (C ∧H))))))

Table 3: Tasks in the Safety AI Gym domains. The RMs are generated from the LTL expressions.

We demonstrate our temporal logic composition approach in a Safety AI Gym domain (Figure
5) (Ray et al., 2019) which has a continuous state space (S = R60) and continuous action space
(A = R2). The agent here is a point mass that needs to navigate to various regions defined by
3 propositions (P = {B,C,H}) corresponding to its 3 lidar sensors for the buttons (B) (grey
spheres), the cylinder (C) (translucent cylinder), and the hazards (H) (blue regions). The button
and hazard positions are fixed as shown in Figure 5, the cylinder is randomly placed on one of the
buttons, and the agent is randomly placed anywhere on the plane. We first learn the 3 base skill
primitives corresponding to each predicate (with constraints C = {H}), with goal oriented Q-learning
Nangue Tasse et al. (2020) but using Twin Delayed DDPG (Fujimoto et al., 2018) to update the
WVFs. Figure 6 shows the trajectories of the SM policies for the six tasks described in Table 3.
Our results shows that skill primitives can be leveraged to achieve zero-shot temporal logics even in
continuous domains.

A.4 DETAILS OF EXPERIMENTAL SETTING

In this section we elaborate further on the hyper-parameters for the various experiments in Section
4. We also describe the pretraining of WVFs for all of the experimental settings which corresponds
to learning the base task primitives for each domain. The same hyper-parameters are used for all
algorithms in a particular experiment. This is to ensure that we evaluate the relative performance
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Figure 5: Visualisation of the Safety AI Gym Domain.

(a) Task 1 (b) Task 2 (c) Task 3

(d) Task 4 (e) Task 5 (f) Task 6

Figure 6: Visualisations of the trajectories obtained by following the zero-shot composed policies
from the skill machine for tasks in Table 3.

fairly and consistently, particularly since Nangue Tasse et al. (2020) note that learning WVFs can
take longer than direct training of tasks. However, training WVFs for longer would potentially bias
the results in favour of their use. Thus, all algorithms are trained for the same amount of time which
is set such that they all converge. The full list of hyper-parameters for the Office World, Moving
Targets and SafeAI Gym domain experiments are shown in Tables respectively.

To use skill machines we require pre-trained WVFs. As mentioned above, all WVFs are trained using
the same hyper-parameters as any other training. Additionally, for all experiments the WVFs are
pre-trained on the base task primitives for the domain. For example, in the Office World domain,
the WVFs are trained on the P base task primitive corresponding to achieving each predicate, P =
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Hyper-parameter Value

Timesteps 2e5

Training exploration (ϵ) 0.5
Per-episode evaluation exploration (ϵ) 0.1

Discount Factor (γ) 0.9

Table 4: Table of hyper-parameters used for Q-learning in the Office World experiments.

Hyper-parameter Value

Timesteps 1e6

Neural Network architecture CNN + MLP
CNN architecture Defaults of Mnih et al. (2015)

MLP hidden layers 1024× 1024× 1024
Start exploration (ϵ) 1
End exploration (ϵ) 0.1

Exploration decay duration (ϵ) 5e5

Discount Factor (γ) 0.99
Others Defaults of Mnih et al. (2015)

Table 5: Table of hyper-parameters used for Deep Q-learning in the Moving Targets experiments.

Hyper-parameter Value

Timesteps 1e6

Neural Network architecture MLP
MLP hidden layers 2024× 2024× 2024

Max episodes length 100
Target noise 0.2
Action noise 0.2

Discount Factor (γ) 0.99
Others Defaults of Achiam (2018)

Table 6: Table of hyper-parameters used for the TD3 in the SafeAI Gym experiments.

{A,B,C,D,✽,K,B, x,B+, x+} (reaching states the predicate is set to True), with constraints C =
{✽}. All other primitives in this domain can be obtained zero-shot through value function composition.
Similarly, for the moving targets domain, the WVFs are pre-trained on the primitives corresponding
to obtaining objects by shape or colour in the environment separately, P = { , , , , }, with
constraints C = P . From here the value functions for finding objects of particular colours or any
more complex primitives can be composed zero-shot. Finally, for the SafeAI Gym environment
the base skill primitives correspond to going to a button (B), a cylinder (C), and a hazard (H):
P = {B,C,H}, trained with constraints C = {H}.
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A.5 OFFICE WORLD ADDITIONAL FIGURES

(a) Room A (b) Room B

(c) Room C (d) Room D

(e) Decoration ✽ (f) CoffeeK

(g) MailB (h) Office x

(i) Mails presentB+ (j) People present x+

Figure 7: The policies (arrows) and value functions (heat map) of the base primitive tasks in the
Office Gridworld. These are obtained by maximising over the goals of the learned WVFs. All errors
in the figures are due to training the WVFs for 200000 time steps, hence not to convergence.
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(a) 1(B ∧ ¬✽) + 0(K ∧ ¬✽) (b) 3
4
(B ∧ ¬✽) + 1

4
(K ∧ ¬✽) (c) 1

2
(B ∧ ¬✽) + 1

2
(K ∧ ¬✽)

(d) 1
4
(B ∧ ¬✽) + 3

4
(K ∧ ¬✽) (e) 0(B ∧ ¬✽) + 1(K ∧ ¬✽)

Figure 8: The policies (arrows) and value functions (heat map) for various preferences over the
primitives “get a mail without breaking decorations” (B ∧ ¬✽) and “get coffee without breaking
decorations” (K ∧ ¬✽) in the Office GridWorld. These are obtained by first doing the weighted
sum of the composed WVFs (Q̄∗

B ∧ ¬Q̄
∗
✽
, Q̄∗
K ∧ ¬Q̄

∗
✽

) according to the preferences, and then
maximising over the goals and actions. All errors in the figures are due to training the WVFs of the
base primitives (Q̄∗

K, Q̄∗
B) for 200000 time steps, hence not to convergence.
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(a) Task 1 zero-shot (b) Task 1 few-shot

(c) Task 2 zero-shot (d) Task 2 few-shot

(e) Task 3 zero-shot (f) Task 3 few-shot

Figure 9: Agent trajectories for various tasks in the Office Gridworld (Table 3) using the skill machine
without further learning (left) and with further learning (right).
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