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ABSTRACT

The availability of multiple training algorithms and architectures for generative
models requires a selection mechanism to form a single model over a group of
well-trained generation models. The selection task is commonly addressed by
identifying the model that maximizes an evaluation score based on the diversity
and quality of the generated data. However, such a best-model identification ap-
proach overlooks the possibility that a mixture of available models can outper-
form each individual model. In this work, we explore the selection of a mixture
of multiple generative models and formulate a quadratic optimization problem to
find an optimal mixture model achieving the maximum of kernel-based evaluation
scores including kernel inception distance (KID) and Rényi kernel entropy (RKE).
To identify the optimal mixture of the models using the fewest possible sample
queries, we propose an online learning approach called Mixture Upper Confidence
Bound (Mixture-UCB). Specifically, our proposed online learning method can be
extended to every convex quadratic function of the mixture weights, for which
we prove a concentration bound to enable the application of the UCB approach.
We prove a regret bound for the proposed Mixture-UCB algorithm and perform
several numerical experiments to show the success of the proposed Mixture-UCB
method in finding the optimal mixture of text-based and image-based generative
models.

1 INTRODUCTION

The rapid advancements in generative modeling have created a need for mechanisms to combine
multiple well-trained generative models, each developed using different algorithms and architec-
tures, into a single unified model. A common approach for creating such a unified model is to
evaluate assessment scores that quantify the diversity and quality of the generated data and then
select the model with the highest score. This best-model identification strategy has been widely
adopted for the selection of generative models across various domains, including image, text, audio,
and video generation.

PixArt-α

31% Kandinsky 3 +
54% Stable Diffusion 3 +

15% PixArt-α

2.81 ± 0.03 4.09 ± 0.06 2.77 ± 0.03 5.93 ± 0.07

5.72 ± 0.084.13 ± 0.06 3.95 ± 0.05 7.39 ± 0.06
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Figure 1: Visual comparison of the diversity across individual arms and the optimal mixture for
images generated using the prompt “Dark green giraffe, detailed, cartoon style”.
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Existing model selection frameworks typically perform an offline selection, where they have access
to a sufficiently large number of samples from each generative model and estimate the evaluation
score based on these samples. However, in many practical scenarios, generating a large sample set
from sub-optimal models can be computationally costly, especially if the evaluator can identify their
lack of optimality using fewer samples. In such cases, the evaluator can adopt an online learning
approach and frame the problem as a multi-armed bandit (MAB) task. In each round, we choose
a model to generate one sample, where the choice of model is based on previous samples. This
allows us to quickly identify obviously sub-optimal models and avoid them, reducing the cost of
generating from sub-optimal models. We only assume black-box access to the generative models,
making our setting applicable to devices with limited computational resources (which accesses the
models remotely via online services, without running the models locally), and to proprietary models
where only black-box access is available.

An existing approach is successive halving (Karnin et al., 2013; Jamieson & Talwalkar, 2016; Chen
& Ghosh, 2024),1 where the models are evaluated using a fixed budget, the worst half of the models
are removed, and we repeat the process until one model is left. Also, the recent work by Hu et al.
(2024) attempts to solve the online model selection problem using an upper confidence bound (UCB)
method to identify the generative model with the highest evaluation score. The numerical results of
Hu et al. (2024) indicate the effectiveness of MAB algorithms in reducing sample generation costs
from sub-optimal models.

On the other hand, when the model selection task is handled by an online learning algorithm, the
algorithm may choose different models at different iterations, resulting in generated data that follow
a mixture of the distributions of these generative models. Note that in a standard MAB algorithm, the
goal is to eventually converge to a single arm. Successive halving (Karnin et al., 2013; Jamieson &
Talwalkar, 2016; Chen & Ghosh, 2024) and the standard UCB algorithm adopted by Hu et al. (2024)
will ultimately select only one generative model after a sufficient number of iterations. However, the
diversity scores of the generated data could be higher when the sample generation follows a mixture
of models rather than a single model. This observation leads to the following question: could the
diversity of generated data be improved by applying MAB algorithms to multiple generative models,
if the algorithm aims to find the best mixture of the models?

In this work, we aim to address the above question by finding the optimal mixture
∑m

i=1 αiPi of
m generative models with distributions P1, . . . , Pm, which would produce a higher evaluation score
compared to each individual model. Specifically, we focus on addressing this task in an online learn-
ing setting, where we pick a model to generate a sample at each round. To address this problem and
develop an MAB algorithm to find the best mixture model, we concentrate on evaluation scores that
are quadratic functions of the generated data. As we show in this work, formulating the optimization
problem for a quadratic score function results in a quadratic online convex optimization problem that
can be efficiently solved using the online gradient descent algorithm. More importantly, we establish
a concentration bound for the quadratic function of the mixture weights, which enables us to extend
the UCB algorithm for the online selection of the mixture weights.

Specifically, we focus on evaluation scores that reduce to a quadratic function of the generative
model’s distribution, including the kernel-based Maximum Mean Discrepancy (MMD) (Gretton
et al., 2012), Kernel Inception Distance (KID) (Bińkowski et al., 2018) and Rényi Kernel Entropy
(RKE) (Jalali et al., 2023) scores, as well as the quality-measuring Precision (Sajjadi et al., 2018;
Kynkäänniemi et al., 2019) and Density (Naeem et al., 2020) scores, which are linear functions of
the generative distribution. Among these scores, RKE provides a reference-free entropy function for
assessing the diversity of generated data, making it suitable for quantifying the variety of generated
samples. Our mixture-based online learning framework can therefore be applied to find the mixture
model with the maximum RKE-based diversity score. Additionally, we can consider a linear com-
bination of RKE with the Precision, Density, or KID quality scores to identify a mixture of models
that offers the best trade-off between quality and diversity.

We perform several numerical experiments to test the application of our proposed Mixture-UCB
approach in comparison to the Vanilla-UCB and One-Arm Oracle approaches that tend to generate
samples from only one of the available generative models. Our numerical results indicate that the

1Jamieson & Talwalkar (2016) focused on applying successive halving on hyperparameter optimization
for supervised learning, whereas Chen & Ghosh (2024) focused on generative models using maximum mean
discrepancy (Gretton et al., 2012) as the score.
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Mixture-UCB algorithms can generate samples with higher RKE diversity scores, and tends to gen-
erate samples from a mixture of several generative models when applied to image-based generative
models. Also, we test the performance of Mixture-UCB on the KID, Precision, and Density scores,
which similarly result in a higher score value for the mixture model found by the Mixture-UCB al-
gorithm. We implement the Mixture-UCB by solving the convex optimization sub-problem at every
iteration and also by applying the online gradient descent algorithm at every iteration. In our exper-
iments, both implementations result in satisfactory results and can improve upon learning strategies
tending to select only one generative model. Here is a summary of this work’s contributions:

• Studying the selection task for mixtures of multiple generative models to improve the diversity of
generated samples (Section 4).

• Proposing an online learning framework to address the mixture selection task for quadratic score
functions (Section 5).

• Developing the Mixture-UCB-CAB and Mixture-UCB-OGD algorithms to solve the formulated
online learning problem (Sections 5.1, 5.2).

• Proving a regret bound for Mixture-UCB-CAB which shows the convergence of Mixture-UCB-
CAB to the optimal mixture (Theorem 2).

• Presenting numerical results on the improvements in the diversity of generated data by the online
selection of a mixture of the generation models (Section 6, Appendix 8.3).

2 RELATED WORK

Assessment of Generative Models. The evaluation of generative models has been extensively
studied, with a focus on both diversity and quality of generated images. Reference-free metrics
such as Rényi Kernel Entropy (RKE) (Jalali et al., 2023) and VENDI (Friedman & Dieng, 2023)
measure diversity without relying on ground-truth, while reference-based metrics such as Recall
(Kynkäänniemi et al., 2019) and Coverage (Naeem et al., 2020) assess diversity relative to real data.
For image quality evaluation, Density and Precision metrics (Naeem et al., 2020; Kynkäänniemi
et al., 2019) provide measures based on alignment with a reference distribution. The Wasserstein
distance (Arjovsky et al., 2017) and Fréchet Inception Distance (FID) (Heusel et al., 2018) ap-
proximate the distance between real and generated datasets, while Kernel Inception Distance (KID)
(Bińkowski et al., 2018) uses squared maximum mean discrepancy for a kernel-based comparison
of distributions.

Multi-Armed Bandit Algorithms. The Multi-Armed Bandit (MAB) problem is a foundational
topic in reinforcement learning, where an agent aims to maximize rewards from multiple options
(arms) with initially unknown reward distributions (Lai & Robbins, 1985; Thompson, 1933). The
Upper Confidence Bound (UCB) algorithm (Agrawal, 1995a; Auer, 2003; Bubeck & Cesa-Bianchi,
2012) is a widely adopted method for addressing the MAB problem, where uncertainty about an
arm’s reward is replaced by an optimistic estimate. In generative models, optimism-based ban-
dits have been applied to efficiently identify models with optimal Fréchet Inception Distance (FID)
or Inception Score while minimizing data queries (Hu et al., 2024). A special case of MAB, the
continuum-armed bandit (CAB) problem (Agrawal, 1995b), optimizes a function over continuous
inputs, and has been applied to machine learning tasks such as hyperparameter optimization (Feurer
& Hutter, 2019; Li et al., 2018). Recent research explores CABs under more general smoothness
conditions like Besov spaces (Singh, 2021), while other works have focused on regret bounds and
Lipschitz conditions (Kleinberg, 2004; Kleinberg et al., 2019; Bubeck et al., 2008).

Another related reference is informational multi-armed bandits (Weinberger & Yemini, 2023), which
extends UCB to maximizing the Shannon entropy of a discrete distribution, which is also a metric of
diversity. In comparison, the algorithms in this paper can minimize the expectation of any quadratic
positive semidefinite function, which not only covers the order-2 Rényi entropy for discrete distribu-
tions, but also includes the Rényi Kernel Entropy applicable to continuous data. Since the outputs of
generative models are generally continuous, (Weinberger & Yemini, 2023) is not applicable here.

3 PRELIMINARIES

We review several kernel-based performance metrics of generative models.

3
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3.1 RÉNYI KERNEL ENTROPY

The Rényi Kernel Entropy (Jalali et al., 2023) of the distribution P , which measures the diversity
of the modes in P , is given by log(1/E

X,X′iid∼P
[k2(X,X ′)]), where k is a positive definite kernel.2

Taking the exponential of the Rényi Kernel Entropy, we have the RKE mode count 1/E[k2(X,X ′)])
(Jalali et al., 2023), which is an estimate of the number of modes. Maximizing the RKE mode count
is equivalent to minimizing the following loss

E
X,X′iid∼P

[k2(X,X ′)]. (1)

3.2 MAXIMUM MEAN DISCREPANCY AND KERNEL INCEPTION DISTANCE

The (squared) maximum mean discrepancy (MMD) (Gretton et al., 2012) between distributions
P,Q, which measures the distance between P and Q, can be written as

E[k(X,X ′)] + E[k(Y, Y ′)]− 2E[k(X,Y )], (2)

where X,X ′ iid∼ P and Y, Y ′ iid∼ Q, and k is a positive definite kernel. Suppose P is the distribution
of samples from a generative model, and Q is a reference distribution. Minimizing the MMD can
ensure that P is close to Q. The Kernel Inception Distance (KID) (Bińkowski et al., 2018), a
popular quality metric for image generative models, is obtained by first passing P and Q through
the Inception network (Szegedy et al., 2016), and then computing their MMD, i.e., we have

E[k(ψ(X), ψ(X ′))] + E[k(ψ(Y ), ψ(Y ′))]− 2E[k(ψ(X), ψ(Y ))], (3)

where ψ is the mapping from x to its Inception representation.

4 OPTIMAL MIXTURES OF GENERATIVE MODELS

RKE (1), MMD (2) and KID (3) can all be written as a loss function in the following form

L(P ) := E
X,X′iid∼P

[κ(X,X ′)] + EX∼P [f(X)], (4)

where κ : X 2 → R is a positive semidefinite kernel, and f : X → R is a function. For (1), we
take κ(x, x′) = k2(x, x′) (the square of a kernel is still a kernel) and f(x) = 0. For (2), we take
κ(x, x′) = k(x, x′) and f(x) = −2EY∼Q[k(x, Y )] (the constant term E[k(Y, Y ′)] does not matter).
For KID (3), we take κ(x, x′) = k(ψ(x), ψ(x′)) and f(x) = −2EY∼Q[k(ψ(x), ψ(Y ))]. Note that
any convex combinations of (1), (2) and (3) is still in the form (4).

Suppose we are given m generative models, where model i generates samples from the distribution
Pi. If our goal is merely to find the model that minimize the loss (4), we should select argminiL(Pi).
Nevertheless, for diversity metrics such as RKE, it is possible that a mixture of the models will give a
better diversity. Assume that the mixture weight of model i is αi ∈ [0, 1], where α = (α1, . . . , αm)
is a probability vector. The loss of the mixture distribution

∑m
i=1 αiPi can then be expressed as

L(α) := L
( m∑

i=1

αiPi

)
= α⊤Kα+ f⊤α,

K := (EX∼Pi, X′∼Pj
[κ(X,X ′)])i,j∈[m] ∈ Rm×m, f := (EX∼Pi

[f(X)])mi=1 ∈ Rm.

Given K, f , the probability vector α minimizing L(α) can be found via a convex quadratic program.

In practice, we do not know the precise K, f , and have to estimate them using samples. Suppose we
have the samples xi,1, . . . , xi,ni

from the distribution Pi for i = 1, . . . ,m, where ni is the number
of observed samples from model i. Write x := (xi,a)i∈[m], a∈[ni]. We approximate the true mixture
distribution

∑m
i=1 αiPi by the empirical mixture distribution

∑m
i=1

αi

ni

∑ni

a=1 δxi,a , where we assign
a weight αi/ni to samples xi,a from model i, and δxi,a denotes the degenerate distribution at xi,a.
We then approximate L(α) by the sample loss

L̂(α;x) := L
( m∑

i=1

αi

ni

ni∑
a=1

δxi,a

)
= α⊤K̂(x)α+ f̂(x)⊤α, (5)

2The order-2 Rényi entropy for discrete distributions is a special case by taking k(x, x′) = 1x=x′ .
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K̂(x) :=
( 1

ninj

ni∑
a=1

nj∑
b=1

κ(xi,a, xj,b)
)
i,j
∈ Rm×m, f̂(x) :=

( 1

ni

ni∑
a=1

f(xi,a)
)m
i=1
∈ Rm.

The minimization of L̂(α;x) over probability vectors α is still a convex quadratic program.

5 ONLINE SELECTION OF OPTIMAL MIXTURES – MIXTURE MULTI-ARMED
BANDIT

Suppose we are given m generative models, but we do not have any prior information about them.
Our goal is to use these models to generate a collection of samples (x(t))i∈[T ] in T rounds that
minimizes the loss (4) L(P̂ (T )) at the empirical distribution P̂ (T ) = T−1

∑T
t=1 δx(t) . We have

L(P̂ (T )) =
1

T 2

∑
s,t∈[T ]

κ(x(s), x(t)) +
1

T

T∑
t=1

f(x(t)).

If we are told by an oracle the optimal mixture α∗ that minimizes the loss L(α), then we should
generate samples according to this mixture distribution, giving ≈ α∗

i T samples from model i. We
call this the mixture oracle scenario. Nevertheless, in reality, we do not know K, f , and cannot
compute α∗ exactly. Instead, we have to approximate α∗ by minimizing the sample loss L̂(α;x)

(5). However, we do not have the samples x at the beginning in order to compute L̂(α;x), so we
have to generate some samples first. Yet, to generate these initial samples, we need an estimate
of α∗, or else those samples may have a suboptimal empirical distribution and affect our final loss
L(P̂ (T )), or we will have to discard those initial samples which results in wastage.

This “chicken and egg” problem is naturally solved by an online learning approach via multi-armed
bandit. At time t = 1, . . . , T , we choose and pull an arm b(t) ∈ [m] (i.e., generate a sample from
model b(t)), and obtain a sample x(t) from the distribution Pb(t) . The choice b(t) can depend on
all previous samples x(1), . . . , x(t−1). Unlike conventional multi-armed bandit where the goal is to
maximize the total reward over T rounds, here we minimize the loss L(P̂ (T )) which involve cross
terms κ(x(s), x(t)) between samples at different rounds. Note that if κ(x, x′) = 0, then this reduces
to the conventional multi-armed bandit setting by taking f(x) to be the negative reward of the sample
x. In the following subsections, we will propose two new algorithms that are generalizations of the
upper confidence bound (UCB) algorithm for multi-armed bandit (Agrawal, 1995a; Auer, 2003).

5.1 MIXTURE UPPER CONFIDENCE BOUND – CONTINUUM-ARMED BANDIT

Let n(t)i be the number of times arm i has been pulled up to time t. Let x(t) := (xi,a)i∈[m], a∈[n
(t)
i ]

be the observed samples up to time t. We focus on bounded loss functions, and assume that κ :
X 2 → [κ0, κ1] and f : X → [f0, f1] are bounded. Let ∆κ := κ1 − κ0, ∆f := f1 − f0. Define the
sensitivity of L as ∆L := 2∆κ +∆f .

We now present the mixture upper confidence bound – continuum-armed bandit (Mixture-UCB-
CAB) algorithm. It has a parameter β > 1. It treats the online selection problem as multi-armed
bandit with infinitely many arms similar to the continuum-armed bandit settings in (Agrawal, 1995b;
Lu et al., 2019). Each arm is a probability vector α. By pulling the arm α, we generate a sample
from a randomly chosen model, where model i is chosen with probability αi. Refer to Algorithm 1.
Similar to UCB, Mixture-UCB-CAB finds a lower confidence bound L̂(α;x(t)) − (ϵ(t))⊤α of the
true loss L(α) at each round. To justify the expressions (6), (7), we prove that L̂(α;x(t))−(ϵ(t))⊤α
in (6) lower-bounds L(α) with probability at least 1− t−β . The proof is given in Appendix 8.1.

Theorem 1 Fix a probability vector α.4 Suppose we have samples xi,1, . . . , xi,ni
from the distri-

bution Pi for i = 1, . . . ,m, where ni is the number of observed samples from model i. For δ > 0,

P
(
L̂(α;x)− L(α) ≥ ϵ(δ)⊤α

)
≤ δ, P

(
L(α)− L̂(α;x) ≥ ϵ(δ)⊤α

)
≤ δ,

4Theorem 1 holds for a fixed α. A worst-case bound that simultaneously holds for every α is in Lemma 1.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 Mixture-UCB-CAB

1: Input: m generative arms, number of rounds T
2: Output: Gathered samples x(T )

3: for t ∈ {0, . . . ,m− 1} do
4: Pull arm t+ 1 at time t+ 1 to obtain sample xt+1,1 ∼ Pt+1. Set n(m)

t+1 = 1.
5: end for
6: for t ∈ {m, . . . , T − 1} do
7: Compute an estimate of the optimal mixture distribution via the convex quadratic program:

α(t) := argminα
(
L̂(α;x(t))− (ϵ(t))⊤α

)
, (6)

where the minimization is over probability vectors α, and ϵ(t) ∈ Rm is defined as

ϵ
(t)
i := ∆L

√
(β log t)/(2n

(t)
i ) + ∆κ/n

(t)
i . (7)

8: Generate the arm index b(t+1) ∈ [m] at random with P(b(t+1) = i) = α
(t)
i .

9: Pull arm b = b(t+1) at time t+1 to obtain a new sample x
b,n

(t)
b +1

∼ Pb. Set n(t+1)
b = n

(t)
b +1

and n(t+1)
j = n

(t)
j for j ̸= b.3

10: end for
11: return samples x(T )

where ϵ(δ) :=
(
∆L

√
log(1/δ)

2ni
+ ∆κ

ni

)
i∈[m]

.

We now prove that Mixture-UCB-CAB gives an expected loss E[L(P̂ (T ))] that converges to the
optimal loss minα L(α) by bounding their gap. This means that Mixture-UCB-CAB is a zero-
regret strategy by treating E[L(P̂ (T ))]−minα L(α) as the average regret per round.5 The proof is
given in Appendix 8.4.

Theorem 2 Suppose m ≥ 2, β ≥ 4. Consider bounded quadratic loss function (4) with κ being
positive semidefinite. Let P̂ (T ) be the empirical distribution of the first T ≥ 2 samples x(T ) given
by Mixture-UCB-CAB. Then the gap between the expected loss and the optimal loss is bounded by

E
[
L(P̂ (T ))

]
−min

α
L(α) ≤ 4∆L

√
βm log T

T
.

When κ(x, x′) = 0, Mixture-UCB-CAB reduces to the conventional UCB, and Theorem 2 coincides
with the O(

√
(m log T )/T ) distribution-free bound on the regret per round of conventional UCB

(Bubeck & Cesa-Bianchi, 2012). Since there is a Ω(
√
m/T ) minimax lower bound on the regret

per round even for conventional multi-armed bandit without the quadratic kernel term (Bubeck &
Cesa-Bianchi, 2012, Theorem 3.4), Theorem 2 is tight up to a logarithmic factor.

The main difference between Mixture-UCB-CAB and conventional UCB is that we choose a mixture
of arms in (6) given by the probability vector α, instead of a single arm. A more straightforward
application of UCB would be to simply find the single arm that minimizes the lower bound in (6),
i.e., we restrict α = ei for some i ∈ [m], where ei is the i-th basis vector, and minimize (6) over
i instead. We call this Vanilla-UCB. Vanilla-UCB fails to take into account the possibility that a
mixture may give a smaller loss than every single arm. In the long run, Vanilla-UCB converges to
pulling the best single arm instead of the optimal mixture. Vanilla-UCB will be used as a baseline
to be compared with Mixture-UCB-CAB, and another new algorithm presented in the next section.

5To justify calling R := E[L(P̂ (T ))]−minα L(α) the average regret per round, note that when κ(x, x′) =
0 and f(x) = −r(x) where r(x) is the reward of the sample x, i.e., the loss L(P ) = EX∼P [f(X)] is
linear, T (E[L(P̂ (T ))]−minα L(α)) = T maxi∈[m] EX∼Pi [r(X)]− E[

∑T
t=1 r(x

(t))] indeed reduces to the
conventional notion of regret. So R can be regarded as the quadratic generalization of regret.

6
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Algorithm 2 Mixture-UCB-OGD

1: Input: m generative arms, number of rounds T
2: Output: Gathered samples x(T )

3: for t ∈ {0, . . . ,m− 1} do
4: Pull arm t+ 1 at time t+ 1 to obtain sample xt+1,1 ∼ Pt+1

5: end for
6: for t ∈ {m, . . . , T − 1} do
7: Compute the gradient

h(t) := ∇α

(
L̂(α;x(t))− (ϵ(t))⊤α

) ∣∣∣
α=n(t)/t

=
2

t
K̂(x(t))n(t) + f̂(x(t))− ϵ(t), (8)

where n(t) := (n
(t)
i )i∈[m] ∈ Rm, and ϵ(t) is defined as in Mixture-UCB-CAB

8: Pull arm b = b(t+1) := argminih
(t)
i at time t+ 1 to obtain a new sample x

b,n
(t)
b +1

∼ Pb.
9: end for

10: return samples x(T )

Mixture-UCB-CAB can be extended to the Sparse-Mixture-UCB-CAB algorithm which eventually
select only a small number of models. This can be useful if there is a subscription cost for each
model. Refer to Appendix 8.2 for discussions.

5.2 MIXTURE UPPER CONFIDENCE BOUND – ONLINE GRADIENT DESCENT

We present an alternative to Mixture-UCB-CAB, called the mixture upper confidence bound – online
gradient descent (Mixture-UCB-OGD) algorithm, inspired by the online gradient descent algorithm
(Shalev-Shwartz et al., 2012). It also has a parameter β > 1. Refer to Algorithm 2.
Mixture-UCB-CAB and Mixture-UCB-OGD can both be regarded as generalizations of the origi-
nal UCB algorithm, in the sense that they reduce to UCB when κ(x, x′) = 0. If we remove the
2
t K̂(x)n(t) term in (8), then Mixture-UCB-OGD becomes the same as UCB.

Both Mixture-UCB-CAB and Mixture-UCB-OGD attempt to make the “proportion vector” n(t)/t

(note that n(t)i /t is the proportion of samples from model i) approach the optimal mixture α∗ that
minimizes L(α), but they do so in different manners. Mixture-UCB-CAB first computes the esti-
mate α(t) after time t, then approaches α(t) by pulling an arm randomly chosen from the distribution
α(t). Mixture-UCB-OGD estimates the gradient h(t) of the loss function at the current proportion
vector n(t)/t, and pulls an arm that results in the steepest descent of the loss.

An advantage of Mixture-UCB-OGD is that the computation of gradient (8) is significantly faster
than the quadratic program (6) in Mixture-UCB-CAB. The running time complexity of Mixture-
UCB-OGD is O(T 2 + Tm2).6 Nevertheless, a regret bound for Mixture-UCB-OGD similar to
Theorem 2 seems to be difficult to derive, and is left for future research.

6 NUMERICAL RESULTS

We experiment on various scenarios to showcase the performance of our proposed algorithms. The
experiments involve the following algorithms:

• Mixture Oracle. In the mixture oracle algorithm (Section 5), an oracle tells us the optimal mixture
α∗ in advance, and we pull arms randomly according to this distribution. The optimal mixture
is calculated by solving the quadratic optimization in Section 4 on a large number of samples for

5We may also consider the scenario where each pull gives a batch of l samples instead of only one sample.
In this case, we will have x

b,n
(t−1)
b

+1
, . . . , x

b,n
(t−1)
b

+l
∼ Pb and n

(t)
b = n

(t−1)
b + l.

6To update K̂(x(t)) after a new sample x′ is obtained, we only need to compute κ(x, x′) for each existing
sample x, and add their contributions to the corresponding entries in K̂(x(t)), requiring a computational time
that is linear with the number of existing samples.
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Figure 2: Performance comparison of online algorithms for the KID metric across FFHQ, LSUN-
Bedroom, and FFHQ Truncated generators.

each arm. The number of chosen samples varies based on the experiments. This is an unrealistic
setting that only serves as a theoretical upper bound of the performance of any online algorithm.
A realistic algorithm that performs close to the mixture oracle would be almost optimal.

• One-Arm Oracle. An oracle tells us the optimal single arm in advance, and we keep pulling
this arm. This is an unrealistic setting. If our algorithms outperform the one-arm oracle, this will
show that the advantage of pulling a mixture of arms (instead of a single arm) can be realistically
achieved via online algorithms.

• Vanilla-UCB. A direct application of UCB mentioned near the end of Section 5.1. This serves as
a baseline for the purpose of comparison.

• Mixture-UCB-CAB. The mixture upper confidence bound – continuum-armed bandit algorithm
proposed in Section 5.1.

• Mixture-UCB-OGD. The mixture upper confidence bound – online gradient descent algorithm
proposed in Section 5.2.

Experiments Setup. We used DINOv2-ViT-L/14 (Oquab et al., 2024) for image feature extrac-
tion, as recommended in (Stein et al., 2023), and utilized RoBERTa (Liu et al., 2019) as the text
encoder. Detailed explanation of the setup for each experiment is presented in Section 8.3.

6.1 OPTIMAL MIXTURE FOR DIVERSITY AND QUALITY VIA KID

We conducted three experiments to evaluate our method using the Kernel Inception Distance (KID)
metric. In the first experiment, we used five distinct generative models: LDM (Rombach et al.,
2022), StyleGAN-XL (Sauer et al., 2022), Efficient-vdVAE (Hazami et al., 2022), InsGen (Yang
et al., 2021), and StyleNAT (Walton et al., 2023), all trained on the FFHQ dataset (Karras et al.,
2019b). In the second experiment, we used generated images from four models7: StyleGAN (Kar-
ras et al., 2019a), Projected GAN (Sauer et al., 2021b), iDDPM (Nichol & Dhariwal, 2021), and
Unleashing Transformers (Bond-Taylor et al., 2021), all trained on the LSUN-Bedroom dataset (Yu
et al., 2016). This experiment followed a similar setup to the first. In the final experiment, we em-
ployed the truncation method (Marchesi, 2017; Karras et al., 2019b) to generate diversity-controlled
images centered on eight randomly selected points, using StyleGAN2-ADA (Karras et al., 2020),
also trained on the FFHQ dataset. Figure 2 demonstrates that the mixture of generators achieves
better KID scores compared to individual models. Additionally, the two Mixture-UCB algorithms
consistently outperform the baselines.

6.2 OPTIMAL MIXTURE FOR DIVERSITY VIA RKE

We used the RKE Mode Count (Jalali et al., 2023) as an evaluation metric to show the effect of
mixing the models on the diversity and the advantage of our algorithms Mixture-UCB-CAB and
Mixture-UCB-OGD. The score in the plots is the RKE Mode Count, written as RKE for brevity.

7FFHQ and LSUN-Bedroom datasets were downloaded from the dgm-eval repository (Stein et al., 2023)
(licensed under MIT license): https://github.com/layer6ai-labs/dgm-eval.
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Figure 3: Performance comparison of online algorithms based on the RKE metric for Simulator
Unconditional Generative Models.

Synthetic Unconditional Generative Models We conduct two experiments on diversity-limited
generative models. First, we used eight center points with a truncation value of 0.3 to generate
images using StyleGAN2-ADA, trained on the FFHQ dataset. In the second experiment, we applied
the same model, trained on the AFHQ Cat dataset (Choi et al., 2020), with a truncation value of 0.4.
As shown in Figure 3, the mixture achieves a higher RKE score, and our algorithms consistently
give a higher RKE value. The increase in diversity is visually depicted in Figures 7 and 8.

Generative Model 1 Generative Model 2 Generative Model 3
Optimal Mixture

weights = (0.33-0.31-0.36)

1.51 ± 0.01RKE ± 1.48 ± 0.02 1.64 ± 0.01 3.04 ± 0.02
weights = (0.66-0.26-0.07)

7.86 ± 0.16 4.83 ± 0.08 5.15 ± 0.10 9.19 ± 0.14RKE ±

Figure 4: Visual comparison of the diversity across individual arms and the optimal mixture for Dog
Breed Generators and Style-Specific Generators.

Text to Image Generative Models We used Stable Diffusion XL (Podell et al., 2023) with specific
prompts to create three car image generators with distinct styles: realistic, surreal, and cartoon. In
the second experiment, recognizing the importance of diversity in generative models for design
tasks, we used five models—FLUX.1-Schnell (Lab, 2024), Kandinsky 3.0 (Arkhipkin et al., 2024),
PixArt-α (Chen et al., 2023a), and Stable Diffusion XL—to generate images of the object “Sofa”.
In a similar manner, we generated green giraffe images using Kandinsky 3.0, Stable Diffusion 3
(Esser et al., 2024), and PixArt-α, as shown in Figure 1.. Finally, in the third experiment, we used
Stable Diffusion XL to simulate models generating images of different dog breeds: Bulldog, German
Shepherd, and Poodle, respectively. This illustrates the challenge of generating diverse object types
with text-to-image models. Figure 4 illustrates the impact of using a mixture of models in the first
and third experiments. The improvement in diversity is evident both visually and quantitatively, as
reflected in the RKE Scores. As shown in Figure 5, our online algorithms consistently outperform
others in generating more diverse samples.
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Figure 5: Performance comparison of online algorithms using the RKE metric for text-to-image
generative models.

Text Generative Models We utilized the OpenLLMText dataset (Chen et al., 2023b), which com-
prises 60,000 human texts rephrased paragraph by paragraph using the GPT2-XL (Radford et al.,
2019), LLaMA-7B (Touvron et al., 2023), and PaLM (Chowdhery et al., 2022) models. To extract
textual features, we employed the RoBERTa Text Encoder. As shown in Figure 11a in Section 8.3.2,
the results demonstrate the advantage of our online algorithms, suggesting that our method applies
not only to image generators but also to text generators.

6.3 OPTIMAL MIXTURE FOR DIVERSITY AND QUALITY VIA RKE AND PRECISION/DENSITY

Using RKE, we focus solely on the diversity of the arms without accounting for their quality. To
address this, we apply our methodology to both RKE and Precision (Kynkäänniemi et al., 2019), as
well as RKE and Density (Naeem et al., 2020). We conduct experiments in which quality is a key
consideration. We use four arms: three are StyleGAN2-ADA models trained on the FFHQ dataset,
each generating images with a truncation of 0.3 around randomly selected center points. The fourth
model is StyleGAN2-ADA trained on CIFAR-10 (Krizhevsky & Hinton, 2009). The FFHQ dataset
is used as the reference dataset. Figures 6 and 12 demonstrate the ability of our algorithms in finding
optimal mixtures with higher diversity/quality score.
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Figure 6: Performance comparison of online algorithms using the combination of RKE with Preci-
sion and RKE with Density metrics.

7 CONCLUSION

We studied the online selection from several generative models, where the online learner aims to
generate samples with the best overall quality and diversity. While standard multi-armed bandit
(MAB) algorithms aim to converge to one arm and select one generative model, we highlighted the
fact that a mixture of generative models could achieve a higher score compared to each individual
model. We proposed the Mixture-UCB-CAB and Mixture-UCB-OGD online learning algorithms
to find the optimal mixture. Our experiments suggest the usefulness of the algorithm in improving
the performance scores over individual arms. Extending the algorithm to conditional and text-based
generative models is a topic for future exploration. In addition, the application of the algorithm to
other data domains, including text, audio, and video, is an interesting future direction.
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mand Joulin, and Piotr Bojanowski. Dinov2: Learning robust visual features without supervision,
2024. URL https://arxiv.org/abs/2304.07193.

Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
synthesis, 2023. URL https://arxiv.org/abs/2307.01952.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models, 2022. URL https://arxiv.org/
abs/2112.10752.

Mehdi SM Sajjadi, Olivier Bachem, Mario Lucic, Olivier Bousquet, and Sylvain Gelly. Assessing
generative models via precision and recall. Advances in neural information processing systems,
31, 2018.

13

https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://arxiv.org/abs/1904.06991
https://arxiv.org/abs/1904.06991
https://github.com/blackforestlab/flux
https://github.com/blackforestlab/flux
https://www.sciencedirect.com/science/article/pii/0196885885900028
https://www.sciencedirect.com/science/article/pii/0196885885900028
http://jmlr.org/papers/v18/16-558.html
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1706.00082
https://arxiv.org/abs/2002.09797
https://arxiv.org/abs/2002.09797
https://arxiv.org/abs/2102.09672
https://openai.com/research/gpt-4
https://arxiv.org/abs/2304.07193
https://arxiv.org/abs/2307.01952
https://arxiv.org/abs/2112.10752
https://arxiv.org/abs/2112.10752


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Axel Sauer, Kashyap Chitta, Jens Müller, and Andreas Geiger. Projected gans converge faster. In
M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances
in Neural Information Processing Systems, volume 34, pp. 17480–17492. Curran Associates, Inc.,
2021a. URL https://proceedings.neurips.cc/paper_files/paper/2021/
file/9219adc5c42107c4911e249155320648-Paper.pdf.

Axel Sauer, Kashyap Chitta, Jens Müller, and Andreas Geiger. Projected gans converge faster,
2021b. URL https://arxiv.org/abs/2111.01007.

Axel Sauer, Katja Schwarz, and Andreas Geiger. Stylegan-xl: Scaling stylegan to large diverse
datasets, 2022. URL https://arxiv.org/abs/2202.00273.

Shai Shalev-Shwartz et al. Online learning and online convex optimization. Foundations and
Trends® in Machine Learning, 4(2):107–194, 2012.

Shashank Singh. Continuum-armed bandits: A function space perspective, 2021. URL https:
//arxiv.org/abs/2010.08007.

George Stein, Jesse Cresswell, Rasa Hosseinzadeh, Yi Sui, Brendan Ross, Valentin Villecroze,
Zhaoyan Liu, Anthony L Caterini, Eric Taylor, and Gabriel Loaiza-Ganem. Exposing flaws of
generative model evaluation metrics and their unfair treatment of diffusion models. In Advances
in Neural Information Processing Systems, volume 36, 2023.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethink-
ing the inception architecture for computer vision. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 2818–2826, 2016.

William R. Thompson. On the likelihood that one unknown probability exceeds another in view
of the evidence of two samples. Biometrika, 25(3/4):285–294, 1933. ISSN 00063444. URL
http://www.jstor.org/stable/2332286.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models, 2023. URL https://arxiv.org/abs/2302.13971.

Steven Walton, Ali Hassani, Xingqian Xu, Zhangyang Wang, and Humphrey Shi. Stylenat: Giving
each head a new perspective, 2023. URL https://arxiv.org/abs/2211.05770.

Nir Weinberger and Michal Yemini. Multi-armed bandits with self-information rewards. IEEE
Transactions on Information Theory, 69(11):7160–7184, 2023. doi: 10.1109/TIT.2023.3299460.

Ceyuan Yang, Yujun Shen, Yinghao Xu, and Bolei Zhou. Data-efficient instance generation from
instance discrimination, 2021. URL https://arxiv.org/abs/2106.04566.

Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas Funkhouser, and Jianxiong Xiao. Lsun:
Construction of a large-scale image dataset using deep learning with humans in the loop, 2016.
URL https://arxiv.org/abs/1506.03365.

14

https://proceedings.neurips.cc/paper_files/paper/2021/file/9219adc5c42107c4911e249155320648-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/9219adc5c42107c4911e249155320648-Paper.pdf
https://arxiv.org/abs/2111.01007
https://arxiv.org/abs/2202.00273
https://arxiv.org/abs/2010.08007
https://arxiv.org/abs/2010.08007
http://www.jstor.org/stable/2332286
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2211.05770
https://arxiv.org/abs/2106.04566
https://arxiv.org/abs/1506.03365


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

8 APPENDIX

8.1 PROOF OF THEOREM 1

Consider any x̃i,a ∈ X . Let x̃ be the samples which are identical to x except that one entry xi,a is
changed to x̃i,a. We have∣∣∣L̂(α; x̃)− L̂(α;x)

∣∣∣
=

∣∣∣∣αi

ni
(f(x̃i,a)− f(xi,a)) + 2

∑
(j,b)̸=(i,a)

αiαj

ninj
(κ(x̃i,a, xj,b)− κ(xi,a, xj,b))

+
α2
i

n2i
(κ(x̃i,a, x̃i,a)− κ(xi,a, xi,a))

∣∣∣∣
≤ αi

ni
∆f + 2

∑
(j,b) ̸=(i,a)

αiαj

ninj
∆κ +

α2
i

n2i
∆κ

≤ αi

ni
(∆f + 2∆κ)

=
αi

ni
∆L.

By McDiarmid’s inequality,

P
(
L̂(α;x)− E[L̂(α;x)] ≥ ϵ

)
≤ exp

(
− 2ϵ2∑m

i=1

∑ni

a=1(
αi

ni
∆L)2

)

= exp

(
− 2ϵ2

∆2
L

∑m
i=1 α

2
i /ni

)
.

Note that ∣∣∣L(α)− E[L̂(α;x)]
∣∣∣

=

∣∣∣∣EX,X′iid∼P
[κ(X,X ′)]− E

[ ∑
(i,j)∈[m]2

αiαj

ninj

ni∑
a=1

nj∑
b=1

κ(xi,a, xj,b)

]∣∣∣∣
=

∣∣∣∣ m∑
i=1

α2
i

n2i

ni∑
a=1

(
E
X,X′iid∼P

[κ(X,X ′)]− E[κ(xi,a, xi,a)]
) ∣∣∣∣

≤
m∑
i=1

α2
i

ni
∆κ.

Hence, for δ > 0,

P

L̂(α;x)− L(α) ≥ ∆L

√√√√ log(1/δ)

2

m∑
i=1

α2
i

ni
+∆κ

m∑
i=1

α2
i

ni

 ≤ δ.
The result follows from

∆L

√√√√ log(1/δ)

2

m∑
i=1

α2
i

ni
+∆κ

m∑
i=1

α2
i

ni

≤ ∆L

m∑
i=1

√
log(1/δ)

2

α2
i

ni
+∆κ

m∑
i=1

αi

ni

=

m∑
i=1

∆L

√
log(1/δ)

2ni
+

∆κ

ni

αi.

The other direction of the inequality is similar.
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8.2 SPARSE MIXTURE UPPER CONFIDENCE BOUND-CONTINUUM-ARMED BANDIT
ALGORITHM

The optimal mixture may involve a large number of models. It is sometimes of interest to identify
a small subset of models that can still give diverse samples. We now consider the scenario where
there is a cost associated with each arm. If we have to pay a cost per pull, then this cost can be
absorbed into the function f , and the problem reduces to the aforementioned quadratic multi-armed
bandit. However, if the cost is a “subscription fee” that we have to pay for each arm at each round,
even if we do not pull that arm at that time, until we decide to “unsubscribe” the arm and not pull it
anymore, then we have to modify the algorithm to minimize the following average cost

L(P̂ (T )) +
λ

T

m∑
i=1

max{t ∈ [T ] : b(t) = i}, (9)

where P̂ (T ) is the empirical distribution of the first T samples, b(t) is the arm pulled at time t,
max{t ∈ [T ] : b(t) = i} is the last time we pull arm i, and λ is the subscription fee per round.
Intuitively, we have to subscribe to arm i until the last use time max{t ∈ [T ] : b(t) = i}. As
T → ∞, we hope that the average cost (9) approaches the optimal cost minα (L(α) + λ∥α∥0),
where ∥α∥0 is the number of nonzero entries of α. Minimizing (9) allows us to simultaneously
select the best subset of arms and the optimal mixture in the long run, akin to variable selection
methods in statistical learning.

We now generalize the Mixture-UCB-CAB algorithm to the sparse mixture upper confidence bound
– continuum-armed bandit (Sparse-Mixture-UCB-CAB) algorithm, which has parameters λ ≥ 0
and β > 1. This algorithm is inspired by the backward elimination method for variable selection
(Efroymson, 1960), which starts with all variables and gradually removing variables irrelevant to our
prediction. Here, we start with a set of subscribed arms S that contains all arms [m], and gradually
dropping the worst arm i′ as long as the upper confidence bound of the optimal cost without arm i′ is
lower than the lower confidence bound of the optimal cost with arm i′, which implies that dropping
arm i′ will have a high likelihood of reducing the cost. The algorithm is given in Algorithm 3, and
the experiments are presented in Appendix 8.3.

Asymptotically, Sparse-Mixture-UCB-CAB attempts to minimize the cost minα (L(α) + λ∥α∥0).
If a fixed sparsity ℓ is desired instead, we can start with λ = 0, and gradually increase λ at each
round until |S| = ℓ, and then stop unsubscribing arms.

8.3 DETAILS OF THE NUMERICAL EXPERIMENTS

Hyper-parameter Choice. The kernel bandwidths for the RKE and KID metrics were chosen
based on the guidelines provided in their respective papers to ensure clear distinction between mod-
els. The values for ∆L and ∆κ in our online algorithms (7) were set according to the magnitudes of
the metrics and their behavior on a validation subset. The number of sampling rounds was adjusted
according to the number of arms and metric convergence, both of which depend on the bandwidth.
To ensure the statistical significance of results, all experiments were repeated 10 times with different
random seeds, and the reported plots represent the average results.

8.3.1 OPTIMAL MIXTURE FOR QUALITY AND DIVERSITY VIA KID

Suppose P is the distribution of generated images of a model, andQ is the target distribution. Recall
that for KID (3), we take the quadratic term to be κ(x, x′) = k(ψ(x), ψ(x′)) (with an expectation
EX,X′∼P [k(ψ(X), ψ(X ′))])) and the linear term to be f(x) = −2EY∼Q[k(ψ(x), ψ(Y ))] (with an
expectation−2EX∼P,Y∼Q[k(ψ(X), ψ(Y ))]). In order to run our online algorithms, we use ∆L and
∆κ based on a validation portion to make sure the UCB terms have the right magnitude for forcing
exploration.

FFHQ Generated Images. In this experiment, we used images generated by five different models:
LDM (Rombach et al., 2022), StyleGAN-XL (Sauer et al., 2022), Efficient-vdVAE (Hazami et al.,
2022), Insgen (Yang et al., 2021), and StyleNAT (Walton et al., 2023). We used 10,000 images from
each model to determine the optimal mixture, resulting in the weights (0.33, 0.57, 0, 0, 0.10). A
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Algorithm 3 Sparse-Mixture-UCB-CAB

1: Input: m generative arms, number of rounds T
2: Output: Gathered samples x(T )

3: Initialize the set of subscribed arms S ← [m].
4: for t ∈ {0, . . . ,m− 1} do
5: Pull arm t+ 1 at time t+ 1 to obtain sample xt+1,1 ∼ Pt+1. Set n(m)

t+1 = 1.
6: end for
7: for t ∈ {m, . . . , T − 1} do
8: repeat
9: Compute

α(t) ← argmin
α: supp(α)⊆S

(
L̂(α;x(t)) + λ|S| − (ϵ(t))⊤α

)
, (10)

where ϵ(t) ∈ Rm is defined in (7). Let the minimum value above be C.
10: Compute the following “worst arm” if |S| ≥ 2:

i′ ← argmin
i∈S

min
α: supp(α)⊆S\{i}

(
L̂(α;x(t)) + λ(|S| − 1) + (ϵ(t))⊤α

)
.

Let the minimum value above be C ′.
11: if C ′ ≤ C then
12: Unsubscribe arm i′ (i.e., S ← S\{i′})
13: end if
14: until no more arms are unsubscribed
15: Generate the arm index b(t+1) ∈ [m] at random with P(b(t+1) = i) = α

(t)
i .

16: Pull arm b = b(t+1) at time t+1 to obtain a new sample x
b,n

(t)
b +1

∼ Pb. Set n(t+1)
b = n

(t)
b +1

and n(t+1)
j = n

(t)
j for j ̸= b.

17: end for
18: return samples x(T )

kernel bandwidth of 40 was used for calculating the RKE, and the online algorithms were run for
8,000 sampling rounds. The quality and diversity scores for each model, including the results for
the optimal mixture based on KID, are presented in Table 1.

In Tables 1 and 2, we observe that the Precision of the optimal mixture is similar to that of the
maximum Precision score among individual models. On the other hand, the Recall-based diversity
improved in the mixture case. However, the quality-measuring Density score slightly decreased for
the selected mixture model, as Density is a linear score for quality that could be optimized by an
individual model. On the other hand, the Coverage score of the mixture model was higher than each
individual model.

Note that Precision and Density are scores on the average quality of samples. Intuitively, the quality
score of a mixture of models is the average of the quality score of the individual models, and hence
the quality score of a mixture cannot be better than the best individual model. On the other hand,
Recall and Coverage measure the diversity of the samples, which can increase by considering a
mixture of the models. To evaluate the net diversity-quality effect, we measured the FID score of
the selected mixture and the best individual model, and the selected mixture model had a better FID
score compared to the individual model with the best FID.

LSUN-Bedroom We used images generated by four different models: StyleGAN (Karras et al.,
2019a), Projected GAN (Sauer et al., 2021a), iDDPM (Nichol & Dhariwal, 2021), and Unleashing
Transformers (Bond-Taylor et al., 2021). We utilized 10,000 images from each model to compute
the optimal mixture, resulting in weights of (0.51, 0, 0.49, 0). A kernel bandwidth of 40 was applied,
and the algorithm was run for 8,000 sampling steps. The quality and diversity scores for each model,
including the results for the optimal mixture based on KID, are presented in Table 2.
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Model Precision ↑ Recall ↑ Density ↑ Coverage ↑ FID ↓
LDM 0.856 ± 0.008 0.482 ± 0.008 0.959 ± 0.027 0.776 ± 0.006 189.876 ± 1.976
StyleGAN-XL 0.798 ± 0.007 0.515 ± 0.007 0.726 ± 0.018 0.691 ± 0.009 186.163 ± 2.752
Efficient-vdVAE 0.854 ± 0.011 0.143 ± 0.007 0.952 ± 0.033 0.545 ± 0.008 490.385 ± 4.377
Insgen 0.76 ± 0.006 0.281 ± 0.007 0.716 ± 0.016 0.692 ± 0.005 278.235 ± 1.617
StyleNAT 0.834 ± 0.008 0.478 ± 0.007 0.867 ± 0.023 0.775 ± 0.007 185.067 ± 2.123

Optimal Mixture (KID) 0.818 ± 0.007 0.57 ± 0.008 0.816 ± 0.025 0.765 ± 0.007 168.127 ± 1.596

Table 1: Quality and diversity scores for the FFHQ experiment, including precision, recall, density,
coverage, and FID metrics (± standard deviation).

Model Precision ↑ Recall ↑ Density ↑ Coverage ↑ FID ↓
StyleGAN 0.838 ± 0.008 0.446 ± 0.007 0.941 ± 0.019 0.821 ± 0.004 175.575 ± 2.055
Projected GAN 0.749 ± 0.015 0.329 ± 0.008 0.592 ± 0.027 0.517 ± 0.008 324.066 ± 3.753
iDDPM 0.838 ± 0.006 0.641 ± 0.006 0.660 ± 0.018 0.825 ± 0.006 154.680 ± 3.036
Unleashing Transformers 0.786 ± 0.008 0.449 ± 0.006 0.649 ± 0.013 0.581 ± 0.013 339.982 ± 6.118

Optimal Mixture (KID) 0.838 ± 0.006 0.589 ± 0.005 0.900 ± 0.016 0.833 ± 0.004 149.779 ± 2.238

Table 2: Quality and diversity scores for the LSUN-Bedroom experiment, including precision, recall,
density, coverage, and FID metrics (± standard deviation).

Truncated FFHQ. We used StyleGAN2-ADA (Karras et al., 2020) trained on FFHQ dataset to
generate images. We randomly chose 8 initial points and used the Truncation Method (Marchesi,
2017; Karras et al., 2019b) to generate images with limited diversity around each of the chosen
points. We used truncation value of 0.3 and generated 5000 images from each model to find the
optimal mixture. The weights for the mixture was (0.07, 0.28, 0.10, 0.04, 0.21, 0.11, 0.12, 0.07). A
kernel bandwidth of 40 was used, and 4,000 sampling steps were conducted.

8.3.2 OPTIMAL MIXTURE FOR DIVERSITY VIA RKE

Truncated FFHQ. We employed StyleGAN2-ADA (Karras et al., 2020), trained on the FFHQ
dataset, to generate images. Eight initial points were randomly selected, and the Truncation Method
(Marchesi, 2017; Karras et al., 2019b) was applied with a truncation value of 0.3 to generate images
with limited diversity around these points. For the quadratic optimization, 5,000 images were gener-
ated from each model, using a kernel bandwidth of 40 to identify the optimal mixture. In the online
experiment, a new set of generated images was used, and sampling was conducted over 2,000 steps.

Truncated AFHQ Cat. Similar to the previous experiment, we used StyleGAN2-ADA to generate
AFHQ Cat images. Four initial points were selected, and a truncation value of 0.6 was applied to
simulate diversity-controlled models. For the quadratic optimization, 5,000 images were generated
from each model, with sampling conducted over 1,200 steps to determine the optimal mixture.

Style-Specific Generators. We used Stable Diffusion XL to generate images of cars in distinct
styles: realistic, surreal, and cartoon. For this experiment, we utilized 2,000 images from each
model to determine the optimal mixture, which yielded weights of (0.67, 0.27, 0.06). This mixture
increased the RKE value from 7.8 (the optimal value of the realistic images) to 9.2. We set the kernel
bandwidth to 30 and executed the online algorithms over 1,000 sampling steps.

Sofa Images. We generated images of the object “Sofa” using prompts with environmental de-
scriptions across the models FLUX.1-Schnell (Lab, 2024), Kandinsky 3.0 (Arkhipkin et al., 2023),
PixArt-α (Chen et al., 2023a), and Stable Diffusion XL (Podell et al., 2023). Solving the RKE op-
timization with 1,000 images revealed that sampling 38% from FLUX and 62% from Kandinsky
improved the RKE score from the one-arm optimum of 7.21 to 7.57. We set the kernel bandwidth
to 30 and conducted the online experiment over 700 steps. We observed that Mixture-UCB-OGD
achieved noticeably faster convergence to the optimal mixture RKE in this scenario.
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Generative Model 1

6.43 ± 0.08

19.23 ± 0.18

Generative Model 3 Generative Model 4Generative Model 2

8.64 ± 0.13 4.24 ± 0.08 8.39 ± 0.18

Generative Model 5

Optimal Mixture

4.78 ± 0.087.19 ± 0.14 6.75 ± 0.179.30 ± 0.13

Generative Model 6 Generative Model 7 Generative Model 8

RKE ↑

RKE ↑

weights = (0.05-0.20-0.09-
0.07-0.28-0.13-0.16-0.02)

Figure 7: Visual demonstration of the increase in diversity when mixing arms compared to individual
arms for truncated FFHQ generative models. The RKE values for each model and the mixture serve
as indicators of diversity.

Generative Model 1

4.68 ± 0.08 

16.56 ± 0.23

Generative Model 3 Generative Model 4Generative Model 2

RKE ↑

8.49 ± 0.14 6.98 ± 0.20 6.49 ± 0.13

Generative Model 5

weights = (0-0.19-0.12-0.07-
0.10-0.22-0.04-0.26)

9.97 ± 0.206.59 ± 0.18 6.90 ± 0.177.10 ± 0.15

Generative Model 6 Generative Model 7 Generative Model 8

RKE ↑

RKE ↑

Optimal Mixture

Figure 8: Visual demonstration of the increase in diversity when mixing arms compared to individual
arms for truncated AFHQ Cat generative models. The RKE values for each model and the mixture
represent the diversity.

The prompts followed the structure: “A adjective sofa is verb in a location,” with the terms for
Adjective, Action, and Location generated by GPT-4o (OpenAI, 2024), specifically for the object
”Sofa.”

Dog Breeds Images. Stable Diffusion XL was used to generate images of three dog breeds: Poo-
dle, Bulldog, and German Shepherd. As shown in Figure 4, using a mixture of models resulted in an
increase in mode count from 1.5 to 3, supporting our claim of enhanced diversity. We set the kernel
bandwidth to 50 and generated 1,000 images for each breed to determine the optimal mixture, which
was (0.33, 0.31, 0.36). Additionally, the online algorithms were executed for 500 sampling steps.
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PixArt-α
Optimal Mixture

weights = (0.38-0.62-0-0)

RKE ↑ 10.54 ± 0.13

Kandinsky-3FLUX.1-Schnell Stable Diffusion XL

13.48 ± 0.1412.12 ± 0.18 7.86 ± 0.14 14.51 ± 0.13

Figure 9: Visual comparison of diversity of each arm and the mixture for sofa image generators

Vanilla-UCB Mixture-UCB-CAB

Mixture-UCB-OGD

Figure 10: Comparison of samples generated using our proposed algorithms Mixture-UCB-CAB
and Mixture-UCB-OGD with the baseline one-arm online algorithm

Giraffe Images. We used three models—Stable Diffusion 3-medium (Esser et al., 2024), Kandin-
sky 3 (Arkhipkin et al., 2024), and PixArt-α (Chen et al., 2023a)—to generate 5000 images each
using the prompt: “Dark green giraffe, detailed, cartoon style.” In Fig. 1, we observe that while
each model adheres to the prompt, they fail to generate a diverse set of images. In contrast, the mix-
ture demonstrates noticeably greater diversity, as evident both visually and quantitatively from the
RKE (Jalali et al., 2023) and Vendi (Friedman & Dieng, 2023) scores. Furthermore, in Fig. 10, we
observe that the last nine samples generated by our online algorithm at step 1500 are significantly
more diverse compared to those generated by the Vanilla-UCB algorithm.

Text Generative Models We utilized the OpenLLMText dataset (Chen et al., 2023b), which con-
sists of 60,000 human texts rephrased paragraph by paragraph using the models GPT2-XL (Radford
et al., 2019), LLaMA-7B (Touvron et al., 2023), and PaLM (Chowdhery et al., 2022). To extract
features from each text, we employed the RoBERTa text encoder (Liu et al., 2019). By solving
the optimization problem on 10,000 texts from each model, we found that mixing the models with
probabilities (0.02, 0.34, 0.64, 0) achieved the optimal mixture, improving the RKE from an optimal
single model score of 69.3 to 75.2. A bandwidth of 0.6 was used for the kernel, and we ran the
online algorithms for 7,000 steps to demonstrate their performance.

Sparse Mixture Four different initial points and StyleGAN2-ADA were used to generate images
with a truncation of 0.6 around the points, simulating diversity-controlled arms. A value of λ = 0.06
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Figure 11: Comparison of online algorithms for the RKE metric on text generative models and the
Sparse Mixture algorithm for FFHQ truncated generators

and a bandwidth of 30 were selected based on the magnitudes of RKEs from the validation dataset to
determine when to “unsubscribe” arms in the Sparse-Mixure-UCB-CAB algorithm. We conducted
three scenarios, gradually reducing the number of arms to between one and three, and presented a
comparison of the resulting plots and their convergence values in Figure 11b.

8.3.3 OPTIMAL MIXTURE FOR DIVERSITY AND QUALITY VIA RKE AND
PRECISION/DENSITY

weights = (0.04-0.03-0.02-0.91) weights = (0.26-0.28-0.46-0) weights = (0.16-0.28-0.56-0)

RKE w/Precision
Optimal Mixture

Generative Model 3Generative Model 2Generative Model 1 Generative Model 4

RKE w/Density
Optimal Mixture

RKE
Optimal Mixture

Figure 12: Visual demonstration of the effect of combining Precision/Density with RKE. The CI-
FAR10 generator is excluded when these quality metrics are applied.

In this experiment, we utilized four arms: three of them are StyleGAN2-ADA models trained on
FFHQ, each using a truncation value of 0.3 around a randomly selected point. The fourth arm is
StyleGAN2-ADA trained on CIFAR-10. We generated 5,000 images and used a kernel bandwidth
of 30 to calculate the optimal mixture. When optimizing purely for diversity using the RKE metric,
the high diversity of the fourth arm leads to a probability of 0.91 being assigned to it, as shown in
Figure 12. However, despite the increased diversity, the quality of the generated images, based on
the reference distribution, is unsatisfactory.

To address this, we incorporate a quality metric, specifically Precision/Density, into the optimization.
We subtract the weighted Precision/Density from the RKE value, ensuring a balance between quality
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and diversity. The weight for the quality metric (λ = 0.2) was selected based on validation data
to ensure comparable scaling between the two metrics. As a result, Figure 12 shows that the fourth
arm, which had low-quality outputs, is assigned a weight of zero.

We use the RKE score as K and the weighted Precision/Density as f according to equation 5. The
online algorithms were run for 4,000 steps, with the results depicted in Figure 6.

8.4 PROOF OF THEOREM 2

Before we prove Theorem 2, we first prove a worst case concentration bound.

Lemma 1 Let T ≥ 2, and xi,1, xi,2, . . .
iid∼ Pi for i ∈ [m]. Let ∆L := 2∆κ+∆f . For n1, . . . , nm ∈

[T ], let x(ni)i := (xi,a)i∈[m], a∈[ni]. Fix any δ > 0. With probability at least 1− δ, we have

L(α)− L̂(α;x(ni)i)

≤
m∑
i=1

∆L

√
1

2ni
log

m2T 2

2δ
+

∆κ

ni

αi.

for every n1, . . . , nm ∈ [T ] and probability vector α. The same holds for L̂(α;x(ni)i) − L(α)

instead of L(α)− L̂(α;x(ni)i).

Proof: Fix any n1, . . . , nm ∈ [T ], and write x = x(ni)i . We have

L(α)− L̂(α;x)

=
∑
i,j

αiαj

(
fi + fj

2
+Ki,j −

f̂i(x) + f̂j(x)

2
− K̂i,j(x)

)
.

For i = j, applying Theorem 1 on α being the i-th basis vector,

P

fi +Ki,i − f̂i(x)− K̂i,i(x) ≥ ∆L

√
log(1/δ)

2ni
+

∆κ

ni

 ≤ δ. (11)

For i ̸= j, we will use similar arguments as Theorem 1. Let x̃ be the samples which are identical to
x except that one entry xi,a of the i-th arm is changed to x̃i,a. We have∣∣∣∣∣ f̂i(x̃) + f̂j(x̃)

2
+ K̂i,j(x̃)−

f̂i(x) + f̂j(x)

2
− K̂i,j(x)

∣∣∣∣∣
=

∣∣∣∣ 1

2ni
(f(x̃i,a)− f(xi,a)) +

1

ninj

nj∑
b=1

(κ(x̃i,a, xj,b)− κ(xi,a, xj,b))
∣∣∣∣

≤ ∆f

2ni
+

∆κ

ni

=
∆L

2ni
.

Note that E[ f̂i(x)+f̂j(x)
2 + K̂i,j(x)] =

fi+fj
2 −Ki,j . By McDiarmid’s inequality,

P

(
fi + fj

2
+Ki,j −

f̂i(x) + f̂j(x)

2
− K̂i,j(x) ≥ ϵ

)

≤ exp

− 2ϵ2

ni

(
∆L

2ni

)2
+ nj

(
∆L

2nj

)2


= exp

(
− 8ϵ2

∆2
L

(
n−1
i + n−1

j

)) .
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Hence,

P

(
fi + fj

2
+Ki,j −

f̂i(x) + f̂j(x)

2
− K̂i,j(x) ≥ ∆L

√
log(1/δ)

8

(
n−1
i + n−1

j

))
≤ δ. (12)

Note that the event in (11) does not depend on ni′ for i′ ̸= i, and the event in (12) does not depend
on ni′ for i′ /∈ {i, j}. By union bound, all the events in (11) and (12) do not hold for all i ≤ j and
n1, . . . , nm ∈ [T ] with probability at least

1−mTδ − m(m− 1)

2
T 2δ ≥ 1− m2

2
T 2δ.

If these events do not hold, then

L(α)− L̂(α;x)

=
∑
i,j

αiαj

(
fi + fj

2
+Ki,j −

f̂i(x) + f̂j(x)

2
− K̂i,j(x)

)

≤
∑
i

α2
i

∆L

√
log(1/δ)

2ni
+

∆κ

ni

+
∑

(i,j)∈[m]2,i̸=j

αiαj∆L

√
log(1/δ)

8

(
n−1
i + n−1

j

)

≤
∑
i

α2
i

∆L

√
log(1/δ)

2ni
+

∆κ

ni

+∆L

√
log(1/δ)

8

∑
(i,j)∈[m]2,i̸=j

αiαj

(
n
−1/2
i + n

−1/2
j

)

=
∑
i

α2
i

∆κ

ni
+∆L

√
log(1/δ)

8

∑
(i,j)∈[m]2

αiαj

(
n
−1/2
i + n

−1/2
j

)

=
∑
i

α2
i

∆κ

ni
+∆L

√
log(1/δ)

2

∑
i

αin
−1/2
i

≤
∑
i

∆L

√
log(1/δ)

2ni
+

∆κ

ni

αi.

The other direction of the inequality is similar.

We finally prove Theorem 2.

Proof: Assume m ≥ 2, β ≥ 4 and T ≥ 2. If T ≤ 40m, then since T−1 log T is decreasing for
T ≥ 3 (the following inequalities are obviously true for T = 2),√

βm log T

T
≥
√

4m log(40m)

40m
≥
√

log 80

10
≥ 0.66,

and Theorem 2 is trivially true since E
[
L(P̂ (T ))

]
− minα L(α) ≤ ∆L. Hence we can assume

T ≥ 40m+ 1.

Let α∗ be the minimizer of L(α). Let x̄(t) be the sample obtained at the t-th pull. Let α(t−1)
i =

1{t = i} for t ∈ [m], so “x̄(t) is generated from the distribution Pi with probability α(t−1)
i ” holds

for every t ≥ 1. Write x̄([s]) := (x̄(t))t∈[s]. For s < t, let x̂(s) be a random variable with the same
conditional distribution given x̄([s−1]) as x̄(s), but is conditionally independent of all other random
variables given x̄([s−1]). The joint distribution of x̄([t−1]), x̄(t), x̂(s) is

Px̄([t−1]),x̄(t),x̂(s) = Px̄([t−1]),x̄(t)Px̄(s)|x̄([s−1]) .
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Recall that x̄(s) is generated from the distribution Pi with probability α(s−1)
i for i ∈ [m], where

α(s−1) = (α
(s−1)
i )i∈[m] is computed using x̄([s−1]). We have

E[κ(x̂(s), x̄(t))]

= E
[
E
[
κ(x̂(s), x̄(t))

∣∣ x̄([t−1])
]]

(a)
= E

 m∑
i=1

m∑
j=1

α
(s−1)
i α

(t−1)
i EX∼Pi,X′∼Pj [κ(X,X

′)]


= E

[
(α(s−1))⊤Kα(t−1)

]
,

where (a) is because x̂(s) only depends on x̄([s−1]) (i.e., is conditionally independent of all other ran-
dom variables in the expression given x̄([s−1])), and x̄(t) only depends on x̄([t−1]). Write δTV(A∥B)
for the total variation distance between the distributions of the random variables A and B. Write
I(A;B|C) for the conditional mutual information between A and B given C in nats. We have

E[κ(x̄(s), x̄(t))]
(b)

≤ E[κ(x̂(s), x̄(t))] + ∆κδTV(x̄
(s), x̄(t) ∥ x̂(s), x̄(t))

≤ E
[
(α(s−1))⊤Kα(t−1)

]
+∆κδTV(x̄

([s−1]), x̄(s), x̄(t) ∥ x̄([s−1]), x̂(s), x̄(t))

(c)

≤ E
[
(α(s−1))⊤Kα(t−1)

]
+∆κ

√
1

2
I(x̄(s); x̄(t)|x̄([s−1])),

where (b) is because κ takes values over [κ0, κ1] with ∆κ = κ1 − κ0, and (c) is by Pinsker’s
inequality. We also have, for every t,

E[κ(x̄(t), x̄(t))] ≤ E
[
(α(t−1))⊤Kα(t−1)

]
+∆κ.

Hence,

E

[
1

T 2

T∑
s=1

T∑
t=1

κ(x̄(s), x̄(t))

]
− E

[
1

T 2

T∑
s=1

T∑
t=1

(α(s−1))⊤Kα(t−1)

]

≤ 2∆κ

T 2

T∑
s=1

T∑
t=s+1

√
1

2
I(x̄(s); x̄(t)|x̄([s−1])) +

∆κ

T

=
2∆κ

T 2

T∑
t=1

t−1∑
s=1

√
1

2
I(x̄(s); x̄(t)|x̄([s−1])) +

∆κ

T

≤ 2∆κ

T 2

T∑
t=1

√√√√ t− 1

2

t−1∑
s=1

I(x̄(s); x̄(t)|x̄([s−1])) +
∆κ

T

(d)
=

2∆κ

T 2

T∑
t=1

√
t− 1

2
I(x̄([t−1]); x̄(t)) +

∆κ

T

(e)

≤ 2∆κ

T 2

T∑
t=1

√
t− 1

2
logm+

∆κ

T

≤ 2∆κ

T 2

√
logm

2

∫ T

0

√
τdτ +

∆κ

T

=
4∆κ

3

√
logm

2T
+

∆κ

T
,

where (d) is by the chain rule of mutual information, and (e) is because x̄(t) only depends on x̄([t−1])

through the choice of arm b(t) ∈ [m], and hence I(x̄([t−1]); x̄(t)) is upper bounded by the entropy of
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b(t), which is at most logm. Also note that E[f(x̄(t))] = f⊤E[α(t−1)]. Hence,

E[L(P̂ (T ))]

= E

[
1

T

T∑
t=1

f(x̄(t)) +
1

T 2

T∑
s=1

T∑
t=1

κ(x̄(s), x̄(t))

]

≤ E

[
1

T

T∑
t=1

f⊤α(t−1) +
1

T 2

T∑
s=1

T∑
t=1

(α(s−1))⊤Kα(t−1)

]
+

4∆κ

3

√
logm

2T
+

∆κ

T

= E

f⊤ 1

T

T∑
t=1

α(t−1) +

(
1

T

T∑
t=1

α(t−1)

)⊤

K

(
1

T

T∑
t=1

α(t−1)

)+
4∆κ

3

√
logm

2T
+

∆κ

T

= E

[
L

(
1

T

T∑
t=1

α(t−1)

)]
+

4∆κ

3

√
logm

2T
+

∆κ

T

(f)

≤ 1

T

T∑
t=1

E
[
L(α(t−1))

]
+

4∆κ

3

√
logm

2T
+

∆κ

T
, (13)

where (f) is because K is positive semidefinite, and hence L is convex. Therefore, to bound the
optimality gap, we study the expected loss E

[
L(α(t))

]
of the estimate of the optimal mixture dis-

tribution α(t).

Let δ̃ > 0. Let Ẽ be the event

L(α)− L̂(α;x(ni)i) ≤
m∑
i=1

∆L

√
1

2ni
log

m2T 2

2δ̃
+

∆κ

ni

αi

for every n1, . . . , nm ∈ [T ] and probability vector α, as in Lemma 1. By Lemma 1, P(Ẽ) ≥ 1− δ̃.

Fix a time t ∈ {m, . . . , T}. Let Et be the event

L̂(α∗;x(ni)i)− L(α∗) ≤
m∑
i=1

(
∆L

√
β log t

2ni
+

∆κ

ni

)
α∗
i

for every n1, . . . , nm ≥ 1 such that
∑

i ni = t. Since

m∑
i=1

(
∆L

√
1

2ni
log

m2t2

2m2t−2/2
+

∆κ

ni

)
α∗
i

=

m∑
i=1

(
∆L

√
1

2ni
log t4 +

∆κ

ni

)
α∗
i

≤
m∑
i=1

(
∆L

√
β log t

2ni
+

∆κ

ni

)
α∗
i

by β ≥ 4, applying Lemma 1,
P(Et) ≥ 1−m2t−2/2. (14)

If the event Et holds, by taking ni = n
(t)
i ,

L̂(α∗;x(t))− L(α∗) ≤ (ϵ(t))⊤α∗. (15)

If the event Ẽ holds,

L(α)− L̂(α;x(t))

≤
m∑
i=1

(
∆L

√
1

2n
(t)
i

log
m2T 2

2δ̃
+

∆κ

n
(t)
i

)
αi (16)
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for every α. Combining (15) and (16) (with α = α(t)),

L̂(α(t);x(t))− L̂(α∗;x(t)) + (ϵ(t))⊤α∗

+

m∑
i=1

(
∆L

√
1

2n
(t)
i

log
m2T 2

2δ̃
+

∆κ

n
(t)
i

)
α
(t)
i

≥ L(α(t))− L(α∗).

By (6), L̂(α(t);x(t))− (ϵ(t))⊤α(t) ≤ L̂(α∗;x(t))− (ϵ(t))⊤α∗, and hence if the events Ẽ, Et hold,

(ϵ(t))⊤α(t) +

m∑
i=1

(
∆L

√
1

2n
(t)
i

log
m2T 2

2δ̃
+

∆κ

n
(t)
i

)
α
(t)
i

≥ L(α(t))− L(α∗). (17)

We have

(ϵ(t))⊤α(t) +

m∑
i=1

(
∆L

√
1

2n
(t)
i

log
m2T 2

2δ̃
+

∆κ

n
(t)
i

)
α
(t)
i

=

m∑
i=1

(
∆L

√
β log t

2n
(t)
i

+
∆κ

n
(t)
i

+∆L

√
1

2n
(t)
i

log
m2T 2

2δ̃
+

∆κ

n
(t)
i

)
α
(t)
i

=
∑
i

 ∆L√
n
(t)
i

√β

2
log t+

√
1

2
log

m2T 2

2δ̃

+
2∆κ

n
(t)
i

α
(t)
i

≤
∑
i

 ∆L√
n
(t)
i

√β

2
log T +

√
1

2
log

m2T 2

2δ̃

+
∆L√
n
(t)
i

α
(t)
i

= ∆Lη
∑
i

α
(t)
i√
n
(t)
i

,

where

η :=

√
β

2
log T +

√
1

2
log

m2T 2

2δ̃
+ 1.

Substituting into (17), if the events Ẽ, Et hold,

∆Lη
∑
i

α
(t)
i√
n
(t)
i

≥ L(α(t))− L(α∗).

Hence, in general (regardless of whether Ẽ, Et hold), denoting the indicator function of Ẽ ∩ Et as
1Ẽ∩Et

∈ {0, 1},

∑
i

α
(t)
i√
n
(t)
i

≥ L(α(t))− L(α∗)

∆Lη
1Ẽ∩Et

.

Let

Ψ(t) :=

m∑
i=1

ψ(n
(t)
i − 1),
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where ψ(n) :=
∑n

i=1 i
−1/2. Recall that we pull arm i at time t + 1 with probability α(t)

i . The
expected increase of Ψ(t) is

E
[
Ψ(t+1) −Ψ(t)

∣∣x(t)
]
=

m∑
i=1

(
ψ(n

(t)
i )− ψ(n(t)i − 1)

)
α
(t)
i

=

m∑
i=1

α
(t)
i√
n
(t)
i

≥ L(α(t))− L(α∗)

∆Lη
1Ẽ∩Et

.

Note that

Ψ(T ) =

m∑
i=1

ψ(n
(T )
i − 1)

≤
m∑
i=1

∫ n
(T )
i −1

0

min{τ−1/2, 1}dτ

(a)

≤ m

∫ m−1 ∑m
i=1 n

(T )
i −1

0

min{τ−1/2, 1}dτ

= m

∫ T/m−1

0

min{τ−1/2, 1}dτ

(b)
= m

(
1 +

∫ T/m−1

1

τ−1/2dτ

)

= m

(
2

√
T

m
− 1− 1

)
,

where (a) is because a 7→
∫ a

0
min{τ−1/2, 1}dτ is concave, and (b) is because T ≥ 40m + 1, so

T/m− 1 ≥ 1. Therefore,

m

(
2

√
T

m
− 1− 1

)
≥ E

[
Ψ(T ) −Ψ(m)

]
=

T−1∑
t=m

E
[
Ψ(t+1) −Ψ(t)

]
≥

T−1∑
t=m

E
[
L(α(t))− L(α∗)

∆Lη
1Ẽ∩Et

]

≥ 1

∆Lη

T−1∑
t=m

(
E
[
L(α(t))− L(α∗)

]
−∆LP((Ẽ ∩ Et)

c)
)

(c)

≥ 1

∆Lη

T−1∑
t=m

(
E
[
L(α(t))− L(α∗)

]
−∆L(δ̃ +m2t−2/2)

)
≥ 1

∆Lη

T−1∑
t=m

E
[
L(α(t))− L(α∗)

]
− T δ̃

η
− m2

2η

∫ T−1

m−1

t−2dt

≥ 1

∆Lη

T−1∑
t=m

E
[
L(α(t))− L(α∗)

]
− T δ̃

η
− m2

2η(m− 1)

≥ 1

∆Lη

T−1∑
t=m

E
[
L(α(t))− L(α∗)

]
− T δ̃

η
− m

η
,
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where (c) is by (14). Hence,

1

∆L

T−1∑
t=0

E
[
L(α(t))− L(α∗)

]
≤ 1

∆L

T−1∑
t=m

E
[
L(α(t))− L(α∗)

]
+m

≤ ηm

(
2

√
T

m
− 1− 1

)
+ T δ̃ + 2m

(d)
= m

(
2

√
T

m
− 1− 1

)(√
β

2
log T +

√
1

2
log

mT 3

2
+ 1

)
+ 3m

(e)

≤ m

(
2

√
T

m
− 1

)(√
β

2
log T +

√
1

2
log

mT 3

2
+ 1

)

≤ 2
√
mT

(√
β

2
log T +

√
1

2
log

mT 3

2
+ 1

)
,

where (d) is by substituting δ̃ = m/T , (e) is because
√

β
2 log T ≥

√
2 log 81 ≥ 2.9 and√

1
2 log

mT 3

2 ≥ 2.5 (recall that T ≥ 40m+ 1 ≥ 81). Substituting into (13),

1

∆L

(
E[L(P̂ (T ))]− L(α∗)

)
≤ 1

∆LT

T∑
t=1

E
[
L(α(t−1))− L(α∗)

]
+

4∆κ

3∆L

√
logm

2T
+

∆κ

T∆L

≤ 2

√
m

T

(√
β

2
log T +

√
1

2
log

mT 3

2
+ 1

)
+

2

3

√
logm

2T
+

1

2T

=
1√
T

(
2

√
β

2
m log T +

√
2m log

mT 3

2
+ 2
√
m+

2

3

√
logm

2
+

1

2
√
T

)

≤ 1√
T

(
2

√
β

2
m log T +

√
2m log T 4 +

2
√
m log T√
log 81

+
2

3

√
m log T√

m log(40m+ 1)

√
logm

2
+

1

2
√
81
·
√
m log T√
2 log 81

)

=

√
m log T

T

(√
2β + 2

√
2 +

2√
log 81

+
2

3

√
logm

2m log(40m+ 1)
+

1

2
√
81
· 1√

2 log 81

)

≤
√
m log T

T

(√
2β + 2

√
2 +

2√
log 81

+
2

3

√
log 2

4 log 81
+

1

2
√
81
· 1√

2 log 81

)

≤
√
m log T

T

(√
2β + 3.934

)
≤
√
m log T

T

(√
2β +

3.934

2

√
β

)
≤ 3.382

√
βm log T

T
.

This completes the proof of Theorem 2 (with an improved constant 3.382 instead of 4).
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