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Abstract
Pre-trained 3D vision models have gained
significant attention for their promising per-
formance on point cloud data. However, fully
fine-tuning these models for downstream tasks is
computationally expensive and storage-intensive.
Existing parameter-efficient fine-tuning (PEFT)
approaches, which focus primarily on input
token prompting, struggle to achieve competitive
performance due to their limited ability to capture
the geometric information inherent in point
clouds. To address this challenge, we propose
a novel Geometry-Aware Point Cloud Prompt
(GAPrompt) that leverages geometric cues to
enhance the adaptability of 3D vision models.
First, we introduce a Point Prompt that serves as
an auxiliary input alongside the original point
cloud, explicitly guiding the model to capture
fine-grained geometric details. Additionally, we
present a Point Shift Prompter designed to extract
global shape information from the point cloud,
enabling instance-specific geometric adjustments
at the input level. Moreover, our proposed
Prompt Propagation mechanism incorporates
the shape information into the model’s feature
extraction process, further strengthening its
ability to capture essential geometric character-
istics. Extensive experiments demonstrate that
GAPrompt significantly outperforms state-of-
the-art PEFT methods and achieves competitive
results compared to full fine-tuning on various
benchmarks, while utilizing only 2.19% of train-
able parameters. Our code is available at https:
//github.com/zhoujiahuan1991/
ICML2025-GAPrompt.
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Figure 1. Our GAPrompt compares to full fine-tuning and existing
PEFT methods. We compare the classification accuracy on the
hardest variant of ScanObjectNN (Uy et al., 2019) based on pre-
trained Point-FEMAE (Zha et al., 2024).

1. Introduction
The advent of scanning sensor devices has significantly fa-
cilitated the acquisition of 3D point cloud data, an inherently
irregular and unstructured geometric representation. This
advancement has propelled the development of various 3D
vision applications, including 3D reconstruction (Xu et al.,
2022; Lu et al., 2024) and autonomous driving (Zhao et al.,
2024). Recently, pre-trained 3D vision models (Yu et al.,
2022; Zhang et al., 2022; Zha et al., 2024) have shown
remarkable performance in processing point cloud data, en-
abling their direct application to a variety of downstream
3D tasks through full fine-tuning. However, fine-tuning the
entire pre-trained model incurs substantial computational
costs and necessitates a large quantity of labeled data. More-
over, without freezing the pre-trained model, there exists
a considerable risk of catastrophic forgetting, potentially
resulting in the loss of critical pre-trained knowledge.

To address these challenges, parameter-efficient fine-tuning
(PEFT) methods have been introduced, particularly in 2D
vision, to improve the efficiency and effectiveness of adapt-
ing pre-trained models. The core concept behind PEFT is to
freeze the pre-trained model and only fine-tune newly added
modules, thereby bridging the distribution gap between
pre-training tasks and downstream tasks while preserving
the original knowledge. Two notable PEFT strategies are
Prompt Tuning (Lester et al., 2021; Li & Liang, 2021; Liu
et al., 2024) and Adapter Tuning (Houlsby et al., 2019;
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Figure 2. Methods for adapting pre-trained 3D vision models. (a) Fine-tuning updates entire model parameters. (b) Prompt-based methods
adapt the model to downstream tasks by reformulating the input at the token level. (c) Our proposed GAPrompt adapts the model by
tuning explicit learnable point clouds and token prompts, enhanced with instance-specific shape features extracted by a geometry-aware
prompter.

He et al., 2021). However, the transition of these PEFT
methods from 2D to 3D vision poses significant challenges
due to the inherent sparsity and irregularity of point clouds.
Specifically, token prompts initialized randomly often fail
to align well with point cloud data, leading to difficulties in
convergence when downstream tasks are supervised solely
by prediction loss. Similarly, Adapter Tuning, which pri-
marily focuses on token features, struggles to capture the
critical geometric information embedded in the distribution
of discrete points within 3D space.

Recently, several studies (Zha et al., 2023; Zhou et al., 2024)
have recognized the critical need for 3D-specific PEFT
methods and have initially tried to design networks that
are better suited for adaptation within the 3D domain. These
approaches typically focus on either constructing complex
networks to model token interactions and dynamically gen-
erate token prompts, or employing dynamic adapters that
simultaneously produce both prompt tokens and scaling fac-
tors for adapter tuning. However, by concentrating primarily
on encoded input tokens, these methods fail to capture the
rich geometric information intrinsic to point clouds, which
severely limits their ability to achieve competitive perfor-
mance, as illustrated in Figure 1.

To this end, we propose a novel Geometry-Aware Point
Cloud Prompt (GAPrompt), specifically designed for
parameter-efficient fine-tuning of 3D models. Our approach
begins with the introduction of a Point Prompt, which ex-
plicitly incorporates point cloud data as input, allowing the
model to better capture subtle geometric features. To further
enhance the capacity of leveraging instance-specific geome-
try information, we introduce a Point Shift Prompter. This
module extracts global shape information from the original
point cloud and shifts the points accordingly, thereby en-
riching the geometric features at the input level. In addition,

we propose a Prompt Propagation mechanism, which seam-
lessly integrates the instance shape information extracted by
the Point Shift Prompter into the model’s feature extraction
process. This design enhances the model’s ability to capture
and utilize critical geometric information from the point
cloud, leading to more accurate and efficient processing.

In summary, the key contributions of this work are: (1)
We propose GAPrompt, a novel geometry-aware prompt
learning method tailored for pre-trained 3D vision models.
GAPrompt achieves competitive performance comparable to
full fine-tuning, while significantly reducing computational
and storage overhead. (2) We introduce three key algorithm
designs including Point Prompt, Point Shift Prompter, and
the Prompt Propagation mechanism, which together enable
the model to effectively capture and utilize geometric in-
formation inherent in point clouds, thereby enhancing its
representational capacity. (3) Extensive experiments on var-
ious benchmarks demonstrate the superior efficiency and
effectiveness of GAPrompt, outperforming existing methods
in both accuracy and resource utilization.

2. Related Work
2.1. Pre-trained 3D Vision Model

Pre-training on 3D datasets has become a prominent re-
search area, particularly with the use of vision transform-
ers (Dosovitskiy et al., 2021). Two principal pretext task
paradigms have been developed for 3D pre-training: con-
trastive learning and mask modeling. Methods based on
contrastive learning (Huang et al., 2023; Dong et al., 2022;
Qi et al., 2024; Zhu et al., 2023) have demonstrated re-
markable performance in zero/few-shot learning, largely
due to the inherent power of multi-modality. Mask mod-
eling (Yu et al., 2022; Zha et al., 2024) typically relies on
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autoencoders to learn the latent features by reconstructing
the original input as illustrated in Figure 2. For instance,
Point-MAE (Pang et al., 2022) employs an autoencoder to
learn high-level latent features from unmasked patches and
reconstruct the masked point patches. ReCon (Qi et al.,
2023) utilizes an ensemble distillation approach, drawing
upon both generative modeling teachers and single/cross-
modal contrastive teachers. These pre-trained 3D vision
models have demonstrated exceptional capabilities when
fully fine-tuned for various downstream 3D tasks.

While full fine-tuning can yield promising performance, it is
computationally expensive and inefficient, as it requires up-
dating the entire backbone of the model. This has motivated
the exploration of more efficient methods for adapting pre-
trained models to downstream tasks with minimal parameter
updates. In this work, we address this challenge by propos-
ing a geometry-aware prompting approach that leverages
instance-specific shape information extracted from input
point clouds, enabling efficient transfer of pre-trained mod-
els to downstream tasks with significantly fewer trainable
parameters.

2.2. Parameter-Efficient Fine-Tuning

As deep learning technology advances, both the perfor-
mance and size of models have steadily increased, mak-
ing full fine-tuning of these models for downstream tasks
computationally expensive. To address these challenges,
researchers in 2D computer vision have developed various
Parameter-Efficient Fine-Tuning (PEFT) methods. One pop-
ular approach, prompt tuning (Jia et al., 2022; Li & Zhou,
2025), introduces learnable latent tokens as prompts to task-
specific inputs, allowing pre-trained models to adapt within
the latent feature space. Adapter tuning methods (Houlsby
et al., 2019) complement this by inserting lightweight mod-
ules into the pre-trained model blocks and adjusting the
latent feature distribution. Building on these foundations,
numerous variations (Jie & Deng, 2023; Karimi Mahabadi
et al., 2021) have been proposed, achieving performance
levels comparable to full fine-tuning in 2D vision tasks.

However, due to the inherent sparsity and irregularity of
point clouds, these 2D vision PEFT methods struggle to
generalize effectively to 3D vision tasks, underscoring the
need for 3D-specific approaches. For example, IDPT (Zha
et al., 2023) utilized a heavy EdgeConv (Phan et al., 2018)
network to capture local interactions between tokens, dy-
namically generating token prompts. While this method
narrows the performance gap with full fine-tuning, it signif-
icantly increases computational costs. DAPT (Zhou et al.,
2024) introduced dynamic adapters for transfer learning in
3D vision models, extending standard adapters to produce
both scale factors and prompts dynamically. Additionally,
Point-PEFT (Tang et al., 2024) combined prompts, adapters,

and bias tuning (Zaken et al., 2021) to transfer pre-trained
models. Nevertheless, it still relies on point priors extracted
from pre-training data, further adding computational over-
head.

While these pioneering approaches have made significant
strides, they often lack an explicit understanding of the geo-
metric characteristics inherent to point clouds, which limits
their overall performance. To address this, we propose a
novel 3D-specific PEFT method with geometry awareness,
termed GAPrompt. Our approach leverages a lightweight
prompter to extract instance-specific shape information from
point clouds. Furthermore, we integrate explicit learnable
point cloud prompts with token prompts to enhance the
model’s geometric awareness and improve its ability to cap-
ture subtle geometric details, as illustrated in Figure 2.

3. The Proposed Method
We illustrate our GAPrompt method for efficiently fine-
tuning pre-trained 3D vision models in detail, which con-
tains three geometry-aware prompt modules: the Point
Prompt, the Point Shift Prompter, and the Prompt Propaga-
tion mechanism. As shown in Figure 3, given a pre-trained
3D transformer with N blocks and a specific downstream
task, we freeze the backbone and solely update newly intro-
duced GAPrompt modules and the classification head.

3.1. Point Prompt

To facilitate explicit awareness of point clouds and assist
models in capturing subtle geometry, we design the Point
Prompt which explicitly utilizes learnable point clouds as
prompt. It has stronger inherent relevance with point cloud
data than prompt tokens, assisting models in capturing ge-
ometry from inherently irregular and unstructured point
clouds. The Point Prompt P ∈ RP×3 is initialized in uni-
form distribution:

z ∼ U(−r,+r), (1)

where z is the coordinates on the z-axis, and the other two
dimensions are the same distribution. r represents the range
of a single dimension of coordinates.

Given a raw input point cloud x ∈ RS×3 with S points,
firstly we hybrid Point Prompt P ∈ RP×3 into its 3D space,
denoted as [x;P ] ∈ R(S+P )×3, where “[ ]” indicates con-
catenation and P is the number of learnable points. Ad-
ditionally, we modify the shape of x with our Point Shift
Prompter, producing a shifted point cloud x̃ ∈ RS×3. This
module also generates instance-specific informative shape
features f ∈ RD, where D is the embedding dimension of
transformers, formulated as:

x̃,f = Point-Shift-Prompter(x). (2)
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Figure 3. The overall pipeline of GAPrompt. The raw input point clouds are processed by Point Shift Prompter, generating instance-
specific shape features and shifted points. These shifted points are then combined with the Point Prompt and embedded into input tokens.
The shape features are further utilized to enhance the prompt tokens, which are concatenated with the input tokens. Subsequently, the
concatenated tokens are fed into Prompt Propagation, incorporating the instance shape information into the model’s feature extraction
process. Finally, the propagated tokens are passed through pre-trained model blocks to produce results.

Then the hybrid point cloud [x;P ] becomes prompted input
point cloud [x̃;P ] ∈ R(S+P )×3.

Following the original architecture of the pre-trained model,
the prompted point cloud is encoded into Lt point tokens h1

by the token embedding module. We denote input tokens
of i-th block as hi ∈ RLt×D. After that, input tokens hi

are concatenated with Lp prompt tokens pi ∈ RLp×D en-
hanced by shape feature f , formulated as [hi;pi]. Then we
feed these tokens into our Prompt Propagation mechanism,
injecting prompt tokens into the feature extraction process:

h̃i = Prompt-Propagation([hi;pi]), (3)

where h̃i ∈ RLt×D is the propagated input tokens. Finally,
we feed h̃i with enhanced prompt tokens pi into vision
transformer attention layers, consisting of self-attention and
feed-forward layers. Furthermore, we adjust the tokens with
adapters enhanced by shape feature f .

ĥi, p̂i = Attn.([h̃i,pi]), (4)

hi+1 = ĥi + Adapter(ĥi + f · βa), (5)

where ĥi, p̂i ∈ RLt×D are intermediate outputs of attention
layer and βa is scale factor for enhancing adapters. In the
following parts, we will demonstrate the details of Point
Shift Prompter and Prompt Propagation respectively.

3.2. Point Shift Prompter

In addition to employing Point Prompt to capture subtle ge-
ometric details, we utilize a Point Shift Prompter to extract
informative shape features from raw input point clouds. As
described above, to adjust the point cloud shape accordingly,
we pass point-level shape features through a shallow shift
head to generate a coordinate shift for each input point. Fur-
thermore, the shape features can be utilized to enhance the
geometry awareness of prompt tokens and adapters.

Shape Feature. Specifically, to acquire global shape in-
formation of point clouds without much computational
cost, we utilize a hierarchical downsampling strategy. As
shown in Figure 3, the raw input point cloud x is sampled
by multi-resolution grouping referring to PointNet++ (Qi
et al., 2017b), which iteratively finds out Cj center points
xj ∈ RCj×3 via farthest point sampling (FPS) at j-th reso-
lution level. Then we respectively find out neighbor points
nj ∈ RCj×Kj×3 corresponding to each center with K-
nearest neighbor (KNN) algorithm:

xj+1 = FPS(xj), (6)

nj = KNN(xj ,xj+1). (7)

Obtaining such hierarchical spatial information, we em-
bed point coordinates xj to features dj ∈ RCj×Dj with a
lightweight pointnet (Qi et al., 2017a), which is a combina-
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tion of convolutional layers, formulated as:

d̃j = Pointnet(xj). (8)

After k levels of downsampling, we obtain center point fea-
tures d̃k ∈ RCk×Dk where Ck ×Dk = D and concatenate
them as shape feature f ,

f = Reshape(d̃k) ∈ RD, (9)

which is the overall shape information of input point clouds.

Shifted Input. Furthermore, to generate instance-specific
shifts for each point, we need to obtain features for all the
original points x. Firstly, an upsampling strategy is em-
ployed to propagate features from center points to neighbor
points. Then we further process the features with another
pointnet:

d̃
n

j = Pointnet(Propagate(d̃j)), (10)

where d̃
n

j ∈ RCj×Kj×Dj is features of neighbor points nj

in j-th level. After upsampling from level k to level 1, the
feature propagation process yields d̃

n

1 . We concatenate d̃
n

1

and d̃1 and send into a small MLP, namely shift head, to
generate the x̃:

x̃ = Shift-Head([d̃
n

1 , d̃1]). (11)

Besides, the shape feature f ∈ RD can be used to enhance
prompt tokens, imparting rich geometric awareness:

pi = p′
i + f · βp, (12)

where p′
i ∈ RLp×D denotes raw prompt tokens, pi ∈

RLp×D is enhanced prompt tokens, βp is a scale factor.

3.3. Prompt Propagation

With prompt tokens enhanced by global shape features from
the Point Shift Prompter, we further leverage these tokens to
enhance the model’s geometry awareness. To achieve this,
we design a Prompt Propagation mechanism that integrates
instance-specific shape information into the model’s feature
extraction process.

Given a set of input tokens [hi;pi] ∈ R(Lt+Lp)×D in the
i-th block, we can find the geometric relationship between
input tokens via FPS and KNN. We formulate it as follows:

hc
i = FPS(hi), (13)

hn
i = KNN(hi,h

c
i ). (14)

Subsequently, we randomly replace the enhanced prompt
tokens pi into input tokens in hc

i and hn
i , namely prompt

injection. c and n denote the index for center and neighbor
points. Inspired by the thought of dropout (Srivastava et al.,

2014), the prompt injection process makes our model more
robust while adapting downstream. A variety of replacement
methods for alternation will be discussed in detail in the
Ablation Study. We formulate this process as:

hc′
i ,h

n′
i = Inject(hc

i ,h
n
i ,pi). (15)

where hc
i ∈ RC×D, hn

i ∈ RC×K×D denote tokens indexed
by centers and neighbors and hc′

i ,h
n′
i denote tokens after

injection. Then we propagate features from local centers to
all input tokens, formulated as:

h̃i = Propagate(hc′
i ), (16)

where h̃i is propagated input tokens. More details of
Eq. 15&16 can be found in Appendix.

The core of our method lies in the strategic injection of
enhanced prompt tokens. Without this enhancement, the
propagation process among input tokens would result in triv-
ial solutions, yielding minimal performance improvements.
Specifically, when the features of center points are provided,
and the goal is to compute the features of neighboring points,
our propagation mechanism performs feature interpolation.
This interpolation leverages the spatial distances between
the center and neighboring points, allowing the model to
effectively transfer and refine feature information across the
tokens, thereby ensuring performance gains.

3.4. Analysis and Discussion

The objective of our method is to facilitate task-specific
model adaptation through the integration of geometric-
aware prompt mechanisms. In contrast to previous ap-
proaches, our method not only incorporates prompt tokens
but also effectively captures fine-grained point-level geo-
metric information. The attention mechanism with prompt
integration can be formally expressed as follows:

oi = Attn.(WQhi,WKhi,WV hi), (17)

ôi = Attn.(WQhi,WK [pi,hi],WV [pi,hi]), (18)

where oi and ôi represent the attention outputs without and
with prompt integration.

Building upon the theory established by (He et al., 2021),
we can derive an equivalent transformation of Eq. 18 as:

ôi =
∑

pk∈pi

AikWV pk + (1−
∑
k

Aik)oi, (19)

where Aik denotes the attention weight assigned to prompt
pk for query hi by the transformer. This formulation reveals
two critical aspects: the soft prompt mechanism induces a
linear interpolation of the head’s position-wise output, and
the bias term facilitates adaptation within an offset subspace.

The key distinction of our approach lies in the point-level
operation, addressing the limitations of previous prompting
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Table 1. Classification on three variants of the ScanObjectNN and the ModelNet40, including the number of trainable parameters (Param)
and overall accuracy (Acc). We report ScanObjectNN and ModelNet40 results without voting.

Method Reference Param.(M) ↓ FLOPs(G) ↓ ScanObjectNN ModelNet40

OBJ BG OBJ ONLY PB T50 RS Acc. (%) ↑
Full Fine-Tuning

OcCo ICCV 21 22.1 4.8 84.85 85.54 78.79 92.1
Point-BERT CVPR 22 22.1 4.8 87.43 88.12 83.07 92.7
MaskPoint ECCV 22 22.1 - 89.70 89.30 84.60 93.8
Point-MAE ECCV 22 22.1 4.8 90.02 88.29 85.18 93.2
Point-M2AE NeurIPS 22 15.3 3.6 91.22 88.81 86.43 93.4
ReCon ICML 23 43.6 5.3 94.15 93.12 89.73 93.9
PointGPT-L NeurIPS 23 360.5 67.7 97.20 96.60 93.40 94.1
Point-FEMAE AAAI 24 27.4 5.0 95.18 93.29 90.22 94.0

Efficient Fine-Tuning

Point-MAE CVPR 22 22.1(100%) 4.8 90.02 88.29 85.18 93.2

+IDPT ICCV 23 1.7(7.69%) 7.2 91.22(+1.20) 90.02(+1.73) 84.94(-0.24) 93.3(+0.1)
+DAPT CVPR 24 1.1(4.97%) 5.0 90.88(+0.86) 90.19(+1.90) 85.08(-0.10) 93.5(+0.3)
+Point-PEFT AAAI 24 0.7(3.17%) 7.0 89.33(-0.69) 88.98(+0.69) 84.42(-0.76) 94.2(+1.0)
+GAPrompt This Paper 0.6(2.71%) 5.0 91.91(+1.89) 90.19(+1.90) 85.57(+0.39) 94.2(+1.0)

ReCon ICML 23 43.6(100%) 5.3 94.15 93.12 89.73 93.9

+IDPT ICCV 23 1.7(3.90%) 7.2 93.29(-0.86) 91.57(-1.55) 87.27(-2.46) 93.4(-0.5)
+DAPT CVPR 24 1.1(2.52%) 5.0 94.32(+0.17) 92.43(-0.69) 89.38(-0.35) 93.5(-0.4)
+Point-PEFT AAAI 24 0.7(1.61%) 7.0 92.94(-1.21) 91.57(-1.55) 89.07(-0.66) 93.8(-0.1)
+GAPrompt This Paper 0.6(1.38%) 5.0 94.49(+0.34) 92.60(-0.52) 89.76(+0.03) 94.0(+0.1)

PointGPT-L NeurIPS 23 360.5(100%) 67.7 97.20 96.60 93.40 94.1

+IDPT ICCV 23 10.0(2.77%) 75.2 98.11(+0.91) 96.04(-0.56) 92.99(-0.41) 93.4(-0.7)
+DAPT CVPR 24 4.2(1.17%) 71.6 98.11(+0.91) 96.21(-0.39) 93.02(-0.38) 94.2(+0.1)
+Point-PEFT AAAI 24 3.1(0.86%) 73.2 97.76(+0.56) 96.21(-0.39) 93.11(-0.29) 93.9(-0.2)
+GAPrompt This Paper 2.0(0.55%) 71.8 98.97(+1.77) 96.73(+0.13) 94.31(+0.91) 96.2(+2.1)

Point-FEMAE AAAI 24 27.4(100%) 5.0 95.18 93.29 90.22 94.0

+IDPT ICCV 23 1.7(6.20%) 7.2 92.94(-2.24) 90.88(-2.41) 88.38(-1.84) 93.4(-0.6)
+DAPT CVPR 24 1.1(4.01%) 5.0 93.98(-1.20) 92.25(-1.04) 88.51(-1.71) 93.2(-0.8)
+Point-PEFT AAAI 24 0.7(2.55%) 7.0 94.32(-0.86) 92.94(-0.35) 89.35(-0.87) 94.3(+0.3)
+GAPrompt This Paper 0.6(2.19%) 5.0 95.53(+0.35) 93.63(+0.34) 90.67(+0.45) 94.5(+0.5)

methods that primarily operate at the token level. While ex-
isting methods often struggle to capture fine-grained geomet-
ric features due to their token-level adaptation constraints,
our Point Prompt and Point Shift Prompter mechanisms
directly modulate hi in Eq. 17 and Eq. 18, enabling precise
latent space adjustments at the point level. This fundamental
difference in operational granularity contributes to enhanced
geometric feature representation and more effective model
adaptation for point cloud models.

4. Experiments
We evaluate the performance of our proposed GAPrompt
on the point cloud classification task. We utilize four pre-
trained models Point-MAE (Pang et al., 2022), ReCon (Qi
et al., 2023), Point-GPT (Chen et al., 2024) and Point-

FEMAE (Zha et al., 2024) as baselines. For a fair com-
parison, we employ identical data augmentation to the full
fine-tuning method for each baseline. The hyperparameters
are set as βa = 0.5, βp = 0.5 and P = 20. Additional
analyses of βa and P can be found in the Appendix.

4.1. Experimental Settings

ScanObjectNN. The ScanObjectNN (Uy et al., 2019) is a
highly challenging 3D dataset comprising 15K real-world
objects across 15 categories. These objects consist of indoor
scene data obtained by scanning, exhibiting characteristics
such as cluttered backgrounds and occlusions. As demon-
strated in Table 1, we conducted experiments on three vari-
ants of ScanObjectNN, each with increasing complexity.
Note that our experiments on dataset ScanObjectNN sample
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Table 2. Comparisons of PEFT methods from NLP and 2D Vision
on the hardest variant of ScanObjectNN.

Method Param. (M) Acc.

Point-MAE 22.1 85.18
Linear Probing 0.3 75.99

Prefix Tuning 0.7 77.72
VPT 0.4 81.09
Adapter Tuning 0.9 83.93
LoRA 0.9 81.74
SSF 0.4 82.58
AdapterFormer 0.9 83.45

GAPrompt 0.6 85.57

2048 points as input for each point cloud, consistent with
previous works (Wang et al., 2021; Liu et al., 2022).

ModelNet40. ModelNet40 (Wu et al., 2015) comprises
12,311 pristine 3D CAD models across 40 categories, with
complete, uniform, and noise-free point clouds that simplify
the task. Following baselines, we sample 1024 points per
instance. Since voting (Liu et al., 2019) is time-consuming,
we focus on reporting overall accuracy without it.

4.2. Quantitative Analysis

Performance on ScanObjectNN. As shown in Table 1, our
method GAPrompt achieves the highest accuracy among all
the parameter-efficient fine-tuning methods for 3D vision
models. Furthermore, we even surpass the full fine-tuning
of Point-MAE, ReCon, Point-GPT, and Point-FEMAE by
1.89%, 0.34%, 1.77%, 0.35% on OBJ BG variant of
ScanObjectNN respectively, and reduce over 97% train-
able parameters. It is attributed to our GAPrompt, which
captures instance-specific geometry information of original
point clouds and effectively integrates it into the feature
extraction process of pre-trained models. In contrast, IDPT,
DAPT, and Point-PEFT fall short of full fine-tuning perfor-
mance due to their limited ability to capture geometric infor-
mation from point clouds. Moreover, our method stands out
in both efficiency and computational cost. With just 0.6M
trainable parameters, our GAPrompt requires far fewer than
IDPT and DAPT. In terms of FLOPs, our approach adds vir-
tually no extra computational burden compared to baselines,
significantly outperforming IDPT and Point-PEFT. This can
be credited to our lightweight Point Shift Prompter and the
parameter-free Prompt Propagation mechanism.

Performance on ModelNet40. As shown in Table 1,
although the result in ModelNet40 is almost saturated,
our GAPrompt still excels over previous works due to
the instance-specific shape features extracted from point
clouds and explicit awareness of point clouds. Moreover,
GAPrompt gains positive increments on all four baselines

Table 3. The effect of components in our GAPrompt.

Point Prompt PS-Prompter Prompt Propagation Acc.

✓ - - 87.85
✓ ✓ - 89.34
✓ ✓ ✓ 90.67

Table 4. Ablation study on Point Shift Prompter.

Shift Head Prompt Enhance Adapter Enhance Acc.

✓ - - 88.23
✓ ✓ - 89.71
✓ ✓ ✓ 90.67

even with less than 3% trainable parameters and less than
0.1G FLOPs of computational increment, which verifies
the efficacy and efficiency of adopting geometry informa-
tion for prompting even on noiseless point clouds. Notably,
our GAPrompt achieves the state-of-the-art performance of
96.2% based on Point-GPT, with basic scale-and-translate
augmentation and no voting.

Comparison to PEFT Methods. To further illustrate our
superiority, we compare GAPrompt with several PEFT ap-
proaches (Chen et al., 2022; Lian et al., 2022) from NLP
and 2D vision. As shown in Table 2, we select the most
sophisticated PB T50 RS variant with Point-MAE as the
baseline. Although these basic methods show different im-
provements over linear probing, there is still a considerable
performance gap to full fine-tuning due to the irregularity
and complexity of point cloud structures. Our method with
3D-specific designs excels VPT and Adapter respectively
by 4.48% and 1.64%, attributed to instance-specific shape
features integration into the feature extraction of pre-trained
models. Besides, our GAPrompt even has comparable train-
able parameters against these basic methods, attributed to
the compact design of Point Shift Prompter which directly
extracts geometry features from point clouds.

4.3. Ablation Study

We conduct ablation studies on the most challenging
PB T50 RS variant based on Point-FEMAE to investigate
the rationalization and effectiveness of our GAPrompt.

Analysis on Main Components. As shown in Table 3, to
quantify the contribution of each main component, we incre-
mentally conduct ablation experiments until the complete
GAPrompt scheme. Solely introducing the Point Prompt,
the performance can reach 87.85%, for facilitating explicit
awareness of point clouds and assisting models in capturing
subtle geometry. Then appending Point Shift Prompter leads
to a 1.89% increment due to capturing instance-specific ge-
ometry information. Finally, the utilization of Prompt Prop-
agation mechanism boosts the result to 90.67%, surpassing
the full fine-tuning, which is attributed to the integrating en-
hanced prompts into feature extraction of pre-trained model.
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Figure 4. Ablation study of Prompt Propagation mechanism and
prompt enhancing factor βp.

Effect of Point Shift Prompter Components. As shown
in Table 4, we evaluate the effectiveness of each component
in our Point Shift Prompter in an incremental manner. Basi-
cally, we only use the Shift Head to produce shifted point
clouds as input for the encoder, attaining 88.23% accuracy.
Furthermore, respectively enhancing Prompt and Adapter
with extracted shape features boosts the performance to the
peak. This increment is attributed to the instance-specific
shape features improving the geometry awareness of token
prompts and adapters.

Analysis on Settings of Prompt Propagation and βp. As
shown in Figure 4, we conduct ablation experiments on
prompt propagation settings and prompt enhancing factor βp.
Our prompt propagation mechanism has two alternations,
operating before or after self-attention layers, denoted as
‘Before Self-attn.’ and ‘After Self-attn.’. Furthermore, we
design two different prompt injection options, which are
realized by directly replacing and indirectly permutation.
The combination of these choices produces the four curves
in Figure 4. It is clear that utilizing permutation after self-
attention layers and 0.5 as βp obtains the peak performance.
Intuitively, it is because this setting brings more randomness
and results in more robust convergence.

Visualization of Attention Position. In Figure 5, we respec-
tively visualize the attention positions of the [CLS] token
of GAPrompt and full fine-tuning, where the warm color
indicates higher values. As illustrated, the [CLS] token of
GAPrompt captures more essential 3D semantics, such as
the head and vertical stabilizer of the plane, the stand of the
lamp, and the pot of the flower pot. But the [CLS] token of
full fine-tuning merely grasps the vertical tails and the base
of the lamp. It indicates that with inherent geometric clues
in point clouds, GAPrompt effectively grasps the critical
information and further benefits point cloud understanding.

Visualization of Shifted Point Clouds. Figure 6 depicts the
raw and shifted point clouds from the test split of ScanOb-
jectNN. The raw point clouds are noisy and scattered, re-
flecting the inherent complexity of real-world data. Note the
green color mapping is merely for convenient recognition.
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Figure 5. Visualization of attention position of GAPrompt and full
fine-tuning. We visualize the attention scores of the [CLS] token
to other point cloud tokens.
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Figure 6. Visualization of point clouds before and after transfor-
mation by the Point Shift Prompter. The samples are drawn from
the test split of the ScanObjectNN dataset, demonstrating its broad
generalization capability across unseen data.

We can see that point clouds shifted by Point Shift Prompter
tend to be more compact and exhibit sharper boundaries,
making them easier to recognize, especially in the regions
highlighted by the rectangle. This suggests that the Point
Shift Prompter can enhance the geometric features of the
point cloud at the input level, thereby contributing to im-
proved performance. Additionally, the point cloud contains
learnable point prompts, which tend to move to the inner
space of point clouds during training.

5. Conclusion
In this paper, we introduce Geometry-Aware Point Cloud
Prompt (GAPrompt), parameter-efficient fine-tuning spe-
cific to pre-trained 3D vision models. We find that capturing
instance-specific shape features is an effective way to en-
hance geometry awareness of prompting. To capture and
utilize inherent geometric clues in point clouds, we readily
develop the Point Prompt, the Point Shift Prompter, and
the Prompt Propagation mechanism, greatly boosting the
representational ability of prompting. Our approach outper-
forms other state-of-the-art parameter-efficient fine-tuning
methods and reduces trainable parameters significantly.
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Appendix

A. Training Detail
We adopt downstream fine-tuning configurations in alignment with the pioneering work Point-MAE (Pang et al., 2022). The
detailed configurations are provided in Table 5. For example, when fine-tuning on ScanObjectNN (Uy et al., 2019), the
training process spans 400 epochs, using a cosine learning rate scheduler (Loshchilov & Hutter, 2022) that starts at 5e-4, with
a 10-epoch warm-up period. The AdamW optimizer (Loshchilov & Hutter, 2019) is employed. Given that ReCon (Qi et al.,
2023) and Point-FEMAE (Zha et al., 2024) extend Point-MAE with several additional modules, we follow the approach
of DAPT (Zhou et al., 2024) by only loading pre-trained weights into a Point-MAE model for efficient fine-tuning, while
excluding the residual components of ReCon and Point-FEMAE. This option also leads to a sight computational saving, as
shown in Table 1. Indeed, the computation overhead should be calculated by subtracting FLOPs of fine-tuning Point-MAE.
All experiments are conducted on a single GeForce RTX 4090 using PyTorch version 1.13.1.

Table 5. Training details for downstream fine-tuning.

Dataset
ScanObjectNN ModelNet

OBJ BG OBJ ONLY PB T50 RS 1K

Optimizer AdamW AdamW AdamW AdamW

Learning rate 5e-4 5e-4 5e-4 5e-4

Weight decay 5e-2 5e-2 5e-2 5e-2

Learning rate scheduler cosine cosine cosine cosine

Training epochs 400 400 400 400

Warmup epochs 10 10 10 10

Batch size 32 32 32 32

Point Prompt number 20 10 20 5

Prompt enhancing factor 0.5 0.5 0.5 0.5

Adapter enhancing factor 0.5 0.5 0.5 0.5

Number of points 2048 2048 2048 1024

Number of point patches 128 128 128 64

Point patch size 32 32 32 32

B. Implementation Detail
B.1. Prompt Injection

We provide a comprehensive elucidation of the Prompt Injection process, as delineated in Eq. 15 of the main paper.

Given a set of input tokens and prompt tokens [hi;pi] ∈ R(Lt+Lp)×D in the i-th block, we can find geometric relationship
between input tokens via FPS and KNN algorithm. We use hc

i ∈ RC×D and hn
i ∈ RC×K×D to denote center tokens and

local neighboring tokens, where c and n represent the index for center and neighboring tokens. Lt is the input tokens number,
Lp is the prompt tokens number, and C and K represent the number of local centers and local neighbors respectively.

Inspired by the thought of dropout (Srivastava et al., 2014), the prompt injection process randomly replaces the center and
neighboring tokens with enhanced prompt tokens, which are informative of global shape.

Considering that FPS randomly selects initial points, although the resulting sets are consistent, the permutation of the
resulting point sets may vary due to inherent randomness. Leveraging this randomness, we replace the last Lp tokens in hc

i

with pi, and similarly, replace the last Lp tokens in hn
i with pi, injecting prompt tokens into input tokens. This prompt

injection configuration is referred to as ‘Replacement’.

Alternatively, another prompt injection method, termed ‘Permutation’, can be employed. Given that hc
i and hn

i are subsets
of hi indexed by c and n, we can insert Lp prompt tokens pi before hi and remove the last Lp tokens of hi. Subsequently,
by indexing the mixed set of pi and hi using c and n, we obtain the tokens hc

i and hn
i with prompt tokens injected.
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B.2. Feature Propagation

In this paper, we extensively employ the Feature Propagation operation introduced in PointNet++ (Qi et al., 2017b). Below,
we provide a detailed formulation.

Given the features of the center points, the objective is to compute the features of neighboring points through a propagation
mechanism that performs feature interpolation. This interpolation utilizes the spatial distances between the center and
neighboring points, enabling the model to efficiently transfer and refine feature information across the tokens.

We denote the set of center point coordinates as ci ∈ R3, where i = 1, . . . , C, and the coordinates of any neighboring point
as x ∈ R3, where C represents the number of center points. The corresponding feature of a given point is denoted as f(·).
Our objective is to compute f(x) based on x, ci, and f(ci).

First, we compute the Euclidean distance from x to each center point ci:

d(x, ci) = ∥x− ci∥. (20)

Next, we calculate the weight by taking the inverse of the spatial distance:

w(x, ci) =
1

d(x, ci)p
, (21)

where p is typically set to 2. This results in a set of weights w(x, ci) for i = 1, . . . , C. We then select only the top-K
weights for interpolation:

{w(x, cj)} = Top-K({w(x, ci)}), (22)

where j = 1, . . . ,K, and K is typically set to 32. Subsequently, the interpolation of features is based on the weighted
distances, formulated as:

f(x) =

∑K
j=1 w(x, cj)f(cj)∑K

j=1 w(x, cj)
. (23)

Finally, this procedure is repeated for each neighboring point to obtain their features for further utilization.
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C. Additional Experiments
C.1. Analysis on Point Prompt Number P and Initialization.

We perform quantitative analysis on Point Prompt about two additional different initialization distributions and learnable
point number P . We respectively test initializing all points in a uniform distribution and in cluster forms, where each cluster
follows a Gaussian distribution in 3D space. And we explore the impact of different point numbers. As shown in Figure 7,
The result turns out that uniform distribution generally outperforms the cluster distribution, and with 20 learnable points,
the model achieves the best results. This suggests that appropriate additional point prompts help to better capture subtle
geometric features and to acquire explicit awareness of geometry.

12



GAPrompt: Geometry-Aware Point Cloud Prompt for 3D Vision Model

Param: 0.3M Acc:  79.23%

(a) Linear Probing (b) Full Fine-tuning (f) GAPrompt (Ours)

Param: 27.4M Acc:  90.22% Param: 0.6M Acc:  90.67%

(c) IDPT

Param: 1.7M Acc:  88.38%

(d) DAPT

Param: 1.1M Acc:  88.51%

(e) Point-PEFT
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Figure 9. The t-SNE visualizations from the test sets of ScanObjectNN (PB T50 RS) using a pre-trained Point-FEMAE with different
tuning strategies. We extract the final classification features from the top linear layer for t-SNE visualizations.
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Figure 10. Ablation study on different input for downstream head.

C.2. Analysis on Adapter Enhancing Factor βa.

As shown in Figure 8, we conduct further ablation study on βa, which is the factor when enhancing adapters with global
shape features. It turns out that βa set to 0.5 leads to peak performance. This indicates that properly enhancing adapters
with global shape features can boost the model’s performance. We attribute it to that global shape features help adjust and
refine feature distributions and improve geometry awareness.

C.3. t-SNE Visualization of [CLS] Feature.

In Figure 9, the t-SNE (Van der Maaten & Hinton, 2008) feature manifold visualization displays the methods following
linear probing, full fine-tuning, IDPT, DAPT, Point-PEFT and our GAPrompt on the ScanObjectNN PB T50 RS dataset.
From Figure 9 (a), it is evident that the feature distribution extracted by the pre-trained model appears less discriminative.
We contend that this is mainly due to the significant domain gap between the synthetic pre-training ShapeNet dataset and
the real-world ScanObjectNN dataset, demonstrating the necessity for adapting downstream tasks. With full fine-tuning in
Figure 9 (b), the feature distribution becomes more discriminative as all parameters are tuned. Figure 9 (c-f) confirms that
our GAPrompt helps the pre-trained model generate more distinguishable representations, with fewer learnable parameters
and higher accuracy than other PEFT methods.

C.4. Ablation on Downstream Head Input.

As demonstrated in Figure 10, we examine the impact of different input choices for the downstream head. We consider
four options: the [CLS] token, the maximum input patch token, the maximum prompt token, and the global shape feature
extracted by our Point Shift Prompter. Empirically, we find that the combination of the [CLS] token, the maximum patch
token, and the shape feature yields the best results, demonstrated in Figure 10 (d). This can be attributed to the fact that
the [CLS] token and the maximum patch token provide valuable knowledge extracted from the pre-trained model, while
the shape feature introduces instance-specific global geometry information. However, in Figure 10 (c), the knowledge
embedded in the maximum prompt token largely overlaps with that of the maximum patch token. Consequently, our shape
feature complements the traditional outputs from the pre-trained model effectively, thereby enhancing the performance of
the downstream head.
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