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ABSTRACT

In this paper, by introducing Generalized Bernstein condition, we propose the first
O
(√p
nε

)
high probability excess population risk bound for differentially private al-

gorithms under the assumptions G-Lipschitz, L-smooth, and Polyak-Łojasiewicz
condition, based on gradient perturbation method. If we replace the properties
G-Lipschitz and L-smooth by α-Hölder smoothness (which can be used in non-
smooth setting), the high probability bound comes to O

(
n−

2α
1+2α

)
w.r.t n, which

cannot achieve O (1/n) when α ∈ (0, 1]. To solve this problem, we propose a
variant of gradient perturbation method, max{1, g}-Normalized Gradient Per-
turbation (m-NGP). We further show that by normalization, the high probability
excess population risk bound under assumptions α-Hölder smooth and Polyak-
Łojasiewicz condition can achieveO

(√p
nε

)
, which is the firstO (1/n) high proba-

bility utility bound w.r.t n for differentially private algorithms under non-smooth
conditions. Moreover, we evaluate the performance of the new proposed algorithm
m-NGP, the experimental results show that m-NGP improves the performance
(measured by accuracy) of the DP model over real datasets. It demonstrates that
m-NGP improves the excess population risk bound and the accuracy of the DP
model on real datasets simultaneously.

1 INTRODUCTION

Machine learning has been widely used and found effective in many fields in recent years (Singha
et al., 2021; Swapna & Soman, 2021; Ponnusamy et al., 2021). When training machine learning
models, tremendous data was collected, and the data often contains sensitive information of individ-
uals, which may leakage personal privacy (Shokri et al., 2017; Carlini et al., 2019).

Differential Privacy (DP) (Dwork et al., 2006; Dwork & Lei, 2009; Dwork et al., 2014) is a theo-
retically rigorous tool to prevent sensitive information. It introduces random noise to the machine
learning model and blocks adversaries from inferring any single individual included in the dataset by
observing the model. The mathematical definition of DP is well accepted and relative technologies
are performed by Google (Erlingsson et al., 2014), Apple (McMillan, 2016) and Microsoft (Ding
et al., 2017). As such, DP has attracted attention from the researchers and has been applied to nu-
merous machine learning problems (Ullman & Sealfon, 2019; Xu et al., 2019; Bernstein & Sheldon,
2019; Wang & Xu, 2019; Heikkilä et al., 2019; Kulkarni et al., 2021; Bun et al., 2021; Nguyen &
Vullikanti, 2021).

There are mainly three approaches to guarantee differential privacy: output perturbation (Chaud-
huri et al., 2011), objective perturbation (Chaudhuri et al., 2011), and gradient perturbation (Song
et al., 2013). Considering that gradient descent is a widely used optimization method, the gradient
perturbation method can be used for a wide range of applications, and adding random noise to the
gradient allows the model to escape local minima (Raginsky et al., 2017), we focus on the gradient
perturbation method to guarantee DP in this paper.

In this paper, we aim to minimize the population risk, and measure the utility of the DP model by
the excess population risk. To get the excess population risk, an important step is to analyze the gen-
eralization error (the reason is demonstrated in Section 3). Complexity theory (Bartlett et al., 2002)
and algorithm stability theory (Bousquet & Elisseeff, 2002) are popular tools to analyze the gener-
alization error. On one hand, Chaudhuri et al. (2011) applied the complexity theory and achieved
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an O
(
max{ 1√

n
, 2/3
√

p
nε}
)

high probability excess population risk bound under the assumption of

strongly convex; Kifer et al. (2012) achieved O
(√p
nε

)
expected excess population risk bound via

complexity theory. On the other hand, the sharpest known high probability generalization bounds
for DP algorithms analyzed via stability theory under different assumptions (Wu et al., 2017; Bass-
ily et al., 2019; Feldman et al., 2020; Bassily et al., 2020; Wang et al., 2021) are O

(√p
nε + 1√

n

)
or

O
( 4
√
p√
nε

)
, containing an inevitable O

(
1√
n

)
term, which is a bottleneck on the utility analysis. Thus,

we are focusing on the following question, which is still an open problem:

Can we achieve the high probability excess risk bounds with rate O(
√
p

nε ) for differentially private
models via uniform stability?

This paper answers the question positively under more (or different) assumptions and provides the
first high probability bound allowing an O

(√p
nε

)
rate of convergence in the setting of DP. By in-

troducing Generalized Bernstein condition (Koltchinskii, 2006), we remove the O
(

1√
n

)
term in

the generalization error and furthermore improve the high probability excess population risk bound.
Comparing with previous high probability bounds, the improvement is approximately up toO (

√
n).

CONTRIBUTIONS

We first prove that by introducing Generalized Bernstein condition (Koltchinskii, 2006), under the
assumptions G-Lipschitz, L-smooth, and Polyak-Łojasiewicz (PL) condition, the high probability
excess population risk bound can be improved to O

(√p
nε

)
. To the best of our knowledge, this is the

first O
(√p
nε

)
high probability excess population risk bound in the field of DP.

Then, we relax the assumptions G-Lipschitz and L-smooth, by introducing α-Hölder smooth. Un-
der these assumptions, we prove that the high probability excess population risk bound comes to
O
(√p
ε n

−2α
1+2α

)
. Considering that α ∈ (0, 1], the result cannot achieve O

(√p
nε

)
.

To overcome the bottleneck, we design a variant of gradient perturbation method, called max {1, g}-
Normalized Gradient Perturbation (m-NGP) algorithm. Via this new proposed algorithm, we
prove that under the assumptions α-Hölder smooth, PL condition, and generalized Bernstein condi-
tion, the high probability excess population risk bound can be improved to O

(√p
nε

)
. To the best of

our knowledge, this is the firstO
(√p
nε

)
high probability excess population risk bound for non-smooth

loss in the field of DP.

Moreover, to evaluate the performance of our proposed max {1, g}-Normalized Gradient Perturba-
tion algorithm, we perform experiments on real datasets, the experimental results show that m-NGP
method also improves the accuracy of the DP model on real datasets.

The rest of the paper is organized as follows. We discuss some related work in Section 2. Some pre-
liminaries are formally introduced in Section 3. In Section 4, we propose sharper utility bounds
under different assumptions and design a variant of gradient perturbation method, max {1, g}-
Normalized Gradient Perturbation. The experimental results are shown in Section 5. Finally,
we conclude the paper in Section 6.

2 RELATED WORK

Dwork et al. (2006) proposed the mathematical definition of DP for the first time. Then, it was
developed to protect the privacy in the field of machine learning (e.g. Empirical Risk Minimization
(ERM)) via output perturbation, objective perturbation, and gradient perturbation methods. For
DP-ERM formulations, Chaudhuri et al. (2011) first proposed output perturbation and objective
perturbation methods, and Song et al. (2013) first proposed the gradient perturbation method. Based
on these works, Kifer et al. (2012); Bassily et al. (2014); Abadi et al. (2016); Wang et al. (2017);
Zhang et al. (2017); Wu et al. (2017); Bassily et al. (2019); Feldman et al. (2020); Bassily et al.
(2020) further improved the results under different assumptions.
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Table 1: Previous excess population risk bounds and ours under different assumptions

Assumptions Method Utility Bound

Bassily et al. (2019) Lipschitz, smooth, convex Gradient O
(√

p

nε + 1√
n

)
Feldman et al. (2020) Lipschitz, convex Gradient O

(√
p

nε + 1√
n

)
Bassily et al. (2020) Lipschitz, convex Gradient O

(√
p

nε + 1√
n

)
Wang et al. (2021) α-Hölder smooth, convex Gradient O

(√
p

nε + 1√
n

)
Wang et al. (2021) α-Hölder smooth, convex Output O

(
4
√
p√
nε

)
Ours Lipschitz, smooth, PL condition Gradient O

(√
p

nε

)
Ours α-Hölder smooth, PL condition Gradient O

( √
p

n
2α

1+2α ε

)
Ours (m-NGP) α-Hölder smooth, PL condition Gradient O

(√
p

nε

)
1 In Table 1, n is the size of the dataset, ε is the privacy budget, and p is the dimension of the data.

Among the works mentioned above, some of them only analyzed the privacy guarantees (Song et al.,
2013; Abadi et al., 2016), some of them only discussed the excess empirical risk bound (Wang et al.,
2017; Zhang et al., 2017; Wu et al., 2017). Some works discussed the excess population risk un-
der expectation, from different points of view, such as complexity theory, optimization theory, and
stability theory: Kifer et al. (2012) achieved an O

(√p
nε

)
expected excess population risk bound via

complexity theory; Bassily et al. (2014) achieved similar expected bound under convexity assump-
tion, via optimization theory; and Wang et al. (2019) proposed anO

(
p

log(n)ε2

)
expected excess pop-

ulation risk bound under non-convex condition, via Langevin Dynamics (Gelfand & Mitter, 1991)
and the stability of Gibbs algorithm.

Considering that the high probability bound is more concerned by researchers, we focus on the
high probability utility bound. Meanwhile, we concentrate on the stability theory in this paper.
Among many notions of stability, uniform stability is arguably the most popular one, which yields
exponential generalization bounds. Via uniform stability, the high probability excess population risk
bounds under different assumptions given by previous works all contain anO

(
1√
n

)
term, details can

be found in Table 1. The reason is that when analyzing the generalization error, the technical routes
followed works Bousquet & Elisseeff (2002); Hardt et al. (2016).

In this paper, by introducing Generalized Bernstein condition (Koltchinskii, 2006), we remove the
O
(

1√
n

)
term from the generalization error, and further improve the excess population risk bound of

DP models. The improved convergence rate is up toO
(√p
nε

)
, which positively answers the question:

Can the high probability excess population risk bound achieve O (1/n) w.r.t n. The improvements
are shown in Table 1.

Table 1 first shows that by adding more assumptions (we assume the loss function to be Lipschitz,
smooth, and satisfy Polyak-Łojasiewicz (PL) condition, while previous results require α-Hölder
smoothness and convexity), we achieve a better high probability excess population risk bound,
O
(√p
nε

)
, which is state-of-the-art to the best of our knowledge. Then, we replace the Lipschitz

and smooth property by α-Hölder smoothness and achieveO
( √

p

n
2α

1+2α ε

)
high probability excess pop-

ulation risk bound, when α ∈ [ 12 , 1], our result is better than previous ones, but it cannot achieve
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the same bound (O (1/n) w.r.t n) under the condition that the loss function is Lipschitz, smooth,
and satisfies PL condition. To overcome it, we propose an algorithm called m-NGP, and achieve the
O
(√p
nε

)
result under the same assumptions: α-Hölder smooth and PL condition.

Moreover, although it is hard to directly compare PL condition with convexity, PL condition can be
applied to many non-convex conditions (more information can be found in Section 4.2). So, in this
paper, we analyze the utility bound of DP algorithm under cases different from previous scenarios.

3 PRELIMINARIES

In this paper, we assume that there are n data instances in dataset D, i.e. D = {z1, · · · , zn} where
z = (x, y) with input x ∈ X and label y ∈ Y , and Z = X ×Y . The data space is denoted by D and
the parameter space is denoted by C, the loss function ` is defined as `(·, ·) : D×C → R. Databases
D,D′ ∈ Dn differing by one data instance are denoted as D ∼ D′, called adjacent databases. For

a given vector x = [x1, · · · , xd]T , its `2-norm is ‖x‖2 = (
∑d

i=1
|xi|2)

1
2 . And A . B represents

that there exists c > 0, A ≤ cB.
Definition 1 (Differential Privacy (Dwork et al., 2006)). A randomized algorithm: A : Dn → Rp is
(ε, δ)-differential privacy (DP) if for all D ∼ D′ and events S ∈ range(A):

P [A(D) ∈ S] ≤ eεP [A(D′) ∈ S] + δ.

Definition 1 implies that the adversaries cannot infer whether an individual participates when train-
ing the machine learning model, because essentially the same distributions will be drawn over any
adjacent datasets. Some kind of attacks, such as membership inference attack, attribute inference
attack, and memorization attack, can be thwarted by DP (Backes et al., 2016; Jayaraman & Evans,
2019; Carlini et al., 2019).

Throughout this paper, we focus on gradient perturbation method to guarantee (ε, δ)-DP, the
paradigm is based on gradient descent: at iteration t,

θ̂t ← θ̂t−1 − ηt
(
∇θRn(θ̂t−1) + b

)
, (1)

where ηt is the learning rate, b is the random noise injected into the gradient, θ̂ is corresponding
model with privacy, and Rn(θ) is the empirical risk, defined as Rn(θ) := 1

n

∑n
i=1 `(zi, θ).

In this paper, we focus on minimizing the population risk: R(θ) = Ez∼D [`(z, θ)]. In the setting of
DP, the excess population risk is defined by R(θ̂)−minθ∈C R(θ), which can be decomposed into:

R(θ̂n)−R(θ∗) = R(θ̂n)−Rn(θ̂n) +Rn(θ̂n)−Rn(θ∗) +Rn(θ
∗)−R(θ∗)

≤ R(θ̂n)−Rn(θ̂n)︸ ︷︷ ︸
GE

+Rn(θ̂n)−Rn(θ∗n)︸ ︷︷ ︸
OE

+Rn(θ
∗)−R(θ∗), (2)

where θ∗ = argminθ∈C R(θ), θ
∗
n = argminθ∈C Rn(θ), and the last inequality is becasuse of the

definition of θ∗n. In (2), GE, OE mean the generalization error and the optimization error (also called
the excess empirical risk), respectively. Inequality (2) answers the question mentioned in Section 1:
Why generalization error is an important step towards excess population risk.

To get the generalization error, algorithm stability theory is a popular tool, in which uniform stability
yields exponential generalization bounds and is commonly used.
Definition 2 (Uniform Stability (Bousquet & Elisseeff, 2002)). An algorithm θn is γ-uniformly
stable if for any z, z1, · · · , zi, · · · , zn, z′i ∈ Z and i = 1, · · · , n, it holds that

|`(z, θn(z1, · · · , zn))− `(z, θn(z1, · · · , zi−1, z′i, zi+1, · · · , zn))| ≤ γ.

In this paper, we use notation θn for both algorithm and model parameter. By Definition 2, it is easy
to follow that the uniform stability measures the upper bound of the difference (on the loss function)
between the models derived from adjacent datasets.
Assumption 1 (G-Lipschitz). The loss function ` : D × C → R is G-Lipschitz over θ if for any
z ∈ D and θ1, θ2 ∈ C, we have: |`(z, θ1)− `(z, θ2)| ≤ G‖θ1 − θ2‖2.
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Assumption 2 (L-smooth). The loss function ` : D × C → R is L-smooth over θ if for any z ∈ D
and θ1, θ2 ∈ C, we have: ‖∇θ`(z, θ1)−∇θ`(z, θ2)‖2 ≤ L‖θ1 − θ2‖2.

If ` is differentiable, smoothness yields: `(z, θ1)−`(z, θ2) ≤ 〈∇θ`(z, θ2), θ1−θ2〉+ L
2 ‖θ1 − θ2‖

2
2.

Assumptions G-Lipschitz and L-smooth are commonly used in the utility analysis of DP machine
learning (Chaudhuri et al., 2011; Kifer et al., 2012; Abadi et al., 2016; Bassily et al., 2019; Feldman
et al., 2020; Bassily et al., 2020). To relax the Lipschitz and smoothness assumptions, we introduce
the α-Hölder smoothness of the loss function:
Assumption 3 (α-Hölder smooth). Let α ∈ (0, 1]. The loss function ` : D × C → R
is α-Hölder smooth over θ with parameter H if for any z ∈ D and θ1, θ2 ∈ C, we have:
‖∇θ`(z, θ1)−∇θ`(z, θ2)‖2 ≤ H‖θ1 − θ2‖α2 .
Lemma 1. If the loss function `(·, ·) is differentiable, then Assumption 3 yields `(z, θ1)− `(z, θ2) ≤
〈∇θ`(z, θ2), θ1 − θ2〉+ H

2 ‖θ1 − θ2‖
α+1
2 .

By the definition, it is easy to follow that if α = 1, it is equivalent to H-smooth; and if α → 0,
it satisfies the Lipschitz property given in Assumption 1. Besides, with bounded parameter space,
i.e. ‖C‖2 ≤ MC , α-Hölder smoothness immediately implies max{2HMC , H}-Lipschitz. More-
over, Assumption 3 instantiates many non-smooth loss functions. For example, the q-norm hinge
loss `(z, θ) = (max (0, 1− y〈θ, z〉))q for classification and the q-th power absolute distance loss
`(z, θ) = |y − 〈θ, z〉|q for regression (Lei & Ying, 2020a), whose ` are (q − 1)-Hölder smooth if
q ∈ (1, 2] (Li & Liu, 2021). Lemma 1 shows that Hölder smoothness shares similar property with
smoothness defined in Assumption 2, details of the proof can be found in Appendix A.1.

4 SHARPER UTILITY BOUNDS FOR DIFFERENTIALLY PRIVATE MODELS

4.1 PRIVACY GUARANTEES

Before analyzing the excess population risk bound, we first discuss the privacy guarantees in this
section. Abadi et al. (2016) proposed the moments accountant method to measure the privacy costs
of DP model training by stochastic gradient descent (SGD), Wang et al. (2017) further analyzed it
under the setting of gradient descent (GD). In this paper, we focus more on the utility analysis, to
improve the excess population risk, so we directly apply it to the gradient perturbation method.
Lemma 2 (Wang et al. (2017)). In gradient perturbation method in (1), for ε, δ > 0, it is (ε, δ)-DP
if the random noise b is zero mean Gaussian noise, i.e. b ∼ N (0, σ2Ip), and for some constant c,

σ2 = c
G2T log(1/δ)

n2ε2
. (3)

Remark 1. (3) assumes the loss function to beG-Lipschitz. If we only assume that `(·, ·) is α-Hölder
smooth with parameter H , then G can be replaced by max{2HMC , H} as discussed above.

4.2 ANALYSIS OF THE EXCESS POPULATION RISK

To remove the O(1/
√
n) term in previous results, we further need the Generalized Bernstein condi-

tion when analyzing the excess population risk.
Assumption 4 (Generalized Bernstein condition (Koltchinskii, 2006)). We say the loss function `
satisfies the generalized Bernstein condition if for some B > 0 for any θ ∈ C, we have:

E
[
(`(z, θ)− `(z, θ∗))2

]
≤ B (R(θ)−R(θ∗)) .

Assumption 4 is a general condition, if the loss function `(·, ·) is G-Lipschitz and bounded by
M`, then many loss functions satisfy the generalized Bernstein condition, such as exponential loss
function, logistic loss function, quadratic loss function, truncated quadratic loss, and hinge loss
(Bartlett et al., 2006; Steinwart & Christmann, 2008).

Most of the previous works assumed that the loss function is convex (or strongly convex) when
analyzing the optimization error (the excess empirical risk) Rn(θ̂n)−Rn(θ∗n). In this paper, we use
the Polyak-Łojasiewicz (PL) condition to replace the convexity assumption.
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Assumption 5 (Polyak-Łojasiewicz condition). The empirical risk Rn(θ) satisfies the Polyak-
Łojasiewicz (PL) condition if there exists µ > 0 and for every θ,

‖∇θRn(θ)‖22 ≥ 2µ (Rn(θ)−Rn(θ∗n)) .

The Polyak-Łojasiewicz condition is one of the weakest curvature conditions, so all the results given
in this paper can be expanded to strongly convex conditions. (Karimi et al., 2016; Li & Liu, 2021),
weaker than ‘one-point convexity’ (Kleinberg et al., 2018), ‘star convexity’ (Zhou et al., 2019), and
‘quasar convexity’ (Hinder et al., 2020). It is widely used in the analysis of non-convex learning
(Wang et al., 2017; Charles & Papailiopoulos, 2018; Lei & Ying, 2020b; Lei & Tang, 2021) and
many popular non-convex objective functions satisfy the PL condition, such as: matrix factorization
(Liu et al., 2016), robust regression (Liu et al., 2016), neural networks with one hidden layer (Li &
Yuan, 2017), mixture of two Gaussians (Balakrishnan et al., 2017), ResNets with linear activations
(Hardt & Ma, 2017), linear dynamical systems (Hardt et al., 2018), phase retrieval (Sun et al., 2018),
and blind deconvolution (Li et al., 2019).

Remark 2. With G-Lipschitz and λ-strongly convex, we have E
[(
`(z, θ) − `(z, θ∗)

)2] ≤ G2‖θ −
θ∗‖22, andR(θ)−R(θ∗) ≥ λ

2 ‖θ−θ
∗‖22, which implies E

[(
`(z, θ)−`(z, θ∗)

)2] ≤ (2G2/λ
)(
R(θ)−

R(θ∗)
)
, Assumption 4 is naturally satisfied. And PL condition can be directly derived from strongly

convex (Karimi et al., 2016), so all strongly convex loss functions satisfy Assumptions 4 and 5 si-
multaneously and all the results given in this paper can be directly extended to strongly convex
condition. Expect for strongly convex functions, several interesting machine learning setups also
satisfy Assumptions 4 and 5. (1) 1-layer neural networks with a squared error loss and leaky ReLU
activations. Charles & Papailiopoulos (2018) shows that 1-layer neural networks with a squared
error loss and leaky ReLU activations satisfy Assumption 5, and Bartlett et al. (2006) shows that
quadratic functions satisfy Assumption 4, so (1) holds. (2) Loss functions of least squares minimiza-
tions. Charles & Papailiopoulos (2018) shows that least squares minimization satisfy Assumption
5 and Bartlett et al. (2006) shows that the quadratic functions satisfy Assumption 4, so (2) holds.
(3) Squared piecewise-linear functions with regularized term. Bartlett et al. (2006) shows that the
composition of strongly convex functions with piecewise-linear functions satisfy Assumption 5, and
Bartlett et al. (2006) shows that squared piecewise-linear functions satisfy Assumption 4. We prove
that if a function satisfies Assumption 4, then with regularized term λ‖θ‖22, it also satisties Assump-
tion 4 (details can be found in Appendix A.5). Thus, (3) holds.

Theorem 1. If Assumptions 1, 2, 4 and 5 hold, the loss function is bounded, i.e. 0 ≤ `(·, ·) ≤ M`,
taking σ given by Lemma 2, T = O (log(n)), η1 = · · · = ηT = 1

L , if ζ ∈ (exp(−p/8), 1), then with
probability at least 1− ζ:

R(θ̂n)−R(θ∗) ≤ c1
G2p log(n) log(1/δ)

n2ε2

(
1 +

(
8 log(T/ζ)

p

)1/4
)2

+ c2

(
G2 log2(n)

n
+
B +M`

n

)
+ c3

G2 log2.5(n)
√
p log(1/δ)

nε

(
1 +

(
8 log(1/ζ)

p

)1/4
)
.

for some constants c1, c2, c3 > 0.

Detailed proof can be found in Appendix A.2, we give a proof sketch here. First, we discuss the
stability of the gradient perturbation based DP algorithm and show that it is O (Tη/n) uniformly
stable w.r.t n with high probability. Then, we analyze the generalization error via stability theory.
Meanwhile, via Assumption 4 and its moments bound, we couple term R(θ̂n)−Rn(θ̂n) (the gener-
alization error of θ̂) and term Rn(θ

∗)− R(θ∗) in (2) together, to remove the O (1/
√
n) term in the

generalization error. In this way, a better excess population risk bound is achieved by combining the
optimization error together.

The proof is motivated by Klochkov & Zhivotovskiy (2021) in the non-private case. The key
challenges include that in the setting of DP, the random noise is injected into the algorithm.
In Klochkov & Zhivotovskiy (2021), a key step to analyze the generalization error is summing
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Xi = E′ [`(zi, θ′n)− `(zi, θ∗)] for i = 1, · · · , n, where θ′n is derived from an independent copy of
the original dataset and E′ means the expectation taken over the independent copy. When summing,
Xi is required to be zero mean. However, in the cases of DP, if we replace θ′n by θ̂′n, then Xi are not
zero mean. Besides, for output perturbation, a common way to decompose the excess population
risk isR(θ̂n)−R(θ∗) ≤ R(θ̂n)−R(θn)+R(θn)−Rn(θn)+Rn(θn)−Rn(θ∗n)+Rn(θ∗)−R(θ∗),
which naturally solves the problem mentioned above (because the generalization error is discussed
over the non-private model). However, when it comes to the gradient perturbation method, we can-
not solve the problem easily in this way, because the random noise is coupled with the gradient. So,
we decouple the noise terms and overcome the challenge by the moment Bernstein inequality.

By Theorem 1, it is easy to follow that with high probability, R(θ̂n) − R(θ∗) = O
(√p
nε

)
, which is

the firstO (1/n) high probability excess population risk bound over DP algorithm w.r.t n, to the best
of our knowledge.
Theorem 2. If Assumptions 3, 4, 5 hold, the loss function and the parameter space are bounded,
i.e. 0 ≤ `(·, ·) ≤M`, ‖C‖2 ≤MC . Taking σ given by Lemma 2, T = O

(
n

2
1+2α

)
, and ηt = 2

µ(t+κ) ,

where κ ≥ 2H1/α

µ , if ζ ∈ (exp(−p/8), 1), then with probability at least 1− ζ:

R(θ̂n)−R(θ∗) ≤ c1
G′2
√
p log(1/δ)

n
2α

1+2α ε

(
1 +

(
8 log(T/ζ)

p

)1/4
)

+ c2

(
G′2 log2(n)

n
+
B +M`

n

)
+ c3

G′2 log2(n)
√
p log(1/δ)

n
2α

1+2α ε

(
1 +

(
8 log(1/ζ)

p

)1/4
)
.

for some constants c1, c2, c3 > 0, where G′ = max{2HMC , H}.

Detailed proof can be found in Appendix A.3. The proof is similar to Theorem 1, the challenge
is that the properties G-Lipschitz and L-smooth are replaced by the assumption α-Hölder smooth
when analyzing the optimization error (the excess empirical risk). To overcome the challenge, we
use Lemma 1 to bound the optimization error and Young’s inequality is used to normalize the expo-
nential rate, details are shown in the Appendix.

By Theorem 2, it is easy to follow that with high probability,

R(θ̂n)−R(θ∗) = O
(√

p

ε
n

−2α
1+2α

)
.

By the definition of α-Hölder smooth, α ∈ (0, 1], so if α ∈ [ 12 , 1],

R(θ̂n)−R(θ∗) = O
(
n

−2α
1+2α

)
≤ O

(
n−

1
2

)
w.r.t n, which implies that our result is better than previous results when α ∈ [ 12 , 1].

Via the discussion mentioned above, we observe that under the assumption α-Hölder smooth, our
result is better than O(1/

√
n) w.r.t n only in the case that α ∈ [ 12 , 1]. Besides, the best result is

O
(
n−2/3

)
, which comes when α = 1. And it cannot achieve the convergence rate O(

√
p

nε ). The
reason is that when applying Young’s inequality in the optimization error analysis, an additional
term Hηα+1

t (1−α)
2(α+1) appears, leading a loose excess population risk bound.

Motivated by this, we design a variant of gradient perturbation method given in (1), called
max{1,g}-Normalized Gradient Perturbation DP algorithm, to overcome the loose excess pop-
ulation risk bound. Details are shown in Algorithm 1.
Remark 3. The difference between Algorithm 1 and (1) is that in lines 4 and 5, we normalize the `2-
norm of the gradient to 1 if it is less than 1. In this way, we can ‘bypass’ the Young’s inequality when
scaling ‖θt − θ∗n‖1+α2 (derived from Lemma 1), further remove term Hηα+1

t (1−α)
2(α+1) in the theoretical

analysis. Details can be found in Appendix A.4.
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Algorithm 1 max{1,g}-Normalized Gradient Perturbation
Require: dataset D, learning rate at iteration t: ηt, the variance of the Gaussian noise injected to

the gradient: σ.
1: function M-NGP(D, ηt, σ)
2: Initialize θ0.
3: for t = 0 to T − 1 do
4: if

∥∥∥∇θRn(θ̂t)∥∥∥
2
< 1 then

5: ∇θRn(θ̂t)← ∇θRn(θ̂t)/
∥∥∥∇θRn(θ̂t)∥∥∥

2
.

6: endif
7: θ̂t+1 ← θ̂t − ηt

(
∇θRn(θ̂t) + b

)
, where b ∼ N

(
0, σ2Ip

)
.

8: endfor
9: return θ̂n = θ̂T .

10: end function

Then, via Algorithm 1, we can improve the excess population risk bound as shown below.

Theorem 3. If Assumptions 3, 4, 5 hold, the loss function and the parameter space are bounded,
i.e. 0 ≤ `(·, ·) ≤ M`, ‖C‖2 ≤ MC . Taking σ given by Lemma 2, T = O (log(n)), and η1 = · · · =

ηT = η, where
(

2
H −

2−1/α

µH(α−1)/α

)1/α
< η <

(
2
H

)1/α
, if ζ ∈ (exp(−p/8), 1), then with probability

at least 1− ζ,

R(θ̂n)−R(θ∗) ≤ c1
G′
√
p log(n) log(1/δ)

nε

(
1 +

(
8 log(T/ζ)

p

)1/4
)

+ c2

(
G′2 log2(n)

n
+
B +M`

n

)
+ c3

G′2 log2.5(n)
√
p log(1/δ)

nε

(
1 +

(
8 log(1/ζ)

p

)1/4
)
,

for some constants c1, c2, c3 > 0, where G′ = max{2HMC , H}.

Detailed proof can be found in Appendix A.4. The proof is similar to Theorems 1 and 2, the key
difference is that by gradient normalization in Algorithm 1, Young’s inequality is abandoned in the
theoretical analysis (as discussed in Remark 3), which implies a better excess population risk bound.

By Theorem 3, it is easy to follow that with high probability, R(θ̂n)−R(θ∗) = O
(√p
nε

)
. The bound

is of the same order as the result given in Theorem 1.This is also the first O (1/n) high probability
excess population risk bound over DP algorithm w.r.t n without smoothness assumption.

5 EXPERIMENTS

In this section, we perform experiments on real datasets to evaluate the difference between our
proposed m-NGP algorithm and the traditional gradient perturbation (TGP), like (1).

The experiments are performed on classification task over datasets Iris (Dua & Graff, 2017), Breast
Cancer (Mangasarian & Wolberg, 1990), Credit Card Fraud (Bontempi & Worldline, 2018), Bank
(Moro et al., 2014), and Adult (Dua & Graff, 2017), the number of total data instances are 150, 699,
984, 41188, and 45222, respectively. We split the training and testing sets randomly and evaluate
the accuracy on the testing set and the convengence rate on the training set. In all the experiments,
the privacy budget δ is set 1

n and we choose ε = 0.1 to 1.0.

We apply the regularized logistic regression method to the classification task, the loss function sat-
isfies the assumptions mentioned before, and the experimental results are shown in Figure 1. We
show the experimental results over datasets Iris and Adult in this section and experiments on other
datasets are shown in Appendices B.1 and B.2. For convergence rate, the shadow area represents the

8
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(a) Iris (b) Adult

(c) Iris (d) Adult

Figure 1: Comparisons between Traditional Gradient Perturbation (TGP) method and max{1,g}-
Normalized Gradient Perturbation (m-NGP) method.

maximum and minimum loss over mutiple experiments, reflecting the variance. The shadow area in
part (d) of Figure 1 is not obvious, the reason is that the variances are small. Over most datasets, the
accuracy and the convergence rate of max{1,g}-Normalized Gradient Perturbation method is better
than traditional gradient perturbation method. Besides, the accuracy of the DP model increases with
the increasing of the privacy budget ε, which is in line with the theoretical analysis.

6 CONCLUSIONS

In this paper, we first propose a state-of-the-artO
(√p
nε

)
high probability excess population risk bound

for gradient perturbation based DP algorithms, under the assumptions of G-Lipschitz, L-smooth,
Polyak-Łojasiewicz condition, and generalized Bernstein condition. The result positively answers
the open problem: Can we achieve high probability excess risk bound with rate O(1/n) w.r.t n for
DP models via uniform stability? Then, we extend the result to a more general case, requiring α-
Hölder smoothness, Polyak-Łojasiewicz condition, and generalized Bernstein condition. However,
the result is not as satisfactory as before, we achieve an O

(
n

−2α
1+2α

)
high probability utility bound,

which is better than previous results when α ∈ [ 12 , 1] and cannot achieve anO (1/n) bound. To get a
better result, we further propose a new algorithm: max{1, g}-Normalized Gradient Perturbation (m-
NGP). Detailed theoretical analysis shows that m-NGP can achieve O

(√p
nε

)
high probability excess

population risk bound, under the assumptions of α-Hölder smoothness, Polyak-Łojasiewicz condi-
tion, and generalized Bernstein condition, which is the first O (1/n) high probability bound w.r.t
n under non-smoothness cases. Experimental results show that the accuracy of m-NGP algorithm
is better than traditional gradient perturbation method. Thus, our proposed max{1, g}-Normalized
Gradient Perturbation method improves the excess population risk bound and the accuracy of the
DP model over real datasets, simultaneously.
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