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Abstract
Robust constrained reinforcement learning (RL)
seeks to optimize an agent’s performance under
model uncertainties while satisfying safety or re-
source constraints. In this paper, we demonstrate
that strong duality does not generally hold in ro-
bust constrained RL, indicating that traditional
primal-dual methods may fail to find optimal fea-
sible policies. To overcome this limitation, we
propose a novel primal-only algorithm called Rec-
tified Robust Policy Optimization (RRPO), which
operates directly on the primal problem without
relying on dual formulations. We provide theo-
retical convergence guarantees for RRPO, show-
ing that it converges to an approximately opti-
mal policy that satisfies the constraints within a
specified tolerance. Empirical results in a grid-
world environment validate the effectiveness of
our approach, demonstrating that RRPO achieves
robust and safe performance under model uncer-
tainties while the non-robust method will violate
the worst-case safety constraints.

1. Introduction
In many practical reinforcement learning (RL) applications,
it is critical for an agent to not only maximize expected
cumulative rewards but also satisfy certain constraints, such
as safety requirements (Yao et al., 2024; Gu et al., 2024) or
resource limitations (Wang et al., 2023b). However, real-
world environments often diverge from the training environ-
ment due to model mismatch (Roy et al., 2017; Viano et al.,
2021; Zhai et al., 2024; Wang et al., 2024) and environment
uncertainty (Lütjens et al., 2019; Wang & Zou, 2021; Ma
et al., 2023). Such discrepancies can lead to significant
performance degradation and, more severely, violations of
constraints, which is unacceptable in safety-critical appli-
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cations. For instance, an autonomous robot may encounter
unforeseen transitions due to equipment aging or mechani-
cal failures that were not present during training, potentially
leading to unsafe maneuvers.

Despite its practical importance, robust constrained RL has
been relatively underexplored in the literature. Two closely
related areas are robust RL (Bagnell et al., 2001; Nilim &
El Ghaoui, 2005; Iyengar, 2005) and constrained RL (Alt-
man, 2021; Wachi & Sui, 2020). Robust RL focuses on
optimizing performance under model uncertainties but typi-
cally does not consider constraints. Constrained RL aims to
optimize performance while satisfying certain constraints
but often assumes a fixed environment without uncertain-
ties. Seamlessly combining two fields presents inherent
challenges.

To address these challenges, we propose a framework for
robust constrained RL under model uncertainty. Specifically,
we consider Markov Decision Processes (MDPs) where the
transition dynamics are not fixed but lie within an uncer-
tainty set, which is commonly known as the robust MDPs
(Mannor et al., 2016; Ho et al., 2018; Tamar et al., 2013;
Grand-Clément & Kroer, 2021). Our objective is to optimize
the worst-case cumulative reward over this uncertainty set
while ensuring that all constraints are also simultaneously
satisfied in the worst-case scenario. This robust approach en-
sures that the agent’s policy remains effective and safe even
when the environment deviates from the nominal model.

A common approach to solving such constrained problems
is the primal-dual method (Altman, 2021; Paternain et al.,
2019; Bai et al., 2022; Liang et al., 2018; Chen & Wang,
2016; Mahadevan et al., 2014; Chen et al., 2022), which
leverages the strong duality property to efficiently find opti-
mal policies. Strong duality allows the original constrained
problem to be solved by considering its dual problem, sim-
plifying computations and enabling convergence guarantees.
However, a crucial question arises:

Q: Does strong duality hold in robust con-
strained RL?

In this paper, we address this question head-on. We first
demonstrate that, unfortunately, strong duality does not
generally hold in robust constrained RL. The presence of
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model uncertainties breaks the Fenchel-Moreau condition,
the common routine of showing the strong duality in the
non-robust constrained RL (Altman, 2021). We construct
a specific counterexample where the duality gap–the dif-
ference between the optimal values of the primal and dual
problems–is strictly positive. This finding has profound im-
plications: it indicates that primal-dual methods may fail to
find optimal feasible policies in robust constrained settings.

Recognizing this fundamental limitation, we are motivated
to ask the following question:

Q: Can we develop a non-primal-dual algo-
rithm for solving robust constrained RL prob-
lems with provable convergence guarantees?

To address this question, we introduce the Rectified Ro-
bust Policy Optimization (RRPO), a primal-only algorithm
adapted from the CRPO (Xu et al., 2021). RRPO is specifi-
cally designed for robust constrained RL, which bypasses
the issues associated with the duality gap. Our algorithm
operates directly on the primal problem, ensuring constraint
satisfaction and robustness without relying on dual formula-
tions or strong duality assumptions. We summarize our key
contributions as follows:

• Counterexample–Non-Zero Duality Gap: In Section 3,
we provide a concrete example showing that strong duality
does not hold in robust constrained RL. This negative
result resolves an open problem in constrained robust
RL, uncovering a fundamental limitation of primal-dual
methods in this setting.

• Proposed Primal-Only Algorithm–RRPO: Motivated
by the lack of strong duality of constrained robust RL
problems, we introduce RRPO, a primal-only algorithm
designed to solve robust constrained RL problems with-
out relying on strong duality. Moreover, in Section 4, we
rigorously analyze the convergence properties of RRPO.
Specifically, we prove that under appropriate conditions,
RRPO converges to an approximately optimal feasible
policy π∗ within a specified tolerance δ in the worst-case
scenario. Our derived convergence rate and iteration com-
plexity also achieve the best-possible lower bound for non-
robust constrained RL problems (Vaswani et al., 2022).

• Empirical Validation: We validate the effectiveness of
RRPO through experiments in a grid-world environment
and the classical mountain car environment. Our results
show that RRPO achieves robust and safe performance un-
der model uncertainties, outperforming the original CRPO
method that may fail to maintain constraint satisfaction in
the worst-case scenario.

Related Work Here, we mainly explore the existing liter-
ature regarding robust constrained RL. In Appendix A.1, we

provide other related work. Robust constrained RL consid-
ers the problem of optimizing performance while satisfying
constraints in the worst-case scenario. Although robust RL
and constrained RL have each been extensively studied,
fewer works address their intersection. In Russel & Petrik
(2020), the authors investigate robust constrained RL and
propose a heuristic approach that estimates robust value
functions and employs a standard policy gradient method
(Sutton et al., 1999), substituting the nominal value function
with the robust one. However, as Wang et al. (2022) points
out, this approach overlooks how the worst-case transition
kernel depends on the policy, resulting in updates that do
not correspond to actual gradients of the robust value func-
tion and thus lack theoretical convergence guarantees. To
remedy this, Wang et al. (2022) introduces a robust primal-
dual algorithm for solving robust constrained RL problems.
However, this method assumes the strong duality, which
we will show later, generally does not hold in robust con-
strained RL. Several other studies also examine the strong
duality of robust constrained RL problems: Ghosh (2024)
points out that the standard routine in proving the strong
duality of constrained RL problems (Panaganti & Kalathil,
2021) cannot hold in the robust case. Zhang et al. (2024)
proves the strong duality by considering a different policy
space, which is different from the space considered in Pa-
ternain et al. (2019). We include further discussion on it in
Appendix A.2.

2. Preliminaries and Problem Formulation
In this section, we summarize some basic foundations and
the problem formulation of the constrained robust RL.

2.1. Robust MDPs

A Robust Markov Decision Process (Robust MDP) is de-
fined by the tuple (S,A,P, r, γ), where S is a finite state
space,A is a finite action space, P represents the uncertainty
set of transition probabilities with ∆(S) denoting the proba-
bility simplex over S , r : S×A → R is the reward function,
γ ∈ [0, 1) is the discount factor. We denote µ ∈ ∆(S) as
the initial state distribution.

In an robust MDP, the transition probabilities are not fixed
but belong to an uncertainty set; usually, the uncertainty set
P is defined as the s-rectangular set (Derman et al., 2021;
Wang et al., 2023a; Wiesemann et al., 2013; Kumar et al.,
2023)

P := ×s∈SPs,

or (s, a)-rectangular set (Wiesemann et al., 2013; Kumar
et al., 2023)

P := ×(s,a)∈S×AP(s,a).

Here, instead of assuming a specific type of uncertainty set
as in many existing literature (Wang & Zou, 2021; Wang
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et al., 2022), we work on general uncertainty sets but simply
assume that the robust value function over these uncertainty
set is computationally available. Notably, for many well-
known uncertainty sets, such as the p-norm (Kumar et al.,
2023), IPM (Zhou et al., 2024), and R-contamination (Wang
& Zou, 2021) uncertainty set, the robust value function
can be efficiently calculated without hurting the sample
complexity.

Let the policy π : S → ∆(A) map each state to a prob-
ability distribution over actions. In robust RL, the robust
value function V π(s) under policy π starting from state s is
defined as the worst-case expected discounted cumulative
reward:

V π(s) = inf
P∈P

Eπ,P

[ ∞∑
t=0

γtr(st, at)

∣∣∣∣ s0 = s

]
,

where the expectation is taken over the trajectories generated
by following policy π, with at ∼ π(· | st) and st+1 ∼ P (· |
st, at) for P ∈ P .

The objective is to find an optimal policy π∗ that maximizes
the worst-case expected cumulative reward from the initial
state distribution µ:

V π∗
(µ) = max

π
V π(µ),

where V π(µ) := Es∼µ[V
π(s)].

2.2. Robust Constrained MDPs

In many applications, it is essential to optimize the reward
while satisfying certain constraints, even under model uncer-
tainty. Constrained robust MDPs (Wang et al., 2022; Zhang
et al., 2024; Sun et al., 2024; Ghosh, 2024) extend the robust
MDP framework by incorporating multiple constraints.

Let there be I constraint reward functions ri : S ×A → R
for i = 1, 2, . . . , I . The robust expected cumulative reward
under policy π for constraint i is given by:

V π
i (s) = inf

P∈P
Eπ,P

[ ∞∑
t=0

γtri(st, at)

∣∣∣∣ s0 = s

]
,

and V π
i (µ) = Es∼µ[V

π
i (s)] is the robust expected cumula-

tive cost from the initial distribution µ.

The constrained robust MDP aims to find a policy that max-
imizes the worst-case reward while ensuring that each con-
straint is satisfied under the worst-case transition dynamics:

max
π

V π
0 (µ) (1)

s.t. V π
i (µ) ≥ di, for i = 1, 2, . . . , I,

where V π
0 (µ) denotes the robust expected cumulative re-

ward, and di are the specified thresholds for the constraints.

That is, a constrained robust MDP is defined by the tuple
(S,A,P, {ri}Ii=0, {di}Ii=1, γ), where {ri}Ii=0 and {di}Ii=1

extend the original robust MDP to include these constraint
reward function ri and the threshold di.

2.3. Duality Gap of Robust Constrained MDPs

In constrained optimization, the concept of duality plays
a pivotal role in formulating and solving problems (Boyd
& Vandenberghe, 2004; Bertsekas et al., 2003). The dual-
ity gap is the difference between the optimal values of the
primal problem and its dual. When this gap is zero, we
say that strong duality holds, allowing the primal and dual
problems to have the same optimal value. This property is
instrumental in many optimization algorithms, particularly
in convex optimization, where it enables efficient computa-
tion of optimal solutions via dual methods.

For the constrained robust MDP defined earlier, we incorpo-
rate the constraints into the optimization objective, formulat-
ing the Lagrangian of the constrained robust RMDP. The La-
grangian combines the objective function and the constraints
using Lagrange multipliers λ = (λ1, λ2, . . . , λI) ≥ 0:

L(π, λ) = V π
0 (µ)−

I∑
i=1

λi (di − V π
i (µ)) . (2)

In this formulation, L(π, λ) is the Lagrangian function, and
λi ≥ 0 are the Lagrange multipliers associated with the
constraints.

The primal problem is defined by maximizing over π, after
minimizing the Lagrangian over λ ≥ 0. That is,

max
π

min
λ≥0
L(π, λ). (3)

The dual problem is then obtained by minimizing the La-
grangian over λ ≥ 0, after maximizing over π. Specifically,
the dual problem is:

min
λ≥0

max
π
L(π, λ). (4)

The duality gap D is defined as the difference between the
optimal value of the primal problem and the optimal value
of the dual problem.
Definition 2.1 (Duality gap of robust constrained MDPs).
LetM := (S,A,P, {ri}Ii=0, {di}Ii=1, γ) be a robust con-
strained MDP. The duality gap D ofM is defined as

D :=

[
max
π

min
λ≥0
L(π, λ)

]
−

[
min
λ≥0

max
π
L(π, λ)

]
, (5)

where L is the Lagrangian function ofM defined by Equa-
tion (2).

It has been widely known that, in standard constrained
MDPs without robustness considerations, under certain reg-
ularity conditions, strong duality holds (Altman, 2021). This
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means that the duality gap D is zero, and the optimal value
of the primal problem equals that of the dual problem. This
property allows us to use primal-dual algorithms effectively
to find optimal policies that satisfy the constraints. However,
in the next section, we will show that the constrained robust
MDPs may not have such nice property, which presents
a significant challenge for solving constrained robust RL
problems.

3. Constrained Robust RL Has Non-Zero
Duality Gap

In this section, we present a counterexample demonstrating
that the duality gap in robust constrained MDPs (Theo-
rem 2.1) can be strictly positive, highlighting a fundamental
challenge in applying traditional primal-dual algorithms to
these problems.

Theorem 3.1. There exists a constrained robust MDP such
that its duality gap is strictly positive.

Here, we describe the construction of this counterexample.
Then we will briefly describe the analysis of the duality gap.
The full proof can be found in Appendix B.

3.1. Construction of the Counterexample

Consider a simple MDP with two states, s0 and s1, and two
actions, a0 and a1, as depicted in Figure 1. The MDP is
defined as follows:

(a) Transitions under action a0 (b) Transitions under action a1

Figure 1: The transition diagram of the MDP considered in
Theorem 3.1. At state s1, the agent always moves to state s0
with probability 1, regardless of the action taken. At state s0,
the agent has a probability p of staying in the current state
when taking action a1, and a probability of 1 of staying in
state s0 when taking action a0. The uncertainty only occurs
in the transition probability p; we let it vary from [p, p].

• Transitions: The initial state is s0. From state s1, any
action deterministically transitions back to state s0. From
state s0, action a0 deterministically remains in s0. From
state s0, action a1 transitions to s0 with probability p and
to s1 with probability 1− p.

• Robustness: There is model uncertainty in the transi-
tion probability p, such that p ∈ [p, p], representing the

uncertainty set.

• Reward: The reward function for the objective is
r0(s0) = 1 and r0(s1) = 0. The reward function for
the constraint is r1(s0) = 0 and r1(s1) = 1.

• Constraints: The goal is to maximize the expected cu-
mulative reward of r0 while ensuring that the expected
cumulative reward of r1 meets a specified threshold ρ
under the worst-case transition probabilities.

3.2. Analysis of the Duality Gap

The robust control problem can be formulated as:

max
π

Ṽ π
0 (s0) (6)

s.t. Ṽ π
1 (s0) ≥ ρ, (7)

where Ṽ π
i (s0) denotes the worst-case value function for

reward ri starting from state s0.

The associated Lagrangian is:

L(π, λ) = Ṽ π
0 − λ(ρ− Ṽ π

1 )

=
1

1− γ + π1(1− p)(γ − γ2)

− λ

(
ρ− γπ1(1− p)

1− γ + π1(1− p)(γ − γ2)

)
.

with λ ≥ 0.

We proceed to analyze the Lagrangian function and com-
pute the duality gap by evaluating both the primal and dual
formulations:

Primal Problem The primal optimization problem given
by Equation (3) aims to find the policy π that maximizes
Ṽ π
0 (s0) while satisfying the constraint (7). Here, we directly

solve it and obtain

max
π

min
λ
L(π, λ)

=
1

1− γ
−

ρ
1− p

1− p

1− ρ(1− γ) + ρ(1− γ)
1− p

1− p

.

Dual Problem The dual problem given by Equation (4)
involves minimizing the Lagrangian over λ ≥ 0 for a fixed
policy π, and then maximizing over π. The lack of convexity
in the robust setting leads to a discrepancy between the
solutions obtained from the primal and dual problems.

min
λ

max
π
L(π, λ) = 1

1− γ
−

1− p

1− p

1 + (1− p)γ

1 + (1− p)γ
ρ.

It can be obviously observed that when the robustness is
absent (i.e. p = p), the primal problem presents the same
value as the dual problem.
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Demonstration of the Duality Gap By selecting values
for the parameters (e.g., p = 0.5, p = 0.25, p = 0.75,
γ = 0.5, and ρ = 1), we can compute the exact values of
the duality gap:

D = max
π

min
λ≥0
L(π, λ)−min

λ≥0
max
π
L(π, λ) = 21

22
.

As the result, the strong duality does not hold for robust
constrained MDPs.

Implications of a Non-Zero Duality Gap We have just
presented a counterexample showing that strong duality
does not generally hold in robust constrained MDPs, which
resolves an open problem regarding the strong duality of
robust constrained RL problems, highlighting the impor-
tance of designing solution methods that do not rely solely
on duality. In the subsequent sections, we address these
challenges by proposing the primal-only approach, RRPO.

4. Solving Robust Constrained RL Problems
As previously established, the lack of strong duality in ro-
bust constrained RL presents significant challenges for tra-
ditional primal-dual optimization methods. The presence of
a non-zero duality gap means that these methods may fail to
find feasible and optimal policies in robust constrained set-
tings. To overcome this obstacle, we develop a primal-only
algorithm specifically designed for robust constrained RL,
which we call RRPO.

4.1. Algorithm Design

Given the primal optimization problem:

max
π

V π
0 (µ)

s.t. V π
i (µ) ≥ di, for i = 1, 2, . . . I.

Here, we note that all V π
i (i = 0, 1, . . . , I) represent the

robust value functions; when i = 0, we call V π
0 the objective

value function, while when i ̸= 0, we call V π
i the constraint

value function. The core concept of the CRPO algorithm
(Xu et al., 2021) is to iteratively update the policy by taking
gradients with respect to either the objective function or
the constraints, depending on whether the current policy
violates any constraints:

• If the constraint V π
i (i = 1, 2, . . . , I) is violated, then

the CRPO algorithm updates the violated constraint value
function V π

i .

• If all constraints are not violated, then the CRPO algo-
rithm updates the objective value function V π

0 .

However, when constraints are near their boundaries, this
method can lead to oscillations, making it difficult to track

Algorithm 1: Rectified Robust Policy Optimization
input : initial policy parameters θ0, empty set N0

for t = 0, · · · , T − 1 do
Evaluate value functions under πt := πθt :
Q̂πt

i (s, a) ≈ Qπt
i (s, a) for i = 0, 1, . . . , I ;

Sample state-action pairs (sj , aj) from the nominal
distribution ;

Compute value estimates V πt
i for i = 0, . . . , I ;

if V πt
i ≥ di − δ for all i = 0, 1, . . . , I then
// Threshold Updates
Add θt to set N0 and track the feasible policy

achieving the largest value πout = πt;
Update d0: dt+1

0 ← V πt
0 ;

else if V πt
i < di − δ for some i = 1, . . . , I then

// Constraint Rectification
Maximize V πt

i using Equation (8);

else if V πt
0 < d0 − δ then

// Objective Rectification
Maximize V πt

0 using Equation (8);

output :πout

the performance of feasible policies and potentially result-
ing in unsafe policy outcomes when the model uncertainty
presents. As the result, the algorithm cannot “remember”
the highest objective value achieved by the feasible policy.

To mitigate these limitations, our RRPO algorithm adopts a
reformulated approach. Rather than following the standard
CRPO routine, we leverage the constrained form of the orig-
inal optimization problem to employ the CRPO algorithm
as follows. We reformulate it into the following constrained
maximization problem by introducing an auxiliary variable
d0:

max
d0,π

d0

s.t. V π
0 (µ) ≥ d0,

V π
i (µ) ≥ di, for i = 1, 2, . . . I.

At each iteration, the algorithm evaluates the robust value
functions V πt

i for all i = 0, 1, . . . , I . Based on these evalu-
ations, the algorithm proceeds in one of three categories:

1. Threshold Updates: If the current policy satisfies all
constraints within a specified tolerance δ (that is, V πt

i ≥
di − δ for i = 0, 1, . . . , I), the algorithm updates the
boundary threshold by setting d0 ← V πt

0 (µ).

2. Constraint Rectification: If any constraint is vio-
lated beyond the tolerance δ (that is, there exists i =
1, 2, . . . , I , V πt

i (µ) > di − δ), the algorithm performs
policy improvement steps to maximize the violated con-
straint, aiming to reduce constraint violation.

5
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3. Objective Rectification: If the objective value V πt
0 (µ)

is less than the current best boundary threshold d0−δ, the
algorithm performs policy improvement steps to recover
the objective value.

This procedure ensures that the policy maintains pursuing
the feasibility while making progress towards optimizing
the objective function. This procedure is summarized in
Algorithm 1.

4.2. Handling Uncertainty

In our proposed algorithm design, we apply the robust natu-
ral policy gradient (Lemma 2, Zhou et al. (2024)) to max-
imize the value function. The update rule of maximizing
V πt
i (µ) is given by

πt+1(a|s) = πt(a|s)
exp

(
ηQπt

i (s, a)/(1− γ)
)

Zt
, (8)

where the normalization factor Zt is defined as Zt :=∑
a∈A πt(a|s) exp

(
ηQπt

i (s, a)/(1− γ)
)
. When consider-

ing the softmax parametrization πθ(a|s) := exp(θ(s,a))∑
a′ exp(θ(s,a′) ,

it is shown by Zhou et al. (2024) that this update rule is
equivalent to

θt+1(s, a) = θt(s, a) + ηQπt
i (s, a), (9)

where θ is taken over RS×A. Throughout this paper, we will
exchangeably using the parametric representation and the
policy representation. In updating the policy, accurate eval-
uation of Qπ

i (s, a) is critical. To achieve this, we decouple
the robust value function evaluation from the policy opti-
mization step. This modular design allows us to integrate
existing robust RL methods for value function approxima-
tion effectively.

Below, we highlight several promising approaches for ap-
proximating the robust value function:

• p-norm uncertainty set (Kumar et al., 2023): For each
state-action pair (s, a), define

U(s,a) = {u ∈ R|S| | ⟨u,1⟩ = 0, ∥u∥p ≤ β}.

Let P0 be the nominal transition distribution. Then the
corresponding uncertainty sets for transition probabilities
are given by

P(s,a) :=
{
P0(· | s, a) + u | u ∈ U(s,a)

}
,

P := ×(s,a)∈S×AP(s,a). (10)

As shown in Proposition 2.3 of Kumar et al. (2023),
the standard TD-learning algorithm can be applied, with
adding a correction term, to compute the robust value
function under this p-norm uncertainty model.

• The integral probability metric (IPM) uncertainty
set (Zhou et al., 2024): Let F ⊂ R|S| be a function
class including the zero function. The IPM is defined as
dF (p, q) = supf∈F{p⊤f − q⊤f}. The IPM uncertainty
set is defined as

P(s,a) :=
{
Ps,a | dF (Ps,a, P0(·|s, a))

}
,

P := ×(s,a)∈S×AP(s,a).

Using the robust TD-learning algorithm (Algorithm 2,
Zhou et al. (2024)), we can compute an approximate ro-
bust value function V̂ π

i (µ). By leveraging the relation-
ship between the robust value function and the robust Q-
function (Proposition 2.2, Li et al. (2022)), along with the
analytical worst-case formulation (Proposition 1, Zhou
et al. (2024)), we can derive an approximate robust Q-
function.

We acknowledge that other approaches also exist for approx-
imating the robust Q-value function, such as Wang et al.
(2023a); Sun et al. (2024); we omit these results due to the
limited pages.

4.3. Global Convergence Guarantees

In this subsection, we establish the global convergence guar-
antee for RRPO under certain assumptions. Specifically,
we assume: (1) The robust policy evaluation provides suf-
ficiently accurate estimates. (2) Under the worst-case sce-
nario, the policy still maintains sufficient exploration.

Assumption 4.1 (Policy Evaluation Accuracy). The approx-
imate robust value functions Q̂π

i (s, a) satisfy |Q̂π
i (s, a) −

Qπ
i (s, a)| ≤ ϵapprox for all s ∈ S, a ∈ A, and i = 0, . . . , I .

This assumption of sufficient accuracy in policy evaluation
is mild and is widely adopted in the existing reinforcement
learning literature (Wang et al., 2019; Cayci et al., 2022; Xu
et al., 2021; Hong et al., 2023). As previously noted, this
condition can be readily satisfied for specific uncertainty
sets. We will discuss the value of ϵapprox in the appendix.

Assumption 4.2 (Worst-Case Exploration). For any policy
π and its worst-case transition P , there exists a positive
constant pmin > 0 such that its state visitation probability
satisfies dπ,Pµ (s) ≥ pmin for all s ∈ S, where dπ,Pµ is the
state visitation distribution starting from initial distribution
µ under policy π and transition P .

The exploration assumption is also mild, especially with
classical exploration techniques e.g. the initial state random-
ization; instead of a fixed initial state, we may use a uniform
distribution over the state space, ensuring the state visitation
measure is always lower bounded.

Our main theoretical result is as follows. Here, we present a
simplified version to highlight the most critical components,

6
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including the convergence rate and sample complexity. The
detailed upper bound is provided in Appendix C.
Theorem 4.3. Consider the NPG update rule Equation (8)
with the learning rate η = Θ( 1√

T
). Let the constraint vio-

lation tolerance δ = Θ( 1√
T
) and the approximation error

ϵapprox = Θ( 1√
T
). Under these conditions, there exists an

iteration T such that the output policy πout is approximately
optimal and has small constraint violation. More specifi-
cally,

E[V ∗(µ)− V πout(µ)] = O( 1√
T
),

where V ∗ := V π∗
for the optimal feasible policy π∗ and

max
i

{
di − V πout

i (µ)
}
≤ δ.

Remark 4.4. The full version of Theorem 4.3 and the de-
tailed proof are provided in Appendix C. This result indi-
cates the Algorithm 1 presents the O(ϵ−2) iteration com-
plexity to achieve the ϵ-accuracy; with specific settings on
the uncertainty set, Algorithm 1 presents theO(ϵ−4) sample
complexity, which we will discuss later.

4.4. Discussion

As shown in Theorem 4.3, to achieve ϵ-accuracy to the
optimal feasible policy π∗, it takes at mostO(ϵ−2) iterations.
We note that this complexity has matched the theoretical
lower bound of constrained RL problems and cannot be
improved.

Here, we use a specific uncertainty set to illustrate how the
O(ϵ−4) sample complexity is obtained. Assume we are
considering the (s, a)-rectangular uncertainty set defined by
the p-norm:

U(s,a) = {u ∈ R|S| | ⟨u,1⟩ = 0, ∥u∥p ≤ β}.

Let P0 be the nominal distribution. Then

P(s,a) := {P0(·|s, a) + u | u ∈ U(s,a)},
P := ×(s,a)∈S×AP(s,a),

are the uncertainty set we consider. At each step t, we
learn an ϵ-accurate robust Q-function, which takes O(ϵ−2)
samples; this complexity is guaranteed by applying its
Proposition 4.7, Kumar et al. (2023), to the standard TD-
learning algorithm. Since Algorithm 1 requires T = O(ϵ−2)
iterations and the ϵ-accurate policy evaluation requires
K = O(ϵ−2) samples, the total sample complexity is given
by T ·K = O(ϵ−4).

5. Numerical Examples
To better illustrate the impact of model uncertainty on the
algorithm performance, especially on the worst-case feasi-
bility, we conducted experiments comparing the proposed
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Figure 2: Reward and cost comparison across nominal and
worst-case transitions for the gridworld environment. For
the nominal environment, both algorithm learns the feasible
path as their costs tend to 0; since the RRPO converges to
the longer but safer path, its reward in the nominal envi-
ronment is less than the CRPO algorithm. However, in the
worst-case environment, the shortest path learned by the
CRPO algorithm may heavily violate the worst-case safety
constraint, which leads to a significant reward drop.

RRPO and the CRPO (Xu et al., 2021). For all experiments,
we used a discount factor γ = 0.99 and the 2-norm uncer-
tainty set defined by Equation (10).

5.1. The FrozenLake-Like Gridworld

First, we consider a specific 4 × 6 FrozenLake-like grid-
world environment: The agent starts from the left-top corner
posstart = [1, 1] and can make four actions,

A = {UP,DOWN,LEFT,RIGHT},

to move to the target point postarget = [2, 5].

Figure 3: Illustration of two paths to the target in the grid-
world environment. The shortest path (Left) prioritizes effi-
ciency but risks violating constraints in slippery conditions,
whereas the longer path (Right) always ensures safety in the
worst-case scenario.

We define two reward functions. The main reward function

7
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r0 is defined as

r0(s, a, s
′) =


+1 if s′ is the target
−1 if s′ is a brown block
−0.1 otherwise

.

It gives +1 for reaching the target, −1 for landing on a
brown block, and −0.1 otherwise. The constraint reward
function r1 is defined as:

r1(s, a, s
′) =


−1 if s′ is out of the boundary
−1 if s′ is a brown block
0 otherwise

.

It assigns −1 for stepping out of the boundary or onto a
brown block, and 0 otherwise, leading to a cost function
c(s, a) := −E[r1(s, a, s′)]. We require −V π

1 (µ) < 0.2,
ensuring the agent avoids hitting brown blocks or moves out
of the boundary. The training environment is deterministic,
where each action leads to the intended movement with prob-
ability one unless the agent hits a boundary or a brown block.
When this happens, the agent’s position is not changed (if
it hits the boundary) or is reset to the starting position (if
it hits the brown block). The test environment introduces a
“slippery” dynamic, where every move has a probability p of
resulting in an unintended slip. This slippery setting mimics
conditions that may not have been foreseen during training,
effectively representing a worst-case scenario. Under this
setting, the obstacles construct two distinct paths routing to
the target, which is illustrated in Figure 3.

We apply our proposed RRPO to solve this constrained ro-
bust RL problem, comparing it with the baseline CRPO
method. As shown in Figure 2, our method successfully
learns the safer path, while the non-robust algorithm con-
verges to the shortest path.

5.2. Mountain Car

We also consider the classical Mountain Car environment
from Gymnasium (Towers et al., 2024) to test the perfor-
mance of the proposed RRPO in the classical control prob-
lem. We use its default reward function r0, which penalizes
−1.0 each step and rewards 0 if the agent reaches the goal;
that is,

r0(s, a, s
′) =

{
0 if the agent reaches the goal,
−1 otherwise.

To emphasize safety, we add a constraint reward function
r1(s, a, s

′) defined as

r1(s, a, s
′) =

{
−1 if the car’s speed exceeds 0.06,
0 otherwise.

N
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Figure 4: Reward and cost comparison across nominal and
worst-case transitions for the mountain car environment. In
the nominal environment, both algorithms learn the desired
strategies to reach the goal; however, in the worst-case
scenario, the RRPO algorithm can learn more robust strategy
to avoid exceeding the speed constraint.

It returns −1.0 whenever the car’s speed exceeds 0.06 and
returns 0 otherwise, which encourages the agent to main-
tain a safe speed throughout its run. We also consider its
cost description as c(s, a) := −Es′ [ r1(s, a, s

′)]. For the
environment uncertainty, we perturb the “gravity” param-
eter of the Mountain Car environment. In the worst-case
scenario, the gravity is increased from the nominal value
0.0025 to 0.003. The experiment results are shown in Fig-
ure 4; the proposed RRPO method receives much less cost
in the worst-case environment.

6. Conclusion
In this paper, we investigated robust constrained RL prob-
lems and demonstrated that strong duality generally does
not hold in this setting, thereby limiting the effectiveness
of traditional primal-dual methods. To address this chal-
lenge, we introduced RRPO, a primal-only algorithm that
directly optimizes the policy while rectifying constraint vio-
lations without relying on dual formulations. Our theoretical
analysis provided convergence guarantees for RRPO, en-
suring that it converges to an approximately optimal policy
that satisfies the constraints within a specified tolerance
under worst-case scenarios. Empirical results validate the
effectiveness of our approach. We believe our work opens
new avenues for exploring and designing non-primal-dual
approaches to solve robust constrained RL problems, and
potentially leads to an interesting direction to identify when
the strong duality of robust constrained RL holds.
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Impact Statement
This work contributes to advancing the field of RL by
addressing fundamental challenges in robust constrained
RL. By proposing a primal-only algorithm with conver-
gence guarantees, this research has potential implications
for safety-critical applications such as autonomous vehicles
and resource management systems, where robustness and
constraint satisfaction are crucial. The developed method
aims to ensure reliable decision-making under uncertainty
while maintaining safety. Broader societal consequences
are positive, promoting the safer deployment of RL systems
in real-world scenarios.
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A. Further Discussions on Related Work
In this section, we include further discussions on existing literature include other closely related areas and clarification of
existing results on the strong duality of robust constrained RL problems.

A.1. Other Related Work

In this section, we further explore the two closely related areas: robust RL and constrained RL.

Robust RL Robust reinforcement learning (RL) aims to develop policies that perform well under the worst-case transitions.
Early works on robust RL primarily focused on model-based approaches, where the uncertainty set of transition probabilities
is known or can be estimated, and robust policies are computed using robust dynamic programming techniques (Bagnell
et al., 2001; Iyengar, 2005; Nilim & El Ghaoui, 2005; Satia & Lave Jr., 1973; Wiesemann et al., 2013; Lim & Xu, 2013).
These methods consider worst-case scenarios over the uncertainty set to ensure robustness. In the model-free setting,
robust RL algorithms have been proposed that do not require explicit knowledge of the uncertainty set but instead utilize
samples to estimate robust value functions and policies (Roy et al., 2017; Wang & Zou, 2021; Panaganti & Kalathil, 2021).
These methods often involve solving a robust optimization problem over the estimated uncertainties. Recent theoretical
advancements overcome the issues of directly solving the worst-case transitions. Wang & Zou (2022) considers the
R-contamination model to obtain the unbiased estimator for the policy gradient method. Zhou et al. (2024) applies the
double sampling method or the structure of the IPM uncertainty structure to obtain the unbiased estimation involving the
worst-case transition probability. And Kumar et al. (2023) provides the analytical solution for the p-norm uncertainty set.
These advancements allow us to directly obtain the robust policy gradient or the robut value function without estimating the
worst-case transition probability.

Constrained RL Constrained reinforcement learning extends the standard RL framework by incorporating constraints
into the agent’s decision-making process, aiming to optimize performance while satisfying certain safety, resource, or
risk constraints (Altman, 1999). A widely used approach for solving constrained RL problems is the primal-dual method
(Paternain et al., 2019; Tessler et al., 2019; Liang et al., 2018; Stooke et al., 2020), which leverages the strong duality
property of constrained RL (Altman, 2021) to formulate a Lagrangian that combines the objective function with the weighted
constraints. These methods iteratively update the policy and the Lagrange multipliers, and convergence guarantees have been
established under certain conditions (Ding et al., 2020; Liu et al., 2021). However, these methods rely on the assumption
of strong duality, which may not hold in more complex settings. Alternative methods, known as primal methods, enforce
constraints directly by projecting policies onto the feasible set or using safe policy improvement techniques (Achiam et al.,
2017; Chow et al., 2018; Dalal et al., 2018; Xu et al., 2021; Yang & Zhang, 2020). These methods aim to ensure constraint
satisfaction without relying on dual variables.

A.2. Strong Duality in Robust Constrained RL Problems

In this section, we provide more detailed discussions in the existing literature discussing the strong duality in robust
constrained RL problems.

In the existing literature, Ghosh (2024) provide an intuitive explanation for why existing primal-dual methods for non-robust
constrained RL problems could fail in robust case: In the standard routine of showing the strong duality (Paternain et al.,
2019; Altman, 2021), the state-action occupancy measure dπ,P is convex in the policy π; that is, there always exists a
policy π′ such that (1− α)dπ,P + αdπ,P = dπ

′,P . However, this relation obviously doesn’t hold, which makes the strong
duality of robust constrained RL problems unclear. Our counterexample offers a theoretical justification of this conjecture
by providing a concrete example where the duality gap is strictly positive.

Additionally, Zhang et al. (2024) has proved the strong duality for robust constrained RL problems by employing the
“randomization trick” that modifies the optimization problem’s policy space. However, their results do not apply to our
setting. Specifically, it doesn’t consider the space of all random policies; instead, it only considers the distribution of
deterministic policies. The choice of deterministic policy is made at the beginning of each round. This approach redefines
the robust constrained RL problem to ensure strong duality, differing from the classical definition used in constrained RL
(Altman, 2021; Paternain et al., 2019). Our work, instead, aims to align with this classical definition, highlighting that
without such extensions, strong duality may not hold.
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As the result, existing literature has not addressed the critical question in the robust constrained RL problems, which is what
we aim to solve in this paper.

B. Counterexample: Robust Constrained RL with Non-Zero Duality Gap
Proof. We divide the proof into three parts: (1) The construction of counterexample constrained robust MDP. (2) The
evaluation of Lagrangian function. (3) The evaluation of the duality gap.

1. Construction of the constrained robust MDP:
We consider the constrained robust MDP described in Figure 5 (which is the same as Figure 1). The nominal transition
probability is explicitly defined as follows:

P (s0 | a0, s0) = 1,

P (s1 | a0, s0) = 0,

P (s0 | a1, s0) = p,

P (s1 | a1, s0) = 1− p,

P (s0 | a0, s1) = 1,

P (s1 | a0, s1) = 0,

P (s0 | a1, s1) = 1,

P (s1 | a1, s1) = 0.

Then we obtain the state transition probability induced by the policy π:

Pπ =

[
π0 + π1p 1
π1(1− p) 0

]
,

where π0 := π(a0|s0) and π1 := π(a1|s0). The action at the state s1 doesn’t make any differences. The (i, j)-th entry
of Pπ represents the probability of moving from sj to si by following the policy π. We fix the initial state to s0. Its

corresponding distribution is given by µ0 =

[
1
0

]
. The reward for the objective value function is r0 =

[
1
0

]
. The reward

for the constraint is r1 =

[
0
1

]
. Here, we only consider a single constraint.

Lastly, we consider the following (s, a)-uncertainty set defined by the L∞ distance:

Vs,a := {0}, for (s, a) ̸= (s0, a1)

Vs0,a1
:= {v ∈ R|S| | ⟨v, 1|S|⟩ = 0, ∥v∥∞ ≤ β},

Us,a := Vs,a + P.

Given this uncertainty set, the value of p varies from p− δ to p+ δ. Here, we further assume that p is strictly less than 1,
δ < p, and p+ δ < 1. We denote p := p+ δ and p := p− δ.

2. Evaluate the Lagrangian function:
Now we evaluate the discounted visitation measure of the policy π. Define the discounted visitation measure as

d := (I − γPπ)−1µ0. Because I − γPπ =

[
1− γ(π0 + π1p) −γ
−γπ1(1− p) 1

]
, where µ0 is the initial state distribution. Then

we obtain

d =
1

|I − γPπ|

[
1 γ

γπ1(1− p) 1− γ + γπ1(1− p)

] [
1
0

]
=

1

|I − γPπ|

[
1

γπ1(1− p)

]
.

Here, | · | represent the determinant. And we choose γ to ensure ∥γPπ∥2 < 1.

Given the discounted visitation measure, we immediately obtain the non-robust value function of each reward by using
V π(µ0) = r⊤d:

V π
0 (µ0) =

1

1− γ + π1(1− p)(γ − γ2)
,

13
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(a) Transition when taking the action a0. (b) Transition when taking the action a1.

Figure 5: The transition diagram of the MDP considered in Theorem 3.1. At state s1, the agent always moves to state s0
with probability 1, regardless of the action taken. At state s0, the agent has a probability p of staying in the current state
when taking action a1, and a probability of 1 of staying in state s0 when taking action a0. The uncertainty only occurs in the
transition probability p; we let it vary from [p, p].

V π
1 (µ0) =

γπ1(1− p)

1− γ + π1(1− p)(γ − γ2)
.

From our definition of the uncertainty set, we have p ∈ [p, p]. Then the robust value function of each reward is:

Ṽ π
0 (µ0) = min

p
V π
0 (µ0) =

1

1− γ + π1(1− p)(γ − γ2)
,

Ṽ π
1 (µ0) = min

p
V π
1 (µ0) =

γπ1(1− p)

1− γ + π1(1− p)(γ − γ2)
.

Therefore, the Lagrangian function is given by

L(π, λ) = Ṽ π
0 − λ(ρ− Ṽ π

1 )

=
1

1− γ + π1(1− p)(γ − γ2)
− λ

(
ρ− γπ1(1− p)

1− γ + π1(1− p)(γ − γ2)

)
.

3. Evaluate the duality gap:
It suffices to evaluate both minλ maxπ L(π, λ) and maxπ minλ L(π, λ).

• Solve minλ maxπ L(π, λ):
We will solve ∂L

∂π ≥ 0 to find monotone intervals of the function L(·, λ) : π 7→ L(π, λ). Then we will obtain when
L(·, λ) : π 7→ L(π, λ) achieves its maxima.

∂L
∂π

=
−(1− p)(γ − γ2)[

1− γ + π1(1− p)(γ − γ2)
]2

+ λ
γ(1− p)

[
1− γ + π1(1− p)(γ − γ2)

]
− γπ1(1− p)

[
(1− p)(γ − γ2)

]
[1− γ + π1(1− p)(γ − γ2)]

2

=
−(1− p)(γ − γ2)[

1− γ + π1(1− p)(γ − γ2)
]2 + λ

(1− p)(γ − γ2)

[1− γ + π1(1− p)(γ − γ2)]
2 .

Let ∂L
∂π ≥ 0. We obtain

λ
1− p

[1 + π1(1− p)γ]
2 ≥

1− p[
1 + π1(1− p)γ

]2
14
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=⇒ λ
1− p

1− p

[
1 + π1(1− p)γ

]2 ≥ [1 + π1(1− p)γ]
2

=⇒
√
λ
1− p

1− p

[
1 + π1(1− p)γ

]
≥ [1 + π1(1− p)γ] .

Then we obtain √
λ
1− p

1− p
− 1 ≥ π1γ

[
(1− p)− (1− p)

√
λ
1− p

1− p

]
.

It is easy to notice that when λ ≤ 1−p
1−p , the coefficient of π1[

(1− p)− (1− p)

√
λ
1− p

1− p

]
≥ 0.

When λ ≥ 1−p
1−p , the coefficient of π1 [

(1− p)− (1− p)

√
λ
1− p

1− p

]
≤ 0.

We separately consider each case to solve the monotone intervals.

◦ Case 1: λ ≤ 1−p
1−p . In this case, (1− p)− (1− p)

√
λ 1−p

1−p ≥ 0. It solves:

π1 ≤

[√
λ 1−p

1−p − 1
]

γ
[
(1− p)− (1− p)

√
λ 1−p

1−p

] .
We further consider if this upper bound is positive or negative.

▷ Case 1.1: λ ≥ 1−p

1−p . In this case,
[√

λ 1−p
1−p − 1

]
≥ 0. It violates λ ≤ 1−p

1−p .

▷ Case 1.2: λ ≤ 1−p

1−p . In this case,
[√

λ 1−p
1−p − 1

]
≤ 0.

Therefore, in the Case 1 (λ ≤ 1−p
1−p ), we always have π1 ≤ 0. It indicates that L(π, λ) is decreasing in π1 when

π1 ∈ [0, 1]. The maximum is achieved when setting π1 = 0. That is,

max
π
L(π, λ) = L(0, λ) = 1

1− γ
− λρ,

where 0 ≤ λ ≤ 1−p
1−p .

◦ Case 2: λ ≥ 1−p
1−p . In this case, (1− p)− (1− p)

√
λ 1−p

1−p ≤ 0. It solves:

π1 ≥

[√
λ 1−p

1−p − 1
]

γ
[
(1− p)− (1− p)

√
λ 1−p

1−p

] .
Again, we further consider if this lower bound is positive or negative:

▷ Case 2.1: λ ≥ 1−p

1−p . In this case,
[√

λ 1−p
1−p − 1

]
≥ 0. It indicates that L(π, λ) is increasing in π1 when π1 ∈ [0, 1].

The maximum is achieved at x1 = 1.
▷ Case 2.2: 1−p

1−p ≤ λ ≤ 1−p

1−p . In this case,
[√

λ 1−p
1−p − 1

]
≤ 0. It indicates that L(π, λ) is decreasing then

increasing within π1 ∈ [0, 1]. The maximum is either achieved at x1 = 1 or x1 = 0. We need to decide which
one is larger: When x1 = 1, we have

L(1, λ) = 1

1− γ + (1− p)(γ − γ2)
− λ

(
ρ− γ(1− p)

1− γ + (1− p)(γ − γ2)

)
15
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or when x1 = 0,

L(0, λ) = 1

1− γ
− λρ.

By letting L(1, λ) ≥ L(0, λ), we solve the boundary is

λ̂ =
1− p

1− p

1 + (1− p)γ

1 + (1− p)γ
.

It means if λ ≥ λ̂, then L(1, λ) ≥ L(0, λ). If λ ≤ λ̂, then L(1, λ) ≤ L(0, λ).
Combining both Case 2.1 and Case 2.2, we obtain

max
π
L(π, λ) =

{
L(1, λ) λ ≥ λ̂

L(0, λ) λ̂ ≥ λ ≥ 1−p
1−p

,

where λ̂ =
1−p

1−p
1+(1−p)γ
1+(1−p)γ .

Now, combining both Case 1 and Case 2, we have

max
π
L(π, λ) =

{
L(1, λ) λ ≥ λ̂

L(0, λ) λ̂ ≥ λ ≥ 0
,

where λ̂ =
1−p

1−p
1+(1−p)γ
1+(1−p)γ . When λ = λ̂, the function maxπ L(π, ·) : λ 7→ maxπ L(π, λ) achieves its minimum. That

is,

min
λ

max
π
L(π, λ) = 1

1− γ
−

1− p

1− p

1 + (1− p)γ

1 + (1− p)γ
ρ.

• Solve maxπ minλ L(π, λ):
We let the constraint be satisfied; that is

ρ− γπ1(1− p)

1− γ + π1(1− p)(γ − γ2)
≤ 0.

Otherwise, simply letting λ = +∞ will lead to −∞ function value. It solves

ρ(1− γ) ≤ [1− ρ(1− γ)]γ(1− p)π1.

Since ρ must be less than 1
1−γ (so, 1− (1− γ)ρ ≥ 0), we have

π1 ≥
ρ(1− γ)

[1− ρ(1− γ)]γ(1− p)
.

Therefore, the maximum is achieved at π1 = ρ(1−γ)
[1−ρ(1−γ)]γ(1−p) :

max
π

min
λ
L(π, λ) = max

π
Ṽ π
0

=
1

1− γ + ρ(1−γ)2

1−ρ(1−γ)

1−p

1−p

=
1

1− γ
−

ρ
1−p

1−p

1− ρ(1− γ) + ρ(1− γ)
1−p

1−p

.

Therefore, the duality gap is given by

D(L) = max
π

min
λ
L(π, λ)−min

λ
max
π
L(π, λ)

=
1− p

1− p

1 + (1− p)γ

1 + (1− p)γ
ρ−

ρ
1−p

1−p

1− ρ(1− γ) + ρ(1− γ)
1−p

1−p

.
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When p = p, the duality gap turns to be exactly 0. It is because the constrained non-robust RL problem has zero duality gap.
However, when we set p = γ = 0.5, p = 0.75, p = 0.25, and ρ = 1. We have the non-zero duality gap

D(L) = 21

22
.

C. Proof of Theorem 4.3
In this section, we provide the detailed proof of Theorem 4.3.

C.1. Assumptions

In this subsection, we recap the assumptions used in this proof. We additionally restrict all rewards to [0, 1]; however, this
restriction is not crucial. It only affects the constant upper bound of robust value (or Q) functions V π and Qπ . We can relax
this assumption to a general [−rmax, rmax] with changing the upper and lower bound of these value functions to be rmax

1−γ .

Assumption C.1 (Policy Evaluation Accuracy). The approximate robust value functions Q̂π
i (s, a) satisfy |Q̂π

i (s, a) −
Qπ

i (s, a)| ≤ ϵapprox for all s ∈ S, a ∈ A, and i = 0, . . . , I .

Assumption C.2 (Worst-Case Exploration). For any policy π and its worst-case transition P , there exists a positive constant
pmin > 0 such that its state visitation probability satisfies dπ,Pµ (s) ≥ pmin for all s ∈ S, where dπ,Pµ is the state visitation
distribution starting from initial distribution µ under policy π and transition P .

Assumption C.3 (Bounded Rewards). For all rewards ri : S ×A → R, it satisfies

0 ≤ ri(s, a) ≤ 1

for all (s, a) ∈ S ×A.

C.2. Supporting Lemmas

We summarize all required lemmas in this subsection. These lemmas will be used to prove the main result.

The following performance difference lemma is originally developed by Zhou et al. (2024) for bounding the value function
difference of two policies π′ and π. Here we apply Theorem 4.2 to turn the upper and lower bound to transition this
inequality to the desired distribution needed in our convergence analysis.

Lemma C.4 (Robust performance difference lemma). Let π, π′ be two policies and P, P ′ be their worst-case transition
kernels. Suppose that µ is the initial distribution over the state space S. Then

1

1− γ
E
s∼dπ′,P ′

µ
Ea∼π′(·|s)[A

π(s, a)] ≤ V π′
(µ)− V π(µ) ≤ 1

1− γ
E
s∼dπ′,P

µ
Ea∼π′(·|s)[A

π(s, a)]. (11)

Moreover, suppose that Cℓ = 1 and Cu = maxs∈S
dπ′,P
µ (s)

dπ′,P ′
µ (s)

. Then

Cℓ

1− γ
E
(s,a)∼dπ′,P ′

µ ⊗π′ [A
π(s, a)] ≤ V π′

(µ)− V π(µ) ≤ Cu

1− γ

1

1− γ
E
(s,a)∼dπ′,P ′

µ ⊗π′ [A
π(s, a)]. (12)

Proof. See Lemma 8 from Zhou et al. (2024).

Lemma C.5. Let the NPG update rule be given by

πt+1(a|s) = πt(a|s)
exp

(
ηQ̂πt(s, a)/(1− γ)

)
Zt

,

where the normalization factor Zt :=
∑

a∈A πt(a|s) exp
(
ηQ̂t(s, a)/(1− γ)

)
. Then

Q̂πt(s, a) =
1− γ

η
logZt

πt+1(a|s)
πt(a|s)

.
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Proof. See Lemma 4 from Xu et al. (2021).

The following lemma tells how much the worst-case value function of a given reward ri is improved by updating πt

to πt+1 using its corresponding robust policy gradient. The first term Cℓ

η E
s∼d

πt+1,P ′
ν

[dKL (πt+1(·|s)∥πt(·|s))] is always
non-negative. The second term ∆t will be merged with other errors later.

Lemma C.6. Under the NPG update rule with learning rate η, the robust value functions with an arbitrary initial distribution
ν satisfy the following inequality:

V
πt+1

i (ν)− V πt
i (ν) ≥ Cℓ

η
E
s∼d

πt+1,P ′
ν

[dKL (πt+1(·|s)∥πt(·|s))] + ∆t,

where the error term ∆t is given by

∆t :=
Cℓ

1− γ
E
s∼d

πt+1,P ′
ν

∑
a∈A

[πt(a | s)− πt+1(a | s)]
(
Qπt

i (s, a)− Q̂πt
i (s, a)

)
+

Cℓ(1− γ)

η
Es∼ν [logZt]− CℓEs∼ν [V

πt
i (s)]− CℓEs∼ν

∑
a∈A

πt(a | s)
(
Q̂πt

i (s, a)−Qπt
i (s, a)

)
.

Proof. Let the worst-case transition probability of the policy πt and πt+1 be P and P ′, respectively. Their corresponding
visitation probabilities are dπt,P

ν (s) and d
πt+1,P

′

ν (s). Applying Theorem C.4 to the robust value function V πt
i (ν) and

V
πt+1

i (ν) (i = 0, 1, . . . , I), we obtain

V
πt+1

i (ν)− V πt
i (ν) ≥ Cℓ

1− γ
E
s∼d

πt+1,P ′
ν

∑
a∈A

πt+1(a | s)Aπt
i (s, a)

=
Cℓ

1− γ
E
s∼d

πt+1,P ′
ν

∑
a∈A

πt+1(a | s)[Qπt
i (s, a)− V πt

i (s)]

=
Cℓ

1− γ
E
s∼d

πt+1,P ′
ν

∑
a∈A

πt+1(a | s)[Q̂πt
i (s, a)]

+
Cℓ

1− γ
E
s∼d

πt+1,P ′
ν

∑
a∈A

πt+1(a | s)[Qπt
i (s, a)− Q̂πt

i (s, a)]

− Cℓ

1− γ
E
s∼d

πt+1,P ′
ν

[V πt
i (s)].

where the first equality applies the definition of the worst-case advantage function Aπ(s, a) := Qπ(s, a) − V π(s), and
the second equality applies the decomposition of the Q-function with its approximation error. By the NPG update rule
(Theorem C.5), we have

Q̂πt
i (s, a) =

1− γ

η
logZt

πt+1(a|s)
πt(a|s)

.

Then we obtain

V
πt+1

i (ν)− V πt
i (ν) ≥ Cℓ

1− γ
E
s∼d

πt+1,P ′
ν

∑
a∈A

πt+1(a | s)
[
1− γ

η
logZt

πt+1(a|s)
πt(a|s)

]
+

Cℓ

1− γ
E
s∼d

πt+1,P ′
ν

∑
a∈A

πt+1(a | s)[Qπt
i (s, a)− Q̂πt

i (s, a)]

− Cℓ

1− γ
E
s∼d

πt+1,P ′
ν

[V πt
i (s)]

=
Cℓ

η
E
s∼d

πt+1,P ′
ν

∑
a∈A

πt+1(a | s)
[
logZt + log

πt+1(a|s)
πt(a|s)

]
+

Cℓ

1− γ
E
s∼d

πt+1,P ′
ν

∑
a∈A

πt+1(a | s)[Qπt
i (s, a)− Q̂πt

i (s, a)]
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− Cℓ

1− γ
E
s∼d

πt+1,P ′
ν

[V πt
i (s)]

(i)
=

Cℓ

η
E
s∼d

πt+1,P ′
ν

dKL(πt+1(·|s)∥πt(·|s)) +
Cℓ

η
E
s∼d

πt+1,P ′
ν

logZt

+
Cℓ

1− γ
E
s∼d

πt+1,P ′
ν

∑
a∈A

πt+1(a | s)[Qπt
i (s, a)− Q̂πt

i (s, a)]

− Cℓ

1− γ
E
s∼d

πt+1,P ′
ν

[V πt
i (s)].

where (i) applies the definition of KL-divergence dKL(πt+1(·|s)∥πt(·|s)) =
∑

a∈A πt+1(a | s)
[
log πt+1(a|s)

πt(a|s)

]
.

By the definition of Zt, we have

Cℓ

η
E
s∼d

πt+1,P ′
µ

logZt(s) =
Cℓ

η
E
s∼d

πt+1,P ′
µ

log
∑
a∈A

πt(a|s) exp
(
ηQ̂πt

i (s, a)/(1− γ)
)

(i)

≥ Cℓ

η
E
s∼d

πt+1,P ′
µ

∑
a∈A

πt(a|s) log exp
(
ηQ̂πt

i (s, a)/(1− γ)
)

=
Cℓ

1− γ
E
s∼d

πt+1,P ′
µ

∑
a∈A

πt(a|s)
(
Q̂πt

i (s, a)
)

=
Cℓ

1− γ
E
s∼d

πt+1,P ′
µ

∑
a∈A

πt(a|s)
(
Q̂πt

i (s, a)−Qπt
i (s, a) +Qπt

i (s, a)
)

(ii)
=

Cℓ

1− γ
E
s∼d

πt+1,P ′
µ

∑
a∈A

πt(a|s)
(
Q̂πt

i (s, a)−Qπt
i (s, a)

)
+

Cℓ

1− γ
E
s∼d

πt+1,P ′
µ

V πt
i (s, a),

(13)

where (i) applies the Jensen’s inequality, and (ii) applies the relation between Q-function and value function (Proposition 2.2.
from Li et al. (2022)). As the result, we obtain

V
πt+1

i (ν)− V πt
i (ν)

≥ Cℓ

η
E
s∼d

πt+1,P ′
ν

dKL(πt+1(·|s)∥πt(·|s)) +
Cℓ

η
E
s∼d

πt+1,P ′
ν

logZt −
Cℓ

1− γ
E
s∼d

πt+1,P ′
ν

[V πt
i (s)]

− Cℓ

1− γ
E
s∼d

πt+1,P ′
µ

∑
a∈A

πt(a|s)
(
Q̂πt

i (s, a)−Qπt
i (s, a)

)
+

Cℓ

1− γ
E
s∼d

πt+1,P ′
µ

∑
a∈A

πt(a|s)
(
Q̂πt

i (s, a)−Qπt
i (s, a)

)
+

Cℓ

1− γ
E
s∼d

πt+1,P ′
ν

∑
a∈A

πt+1(a | s)[Qπt
i (s, a)− Q̂πt

i (s, a)]

(i)

≥ Cℓ

η
E
s∼d

πt+1,P ′
ν

dKL(πt+1(·|s)∥πt(·|s)) +
Cℓ

1− γ
E
s∼d

πt+1,P ′
ν

∑
a∈A

πt+1(a | s)[Qπt
i (s, a)− Q̂πt

i (s, a)]

+
Cℓ

1− γ
E
s∼d

πt+1,P ′
µ

∑
a∈A

πt(a|s)
(
Q̂πt

i (s, a)−Qπt
i (s, a)

)
+

Cℓ(1− γ)

η
Es∼ν logZt − CℓEs∼ν [V

πt
i (s)]− CℓEs∼ν

∑
a∈A

πt(a|s)
(
Q̂πt

i (s, a)−Qπt
i (s, a)

)
.

where (i) we apply the change of measure to replace d
πt+1,P

′

ν with ν: (1) logZt(s) +
η

1−γ

∑
a∈A πt+1(a | s)[Qπt

i (s, a)−

Q̂πt
i (s, a)]− η

1−γ [V
πt
i (s)] ≥ 0 for all s by Equation (13), and (2) d

πt+1,P ′
ν

ν (s) ≥ 1− γ.
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Therefore, we conclude that

V
πt+1

i (ν)− V πt
i (ν)

≥ Cℓ

η
E
s∼d

πt+1,P ′
ν

dKL(πt+1(·|s)∥πt(·|s)) +
Cℓ

1− γ
E
s∼d

πt+1,P ′
ν

∑
a∈A

πt+1(a | s)[Qπt
i (s, a)− Q̂πt

i (s, a)]

+
Cℓ

1− γ
E
s∼d

πt+1,P ′
µ

∑
a∈A

πt(a|s)
(
Q̂πt

i (s, a)−Qπt
i (s, a)

)
+

Cℓ(1− γ)

η
Es∼ν logZt − CℓEs∼ν [V

πt
i (s)]− CℓEs∼ν

∑
a∈A

πt(a|s)
(
Q̂πt

i (s, a)−Qπt
i (s, a)

)
.

It completes the proof.

The following lemma is the main bound that we will deal with.

Lemma C.7. Under the NPG update rule with learning rate η, the robust value functions satisfy the following inequality:

V π∗

i (µ)− V
πt+1

i (µ) ≤ Cu

η
(Es∼ν∗DKL(π

∗(·|s)∥πt(·|s))− Es∼ν∗DKL(π
∗(·|s)∥πt+1(·|s)))

+
Cu

(1− γ)Cℓ

[
V

πt+1

i (ν∗)− V πt
i (ν∗)

]
+

Cu

1− γ
Es∼ν∗

∑
a∈A

π∗(a | s)[Qπt
i (s, a)− Q̂πt

i (s, a)]

− Cu

(1− γ)2
Cℓ

1− γ
E
s∼d

πt+1,P ′

ν∗

∑
a∈A

πt+1(a | s)[Qπt
i (s, a)− Q̂πt

i (s, a)]

− Cu

(1− γ)2
E
s∼d

πt+1,P ′
µ

∑
a∈A

πt(a|s)
(
Q̂πt

i (s, a)−Qπt
i (s, a)

)
.

Proof. Let the worst-case transition probability of the worst-case optimal policy π∗ be P ∗ and the visitation probability of
π∗ be ν∗(s) = dπ

∗,P∗

µ (s). Applying Theorem C.4 to the robust value function V π∗

i and V πt
i (i = 0, 1, . . . , I), we obtain

V π∗

i (µ)− V πt
i (µ) ≤ Cu

1− γ
Es∼ν∗

∑
a∈A

π∗(a | s)Aπt
i (s, a)

=
Cu

1− γ
Es∼ν∗

∑
a∈A

π∗(a | s)[Qπt
i (s, a)− V πt

i (s)]

=
Cu

1− γ
Es∼ν∗

∑
a∈A

π∗(a | s)[Q̂πt
i (s, a)] +

Cu

1− γ
Es∼ν∗

∑
a∈A

π∗(a | s)[Qπt
i (s, a)− Q̂πt

i (s, a)]

− Cu

1− γ
Es∼ν∗ [V πt

i (s)].

where the first equality applies the definition of the worst-case advantage function Aπ(s, a) := Qπ(s, a) − V π(s), and
the second equality applies the decomposition of the Q-function with its approximation error. By the NPG update rule
(Theorem C.5), we have

Q̂πt(s, a) =
1− γ

η
logZt

πt+1(a|s)
πt(a|s)

.

Then we obtain

V π∗

i (µ)− V πt
i (µ) ≤ Cu

1− γ
Es∼ν∗

∑
a∈A

π∗(a | s)
[
1− γ

η
logZt

πt+1(a|s)
πt(a|s)

]
+

Cu

1− γ
Es∼ν∗

∑
a∈A

π∗(a | s)[Qπt
i (s, a)− Q̂πt

i (s, a)]

− Cu

1− γ
Es∼ν∗ [V πt

i (s)]
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=
Cu

η
Es∼ν∗

[
logZt +

∑
a∈A

π∗(a | s) log πt+1(a|s)
πt(a|s)

]

+
Cu

1− γ
Es∼ν∗

∑
a∈A

π∗(a | s)[Qπt
i (s, a)− Q̂πt

i (s, a)]

− Cu

1− γ
Es∼ν∗ [V πt

i (s)]

(i)
=

Cu

η
Es∼ν∗ [logZt + dKL (π

∗(·|s)∥πt(·|s))− dKL (π
∗(·|s)∥πt+1(·|s))]

+
Cu

1− γ
Es∼ν∗

∑
a∈A

π∗(a | s)[Qπt
i (s, a)− Q̂πt

i (s, a)]− Cu

1− γ
Es∼ν∗ [V πt

i (s)]

=
Cu

η
Es∼ν∗ logZt +

Cu

η
Es∼ν∗ [dKL (π

∗(·|s)∥πt(·|s))− dKL (π
∗(·|s)∥πt+1(·|s))]

+
Cu

1− γ
Es∼ν∗

∑
a∈A

π∗(a | s)[Qπt
i (s, a)− Q̂πt

i (s, a)]− Cu

1− γ
Es∼ν∗ [V πt

i (s)]

where (i) applies the definition of KL-divergence. By Theorem C.6, we have

Cℓ(1− γ)

η
Es∼ν∗ logZt − CℓEs∼ν∗ [V πt

i (s)]− CℓEs∼ν∗

∑
a∈A

πt(a|s)
(
Q̂πt

i (s, a)−Qπt
i (s, a)

)
≤V πt+1

i (ν∗)− V πt
i (ν∗)− Cℓ

η
E
s∼d

πt+1,P ′

ν∗
dKL(πt+1(·|s)∥πt(·|s))

− Cℓ

1− γ
E
s∼d

πt+1,P ′

ν∗

∑
a∈A

πt+1(a | s)[Qπt
i (s, a)− Q̂πt

i (s, a)]

− Cℓ

1− γ
E
s∼d

πt+1,P ′
µ

∑
a∈A

πt(a|s)
(
Q̂πt

i (s, a)−Qπt
i (s, a)

)
Then we obtain

V π∗

i (µ)− V
πt+1

i (µ) ≤ Cu

η
(Es∼ν∗DKL(π

∗(·|s)∥πt(·|s))− Es∼ν∗DKL(π
∗(·|s)∥πt+1(·|s)))

+
Cu

1− γ
Es∼ν∗

∑
a∈A

π∗(a | s)[Qπt
i (s, a)− Q̂πt

i (s, a)]

+
Cu

(1− γ)Cℓ

[
V

πt+1

i (ν∗)− V πt
i (ν∗)− Cℓ

η
E
s∼d

πt+1,P ′

ν∗
DKL(πt+1(·|s)∥πt(·|s))

− Cℓ

1− γ
E
s∼d

πt+1,P ′

ν∗

∑
a∈A

πt+1(a | s)[Qπt
i (s, a)− Q̂πt

i (s, a)]

− Cℓ

1− γ
E
s∼d

πt+1,P ′
µ

∑
a∈A

πt(a|s)
(
Q̂πt

i (s, a)−Qπt
i (s, a)

)]
which is the final upper bound after applying the last inequality. Then we omit the term containing−DKL(πt+1(·|s)∥πt(·|s))
since it is always non-positive.

Lemma C.8. Consider the NPG update rule with learning rate η and let δ > 0 be chosen such that

δ >
Cu

T
Es∼ν∗DKL

(
π∗(·|s)∥π1(·|s)

)
+

CuηL

(1− γ)2Cℓ
+ ϵ̄approx,

where ϵ̄approx is an error term depending on the approximation error terms and L is the Lipschitz constant of the robust value
function V π

i (ν∗). Under these conditions,

N0 := {t : V π∗

0 (µ)− V πt
0 (µ) ≥ di − δ for all i}
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is always non-empty.

Proof. When t ∈ Ni := {t : V πt
i is sampled to update}, we have

V π∗

i (µ)− V
πt+1

i (µ) ≥ V π∗

i (µ)− di + δ + V̂
πt+1

i (µ)− V
πt+1

i (µ)

≥ δ −
[
V̂

πt+1

i (µ)− V
πt+1

i (µ)
]
.

We sum the inequality obtained from Theorem C.7 over t = 1, 2, . . . , T . Since the robust value function V π(µ) is Lipschitz
in π (Wang & Zou, 2021; Zhou et al., 2024), we have

|V πt+1(ν∗)− V πt(ν∗)| ≤ L∥πt+1 − πt∥ ≤
Lη

1− γ
.

Then we obtain

η
∑
i∈N0

(
V π∗

i (µ)− V
πt+1

i (µ)
)
+ ηδT ≤ CuηEs∼ν∗DKL(π

∗(·|s)∥π1(·|s)) +
Cuη

2LT

(1− γ)2Cℓ
+ ηT ϵ̄approx,

where ϵ̄approx is a constant upper bound of Capprox which is defined as

Capprox :=
Cu

1− γ
Es∼ν∗

∑
a∈A

π∗(a | s)[Qπt
i (s, a)− Q̂πt

i (s, a)]

+
Cu

(1− γ)Cℓ

[
−
[
V̂

πt+1

i (µ)− V
πt+1

i (µ)
]
− Cℓ

1− γ
E
s∼d

πt+1,P ′

ν∗

∑
a∈A

πt+1(a | s)[Qπt
i (s, a)− Q̂πt

i (s, a)]

− Cℓ

1− γ
E
s∼d

πt+1,P ′
µ

∑
a∈A

πt(a|s)
(
Q̂πt

i (s, a)−Qπt
i (s, a)

)]
.

By appropriately choosing the policy evaluation algorithm (discussed in Appendix C.3), ϵ̄approx can be arbitrarily small. If
N0 = ∅, then

ηδT ≤ CuηEs∼ν∗DKL(π
∗(·|s)∥π1(·|s)) +

Cuη
2LT

(1− γ)2Cℓ
+ ηT ϵ̄approx.

Here, we let

δ >
Cu

T
Es∼ν∗DKL(π

∗(·|s)∥π1(·|s)) +
CuηL

(1− γ)2Cℓ
+ ϵ̄approx.

This hyper-parameter setting ensures that N0 is non-empty.

C.3. Robust Policy Evaluation

In this section, we collect two important robust policy evaluation techniques to discuss how to use these methods to obtain
the robust value function with sufficient accuracy. Though we use a simplified result in this subsection, these results have
been extended to more general setting in original sources.

C.3.1. OPTION 1: THE IPM UNCERTAINTY SET

Lemma C.9 (Theorem 3, Zhou et al. (2024)). Let the value function V π is parameterized by w ∈ R|S| with the linear
feature ϕ ∈ R|S|. Then using the Robust Linear TD-Learning proposed by Zhou et al. (2024) with step sizes αk = Θ(1/k),
the output satisfies E∥wK − w∗∥2 = Õ( 1

K ).

As shown by Li et al. (2022), the robust Q-function can be calculated using the robust value function learned by the robust
TD-learning algorithm described above. That is,

Qπ(s, a) = r(s, a) + γ inf
P∈P

V π(s′).

The second term infP∈P V π(s′) is given by Proposition 1 from Zhou et al. (2024). This result indicates that we can obtain
the robust Q-function with the convergence rate 1√

K
(for the L∞-norm).
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C.3.2. OPTION 2: THE P-NORM UNCERTAINTY SET

We consider the following uncertainty set:

V := {v ∈ R|S| | ⟨v, 1|S|⟩ = 0, ∥v∥p ≤ β},
U := V + P0.

Let q satisfy 1
q + 1

p = 1. Then Oβ,p(·) : R|S| → R|S| is defined as:

Oβ,p(V )(s′) := β
sign(V (s′)− ωq(V ))|V (s′)− ωq(V )|q−1

κq(V )q−1
,

where ωq(V ) := argminω ∥V − ω1|S|∥q and κq(V ) := minω ∥V − ω1|S|∥q .

Lemma C.10 (Theorem 4.2, Kumar et al. (2023)). If the uncertainty set is defined as the p-norm (s, a)-rectangular set,
then the worst-case transition probability P+(·|s, a) can be represented as

P+(·|s, a) = P0(·|s, a)− βOβ,p(V )

where β is the radius of the uncertainty set and Oβ,p(V ) is the balanced robust value function (Kumar et al., 2023).

Based on this result, we apply the following TD-learning update rule:

V (s)← V (s) + α

r(s, a) + γV (s′)− V (s)︸ ︷︷ ︸
stand. TD err. under P0

−γOβ,p(V )(s′)V (s′)

 . (14)

Here Oβ,p(·) : R|S| → R|S| is an operator determined by the uncertainty set. It is easy to observe that this update rule is
equivalent to the TD-learning over the worst-case transition probability:

Es′∼P0(s′|s,a)[r(s, a) + γV(s
′)]− γ⟨Oβ,p(V

π), V ⟩

=r(s, a) + γ
∑
s′,a

P0(s
′|s, a)π(a|s)V (s′)− γ

∑
s′

Oβ,p(V
π)(s′)V (s′)

=r(s, a) + γ
∑
s′,a

P0(s
′|s, a)π(a|s)V (s′)− γ

∑
s′,a

π(a|s)Oβ,p(V
π)(s′)V (s′)

=r(s, a) + γ
∑
s′,a

π(a|s)[P0(s
′|s, a)− Oβ,p(V

π
0 )(s′)]V (s′)

(i)
=r(s, a) + γ

∑
s′,a

π(a|s)P+(s
′|s, a)V (s′)

=r(s, a) + γEs′∼P+(s′|s,a)V (s′),

where (i) applies the remarkable result from Theorem 4.2, Kumar et al. (2023): the worst-case transition P+ is the rank-one
perturbation of the nominal transition P0. Therefore, by applying existing TD-learning convergence analysis (Brandfonbrener
& Bruna, 2019; Asadi et al., 2024; Li et al., 2024), we obtain that the convergence rate is also 1√

K
.

C.4. The Proof of Main Theorem

Here, we state the full version of Theorem 4.3.

Theorem C.11. Consider the NPG update rule with learning rate η. Let the constraint violation tolerance δ > 0 be chosen
to satisfy

δ >
2Cu

T
Es∼ν∗DKL

(
π∗(·|s)∥π1(·|s)

)
+

2CuηL

(1− γ)2Cℓ
+ 2ϵ̄approx,

where ϵ̄approx is the error caused by the robust policy evaluation step. Under these conditions, the output policy πout satisfies:

E [V ∗(µ)− V πout(µ)] ≤ 2Cu

T
Es∼ν∗DKL

(
π∗(·|s)∥π1(·|s)

)
+

2CuηL

(1− γ)2Cℓ
+ 2ϵ̄approx,
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where the constraint violation of πout is guaranteed to be at most δ. Moreover, if setting

(1− γ)2Cℓ

2CuL

ϵ

4
≤ η ≤ (1− γ)2Cℓ

2CuL

ϵ

3
,

the robust policy evaluation error ϵapprox ≤ (1−γ)2

12Cu
ϵ, and the number of iteration step

T ≥ 2CuL

(1− γ)2Cℓ

12

ϵ2
Es∼ν∗DKL(π

∗(·|s)∥π1(·|s)),

then the output policy satisfies the ϵ-accuracy; that is

E [V ∗(µ)− V πout(µ)] ≤ ϵ.

Proof. By the update rule, the boundary value d0 is non-decreasing. Since it is upper bounded, we conclude that {dt0}
converges and we denote

dt0 → d̄0

as t→∞. More explicitly, we have
d̄0 = sup{V πt

0 : V πt
i < di + δ}.

There are only two cases for the output policy πout:

(1) The policy is better than the optimal policy while the relaxed constraint is violated; i.e.

V π∗

i (µ)− V
πt+1

i (µ) ≤ 0.

(2) The output policy is worst than the optimal policy but upper bounded by O( 1√
T
).

When (1) holds, then it is desired. When (1) doesn’t hold (i.e. V π∗

i (µ)− V
πt+1

i (µ) > 0.), we assume |N0| < T
2 . It implies∑I

i=1 |Ni| ≥ T
2 . Then we have

1

2
ηδT ≤ CuηEs∼ν∗DKL(π

∗(·|s)∥π1(·|s)) +
Cuη

2LT

(1− γ)2Cℓ
+ ηT ϵ̄approx. (15)

Then we let

δ >
2Cu

ηT
Es∼ν∗DKL(π

∗(·|s)∥π1(·|s)) +
2CuηL

(1− γ)2Cℓ
+ 2ϵ̄approx.

This hyper-parameter setting ensures that Equation (15) doesn’t hold. Therefore, it leads to a contradiction. We obtain
|N0| ≥ T

2 . In this case, we have

0 ≤ E [V ∗(µ)− V πout(µ)] ≤ Eπ∼N0
[V ∗(µ)− V π(µ)]

≤ 2Cu

ηT
Es∼ν∗DKL(π

∗(·|s)∥π1(·|s)) +
2CuηL

(1− γ)2Cℓ
+ 2ϵ̄approx.

Here the non-negativity is because V ∗(µ) is the largest-possible value function over the feasible policy. From the construction
of N0 and the output policy πout, they are all feasible policies.

To obtain the sample complexity, we set all three terms to be O(ϵ):

• Let 2CuηL
(1−γ)2Cℓ

≤ ϵ
3 . Then we obtain

η ≤ (1− γ)2Cℓ

2CuL

ϵ

3
.
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• To make the last term 2ϵ̄approx ≤ ϵ
3 , we set the robust policy evaluation error (Theorem 4.1) to be

∥Q̂−Q∥∞ ≤ ϵapprox.

It leads to

Cu

1− γ
ϵapprox +

Cu

(1− γ)Cℓ

[
ϵapprox +

Cℓ

1− γ
ϵapprox +

Cℓ

1− γ
ϵapprox

]
≤ ϵ

3
.

It solves ϵapprox ≤ (1−γ)2

12Cu
ϵ.

• Let 2Cu

ηT Es∼ν∗DKL(π
∗(·|s)∥π1(·|s)) ≤ ϵ

3 . We obtain

T ≥ 2Cu

ηT
Es∼ν∗DKL(π

∗(·|s)∥π1(·|s))
3

ϵ

≥ 2CuL

(1− γ)2Cℓ

12

ϵ2
Es∼ν∗DKL(π

∗(·|s)∥π1(·|s)).

In the second step, we require the learning rate η is not too small; that is, we let it larger than (1−γ)2Cℓ

2CuL
ϵ
4 . This result

indicate that the iteration complexity is T = O(ϵ−2), with choosing an appropriate learning rate η = Θ(ϵ) and the
approximation error ϵapprox = O(ϵ).

D. Experiment Setting
This section outlines the information for replicating our experiments.

D.1. Hardware Specification and System Environment

We conducted our experiments on a computing desktop running Windows 10 Education, equipped with 3200MHz DDR4
DRAM memory, AMD Ryzen 7 3800X 8-Core, 16-Thread processor, and one NVIDIA GeForce RTX 2070 Super graphics
cards. All experiments are executed using Python version 3.10.14.

D.2. FrozenLake-Like Gridworld Experiment

The reward function is defined as follows:

r0(s, a, s
′) =


+1 if s′ is the target
−1 if s′ is a brown block
−0.1 otherwise

and define r(s, a) := Es′ [r0(s, a, s
′)]. The constraint reward function is defined as:

r1(s, a, s
′) =


−1 if s′ is out of the boundary
−1 if s′ is a brown block
0 otherwise

.

Here, we further define the cost function c(s, a) := −Es′ [r1(s, a, s
′)] to better distinguish it with the rewards. In this

experiment, we require the cost value function −V π
1 (µ) less than 0.2, which means that the agent should avoid hitting the

brown block or move out of the box.

We used a discount factor γ = 0.99. The learning rates for both algorithms are set to 0.0001 and the tolerance for constraint
violations is δ = 0.01. The robustness of the environment was simulated by introducing a slipping probability p = 0.2 in the
test environment, which differs from the deterministic dynamics used during training. For both methods, we run 1M steps.

During the training, we use the neural network taking a 2-dimensional input (the position of the agent) and processes it
through a single fully connected layers of size 64 followed by a ReLU activation then fed into a final linear layer that
produces 4 logits (four actions: Up, Down, Left, and Right).
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Rectified Robust Policy Optimization for Robust Constrained Reinforcement Learning without Strong Duality

D.3. Mountain Car Experiment

We use the standard Mountain Car environment provided by Towers et al. (2024). Once the car reaches the goal, it is reset to
the original starting point. The reward function is defined using the environment’s default setting:

r0(s, a, s
′) =

{
0 if the agent reaches the goal,
−1 otherwise,

and we set r(s, a) := Es′ [r0(s, a, s
′)]. To emphasize safety, we introduce the constraint reward function:

r1(s, a, s
′) =

{
−1 if the car’s speed exceeds 0.06,
0 otherwise,

and define the cost function c(s, a) := −Es′ [ r1(s, a, s
′)]. In this experiment, we account for environment uncertainty by

perturbing the “gravity” parameter from its nominal value 0.0025 to 0.003 in the worst-case scenario. In this experiment,
we set the constraint to be −4 (i.e. we require −V π

1 (µ) < 4). As shown in Figure 4, both CRPO and RRPO learn a feasible
solution.

Given that the MountainCar environment has a continuous state space (i.e., the car’s position and velocity), we employ radial
basis function (RBF) features to achieve a linear approximation of the policy. Specifically, each state s is first transformed
into an RBF feature vector ϕ(s), which is then multiplied by the policy parameters θ (one column per action) to generate
logits; these logits are passed through a softmax function to produce the policy distribution over actions. Additionally, we
incorporate an ϵ-greedy strategy with an initial ϵ = 0.1, decaying at a rate of 0.9999, to encourage exploration in the early
stages of training.

We set the 2-norm (s, a)-rectangular uncertainty set defined by Equation (10). Since the state space is continuous, when
evaluating the centered value function, we uniformly sample 100 states from the state space to estimate the mean and the
variance value of V π(s). The radius of the p-norm uncertainty set is set to be 0.0002. This value is manually tuned from a
preset hyper-parameter set {0.00001, 0.0001, 0.0002, 0.0003, 0.001}. When the radius value is too high, the policy tends to
be too conservative; when the radius value is too small, the policy performs similar as the non-robust case.
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