
Contrastive Language-Image Pre-Training with
Knowledge Graphs

Xuran Pan Tianzhu Ye Dongchen Han Shiji Song Gao Huang∗
Department of Automation, BNRist, Tsinghua University, Beijing, China

{pxr18, ytz20, hdc19}@mails.tsinghua.edu.cn
{shijis, gaohuang}@tsinghua.edu.cn

Abstract

Recent years have witnessed the fast development of large-scale pre-training frame-
works that can extract multi-modal representations in a unified form and achieve
promising performances when transferred to downstream tasks. Nevertheless, ex-
isting approaches mainly focus on pre-training with simple image-text pairs, while
neglecting the semantic connections between concepts from different modalities.
In this paper, we propose a knowledge-based pre-training framework, dubbed
Knowledge-CLIP, which injects semantic information into the widely used CLIP
model [38]. Through introducing knowledge-based objectives in the pre-training
process and utilizing different types of knowledge graphs as training data, our
model can semantically align the representations in vision and language with
higher quality, and enhance the reasoning ability across scenarios and modalities.
Extensive experiments on various vision-language downstream tasks demonstrate
the effectiveness of Knowledge-CLIP compared with the original CLIP and com-
petitive baselines.

1 Introduction

Large-scale vision-language pre-training has attracted wide research interests in recent years [9,
26, 38, 72]. Different from training independent models for each specific task, pre-trained models
take the analogy of human biological intelligence system, trying to perceive the world from various
data modalities and handle comprehensive tasks. Specifically, it aims to provide a unified inference
paradigm that simultaneously learns representations for multi-modal data and can easily transfer to a
variety of downstream tasks. Benefiting from the accessibility of massive image-text pairs from the
web, the vision-language pre-training can leverage a broader source of supervision, and effectively
improves the model’s generalization power.

Early attempts on vision-language pre-training mainly focus on detecting objects in the images
and aligning the corresponding word tokens with object regions [9, 28, 50]. Though effective, the
entanglement with the concept of objects, and the additional resources for pre-trained object detectors
impose restrictions on real-world applications. One of the pioneer works, CLIP [38], extends the
scale of the pre-training dataset to 400 million image-text pairs, and learns representations by directly
matching raw text with the corresponding image. Through a contrastive-based training scheme, CLIP
learns visual concepts under a large vocabulary which significantly improves the model performances
on various downstream tasks. Taking inspiration from CLIP, the following researches further extend
the work from several perspectives, including data modality [72], downstream tasks [57], and training
data efficiency [19, 44].
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(a) Results on templates with opposite semantic description
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Figure 1: CLIP fails to accurately capture some fine-grained semantic information. When given
opposite semantic descriptions, e.g., adding ’not’ in the template or describing an image with wrong
color, CLIP tends to give similar distribution as the correct counterpart. Best view in color.

Although showing promising results, the current pre-training frameworks also suffer from limitations.
Specifically, the data pairs for pre-training are organized in the simplest manner, where only the
descriptions of matched and unmatched are used to represent the relation between a given image
and text pair. This usually leads to a degenerated scenario, where the model tends to rely on the
co-occurrence of inputs instead of their semantic meanings. We give a toy example in Fig. 1 by
evaluating the zero-shot transfer performance of CLIP on the ImageNet dataset [10] with the templates
’a photo of a {}’ and ’not a photo of a {}’. It is shown that the distributions of CLIP outputs under
two templates are quite similar, suggesting that the current model fails to understand the semantic
meaning of word tokens. As a result, the transferability of the model is restricted, and tends to show
worse performances on tasks that require reasoning ability, e.g., visual question answering.

To address the limitation of pre-trained models on semantic perceiving, we resort to the technique of
knowledge graph, which has been widely studied in the field of natural language processing [7, 58].
Knowledge graph (KG) is a large-scale semantic network that comprises entities as nodes and
semantic relations as edges. Through organizing data in a graph structure, knowledge graphs provide
rich information on describing the relations between entities and enable a reasoning process through
the whole graph. These advantages over regular-structured data are favorable on various tasks
including question-answering [18, 70], relation prediction [29, 43] and knowledge reasoning [6, 59].
In recent years, knowledge graph has also been investigated in the field of computer vision, e.g.,
scene graph [65], and the integration of both language and image [2]. This bridges the gap between
different modalities in the knowledge graph, which inspires us to explore a new knowledge-based
pre-training framework, and inject semantic information into simple image-text pairs.

In this paper, we propose a novel vision-language pre-training approach, dubbed Knowledge-CLIP,
by constructing a knowledge augmented pre-training framework based on the widely used CLIP
models. As illustrated in Fig. 2, we follow the structure of CLIP, and use two Transformer-based
models as image and text encoders respectively. These two encoders take entities and relations in the
knowledge graph as input and extract raw features for both entities and relations. Notably, entities can
be in the form of image/text, while the relations are constantly described by language tokens. Then, a
multi-modal Transformer encoder is adopted to fuse the entity features conditioned on their relations.
In this way, the pre-trained model is pushed to concentrate on understanding semantic relations
between visual and word concepts, thereby establishing strong semantic connections between vision
and language modalities.

To additionally improve the training efficiency and avoid the massive computation cost in the pre-
training procedure, we adopt a simple continuous learning strategy by training our model based
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on the pre-trained weights of CLIP. This provides a possibility of efficiently promoting the model
performance of CLIP with low training resources.

We train our model on three knowledge graph datasets, namely Visual-Genome [24] (scene graph),
ConceptNet [46] (language-based graph), and VisualSem [2] (multi-modal graph), and also adopt
part of datasets from CLIP to avoid the model forgetting problem. With the knowledge-enhanced
pre-training, Knowledge-CLIP achieves consistent improvements over the original CLIP models on
various vision and language downstream tasks.

2 Related works

Large-scale pre-training. Benefited from the development of Transformer in both vision [35, 63, 36]
and language [54] tasks, large-scale pre-training framework has received wide concerns in recent
years and shown promising results in the field of computer vision and natural language processing.
GPT [39] is one of the pioneer works for language pre-training which optimizes the probability of
output based on previous words in the sequence. BERT [11] adopts the masked language modeling
technique and predicts the masked tokens conditioned on the unmasked ones.

Similarly, computer vision society also witnesses the development of pre-training models thanks to
the emergence of large-scale image datasets. IGPT [5] proposes a generative pre-training technique
and shows promising results on classification task. MAE [17] adopts a similar pre-training scheme as
BERT and predicts the masked regions of an image with unmasked ones.

Multi-modal pre-training bears differences from the aforementioned frameworks and requires the
alignment between various data modalities. Using enormous image-text pairs collected from Internet,
vision-language models show significant improvements on various downstream tasks. Among these
approaches, various pre-training scheme is adopted, including contrastive learning [1, 27, 31], masked
language modeling [47, 51], and masked region modeling [9].

The problem of semantic misunderstanding has also been investigated by previous works. EI-
CLIP [33] considers the problem of cross-modal retrieval in the field of E-commerce. Sharing similar
insight with our work, the authors notice the model bias towards some specific word tokens in
CLIP, and introduce causal inference to align the text encoder with e-commerce domain knowledge.
K3M [73] focuses on the modality-missing and modality-noise problem and introduces knowledge
modality into E-commerce tasks. DeVLBert [69] studies the spurious correlations between different
modalities and adjusts the conditional probability of image tokens and word tokens. Kaleido-
BERT [74] focuses on image-text coherence by introducing several novel self-supervised tasks.

Compared to previous approaches, we are the first to incorporate multi-modal knowledge graphs into
the pre-training process, and effectively enhance the model perception on semantic relations between
visual and language concepts.

Knowledge Graph. Knowledge graph is first introduced in the field of natural language processing,
and the knowledge graph embedding approaches have been successful on capturing the semantics
of symbols (entities and relations) and achieving impressive results on a wide range of real-world
applications including text understanding [13, 66], recommendation system [16, 56] and natural
language question answering [18, 70]. On the other hand, scene graphs represent a type of graph-
structured data in computer vision, where the visual concepts in the image are connected with
semantic relations. Scene graphs emphasize the fine-grained semantic features for images and are
widely adopted in various downstream tasks, including scene graph generation [65], and Scene
Graph Parsing [68]. Besides scene graph, knowledge graph is also adopted in other computer vision
tasks, including image classification [22], panoptic segmentation [62], and image captioning [71].
On this basis, multi-modal knowledge graph earns wide concerns in recent years. Considering the
natural alignment between different data modalities, multi-modal knowledge graphs have been widely
adopted in various graph-based tasks including link prediction [3, 30], entity classification [61], while
also showing great potential on out of graph applications like visual question answering [20, 41] and
recommendation systems [49, 52].

3 Contrastive Language-Image Pre-training (CLIP)

We first provide a brief review of model architectures and training settings in CLIP.
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Figure 2: An overview of our framework. (A) Given a data triplet h, r, t with entities h, t and their
relation r, image and text encoders first extract raw features, then a multi-modal encoder consumes
the concatenated triplet sequence and outputs triplet and relation representations. (B) Three types of
training objectives adopted in our framework.

CLIP uses two separate models for image encoder and text encoder respectively. For text inputs, a
12-layer Transformer is adopted with 512 width and 8 attention heads. Raw texts are first converted
using byte pair encoding [40] technique under a vocabulary size of 49,152. The text sequence length is
capped at 76 and added by a positional encoding before being sent into the text encoder. On the other
hand, CLIP has different versions of image encoder with ResNet-based and Vision Transformer-based
architectures. As the following researches have demonstrated the better performances of Vision
Transformer models, we only consider Transformer-based image encoders in this paper. Similar to
the text input, images are first converted to patches, and added by a positional encoding. At the last
stage of both encoders, a global pooling function is adopted to compress the feature map into a single
feature, which serves as the representation of the whole image/text sequence. The cosine distance of
the image and text features is computed as the similarity of the data pair. For training supervision, a
contrastive loss is adopted to maximize the similarity of matched pairs while minimizing the similarity
of unmatched pairs. Given a batch of N data pairs {Ii,Ti}Ni=1, where Ii and T represents the ith
image and text respectively, the loss function can be parameterized as:

L = −1

2

N∑
i=1

(
log

exp(cos(fI(Ii), fT(Ti))/τ)∑N
j=1 exp(cos(fI(Ii), fT(Tj))/τ)

+ log
exp(cos(fI(Ii), fT(Ti))/τ)∑N
j=1 exp(cos(fI(Ij), fT(Ti))/τ)

)
,

(1)
where fI and fT correspond to image and text encoders respectively, cos(·) denotes the cosine
similarity between the inputs, and τ is a learnable temperature initialized at 0.07.

This simple training framework actually brings several concerns that need to be addressed. First, the
pre-training framework fails to model the semantic information of inputs due to the simplicity of the
data structure. This results in inferior performances on tasks that require reasoning ability, e.g., visual
question answering and visual commonsense reasoning. Second, the image and text features reside in
separate spaces, which makes it difficult to model the interactions between different modalities. Third,
the massive time and resource consumption in the training procedure set restrictions on performing a
full pre-training schedule from scratch.

4 Knowledge-CLIP

As we have summarized above, there are several concerns that hinder the transferability of CLIP
and potential improvements on model performances. In this paper, we propose a novel pre-training
framework based on knowledge graphs, that addresses the limitation of the original CLIP model
from several perspectives: (1) we introduce knowledge graphs into the training dataset where the
graph-structured data and semantic relations between concepts enable the model to extract semantic
features and establish semantic connection across inputs; (2) A multi-modal encoder is added on top
of the current image and text encoders to fuse the features from different modalities, and model the
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Figure 3: Illustrations of the pre-training knowledge graph datasets, including ViusalSem [2] (multi-
modal graph), Visual Genome [24] (scene graph), and ConceptNet [46] (language-based graph).

joint distribution between inputs; (3) A continuous learning strategy based on the pre-trained model
of CLIP is adopted which avoids the massive computation cost in the pre-training procedure, and
enhance the generalization power of the model efficiently. We introduce our framework in detail in
the following sections, and show the overview in Fig. 2.

4.1 Data Preparation

Different from raw image-text pairs adopted in the original CLIP, our model takes knowledge graphs
as input. A knowledge graph can be defined as a directed graph G = {ξ,R, TR}, where ξ, R
correspond to sets of entities and relations, and TR represent the set of relation triplets. A triplet
(h, r, t) ∈ TR denotes that entity h ∈ ξ has relation r ∈ R with entity t ∈ ξ. As illustrated in Fig. 3,
we pre-train our model on three types of knowledge graphs, including multi-modal knowledge graph,
scene graph, and language-based knowledge graph. Among these, relations are constantly described
in language tokens, where the entities are from different modalities in different forms.

For multi-modal knowledge graph, the entities contain both illustrative images and language descrip-
tions. Through representing the same entity under various modalities and connecting entities with
relations, it helps to build semantic connections between vision and language concepts. In practice,
language and vision descriptions are randomly chosen for each entity. In this way, the triplet set TR
contains different forms including (Img, Rel, Img), (Img, Rel, Text), and (Text, Rel, Text), providing
rich information across modalities while also enhancing perceptions within modalities.

Different from multi-modal knowledge graph, scene graph extracts visual concepts (mainly objects)
for each image, and connects them with predefined semantic relations describing relative locations,
actions, etc. Therefore, the entities in the scene graph correspond to a certain region in an image, with
the triplet form of (Img, Rel, Img). We practically use the selected regions as the input and discard
the irrelevant parts. As two entities in the same triplet denote different regions in the same image, it
forces the model to extract more fine-grained features.

Lastly, language-based knowledge graph connects words and phrases of natural language with labeled
edges. It is built on only language modality with the triplet form of (Text, Rel, Text), while helping to
build semantic alignment within word tokens.

4.2 Model Architecture

The model architecture and the training framework are illustrated in Fig. 2(A). Specifically, we first
process the inputs into token sequences with modality-specific tokenizers. The BPE tokenzier [40] is
adopted for language inputs, while image inputs are sliced into non-overlapped patches and converted
into a sequence of patches following ViT [12]. For convenient processing, we set the length of the
image sequence and text sequence as lI and lT respectively for all inputs. To preserve the relative
position information in the input, learnable positional encodings are added to the corresponding
sequences before being sent to the model.

Two separate image encoder fI(·) and text encoder fT(·) are then adopted to extract features from
raw inputs. For a given triplet (h, r, t), the entities h and t are sent to the encoders with respect to
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their modalities (image or text). The relation r, which is represented by language tokens, is sent to
text encoder similar to text entity.

Compared to the model structure in CLIP, we introduce a modification to better adapt our framework.
Specifically, vanilla CLIP models use a pooling function at the last layer of two encoders to compress
the feature map into a global representation. Namely, for an input u ∈ RL×di , where L and di denote
the sequence length and feature dimension, the output of the encoder can be formulated as:

xu = f(u) ∈ RL×do , x̄u = Pool(xu) ∈ Rdo , (2)

where f represents the feature extraction module, Pool(·) denotes the pooling function, and do is the
output dimension. Though efficient, it also leads to inevitable information loss in the local region,
especially for the image inputs. Therefore, we remove the pooling functions for image and text
entities to preserve the local information, and use xu ∈ RL×do as the extracted feature. The relation,
on the other hand, is normally under a limited sequence length, e.g., one or two word tokens, where
the information density is smaller than entities. Therefore, we retain the pooling function for relation
input and use x̄u ∈ Rdo as the extracted features.

In this way, we have extracted the features defined as (xh, x̄r, xt), which correspond to the elements
in the input triplet (h, r, t). To model the joint distribution of different elements in the triplet,
we consider a multi-modal encoder TransEncoder(·) to fuse the features from different sources.
Specifically, we first concatenate all the features in the triplet into a single sequence and use a head
token <head> at the beginning of the sequence. To emphasize the status of the tokens in the
sequence, we consider additional learnable encodings for each element h, r, t in the triplet:

X(h, r, t) = [<head>, xh+PEh, x̄r+PEr, xt+PEt]. (3)

After processing by the multi-modal encoder, the feature of the head token <head> finally serves as
the representation of the whole sequence:

Y (h, r, t) = TransEncoder(X(h, r, t))[0, :]. (4)

Also, representation for relation is extracted from the corresponding token:

R(h, r, t) = TransEncoder(X(h, r, t))[1 + len(xh), :]. (5)

4.3 Training Targets

Considering the unique data structure of knowledge graphs, we mainly adopt two types of training
targets in our framework, including triplet-based loss and graph-based loss as illustrated in Fig. 2(B).
Besides, a knowledge distillation loss is also considered due to the continuous learning strategy
adopted in our framework.

Triplet-based loss considers a batch of triplets as the input and supervises the training of our model by
estimating the joint distribution of elements in the triplets. Inspired by the mask prediction technique
that models the distribution of masked tokens conditioned on the unmasked regions, we similarly
mask the elements in the triplets and predict the distribution with the help of a multi-modal encoder.
Specifically, for incomplete triplets where certain elements are missing in the input, the concatenated
sequence can be similarly derived as in Eq. 3 by masking the corresponding feature. For example, the
concatenated sequence for an input (h, r, -) can be represented as:

X(h, r, -) = [<head>, xh+PEh, x̄r+PEr, 0]. (6)

On this basis, given a set of input D = {(hi, ri, ti)}Ni=1, we first model the distribution when one of
the entities, i.e., ti, is masked, and derive the Entity-Entity (E2E) Loss by minimizing the negative
log-likelihood:

−E(h,r)∼Dlog(P (xt|xh, x̄r)). (7)

We practically approximate the distribution P (xt|xh, x̄r) as the cosine similarity of P (xt) and
P (xh, x̄r), and defined the loss function as:

LE2E = −
N∑
i=1

log(
exp(cos(Y (-, -, ti), Y (hi, ri, -))/τ)∑
j exp(cos(Y (-, -, ti), Y (hj , rj , -))/τ)

). (8)
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We also model the distribution when the relation in the triplet is masked, and similarly derive the
Entity-Relation (E2R) Loss:

−E(h,t)∼Dlog(P (x̄r|xh, xt)). (9)

Different from E2E loss, the relations in the triplets are defined in a limited set of relation groups.
Therefore, we instead extract the representation of relation through an auxiliary two-layer MLP
network, and model the objective as a classification problem from a predefined set of relation labels
R. In this way, the loss function can be defined as:

LE2R = −
N∑
i=1

∑
r∈R

1(r=ri)log(y(x̄ri)), where y(x̄ri) = MLP(R(hi, -, ti)), (10)

is extracted from an MLP model followed by the output of multi-modal encoder defined in Eq. (5).

Graph-based loss. We also take advantage of the graph structure in knowledge graph datasets, and
adopt a graph neural network to extract deeper structural information among entities. We propagate
information through connected edges in the graph, and update entity representations with aggregated
feature. Specifically, for a graph neural network with L layers, the update function for the lth layer
can be formulated as:

G(l)(t) = E{hi,ri,t}∈TR g(l−1)(R(hi, -, t))G(l−1)(hi), G0(t) = Y (-, -, t), (11)

where g(l)(R(hi, -, t)) = W (l)R(hi, -, t), (12)

calculates the aggregation weights by relation representation R(hi, -, t) with a learnable matrix W (l).

Finally, we define the Graph-Entity(G2E) Loss by computing the cosine similarity of entity features
before and after the propagation procedure in the graph:

LG2E = − 1

Nξ

∑
ti∈ξ

log(
exp(cos(Y (-, -, ti), G(L)(ti))/τ)∑
tj
exp(cos(Y (-, -, ti), G(L)(tj))/τ)

). (13)

Continuous Learning. Large-scale pre-training usually requires massive computation resources
which makes it highly inefficient when training from scratch. Therefore, to inject the semantic
information in an efficient manner, we consider training our model based on the pre-trained weights
from the original CLIP. This powerful initialization promotes the convergence of our model and
greatly enhances the training efficiency. However, naively extending the training process with new
data leads to severe forgetting problem that hampers the performance of the original models.

To address this limitation, we adopt simple solutions to maintain CLIP performances while improving
its ability to extract semantic features from knowledge graphs. (1) Besides the knowledge graph
datasets, we also train our model on several widely adopted image-text datasets that share a similar
data distribution with the training data in CLIP. To better fit our pre-training framework, we convert
the original image-text pair into the form of triplets, with specifically designed relations ’image of’
and ’caption of’. (2) We also use the original CLIP model as the teacher, and use an auxiliary loss
LKD to measure the KL distance between the output of CLIP and our model.

Overall, the final pre-training objective of Knowledge-CLIP is formulated as:

L = LE2E + LE2R + LG2E + LKD. (14)

5 Experiments

5.1 Implementation Details

Experimental Setup. In all the experiments, we use the same model structure as CLIP [38]. A
12-layer Transformer model with 512 width is adopted for text encoder, and ViT-L/14 is adopted
for image encoder. For text and image encoder, we use the pre-trained weights in the original CLIP
as the initialization. For the multi-modal encoder, we consider a 4 layer Transformer model with
1024 width. The rate for drop path is set as 0.1 during training. As the added multi-modal encoder is
trained from random initialization, we decrease the learning rate for the pre-trained weights from
CLIP to achieve a more balanced step in the optimization. We train Knowledge-CLIP with an initial
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Table 1: Fine-tuned image-text retrieval results on Flockr30K and COCO datasets. The best result is
shown in blue and the better result between CLIP and our approach is shown in bold.

Method
Flickr30K (1K test set) MSCOCO(5K test set)

Text Retrieval Image Retrieval Text Retrieval Image Retrieval
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

UNITER [9] 87.3 98.0 99.2 75.6 94.1 96.8 65.7 88.6 93.8 52.9 79.9 88.0
VILLA [14] 87.9 97.5 98.8 76.3 94.2 96.8 - - - - - -
OSCAR [28] - - - - - - 73.5 92.2 96.0 57.5 82.8 89.8
ERNIE-ViL [67] 88.7 98.0 99.2 76.7 93.6 96.4 - - - - - -
Unicoder-VL [25] 86.2 96.3 99.0 71.5 91.2 95.2 62.3 87.1 92.8 48.4 76.7 85.9
ViLT [23] 83.5 96.7 98.6 64.4 88.7 93.8 61.5 86.3 92.7 42.7 72.9 83.1
Uni-Perceiver [72] 87.9 98.2 99.1 74.9 93.5 96.0 64.7 87.8 93.7 48.3 75.9 84.5

CLIP [38] 88.6 98.5 99.4 72.4 92.3 96.6 67.3 85.4 92.4 54.3 83.5 90.0
Ours 89.2 98.9 99.4 75.7 94.4 96.8 70.2 89.2 94.4 57.6 83.9 90.4

learning rate of 1e-5 for image and text encoders, and 1e-3 for the multi-modal encoder. Cosine
learning rate with linear warmup is used in the training schedule. Weight decay and gradient clip are
also adopted. See more details in the supplemental material.

Pre-train Dataset. Three knowledge graph datasets are adopted in the pre-training process. Visu-
alSem [2] is a high-quality multi-modal knowledge graph dataset for vision and language concepts,
including entities with multilingual glosses, multiple illustrative images, and visually relevant rela-
tions, covering a total number of 90k nodes, 1.3M glosses and 938k images. 13 semantic relations
are used to connect different entities in the graph, while the entities in VisualSem are linked to
Wikipedia articles, WordNet [34], and high-quality images from ImageNet [10]. Visual Genome [24]
is a knowledge-based scene graph dataset that connects structured image concepts with semantic
relations. Visual Genome serves as the benchmark for various vision tasks, e.g., visual grounding,
and scene graph generation. ConceptNet [46] is a knowledge graph that connects words and phrases
of natural language with labeled edges. Its knowledge is collected from many sources including
expert-created resources and crowd-sourcing built on only language modality.

Besides the three knowledge graph datasets, we also train our model on two widely adopted image-
text datasets that share the similar data distribution with the training data in CLIP. We practically add
COCO Caption [8] and CC3M [42] to the training set, while large-scale datasets like CC12M [4] or
YFCC [21] are not considered to maintain training efficiency.

Downstream Task. To validate the effectiveness of our framework, we conduct experiments on
various downstream tasks, including multi-modal tasks like text and image retrieval, visual question
answering, and uni-modal tasks like image classification and natural language understanding.

5.2 Multi-modal Tasks

Table 2: Fine-tuned results on other V-L tasks.

Method VQA SNLI_VE
test-dev test-std val test

UNITER [9] 72.70 72.91 78.59 78.28
VILLA [14] 73.59 73.67 79.47 79.03
OSCAR [28] 73.16 73.44 - -
ALBEF [26] 74.54 74.70 80.14 80.30
Uni-Perceiver [72] 73.4 74.1 - -
FLAVA [45] 72.8 - 78.89 -
CLIP [38] 74.10 73.56 79.51 80.01
Ours 76.11 75.24 80.52 80.97

Visual question answering / Visual
Entailment. We also validate the ef-
fectiveness of Knowledge-CLIP on
other vision-language tasks, includ-
ing VQA [15] and SNLI-VE [64].
We show the comparison results in
Tab. 2. Compared to competitive
baselines including VILLA [14] and
ALBEF [26], Knowledge-CLIP with
ViT-L/14 shows better performances
under all settings, while the smaller
model also achieves competitive re-
sults. Compared to the original CLIP model, our pre-trained model practically improves its transfer-
ability on downstream tasks, especially on the datasets like VQA that requires reasoning ability.

Image and text retrieval. We first conduct experiments on Flickr30k [37] and COCO Caption [8]
dataset to show the performances of our model on image-text retrieval tasks. Given input sets X
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Table 4: Fine-tuned language understanding results on GLUE dataset. The best result is shown in
blue and the better result between CLIP and our approach is shown in bold.

Method CoLA SST-2 RTE MRPC QQP MNLI QNLI
Mcc. Acc. Acc. Acc./F1 Acc./F1 Acc Acc

VilBERT [32] 36.1 90.4 53.7 69.0/79.4 88.6/85.0 79.9 83.8
VL-BERT [48] 38.7 89.8 55.7 70.6/81.8 89.0/85.4 81.2 86.3
UNITER [9] 37.4 89.7 55.6 69.3/80.3 89.2/85.7 80.9 86.0
SimVLM [60] 46.7 90.0 63.9 75.2/84.4 90.4/87.2 83.4 88.6
FLAVA [45] 50.7 90.9 57.8 81.4/86.9 90.4/87.2 80.3 87.3

CLIP [38] 42.1 90.5 59.2 82.4/87.0 90.4/87.1 80.9 87.1
Ours 50.4 91.2 62.4 83.5/87.6 90.5/87.9 83.6 89.5

and Y of images and texts, we use Knowledge-CLIP to extract features for each input, and model
the joint probability with the cosine similarity between image and text pairs. We summarize the
comparison results of Knowledge-CLIP with competitive baselines in Tab. 1. It is shown that our
model consistently achieves better results over the original CLIP on both datasets, while comparable
with competitive baselines like OSCAR.

5.3 Uni-modal Tasks

Table 3: Fine-tuned results
on ImageNet.

Method Acc(%)
DeiT [53] 83.4
CLIP [38] 84.2
Ours 84.4

Image Classification. To further demonstrate the generalization
power of Knowledge-CLIP, we compare the performances of pre-train
models on the ImageNet classification task [10]. We summarize the
comparison results in Tab. 3, and show that Knowledge-CLIP can also
handle vision tasks well. We argue the improvements over baselines
may attribute to the scene graphs in our pre-training dataset, which
emphasize the visual concepts in the images.

Language Understanding. We validate the generalization performance of Knowledge-CLIP for
language understanding tasks on the widely adopted GLUE dataset [55]. Specifically, we conduct
experiments on 7 tasks in GLUE and summarize the comparison results in Tab. 4. It is shown that
our model achieves comparable performances with competitive baseline models. Also, for tasks like
QQP and MNLI that require sentence-pair matching, Knowledge-CLIP shows higher performances,
due to the existence of language triplets in the pre-training dataset.

5.4 Ablation Studies

To validate the effectiveness of the components in our work, we carefully design several settings,
including (1) CLIP+continuous learning: we train vanilla CLIP (pretrained weights as initialization)
on knowledge datasets adopted in our work; (2) Knowledge-CLIP-(t1, t2, t3): we remove the training
objectives respectively in our work to analyze the contribution of each loss. For all experiments, we
adopt a smaller model (ViT-B/32) as the image encoder of CLIP in the ablation study. Also, it is
worth noticing that KD loss plays a vital role in the continuous learning scheme, without which will
lead to a significant performance drop due to the model forgetting problem. Therefore, we use KD
loss in all the ablation settings for a fair comparison.

We show the comparison results on two representative tasks in Tab. 5, including the image/text
retrieval task on Flickr30K, and the visual question answering task in VQA. Several observations
can be made from the ablation: (1) All three training objectives (E2E, E2R, G2E) contribute to
improving the model performance. Training the model without any of the objectives leads to inferior
performances on downstream tasks. We argue that the E2E, E2R, and G2E loss promote the model
from different perspectives by focusing on semantic understanding of concepts, complicated relations
between entities, and structural information. Therefore, all three objectives are necessary for the
framework and contribute to the improvement respectively. (2) By comparing the first and second
row, we can see that simply training the CLIP model with extra time and data fails to improve
the generalization performance. It also demonstrates that the improvements mainly come from the
injected knowledge information rather than the continuous learning scheme.
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Table 5: Ablation studies of continuous learning / training objectives. We report results on Flickr30K
retrieval task and VQA task with ViT-B/32 as image encoder.

Model KG data E2E E2R G2E Flickr30K retrieval VQA
Text (R@1) Image (R@1) test-dev test-std

CLIP - - - - 84.2 63.1 68.9 69.2
CLIP+Continuous Learning ✓ - - - 84.5 63.0 69.1 69.5

Knowledge-CLIP-t1 ✓ - ✓ ✓ 85.0 64.6 70.4 71.1
Knowledge-CLIP-t2 ✓ ✓ - ✓ 85.7 66.0 71.2 69.9
Knowledge-CLIP-t3 ✓ ✓ ✓ - 84.9 65.8 70.2 70.4
Knowledge-CLIP (Full) ✓ ✓ ✓ ✓ 86.3 67.2 72.5 72.7

Table 6: Ablation studies of the KD loss.

Model Flickr30K retrieval
Text (R@1) Image (R@1)

Ours w/o KD 82.4 62.5
Ours w/ KD 86.3 67.2

We also conduct an ablation study on the KD loss
adopted for continuous learning and summarize the
results in Tab. 6. The model achieves lower results
after removing the KD loss, indicating its vital role in
the continuous learning scheme. We argue the reason
for this phenomenon is that the model suffers from
the forgetting problem, which is widely spotted in
the field of lifelong learning and continuous learning.

5.5 Analysis on particular semantics

We also conduct experiments on carefully selected data which may better reflect how a vision-
language model understands a particular type of input. Specifically, we select questions in the
VQA dataset that contains (1) Negations; (2) Color attributes; (3) Position attributes; (4) Sizes. We
summarize the comparison results of CLIP and our model on these sub-datasets in Tab. 7.

Table 7: Ablation studies on semantic inputs.
Dataset CLIP Knowledge-CLIP

Negation 64.7 66.8(+2.1)

Color 54.2 59.9(+5.7)

Position 61.2 68.3(+7.1)

Size 72.1 63.4(+1.3)

As we can observe, our model achieves consis-
tent improvements over CLIP on these specially
designed datasets and shows significantly better
results. Regarding questions with negation, our
model achieves 2.1% higher accuracy. Regarding
color and position attributes, our model shows even
higher improvements. We believe these compar-
isons on different ’semantic domains’ demonstrate
the effectiveness of injecting knowledge information into the current vision-language pretraining
framework which practically enhances the model perception of semantic understanding.

6 Conclusion

In this paper, we propose a novel vision-language pretraining framework that incorporates knowledge
information to model the semantic connections between vision and language entities. We introduce
three types of graph-structured datasets into the training process, and adopt a multi-modal encoder to
model the joint distribution of entities and their semantic relations. Extensive experiments on various
downstream tasks including multi-modal, uni-modal, and graph-based tasks validate the transfer and
generalization ability of our model. Our approach is now limited in injecting knowledge information
into the CLIP models. However, our training objectives and new knowledge graph datasets are
technically compatible with other large-scale pretraining frameworks. We will explore the possibility
of further applications in the future.
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