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Abstract

Recent direct preference alignment algorithms
(DPA), such as DPO, have shown great promise in
aligning large language models to human prefer-
ences. While this has motivated the development
of many new variants of the original DPO loss,
understanding the differences between these re-
cent proposals, as well as developing new DPA
loss functions, remains difficult given the lack
of a technical and conceptual framework for rea-
soning about the underlying semantics of these
algorithms. In this paper, we attempt to remedy
this by formalizing DPA losses in terms of dis-
crete reasoning problems. Specifically, we ask:
Given an existing DPA loss, can we systematically
derive a symbolic program that characterizes its
semantics? We propose a novel formalism for
characterizing preference losses for single model
and reference model based approaches, and iden-
tify symbolic forms for a number of commonly
used DPA variants. Further, we show how this for-
mal view of preference learning sheds new light
on both the size and structure of the DPA loss land-
scape, making it possible to not only rigorously
characterize the relationships between recent loss
proposals but also to systematically explore the
landscape and derive new loss functions from first
principles. We hope our framework and findings
will help provide useful guidance to those work-
ing on human AI alignment.

1. Introduction
Symbolic logic has long served as the de-facto language for
expressing complex knowledge throughout computer sci-
ence (Halpern et al., 2001), including in AI (McCarthy et al.,
1960; Nilsson, 1991) and early ML (McCulloch & Pitts,
1943), owing to its clean semantics. Symbolic approaches to
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Figure 1. Can we uncover the hidden logic of DPO? Here we show
the decompilation of the DPO loss into a symbolic expression that
expresses its high-level model behavior, along with a semantically
modified version that we can compile into a novel DPO variant.
We study how to translate between these two spaces to better un-
derstand the semantics of existing preference learning algorithms
and to derive new ones from first principles.

reasoning that are driven by declarative knowledge, in sharp
contrast to purely machine learning-based approaches, have
the advantage of allowing us to reason transparently about
the behavior and correctness of the resulting systems. In this
paper we focus on the broad question: Can the declarative
approach be leveraged to better understand and formally
specify algorithms for large language models (LLMs)?

We specifically investigate direct preference alignment
(DPA) algorithms, such as direct preference optimiza-
tion (DPO, Rafailov et al., 2023), for pairwise preference
learning, which are currently at the forefront of research
on LLM alignment and learning from human preferences
(Ouyang et al., 2022; Wang et al., 2023). While there has
been much recent work on algorithmic variations of DPO
(Azar et al., 2024; Hong et al., 2024; Meng et al., 2024) that
modify or add new terms to the original loss, understanding
the differences between these new proposals, as well as com-
ing up with new variants, remains a formidable challenge
due to the lack of a conceptual and technical framework for
reasoning about their underlying semantics.

Our study attempts to remedy this problem by formalizing
the corresponding loss functions in terms of logic, trying to
answer the question: Given an existing loss function, such
as DPO (see Figure 1), can we derive a symbolic expres-
sion that captures the core semantics of that loss function
(i.e., one that we can then systematically compile back into
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exactly that same loss)? By mapping loss functions to dis-
crete reasoning problems — ones that abstract away from
lower-level optimization details and reveal high-level model
behavior — we can study them using conventional semantic
notions from logic (e.g., entailment), relate them semanti-
cally to other algorithms, or even modify their underlying
logical semantics to derive entirely new algorithms. For this
formalization, we devise a novel probabilistic logic based
on a generalization of the notion of semantic loss (SL, Xu
et al., 2018) coupled with a provably correct mechanical
procedure for translating DPA losses into programs in our
logic. As in SL, losses are produced from symbolic pro-
grams by counting the weighted propositional models of
those programs, reducing the problem to one of probabilistic
inference (Chavira & Darwiche, 2008). In contrast to the
kinds of symbolic programs commonly used with SL, how-
ever, empirically successful DPA losses impose systematic
conditional constraints on the types of models that should be
counted, which shape the structure of the underlying proba-
bility distribution. We express these constraints through a
new primitive called a preference structure that addresses
the technical issues involved with modeling pairwise pref-
erence symbolically. Via such constraints, certain semantic
relationships between existing losses can be easily observed
and new losses can be derived.

Our formal view of preference learning sheds new light on
the size and structure of the DPA loss landscape. Under
modest assumptions motivated by the structure of existing
DPA losses, we find that the number of definable preference
structures is doubly exponential in the number (n) of unique
predictions (i.e., forward model calls) made in a loss func-
tion, or 42

n

. This results in an upper bound of 4.3 billion
definable DPA losses that are variations of the original DPO
loss, leaving much room for exploration. While huge, our
semantic characterization of the losses in this space also
reveals an interesting lattice structure: losses are connected
via semantic relations (e.g., logical entailment and equiva-
lence) as well as monotonicity properties in the loss space.

These formal results also provide practical insights into
effectively searching for new DPA losses. For example,
one can start with empirically successful loss functions,
use the formalization to understand their semantics, then
modify their semantics to arrive at novel variants (e.g., more
constrained ones), then evaluate. We report on a small-scale
case study demonstrating the feasibility of this approach,
motivating an exciting avenue for future work.

2. Related work
Language model alignment. While traditional approaches
to language model alignment have employed reinforcement
learning (Ziegler et al., 2019; Christiano et al., 2017), we
focus on DPA approaches such as DPO (Rafailov et al.,

2023) and SliC (Zhao et al., 2023) that use closed-form
loss functions to tune models directly to offline preferences.

We touch on two recent areas: formal characterizations
of DPA losses (Azar et al., 2024; Tang et al., 2024; Hu
et al., 2024) and work on devising algorithmically enhanced
variants of DPO (Amini et al., 2024; Ethayarajh et al., 2024;
Park et al., 2024). In contrast to the former, which focuses
on the optimization properties of DPA losses, we attempt
to formally characterize the semantic relationships between
these variants of DPO in an optimization agnostic way to
better understand the DPA loss landscape.

Neuro-symbolic modeling. We take inspiration from work
on compiling symbolic formulas into novel loss functions
(Li et al., 2019; Fischer et al., 2019; Marra et al., 2019;
Asai & Hajishirzi, 2020, inter alia). We focus particu-
larly on approaches based on probabilistic logic (Manhaeve
et al., 2018; Ahmed et al., 2022; 2023a;b; van Krieken et al.,
2024b; Calanzone et al., 2025), yet our study differs in focus-
ing on the inverse problem of decompilation (see Friedman
et al. (2024)), or deriving symbolic expressions from known
loss functions (see Appendix A for more related work).

3. Direct Preference Alignment
We study offline preference alignment, defined as follows:
given data Dp =

{
(x(i), y

(i)
w , y

(i)
l )
}M
i=1

consisting of a
model input x and two possible generation outputs, a pre-
ferred output yw (the winner w) and a dispreferred output
yl (the loser l), the goal is to optimize a policy model (e.g.,
an LLM) y ∼ πθ(· | x) to learn such preferences.

We focus on direct preference alignment (DPA) ap-
proaches that all take the form of a closed-form loss function
ℓ that we can use to directly train a model πθ on Dp. Since
our study focuses on the formal properties of DPA losses,
it is important to understand their general structure, which
will take the following form from Tang et al. (2024):

ℓDPA(θ,D) := E
(x,yw,yl)∼Dp

[
f
(
ρθ(x, yw, yl), β

)]
(1)

consisting of a convex loss function f : R × R+ → R, a
differentiable model quantity ρθ(x, yw, yl), which we ab-
breviate to ρθ, and a parameter β for scaling terms in ρθ.

Table 1. Examples of some DPA loss functions (Eq 1) with differ-
ent choices of convex function f and model quantity ρθ .

f(ρθ, β) = ρθ
DPO − log σ(βρθ) log πθ(yw|x)

πref(yw|x) − log πθ(yl|x)
πref(yl|x)IPO (ρθ − 1

2β
)2

SliC max(0, β − ρθ) log πθ(yw|x)
πθ(yl|x)

RRHF max(0,−ρθ) log πθ(yw|x)
1

|yw|

πθ(yl|x)
1

|yl|
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Table 2. How are variants of DPO structured? We define popular
variants in terms of their core loss equation ρθ and the helper func-
tion sm1,m2(y1, y2) (last column) that rewrites each ρθ in a way
that brings out general shared structural patterns and added terms
compared with the log win/loss ratio sθ(yw, yl). All original losses
are implemented via the logistic log loss: ℓx = − log σ(βρθ).

Loss ρθ := log
ρtθ
ρb
θ

sm1(,m2)(y1, y2) := log
Pm1

(y1|x)
Pm2

(y2|x)

Baselines ρθ
ℓCE log Pθ(yw|x)

1−Pθ(yw|x) ℓCEUnl log Pθ(yw|x)(1−Pθ(yl|x))
1−(Pθ(yw|x)(1−Pθ(yl|x)))

Single model approaches (no reference) Pθ

ℓCPO log Pθ(yw|x)
Pθ(yl|x)

sθ(yw, yl)

ℓORPO log Pθ(yw|x)(1−Pθ(yl|x))
Pθ(yl|x)(1−Pθ(yw|x)) sθ(yw, yl) −sθ(yw, yl)

ℓSimPO log
Pθ(yw|x)Pmref(yl|x)
Pmref(yw|x)Pθ(yl|x)

sθ(yw, yl) −smref(yw, yl)

with reference model Pref

ℓDPO log Pθ(yw|x)Pref(yl|x)
Pref(yw|x)Pθ(yl|x)

sθ(yw, yl) −sref(yw, yl)

ℓDPOP log Pθ(yw|x)Pθ2(yw|x)Pref(yl|x)
Pref(yw|x)Pref2(yw|x)Pθ(yl|x)

sθ(yw, yl) −sref(yw, yl)

−sref2,θ2(yw, yw)

Table 1 lists four specific DPA losses: DPO (Rafailov et al.,
2023), IPO (Azar et al., 2024), SliC (Zhao et al., 2022;
2023), and RRHF (Yuan et al., 2023) that differ in f or ρθ.
Here the logistic log loss (with σ(x) = 1

1+exp(−x) ), square
loss, hinge loss, and perceptron loss are used for f . SliC
and RRHF are examples of single model approaches that
define ρθ in terms of the log ratio of the winner and loser
given prediction probabilities of the model being trained
πθ. The prediction probabilities are sometimes computed
using length normalization (i.e., taking a geometric mean
of token probabilities) as shown for RRHF. Single model
losses are usually regularized using an added cross-entropy
term, which we exclude from our formal analysis.1 For
DPO and IPO, in contrast, the model quantity ρθ is the
log ratio difference (of the winner and the loser) between
the predictions of the model being trained and a frozen
LLM called a reference model, πref. These two approaches
constitute a two model approach, where the role of the
reference model is to avoid overfitting (controlled by β).

Conceptually, preference losses involve making predictions
about winners and losers across models and reasoning about
the relationships between predictions. Our main question
is: If we view this process as a discrete reasoning prob-
lem, what is the nature of the reasoning that underlies these
different losses and each model quantity ρθ? As shown
in Figure 2, our analysis operates at the level of ρθ and
starts by rewriting each loss into a core loss equation that
strips away optimization/implementation details (e.g., de-

1When referring to the CPO, ORPO, and SliC losses, we re-
fer to the losses without their original cross-entropy terms. For
example, what we call SliC and ORPO refers to the cal and OR
losses, respectively, in the original papers. See Appendix B for
details of the original losses and our generalization.

− log σ

(
log Oddsθ(yw|x)

Oddsθ(yl|x)

) P:= Implies(
M(x ,yl ), M(x ,yw ))

PC := XOR(M(x,yl),M(yw) ))
PA := ⊥

ρtθ
ρbθ

= Pθ(yw|x)(1−Pθ(yl|x))
Pθ(yl|x)(1−Pθ(yw|x))

SEM(ρtθ) = M(x, yw) ∧ ¬M(x, yl)

SEM(ρbθ) = M(x, yl) ∧ ¬M(x, yw)

compilation decompilation§4

Input Loss ℓORPO (§3) Preference structure P (§5)

Core loss equation (Table 2) Semantic translation (Table 7)

Algorithm 1 (§5.2)

Figure 2. How do we map losses to discrete reasoning problems?
Our approach and key results (by paper section §). First an input
loss (upper left) is stripped down to its core loss equation (lower
left), then semantically translated (lower right) and mapped into a
semantic structure (upper right) that is provably compilable (under
a novel logic, §5) back into the original loss (Thm 1).

tails about f , β, length normalization). Next we discuss
these core loss equations and the general structure of the
DPA losses (Table 2) that we aim to derive formally.

Core loss equations. Table 2 shows the different variants
of DPO we investigate and two common baseline losses
from Rafailov et al. (2023) – the cross-entropy loss ℓCE
and a variant that uses an unlikelihood term (Welleck et al.,
2019) ℓCEUnl – all using a uniform notation for ρθ. We use
Pm(y | x) in place of πm(y | x) to denote the probability
assigned by a model m to an output y in a way that is
agnostic to length normalization.2 Importantly, we express
each ρθ as a single log ratio log ρtθ/ρ

b
θ called the core loss

equation, which is the starting point of our analysis.

Under these core loss equations, we see that DPO variants
share much structure, which is further brought out via the
log ratio function sm(y1, y2) defined in Table 2 (using y to
denote the negation of y, or 1 − Pm(y | x)). Specifically,
we see that all losses are derivable from the log ratio of
winner and loser sθ(yw, yl) used in SliC either exactly, as
in CPO (Xu et al., 2024), or with additional log terms. DPO,
for example, is expressible as this ratio minus an additional
log ratio term sref(yw, yl) that contains information about
the reference model. Many variations of DPO specifically
involve making the following two modifications:

1. Adding additional terms. Approaches like ℓDPOP (Pal
et al., 2024) (see also Amini et al. (2024); Park et al. (2024))
incorporate additional terms into DPO (sref2,θ2(yw, yw), see
Appendix H) that address specific failure cases.

2As in Zhao et al. (2025), we can define Pm(y | x) := πm(y |
x)

1
|y|τ where τ ∈ {0, 1} (with τ = 1 employing length norm.)
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(A) Example symbolic formulas (B) Model output distribution

Implies(
M(x ,yl ),M(x ,yw )

)

And(
M(x ,yw ),
Not(M(x,yl )))

ℓCEUnl

ℓunCPO

Model predicts loser Model predicts winner

Whenever the model deems the
loser (yl) to be a valid generation
(i.e., above ϵ), it should deem the
winner (yw) to be valid too.

The model should deem the win-
ner to be valid and the loser to
be not valid (i.e., below ϵ).

ε

Pθ(y | x)

y∈Σ∗

valid

not valid×.

.

loser

winner

Figure 3. What do symbolic representations of loss functions tell us? (A) shows two symbolic formulas related to single model preference
learning (involving an input (x, yw, yl)) with their semantics paraphrased in informal English. When grounded in model behavior, they
tell us about the structure of the model’s output probability distribution (B) and where predictions belong in that distribution (relative to
some threshold ϵ). We later show that these formulas correspond to ℓunCPO (Figure 4-5) and the common baseline ℓCEUnl (Table 2).

2. Changing the reference ratio. No reference ap-
proaches, such as ℓORPO (Hong et al., 2024) and ℓSimPO
(Meng et al., 2024), instead reparameterize the reference
ratio sref(yw, yl) either in terms of some quantity from
the policy model as in ORPO (sθ(yw, yl)) or a heuristic
penalty term γ as in SimPO. For SimPO we rewrite the
γ penalty term in terms of the ratio γ = smref(yw, yl)
(where ‘mref’ refers to a manually defined reference model
simulating γ) in order to align its form with that of DPO
as done by Zhao et al. (2025). For example, given any
γ ≥ 0, γ = smref(yw, yl) can be satisfied by setting
Pmref(yl | x) = Pmref(yw | x)/ exp(γ) as long as the prefer-
ence pairs data does not contain transitive triples or cycles.

While these approaches share a similar structure, understand-
ing what these log ratios and extra terms in ρθ semantically
mean remains unclear, which is the topic we discuss next.
While our techniques will cover both reference and no refer-
ence approaches, due to their simplicity we use no reference
losses such as ℓCEUnl , ℓCPO, ℓORPO and a novel loss ℓunCPO
(defined later) as running examples throughout.

4. Preference modeling as a reasoning problem
To better understand the DPA loss space, we will formalize
the preference losses and the model quantities/log ratios ρθ
in terms of symbolic reasoning problems. Conceptually this
will involve the following core ideas and assumptions.

Model predictions are symbolic objects. The declara-
tive approach involves treating LLM predictions (e.g., in
ρθ) as logical propositions. For example, when a model M
generates an output yw for x, we will use M(x, yw) to ex-
press the logical proposition that yw is a valid generation
for x. Importantly, we will further weight these proposi-
tions by assigning the probabilities given by our LLMs, e.g.,
Pθ(M(x, yw)) = Pθ(yw | x). We call these our probabilis-

tic predictions X1, ..., Xn that underlie symbolic formulas.

Relationships between predictions are expressed as sym-
bolic formulas. Relationships between model predictions
take the form of symbolic constraints expressed as formulas
of propositional logic P defined by applying zero or more
Boolean operators over probabilistic predictions. For exam-
ple, in Figure 3 (A), the top formula, which we later show
is fundamental to the semantics of many DPA approaches,
uses the implication operator (Implies) to express the
constraint that model M should never deem the loser yl to
be a valid generation (M(x, yl)) without deeming the winner
yw to also be valid (M(x, yw)). The bottom formula tells us
that only the winner yw should be deemed valid, using the
conjunction and negation operators (And,Not).3

When grounded to model behavior via compilation (Sec-
tion 4.1), such constraints tell us about the structure of a
model’s output probability distribution, as visualized in Fig-
ure 3 (B). Semantically, we assume that a valid generation
is any probabilistic prediction whose weight exceeds some
threshold ϵ in that distribution, similar to ϵ-truncated sup-
port in Hewitt et al. (2020). While our results later will not
depend on making any direct assumptions about ϵ, such a
definition is merely meant to provide intuitions for how to
understand our formulas. For example, M(x, yl)→ M(x, yw)
dictates that whenever the loser (i.e., a point in Figure 3B)
is found to be above the threshold ϵ, the winner (another
point) should also be above ϵ. In other words, if the loser is
deemed to be a valid generation, the winner should be too.

Existing loss functions are expressible as symbolic formu-
las. We assume that the preference loss functions in Table 2
all have an internal logic that can be expressed in the form
described above. Our goal is to uncover that internal logic.

3We will switch between using conventional logical
notation (e.g., ∧,∨,¬,→,⊕) and operator notation (e.g.,
And,Or,Not,Implies,XOR) depending on the context.
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M(x, yw) M(x, yl) ℓunCPO ℓORPO ℓCPO

T T ✓ ✓
T F ✓ ✓ ✓

F T
F F ✓

Implies(
M(x ,yl ), M(x ,yw )

) ℓx = − log σ

(
log

∑
✓∑
)

PA

PC¬PP

Figure 4. Loss functions as truth tables. The Boolean semantics
(top) of our logic: ✓ s correspond to propositional models of
formulas P (or Pf , Eq. 4 left), × s to ¬P (or ¬Pf , Eq. 4 right),
blank cells to conditioning constraints PC (and cells with multiple
marks to PA in Eq. 4). Losses ℓx (columns) are created/recov-
ered by assigning marks (denoting formulas) then taking weighted
model counts (WMC) of ✓ and × (i.e.,

∑
✓ and

∑
× )

and computing the bottom equation (generalized from Eq. 3).

4.1. Compilation and Decompilation

Deriving the formal semantics of losses involves understand-
ing how to robustly translate between the loss space and the
symbolic space. This is reducible to the two problems we
address in turn: compilation and decompilation (Fig. 1).

Compilation and semantic loss. Given a symbolic for-
mula P specifying model behavior (e.g., those in Figure 3),
to compile this into a loss we interpret P in some differen-
tiable logic. Our approach is based on probabilistic logic and
the semantics of weighted model counting (WMC) (Chavira
& Darwiche, 2008; Fierens et al., 2015). Accordingly, a loss
for a formula is computed as the negative logarithm of the
probability of that formula pθ(P) = WMC

(
P; θ
)

given as:

WMC
(
P; θ
)
:=
∑
w|=P

∏
w|=Xi

Pθ(Xi) ·
∏

w|=¬Xi

(
1− Pθ(Xi)

)
.

This is the weighted sum over all the propositional models
or truth assignments w ∈ {0, 1}n of P (i.e., rows in Fig. 4)
where P is satisfied (i.e., w |= P or rows in Fig. 4 marked
with ✓ ). Each w is weighted via an independent prod-
uct of all the probabilistic predictions Xi in w (Pθ(Xi) or
1 − Pθ(Xi) based on the truth value of Xi in w), which
induces a probability distribution over all truth assignments
(De Raedt & Kimmig, 2015).

Formally, the standard semantic loss of Xu et al. (2018)
takes the form ℓ(P, θ,D) = Ed∼D[− log pθ

(
Pd

)
], where

we use the notation Pd throughout to refer to the substitution
of variables in our formulas P (e.g., x, yw, yl) with specific
values from d ∼ D. Since we will later compute the proba-
bility of P conditioned (optionally) on some conditioning
constraints PC (i.e., an additional propositional formula),

we consider the conditional semantic loss ℓ(P | PC, θ,D)
and show its full objective below:

min
θ

E
d∼D

[
− log pθ(Pd | PCd

)

]
(2)

with pθ(P | PC) =
WMC

(
P∧PC;θ

)
WMC

(
P∧PC;θ

)
+WMC

(
¬P∧PC;θ

) , which

follows from standard conditional probability.

As an important technical point, it is easy to see that
we can rewrite the formula probability (for P ̸≡ ⊤) as

pθ(P) = σ
(
log

WMC
(
P;θ
)

WMC
(
¬P;θ

)), yielding a logistic log form

of the semantic loss below that aligns with the structure of
the DPA losses in Section 3. This relationship is key when
translating, or decompiling, DPA losses to symbolic forms:

ℓ(P, θ,D) := E
d∼D

[
− log σ

(
log

WMC
(
Pd;θ
)

WMC
(
¬Pd;θ

)
︸ ︷︷ ︸
sem. loss ratio ρsem(P)

)]
(3)

As an analog to ρθ (Table 2), we call the inner log ratio in
σ(·) above the semantic loss ratio of P, or ρsem(P).

Decompilation into semantic loss. The input in our set-
ting is not a formula P but a particular DPA loss ℓx. The goal
of decompilation is to find a P that characterizes the seman-
tics of ℓx, which we treat as the inverse of compilation, i.e.,
P characterizes ℓx whenever its semantic loss equals ℓx, that
is, ℓ(P, θ,D) = ℓx(θ,D). Given the symmetry between the
DPA loss and ρθ := log

ρt
θ

ρb
θ

(Table 2) and the semantic loss

and ratio ρsem(P) := logWMC
(
P
)
/WMC

(
¬P
)
, we define

decompiling into the standard semantic loss (Section 5.2)
as translating the equations ρtθ and ρbθ into logical formu-
las Pw and Pl s.t. ρtθ = WMC

(
Pw

)
, ρbθ = WMC

(
Pl

)
, and

there exists a single formula P where Pw ≡ P and Pl ≡ ¬P.

We pursue this loss equation to logic translation approach
to decompilation in Section 5.2, later using the translation
rules in Table 7 for translating ρθ to Pw and Pl. To make the
translation direct and transparent, we impose the following
compositionality constraint familiar from programming
language semantics (Stoy, 1977):

Assumption 1 (compositionality). When translating the
preference log ratios ρθ from Table 2 to propositional for-
mulas Pw and Pl, every unique model prediction PM(·) in
ρtθ and ρbθ is treated as a unique weighted proposition form-
ing an atomic variable, and the propositional formulas Pw

and Pl are built independently and compositionally by re-
peated application of Boolean operators over these atomic
variables and none others.

The following establishes that not all DPA losses can be
compositionally decompiled using the standard semantic

5



Understanding the Logic of Direct Preference Alignment through Logic

loss (see proof in Appendix C involving the simplest DPA
loss ℓCPO) and motivates the need for a more expressive logic
and semantic encoding of DPA, which we investigate next.

Proposition 1 (decompilation and standard semantic loss).
Under Assumption 1, not all of the losses in Table 2 can be
decompiled into the standard semantic loss (Eq 3).

5. A logic for preference modeling
In the standard semantic loss, loss functions ℓx are express-
ible as a single propositional formulas P interpreted via
probabilistic logic, with ℓx = − log pθ(P). Proposition 1,
however, reveals issues with trying to perform a composi-
tional translation of preference losses into a single formula.
Indeed, in logical accounts of pairwise preference (Jeffrey,
1965; Rescher, 1967), it is common to model preferences
not as a single propositional formula but as an inequality
between the scores µ (computed e.g., by WMC) of two
independent propositional formulas µ(Pw) > µ(Pl).

To bridge this gap, we define a preference structure, a
relational structure and semantic encoding, that allows us to
capture the semantics of DPA losses in a modular fashion
using a single propositional formula coupled with auxiliary
constraints. This structure, based on a novel construction in
propositional logic (Prop. 2), makes it easy to cleanly char-
acterize different DPA losses. We will use it to generalize
the semantic loss and create a novel logic for DPA.

Preference structure. A preference structure is a tuple
P = (P,PC,PA) that, as will become clear shortly from
Prop 2, captures the semantics of a winner and a loser. It
consists of three propositional formulas: a core semantic
formula P coupled with conditioning constraints PC (as
in Eq 2, which restrict the propositional models that can be
counted), and additive constraints PA that tell us which
propositional models must always be counted. As we will
show, all DPA losses in Table 2 are representable as prefer-
ence structures, often ones where the same core formula P
is shared (e.g., the formulas in Figure 3), differing only in
their constraints (PC and PA).

Each preference structure has a formula form Pf and a
negated formula form ¬Pf , defined as follows:

Pf :=

(
P ∨ PA

)
∧ PC, ¬Pf :=

(
¬P ∨ PA

)
∧ PC. (4)

Intuitively, Pf and ¬Pf correspond to the semantics of the
winner (Pw) and the loser (Pl). Preference structures and
their corresponding formula forms are designed to give us
a way to express the original semantic loss, the conditional
semantic loss, and arbitrary pairwise preferences. For exam-
ple, making PA equal to ⊥ makes the semantic loss of Pf

equivalent to the conditional semantic loss from Eq 2.

Table 3. Different forms of the generalized semantic loss that
match the structure of DPA losses in Table 1.

Variant ℓslx f(ρsem, β) = Semantic loss ratio
ℓsl-log − log σ(βρsem)

ρsem(P) := log
WMC

(
Pf ;θ

)
WMC

(
¬Pf ;θ

)ℓsl-squared (ρsem − 1
2β

)2

ℓsl-margin max(0, β − ρsem)

With full preference structures containing PA, any two
propositional formulas (e.g., any Pw and Pl) can be ex-
pressed as a preference structure based on a particular con-
struction, called the implication form, which will play a
central role when doing decompilation in Section 5.2.

Proposition 2. Given any two propositional formulas Pw

and Pl, there exists a preference structure P = (P,PC,PA)
such that Pw ≡ Pf (Eq 4 left) and Pl ≡ ¬Pf (Eq 4 right).

Proof. We provide a specific construction called the impli-
cation form of Pw and Pl, based on the following logical
equivalences, which can be checked manually:

Pw ≡
(

(Pl → Pw)︸ ︷︷ ︸
P

∨ (Pw ∧ Pl)︸ ︷︷ ︸
PA

)
∧ (Pw ∨ Pl)︸ ︷︷ ︸

PC

Pl ≡
(
¬(Pl → Pw)︸ ︷︷ ︸

¬P

∨ (Pw ∧ Pl)︸ ︷︷ ︸
PA

)
∧ (Pw ∨ Pl)︸ ︷︷ ︸

PC

As noted above, this construction corresponds exactly to
the preference structure (P,PC,PA) with P := Pl → Pw,
PC := Pw ∨ Pl, and PA := Pw ∧ Pl. (As a special case,
when Pl ≡ ¬Pw, this simplifies to P = (Pw,⊤,⊥).)

Figure 4 shows a natural encoding of preference structures
as Boolean truth tables where rows with ✓ denote the
propositional models of Pw and rows with × denote the
propositional models of Pl (or, equivalently, Pf and ¬Pf

using the implication form of Pw and Pl just introduced).

5.1. Semantic loss based on preference structures

In our generalization of the semantic loss, formulas P will be
replaced with preference structures P. For example, we can
modify the logistic log form of SL in Eq 3 to be ℓ(P, θ,D)
and change the semantic loss ratio ρsem accordingly to oper-
ate over the formula forms of P in Eq 4. By analogy to the
generalized DPA in Eq 1, we can view this logistic log form
as a particular instance of a generalized semantic loss:

ℓsl(P, θ,D) := E
d∼D

[
f
(
ρsem(Pd), β

)]
(5)

where, like in DPA, different choices can be made about f –
each giving rise to a novel loss – and the model quantities
encoded in each P. To prove our main formal results, we
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focus on the losses in Table 3, each defined with an added β
scaling parameter to match the structure of DPA losses. We
note that the original semantic loss is a special case of ℓsl-log
(specifically in cases where the input preference structures
have PC ≡ ⊤ and PA ≡ ⊥).

How many loss functions are there? Under this formula-
tion, we can view loss creation as a generative procedure:
select an f then sample two formulas Pw and Pl (each de-
noting a unique Boolean function in n variables) to create
a P via Prop 2 (see also Figure 4). Absent any constraints,
the total number of definable preference structures is doubly
exponential in the number of probabilistic predictions n,
specifically 42

n

(i.e., all unique pairs of Boolean functions).
While not all such preference structures will lead to mean-
ingful or unique losses, for DPO (n = 4), this results in an
upper bound of about 4.3 billion definable losses.

How is the loss space structured? While the space is
large, one can structure this space using the semantics of the
corresponding formulas. Below we define preference struc-
ture entailment and equivalence, and relate these semantic
notions to the behavior of the compiled losses. These formal
notions not only give us tools for structuring the DPA loss
space but also inform the search for new loss functions.

We define preference entailment for two preference struc-
tures P

(1) ⊑ P
(2)

in terms of ordinary propositional entail-
ment (|=) between their formula forms: P

(1) ⊑ P
(2)

:=

(Pf
(1) |= Pf

(2) ∧ ¬Pf
(2) |= ¬Pf

(1)
). These losses are

monototic w.r.t. preference entailment (proof deferred to
Appendix E), as in the original SL (Xu et al., 2018):

Proposition 3 (monotonicity). If P
(1) ⊑ P

(2)
then

ℓsl(P
(1)

, θ,D) ≥ ℓsl(P
(2)

, θ,D) for any θ,D.

We will later use entailment to characterize the relative
strength of DPA losses and visualize their relations using a
representation called a loss lattice (see Figure 5). We also
extend entailment to preference equivalence P(1) ≡ P

(2)
in

the natural way, namely when P
(1) ⊑ P

(2)
and P

(2) ⊑ P
(1)

.
Equivalent preference structures have identical semantic
losses (see Corollary 1 in Appendix E).

5.2. Decompiling DPA losses into preference structures

The decompilation of a DPA loss ℓDPAx
into a symbolic

form can now be stated as finding a preference structure P
whose particular semantic loss ℓslx is equal to ℓDPAx :

ℓDPAx(θ,D) = ℓslx(P, θ,D) (6)

Correct characterization. We say that a preference struc-
ture P correctly characterizes a loss ℓx under a particular

Algorithm 1 Translation of loss to logic (decompilation)

input Disjoint polynomial ρθ = log
ρt
θ

ρb
θ

output P
Pt ← SEM(ρtθ) {Translation to logic, Table 7}
Pb ← SEM(ρbθ)
P← SIMPLIFY(Implies(Pb,Pt)) {Implication form}
PC ← SIMPLIFY(Or(Pt,Pb)) {via Proposition 2}
PA ← SIMPLIFY(And(Pt,Pb))

return P := (P,PC,PA) {ρθ=log
WMC

(
Pf ;θ
)

WMC
(
¬Pf ;θ

) , Lem. 1}

ℓslx whenever the condition in Eq 6 holds. Given the struc-
ture of the DPA loss (Eq 1) and the generalized semantic
loss (Eq. 5), for any fixed f , this can be reduced to finding
a P whose semantic loss ratio ρsem(P) is equal to ℓx’s core
loss equation ρθ, i.e.:

log
ρtθ
ρbθ

= log
WMC

(
Pf ; θ

)
WMC

(
¬Pf ; θ

) (7)

Based on this, we define a procedure for translating the core
loss equations ρθ in Table 2 into preference structures.

Characterizing the DPA equation class. Motivated by
the structure of real preference losses, we assume that by
construction all the core equations for DPA losses ρtθ and
ρbθ are expressible as certain types of disjoint multilinear
polynomials over binary variables {xi}ni=1, intuitively poly-
nomials whose translation via the rules in Table 7 results
in valid formulas of propositional logic. Formally, such
polynomials over n variables are defined as any polynomial
e of the form e =

∑
i ei where (a) for all i there exists

Ji ⊆ {1, . . . , n} such that ei =
∏

j∈Ji
ℓij where ℓij is ei-

ther xj or (1− xj), and (b) for all i, i′, terms ei and ei′ are
disjoint, i.e., have no common solutions (for some k, one
term has xk and the other has 1− xk) (see Appendix H for
discussion of a loss that doesn’t immediately fit this format).

Translation algorithm. Our translation process is shown in
Algorithm 1 along with an example in Figure 2. Given ρθ,
both ρtθ and ρbθ are independently translated into logic via a
compositional translation function SEM. The translation is
standard, based on the rules in Table 7: first each model pre-
diction PM(·) is mapped to a probabilistic prediction vaiable
M(·); then 1−P is mapped to negation, P1·P2 to conjunction,
and P1 + P2 to disjunction; these rules are applied repeat-
edly until the full expression is translated. By induction on
the rules, one can establish the correctness of the translation
function SEM, i.e., that for any disjoint multilinear polyno-
mial ρzθ , it holds that ρzθ = WMC

(
SEM(ρzθ); θ

)
. Finally, the

implication construction from Prop 2 is applied to create
a preference structure P, where formulas are (optionally)
minimized via SIMPLIFY (see example in Fig. 9).

The following follows from the correctness of our translation
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Table 4. What do formalized versions of standard losses look like?
Formalizations of some of the losses from Table 2 shown in terms
of P (their core semantic formula) and conditioning constraints PC

(for succinctness, we exclude PA, which can be inferred from each
PC via Algorithm 1).

Loss Representation P
CE P := M(x ,yw ), PC := ⊥
CEUnl P := And(M(x,yw ), Not(M(x,yl )))

PC := ⊥
CPO P := Implies(M(x,yl), M(x,yw ))

PC := Or(M(x,yl ), M(x ,yw ))
ORPO P := Implies(M(x,yl),M(x,yw))

PC := XOR(M(x,yl ), M(x ,yw ))
DPO P := Implies(

And(Ref(x,yw),M(x,yl )),
And(Ref(x,yl),M(x,yw )))

PC := Or(And(Ref(x,yw),M(x,yl )),
And(Ref(x,yl),M(x,yw )))

SimPO P := Implies(
And(Mref(x,yw), M(x,yl )),
And(Mref(x,yl), M(x,yw )))

PC := Or(And(Mref(x,yw),M(x,yl )),
And(Mref(x,yl),M(x,yw )))

rules and the implication construction (Prop 2):

Lemma 1 (correctness of translation). Given a loss equation
ρθ := log ρtθ/ρ

b
θ with disjoint multilinear polynomials ρtθ,

and ρbθ, Algorithm 1 returns a preference structure P whose
semantic loss ratio ρsem(P) equals ρθ.

This establishes the correctness of our decompilation algo-
rithm, showing specifically that Algorithm 1 yields prefer-
ence structures that satisfy Eq 7.

6. Results and Discussion
Table 4 shows the preference structures obtained from Algo-
rithm 1 for the DPA losses in Table 2. The following result
establishes their correctness:

Theorem 1 (Correctness of formalization). The preference
structures in Table 4 correctly characterize the losses in
Table 2 and satisfy Eq 6 under semantic loss ℓsl-log (Table 3).

Proof. Since the original losses were all formulated using
the logistic log form of DPA, the correctness of Algorithm 1
(which follows from Lemma 1) implies that compiling the
representations in Table 4 (which, as noted above, were
obtained by running Algorithm 1 on the losses in Table 2)
under ℓsl-log will yield precisely the original losses, and
hence satisfies Eq 6.

By changing the version of semantic loss, we can extend our
analysis to other variants of DPO, showing the generality
of our semantic analysis and its invariance to the choice

of f . For example, by changing ℓsl-log to ℓsl-squared or
ℓsl-margin, we immediately obtain the following results:

Theorem 2 (Extension to other DPO). The DPO and CPO
preference structures in Table 4 correctly characterize the
IPO and SliC losses (Table 1) and satisfy Eq 6 under the
ℓsl-squared and ℓsl-margin semantic losses, respectively.

Given the ubiquity of DPO-style updates in other online vari-
ants of DPA (Qi et al., 2024; Zhang et al., 2024; Chen et al.,
2024b; Guo et al., 2024), similar formal characterizations
could be extended to these variants, as well as to recent
reward distillation approaches such as Fisch et al. (2024),
which we see as a promising future direction of research.

6.1. What do we learn about known losses?

Single model approaches have an intuitive semantics,
but differ in conditioning constraints. One goal of our
formalization is to cleanly characterize the semantic rela-
tionships between losses. For example, with CPO and ORPO
we see that both are derivable from the same core semantic
formula P := M(x, yl) → M(x, yw) from Figure 3. Indeed,
this formula appears to capture the fundamental semantics
of many known DPA losses. Under our account, however,
losses differ in the conditioning constraints PC they im-
pose, which structure the underlying probability distribution
in different ways. CPO conditions P on a one-true con-
straint that requires at least one of the winner and the loser
to be deemed valid (i.e., rules out the semantic interpreta-
tion where both are deemed invalid; last row in Fig. 4 top),
whereas ORPO imposes a one-hot constraint where exactly
one must be deemed valid. Through further semantic analy-
sis of their preference structures, we can see that both losses
are semantically entailed by ℓCEUnl, yet have a non-entailing
relation to one another or to the cross-entropy loss ℓCE.

Interestingly, we see that preference losses are highly con-
strained, which might explain their success. This is in con-
trast to the losses typically compiled via semantic loss in
neuro-symbolic modeling (Marra et al., 2024), suggesting
that there is much to learn by working backward from empir-
ically successful loss functions to their semantic properties.

There are many single model losses still to explore, and
we can exhaustively enumerate them. Another goal of
ours is to be able to derive novel losses from first principles.
This can be achieved by modifying the conditioning con-
straints PC. Figure 5 shows a (non-exhaustive) lattice repre-
sentation of the loss landscape for single model preference
approaches (see Fig. 8 for an exhaustive variant) created
by mechanically manipulating the constraints in ℓCEUnl (the
most constrained) and ordering the resulting losses by strict
entailment (<), terminating in ℓunCPO (our constraint-free
running example from Figs. 3-4).
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ℓCEUnl ✓

ℓsCE
ℓCE ✓

ℓcUNL

ℓl20
ℓfUnl

ℓORPO ✓

ℓCPO ✓

ℓcCPO ℓunCPO

ℓqfUnl

ℓcfUnl

M(x, yl) → M(x, yw)

¬M(x, yl)

M(x, yw)

M(x, yw) ∧ ¬M(x, yl)

most constrained least constrained

Figure 5. What other losses are there? Here we show the loss land-
scape for single model preference approaches using a loss lattice
showing losses (nodes) structured according to strict entailment
(<) and their core formulas P (boxes) with ✓ being the known
losses. See Appendix F for details of the individual losses and a
more exhaustive lattice with DPO variants in Figure 8.

We structure the resulting set of losses using the core loss
equations P, which reveals different semantic regions (blue
boxes). In addition to novel variants of ℓCPO and ℓORPO that
optimize for M(x, yl)→ M(x, yw), we see an entirely unex-
plored region of unlikelihood losses (ℓl20, ℓcUNL, ℓfUNL) that
optimize for the negation of the loser ¬M(x, yl). Through
compilation, all new losses can be explored experimentally,
which we discuss below.

Adding a reference model has a clear, though sometimes
peculiar, semantics. The semantics of DPO, is shown
in Table 4 and is logically equivalent to a conjunction of
two implications: Ref(x, yw) ∧ M(x, yl) → M(x, yw) and
Ref(x, yw) ∧ ¬Ref(x, yl)→ ¬M(x, yl). The first says that
If the reference deems the winner to be valid and the tunable
model deems the loser to be valid, then that model should
also deem the winner to be valid, while the second says
that the tunable model should deem the loser to be not
valid whenever the reference deems the winner to be valid
and the loser to be not valid. While this semantics makes
sense, and complements nicely the semantics of CPO by
adding information about the referent model, DPO includes
conditioning constraints that are hard to justify from first
principles, and that make it semantically disconnected from
the CE and CEUnl baselines.

We also note that variants like SimPO and DPOP when
formalized maintain exactly the same structure of DPO in
Table 4, with DPOP adding repeated variables that amplify
the score of the winner (see Appendix H). Giving the se-
mantic similarity between these variants and DPO, any small
semantic change found in one would likely be useful in these
others, which motivates general exploration into varying the
conditioning constraints. Several such variants of DPO and
SimPO are shown in Figure 8.

Can we find empirically improved losses using our
method? The ultimate goal of our analysis is to facili-
tate the discovery of empirically improved DPA losses. As

a case study, we implemented single model losses around
the known ℓCPO in Figure 5, treating it as a baseline to
improve upon. Using a model-as-judge style evaluation
adapted from Hong et al. (2024) and a Qwen-0.5B LLM
(details in Appendix G), we found one particular loss, ℓcCPO
to be competitive with ℓCPO, achieving a win-rate of 52.0 as
shown in Table 5. We also observe that different losses have
markedly different performance across different datasets
subsets, suggesting that a one-size-fits-all approach isn’t
ideal—semantically different tasks are best learned using
different losses.

Table 5. Results of a feasibility study involving Qwen-0.5B
tuned on the new losses (rows) compared against the known loss
ℓCPO (second column) on ultrafeedback (Cui et al., 2024) test
in aggregate (2nd column) and on subsets (right columns). See
details in Section G.

loss WR% (ℓcpo) evol false-qa flan sharegpt ultrachat
ℓcfUNL 46.1 (±0.4) 46.1 (±2.2) 51.6 (±2.9) 46.4 (±1.7) 46.2 (±1.2) 44.1 (±1.0)
ℓqfUNL 48.9 (±0.8) 45.3 (±1.9) 34.7 (±6.3) 57.9 (±1.2) 46.8 (±2.4) 41.3 (±1.4)
ℓcCPO 52.0 (±0.6) 50.7 (±0.5) 50.2 (±0.7) 57.2 (±1.1) 47.2 (±1.8) 53.1 (±1.9)
ℓunCPO 46.0 (±0.2) 45.8 (±0.3) 52.1 (±3.0) 45.7 (±0.6) 46.2 (±2.1) 44.8 (±2.1)

While small scale, this study demonstrates the feasibility
of using our framework to derive empirically successful
losses. Appendix G reports additional experiments and
findings. We include further details about the log probability
behavior of different losses and how such behavior relates
to the constrainedness of each loss. We see further work
on empirically exploring these new losses on a wider range
of models and scales as a promising direction of future
research, as well as using the full power of logic to derive
even more complex losses from first principles.

7. Conclusion
Despite the routine use of a variety of DPA algorithms to
align LLMs with human preferences, knowing what exactly
the losses underlying these algorithms capture and how they
relate to each other remains largely unknown. We presented
a new technique for characterizing the semantics of such
losses in terms of logical formulas over boolean proposi-
tions that capture model predictions. Key to our approach is
a decompilation procedure, allowing one to compositionally
derive provably correct symbolic formulas corresponding to
any loss function expressed as a ratio of disjoint multilinear
polynomials. Our approach provides a fresh perspective into
preference losses, identifying a rich loss landscape and open-
ing up new ways for practitioners to explore new losses by
systematically varying the symbolic formulas corresponding
to existing successful loss functions.
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Gallouédec, Q. Trl: Transformer reinforcement learn-
ing. https://github.com/huggingface/trl,
2020.

Wang, Y., Zhong, W., Li, L., Mi, F., Zeng, X., Huang,
W., Shang, L., Jiang, X., and Liu, Q. Aligning Large
Language Models with Human: A survey. arXiv preprint
arXiv:2307.12966, 2023.

Welleck, S., Kulikov, I., Roller, S., Dinan, E., Cho, K.,
and Weston, J. Neural text generation with unlikelihood
training. In International Conference on Learning Repre-
sentations, 2019.

Winata, G. I., Zhao, H., Das, A., Tang, W., Yao, D. D.,
Zhang, S.-X., and Sahu, S. Preference tuning with human
feedback on language, speech, and vision tasks: A survey.
Journal of Artificial Intelligence Research, 82:2595–2661,
2025.

Xu, H., Sharaf, A., Chen, Y., Tan, W., Shen, L., Van Durme,
B., Murray, K., and Kim, Y. J. Contrastive Preference Op-
timization: Pushing the Boundaries of LLM Performance
in Machine Translation. Proceedings of ICML, 2024.

Xu, J., Zhang, Z., Friedman, T., Liang, Y., and Broeck,
G. A Semantic Loss Function for Deep Learning with
Symbolic Knowledge. In Proceedings of ICML, pp. 5498–
5507, 2018.

Yixing, L., Yuxian, G., Dong, L., Wang, D., Cheng, Y., and
Wei, F. Direct preference knowledge distillation for large
language models. In arXiv preprint arXiv:2406.19774,
2024.

12

https://github.com/yakazimir/esslli_neural_symbolic
https://github.com/yakazimir/esslli_neural_symbolic
https://github.com/yakazimir/esslli_2024_llm_programming
https://github.com/yakazimir/esslli_2024_llm_programming
https://github.com/huggingface/trl


Understanding the Logic of Direct Preference Alignment through Logic

Yuan, Z., Yuan, H., Tan, C., Wang, W., Huang, S., and
Huang, F. RRHF: Rank Responses to Align Language
Models with Human Feedback without Tears. Proceed-
ings of NeurIPS, 2023.

Zhang, S., Yu, D., Sharma, H., Zhong, H., Liu, Z., Yang,
Z., Wang, S., Hassan, H., and Wang, Z. Self-exploring
language models: Active preference elicitation for online
alignment. arXiv preprint arXiv:2405.19332, 2024.

Zhao, H., Winata, G. I., Das, A., Zhang, S.-X., Yao, D. D.,
Tang, W., and Sahu, S. RainbowPO: A Unified Frame-
work for Combining Improvements in Preference Opti-
mization. Proceedings of ICLR, 2025.

Zhao, Y., Khalman, M., Joshi, R., Narayan, S., Saleh, M.,
and Liu, P. J. Calibrating Sequence likelihood improves
Conditional Language Generation. In Proceedings of
ICLR, 2022.

Zhao, Y., Joshi, R., Liu, T., Khalman, M., Saleh, M., and
Liu, P. J. SLiC-HF: Sequence Likelihood Calibration
with Human Feedback. arXiv preprint arXiv:2305.10425,
2023.

Ziegler, D. M., Stiennon, N., Wu, J., Brown, T. B., Radford,
A., Amodei, D., Christiano, P., and Irving, G. Fine-tuning
language models from human preferences. arXiv preprint
arXiv:1909.08593, 2019.

A. Additional related work
Decompilation of losses. In contrast to work on loss com-
pilation, we focus on the inverse problem of decompilation
(see Friedman et al. (2024)), or deriving symbolic expres-
sions from known loss functions. Work in this area has
mostly been limited to symbolically deriving standard loss
function such as cross-entropy (Giannini et al., 2020; Li
et al., 2019), whereas we look at deriving the semantics of
more complex LLM algorithms.

Declarative model programming. In addition to neuro-
symbolic modeling (Richardson & Srikumar, 2023; Marra
et al., 2024), we take inspiration from recent work on formal-
izing LLM algorithms in terms of programming language
concepts (Dohan et al., 2022; Beurer-Kellner et al., 2023;
Khattab et al., 2024), with our approach being declarative
in style (see review in Richardson & Wijnholds (2024)).
As such, our study takes much inspiration from the large
literature on declarative programming techniques for ML
(Eisner et al., 2004; De Raedt et al., 2007; Li et al., 2023;
Vieira et al., 2017; Ślusarz et al., 2023; van Krieken et al.,
2024a; Hinnerichs et al., 2024).

B. Original losses
Further details of the original losses in Table 2, along with
other variants such as R-DPO (Park et al., 2024), ODPO
(Amini et al., 2024), and DPKD (Yixing et al., 2024), are
shown in Table 6. While our formalization abstracts over
certain details such as length normalization and additional
regularization terms (and hence generalizes/simplifies some
of the original losses), we include here such details from the
original studies. In the case of regularization terms, as noted
in Table 6, most no reference approaches add an additional
cross-entropy term, often making the full losses in these
studies equal to ℓx+CE = ℓx + λℓCE (with weight λ). In
some cases, additional terms α are assumed that we abstract
over in our analysis, e.g., in ℓORPO the full loss includes an
additional weight term α that is added to the main loss (in
our experiments below, α is implicitly set to 1).

C. Compositionality constraint
Proposition 1 (decompilation and standard semantic loss).
Under Assumption 1, not all of the losses in Table 2 can be
decompiled into the standard semantic loss (Eq 3).

Proof. Taking ℓCPO as an example, the loss equation is
based on the ratio sθ(yw, yl) consisting of two predictions
Pθ(yw | x) and Pθ(yl | x), which we can translate into the
propositional formulas Pt := M(x, yw) and Pb := M(x, yl),
consisting of a total of two atomic propositions. Translating
this to the standard semantic loss involves finding a single
P such that Pw = P and Pl = ¬P. To see that no such P
exists, we can enumerate all 16 unique Boolean functions
over variables M(x, yw) and M(x, yl) (the only variables we
are allowed under Assumption 1) and verify that none yield

a single formula P s.t. log
WMC

(
P;θ
)

WMC
(
¬P;θ

) = sθ(yw, yl). The

same argument can be applied to each of the other non-
baseline losses in the table.

Without the compositionality assumption, one can encode
any ρθ as a formula using additional variables and weighting
schemes, as is commonly done in standard WMC encodings
(Chavira & Darwiche, 2008). However, the semantics of
the resulting formulas are less transparent and often hidden
in the weights. We instead propose to define below a novel
(unweighted) encoding for preference that doesn’t require
additional variables, thereby facilitating a compositional
and transparent translation from loss equations.

D. Semantic translation rules
In Table 7 we show the full translation rules for Algorithm 1.
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Table 6. Details of the original losses from Table 2 and others (adapted from Meng et al. (2024)), all of which were originally implemented
using the logistic log-loss, i.e., each ℓx = − log σ(βρθ). We also include details about whether cross-entropy regularization (CE term)
and length normalization (length norm.) were used (yes ✓, no ×) along with other details (Extra details) (e.g., extra weight terms,
specific choices about β or cross-entropy weight λ) that we either exclude or generalize in our analysis and experiments (e.g., extra loss
weighting terms α). See Winata et al. (2025) for a comprehensive review and Zhao et al. (2025) for an approach that further mixes the
DPO and SimPO losses.

Loss name core loss equation ρθ CE term length norm. Extra details and terms
common baseline losses

ℓCE log Pθ(yw|x)
1−Pθ(yw|x) – –

ℓCEUnl (Rafailov et al., 2023) log Pθ(yw|x)(1−Pθ(yl|x))
1−(Pθ(yw|x)(1−Pθ(yl|x)))

– – Unlikelihood term weighted by α

reference approaches
ℓDPO (Rafailov et al., 2023) log Pθ(yw|x)Pref(yl|x)

Pref(yw|x)Pθ(yl|x)

ℓODPO (Amini et al., 2024) log Pθ(yw|x)Pref(yl|x)
Pref(yw|x)Pθ(yl|x)

− γoffset Added offset term γoffset

ℓDPOP (Pal et al., 2024) log Pθ(yw|x)Pθ2(yw|x)Pref(yl|x)
Pref(yw|x)Pref2(yw|x)Pθ(yl|x)

See Appendix H
ℓR-DPO (Park et al., 2024) log Pθ(yw|x)Pref(yl|x)

Pref(yw|x)Pθ(yl|x)
+ γlen Added length bias term γlen

ℓDPKD (Yixing et al., 2024) log Pstudent(yw|x)Pteacher(yl|x)
Pteacher(yw|x)Pstudent(yl|x)

✓ ✓ Distillation, re-parameterizes ref and θ

single model (no reference), CE weight λ
ℓCPO (Xu et al., 2024) log Pθ(yw|x)

Pθ(yl|x)
✓ Removes ref

ℓORPO (Hong et al., 2024) log Pθ(yw|x)(1−Pθ(yl|x))
Pθ(yl|x)(1−Pθ(yw|x)) ✓ ✓ β = 1, main loss weighted by α, λ = 1

ℓSimPO (Meng et al., 2024) log Pθ(yw|x)
Pθ(yl|x)

− γ ✓ Added margin term γ, re-formalized in Table 2

Table 7. Rules for the compositional translation of loss expressions
into symbolic formulas. See again example in Figure 2.

Input SEM(·)
predictions

PM(y | x) P := M(x, y)
formulas P

P1 · P2 P := And(P1,P2)
1− P P := Not(P)

P1 + P2 P := Or(P1,P2)

E. Proofs of other propositions
Below we state propositions discussed in Section 5.1 with
their proofs.

Proposition 3 (monotonicity). If P
(1) ⊑ P

(2)
then

ℓsl(P
(1)

, θ,D) ≥ ℓsl(P
(2)

, θ,D) for any θ,D.

Proof. By the definition of preference entailment, we have
P
(1)

f |= P
(2)

f . This means that for any d, P
1
(d) |=

P
2
(d), which implies that for any θ, WMC

(
P
(1)

(d); θ
)
≤

WMC
(
P
(2)

(d); θ
)
. From the definition of preference en-

tailment, we also have ¬P(2)
(d) |= ¬P(1)

(d). Follow-
ing a similar line of reasoning as above, this implies
WMC

(
¬P(1)

(d); θ
)
≥ WMC

(
¬P(2)

(d); θ
)
. Thus, for any

d and θ, the weighted model counting ratio term in the se-
mantic loss in Table 3 is no larger for P

(1)
than for P

(2)
.

It follows that ℓsl(P
(1)

, θ, {d}) ≥ ℓsl(P
(2)

, θ, {d}). Taking

the expectation over d ∼ D, we obtain ℓsl(P
(1)

, θ,D) ≥
ℓsl(P

(2)
, θ,D).

It follows that equivalent preference structures have identical
semantic losses:

Corollary 1 (semantic equivalence). If P
1 ≡ P

2
then

ℓsl(P
(1)

, θ,D) = ℓsl(P
2
, θ,D) for any θ,D.

The next result is an analogue to the locality property in
the original semantic loss (Xu et al., 2018), which tells us
that unused logical variables in formulas do not affect loss
values, which allows us to compare losses with different
number of variables.

Proposition 4 (locality). Let P be a preference structure
defined over probabilistic prediction variables X with pa-
rameters θx. Let Y be some disjoint set of variables with
parameters θy. Then ℓsl(P, θx, D) = ℓsl(P, [θx θy], D) for
any D.

Proof. Let wx be any world over variables X and wy be
any world over (disjoint) variables Y. Let wx,y denote the
joint world. By the standard semantic loss, the probability
of the world wx,y in the (X,Y) space can be written as
Pθx,θy (wx,y) =

∏
Xi∈X Qθx,θy (Xi) ·

∏
Yj∈Y Qθx,θy (Yj)

where Q is either P or 1− P . Since the parameters θx and
θy refer to disjoint sets of variables, we can simplify this to∏

Xi∈X Qθx(Xi) ·
∏

Yj∈Y Qθy (Yj).

It follows that the marginal probability of the world
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wx in the (X,Y) space equals Pθx,θy (wx) =∑
Y

(∏
Xi∈X Qθx(Xi) ·

∏
Yj∈Y Qθy (Yj)

)
=∏

Xi∈X Qθx(Xi) ·
∑

Y

(∏
Yj∈Y Qθy (Yj)

)
=∏

Xi∈X Qθx(Xi) ·
∏

Yj∈Y

(
Qθy (Yj) + (1−Qθy (Yj))

)
=∏

Xi∈X Qθx(Xi) = Pθx(wx). This last expression is
precisely the probability of the world wx in only the
X space. Thus, Pθx(wx) = Pθx,θy (wx), which implies
WMC

(
P; θx

)
= WMC

(
P; θx, θy

)
and similarly for ¬P.

From this, the claim follows immediately.

F. New losses in loss lattice
To visualize the semantics of the single model losses shown
in Figure 5, we use the Boolean truth table shown in Figure 6.
As already illustrated in Figure 4, each loss column can be
mechanically converted into a preference structure via the
following steps: 1) translate ✓ and × into two standard
propositional formulas that are logically consistent with the
marks, Pt for Pb, respectively, then 2) apply the rules in
Algorithm 1 to these formulas to get a preference structure
P. (Note that the formulas in boxes in Figure 5 show the
core formula P in the resulting preference structure and
intentionally hide details about the constraints.)

With these preference structures, we can then obtain a com-
piled version of the loss by simply applying one of the
versions of the semantic loss. In simplified terms, finding
the compiled loss equation directly from a truth table for a
given version of semantic loss with convex function f (e.g.,
those listed in Table 3) involves the following

f

(
log

∑
✓∑
×

)
where we can replace each

∑
. with the corresponding

WMC equations for each mark, then simplify the resulting
equation (i.e., the core loss equation) to arrive at a compact
loss equation that can be directly used for implementation.

Losses used in experiments Employing the process
above, below we show the core loss equations for the losses
we used in our experiments in accordance with the form in
Table 2:

Loss name Core loss equation (implementation)
ℓcpo log Pθ(yw|x)

Pθ(yl|x)
ℓorpo log Pθ(yw|x)(1−pθ(yl|x))

Pθ(yl|x)(1−pθ(yw|x))

ℓcCPO log Pθ(yw|x)
(1−Pθ(yw|x))Pθ(yl|x)

ℓqfUNL log (1−Pθ(yl|x))
(1−Pθ(yw|x)

ℓcfUNL log (1−Pθ(yl|x))
(1−Pθ(yw|x))Pθ(yl|x)

ℓunCPO log Pθ(yl|x)Pθ(yw|x)+(1−Pθ(yl|x))
Pθ(yl|x)(1−Pθ(yw|x))

As described above, the final loss that we implemented was
then obtained by applying the logistic loss loss over these
equations and adding a β term and cross-entropy terms (see
details below). We used the trl library for implementation
from (von Werra et al., 2020), with assistance from the
trainer scripts used in Meng et al. (2024).4

Extending the loss lattice to reference models As seen
in Table 2, single model losses can be mapped to DPO-
style losses with reference models by subtracting the log
ratio sref(yw, yl) from their loss equation ρθ, which we
call the reference form of a single model loss. We note
the following fact about reference loss forms. Formally,
given any core loss equation ρθ equal to log ρtθ/ρ

b
θ, the

reference form of that loss (i.e., ρθ − sref(yw, yl) with
sref(yw, yl) := logPref(yw | x)/Pref(yl | x)) is equal to
the core loss equation ρref

θ := log
ρt
θPref(yl|x)

ρb
θPref(yw|x) , which fol-

lows from the application of the quotient rule for logarithms.

As an example, the reference form of ℓCPO is equal to ℓDPO,
given that the reference form of sθ(yw, yl) (i.e., CPO’s loss
equation) is sθ(yw, yl)− sref(yw, yl) (DPO). Using the quo-
tient rule for logarithms, we can transform this into the core
loss equation ρref

θ equal to log Pθ(yw|x)Pref(yl|x)
Pθ(yl|x)Pref(yw|x) , which con-

firms the observation above. In contrast, the reference form
of ℓORPO is a novel loss sθ(yw, yl)−sθ(yw, yl)−sref(yw, yl)
corresponding, after the same algebraic manipulation, to the
new loss shown in Figure 1 (DPO variant) and the core
loss equation log Pθ(yw|x)(1−Pθ(yl|x))Pref(yl|x)

Pθ(yl|x)(1−Pθ(yw|x))Pref(yw|x) .

Given how our decompilation procedure works via Algo-
rithm 1, we note the following fact about how such extra
reference terms affect the semantics of the original loss:

Proposition 5 (semantics of reference forms). Given a
loss characterized by the core loss equation ρθ equal to
log ρtθ/ρ

b
θ, the core semantic formula P for that loss’s refer-

ence form is logically equivalent to the formula (SEM(ρbθ)∧
Ref(x, yw))→ (SEM(ρtθ) ∧ Ref(x, yl)).

Figure 8 (gray boxes) show the semantics of the reference
forms for a more exhaustive set of single model losses from
Figure 5 using the recipe above. This reveals a wide range
of novel variants of DPO that we leave for future exper-
iments and study. Correspondingly, Figure 7 shows the
Boolean semantics of DPO/SimPO and some novel variants
based on the reference form of ORPO (ℓORPO-ref), qfUNL
(ℓqfUNL-ref) and l5 (ℓl5-ref).

Computing preference structures Figure 9 shows how
to symbolically compute preference structure representa-
tions in Python using the computer algebra library Sympy

4see https://github.com/huggingface/trl and
https://github.com/princeton-nlp/SimPO.
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M(x, yw) M(x, yl) ℓORPO ℓcUnl ℓl3 ℓCEUnl ℓcCPO ℓCPO ℓCE ℓsCE

T T ✓ ✓ ✓ ✓
T F ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

F T
F F

M(x, yw) M(x, yl) ℓcfUnl ℓfUnl ℓqfUnl ℓl20 ℓunCPO ℓl14 ℓbCPO ℓl5

T T ✓ ✓ ✓ ✓
T F ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

F T
F F ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Figure 6. A Boolean representation (in the style of Figure 4) of the single model loss functions shown in Figure 5. See again Figure 4 for
how to interpret the corresponding losses.

(M)Ref(x, yw) M(x, yl) (M)Ref(x, yl) M(x, yw) ℓDPO/SimPO ℓorpo-ref ℓqfUNL-ref ℓl5-ref

F F F F ✓
F F F T ✓
F F T F ✓ ✓
F F T T ✓ ✓ ✓ ✓
F T F F
F T F T ✓
F T T F
F T T T ✓ ✓

T F F F ✓
T F F T ✓

T F T F ✓ ✓
T F T T ✓ ✓ ✓ ✓

T T F F
T T F T ✓

T T T F
T T T T ✓ ✓

Figure 7. Boolean semantics of DPO and SimPO (column 5) and some novel variants of (columns 6-8) representing the different semantic
regions in Figure 8.

CEUnl ✓

sCE

CE ✓

l3

cUNL

l20

fUnl

ORPO ✓

CPO ✓ l14

cCPO unCPO

qfUnl

l5

bCPO

cfUnl

M(x, yl) → M(x, yw)¬M(x, yl)

M(x, yw)

M(x, yw) ∧ ¬M(x, yl)

Ref(x, yw) ∧ M(x, yl)
→ M(x, yw) ∧ Ref(x, yl)

Ref(x, yw) ∧ (M(x, yl) ∨ ¬Ref(x, yl))
∧(¬M(x, yw) ∨ ¬Ref(x, yl))

→ M(x, yw) ∧ ¬M(x, yl)

M(x, yl) ∧ Ref(x, yw)
→ M(x, yw)

Ref(x, yw) ∧ (M(x, yl) ∨ ¬Ref(x, yl))
→ M(x, yw)

Ref(x, yw) ∧ (M(x, yl) ∨ ¬Ref(x, yl))
→ M(x, yw) ∧ ¬M(x, yl)

Ref(x, yw) → ¬M(x, yl)

Ref(x, yw) → M(x, yw)

Ref(x, yw)
→ M(x, yw) ∧ ¬M(x, yl)

Ref(x, yw) ∧ (¬M(x, yw) ∨ ¬Ref(x, yl))
→ M(x, yw) ∧ ¬M(x, yl)

Figure 8. What are interesting DPO variants to explore? Extending the loss lattice in Figure 5 to a version of the single model losses with
reference models (i.e., their reference forms), showing different (largely unexplored) variants of DPO and the different semantics regions
(gray boxes, corresponding to the core semantic formula for P each set of losses). See Appendix F for details.
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1 from sympy import ∗
2 # winner (W), loser (L),
3 #(ref) winner (R_w), loser (R_l)
4 W,L,R w,R l = symbols('W,L,R w,R l')
5 ## equation translation for ORPO
6 P t = And(W,Not(L))
7 P b = And(L,Not(W))
8 ## pref. structure P = (P,PC,PA)
9 P = Implies(P b,P t).simplify()

10 assert P.equals(Implies(L,W))
11 P C = Or(P t,P b).simplify()

12 P A = And(P t,P b).simplify()

13 ## The reference form formula
14 P ref = Implies(
15 And(P b,R w), And(P t,R l)

16 ).simplify()

17 assert P ref.equals(

18 Implies(And(R w,L),W)

19 )

Figure 9. An example showing how to compute the simplified sym-
bolic formulas in preference structures for ORPO (see Figure 2) in
Sympy (Meurer et al., 2017).

(Meurer et al., 2017). Specifically, lines 8-12 show how to
compute a preference structure in the no-reference case, and
lines 14-20 show how to compute a reference form of ORPO
by adding a reference ratio.

G. Experiments and Case studies
Our formal analysis reveals that the space of DPA losses
is large, yet structured in systematic ways that we can now
describe through symbolic encodings. Through case studies
involving the new losses in Figure 5, we discuss some empir-
ical results that give tips for how to better navigate this space
and look for improved DPA losses using our framework.
Specifically, we focus on losses around the known loss ℓCPO,
which we treat as a natural baseline to compare against. All
experiments are performed using a 0.5 billion parameter
LLM, Qwen-0.5B (Bai et al., 2023), tuned using trl
(von Werra et al., 2020) on the ultrafeedback dataset;
following standard practice, losses were implemented with
a weighted cross-entropy regularizer term.

While these experiments are small scale and limited in scope,
they are merely meant to suggest possible uses our frame-
work and open questions. We also share some general ob-
servations and conjectures that we hope motivates future
research in this area.

Below we provide details of the experiment setting then
discuss some results and observations.

Dataset and Model Following much of the DPA work
we cite, we train models on the ultrafeedback dataset
(Cui et al., 2024), which contains around 60k binarized pref-
erence pairs aggregated from several individual preference
datasets (the different categories are listed in Table 5). For
tuning (detailed below) we used a custom held-out develop-
ment set containing around 1.3k examples taken from the
train set and reserve the test set (containing 2k examples)
for final evaluation.

Standardly, we ran experiments starting from a instruc-
tion tuned model (SFT), using a Qwen-0.5B (contain-
ing .5 billion parameters) base model (Bai et al., 2023)
that was initially tuned on 6k pairs from the deita
dataset of (Liu et al., 2024). To avoid repeating the pro-
cess of instruction tuning, we started from the trained
Qwen model released in the TRL library5. Our full code
is available at https://github.com/allenai/
declarative_preference_alignment.

Hyper-parameters and model selection The following
are the standard set of tunable hyper-parameters involved
in our experiments: the β term for DPA losses (see again
Table 1), the learning rate, number of epochs, batch size
and length normalization. Following other studies, we also
regularized our losses with cross-entropy terms (CE) that
include a tunable weight parameter λ that controls their con-
tribution to the gradient. Specifically, we kept set β to 1,
and experimented with learning rates in the range {1e-6,
3e-6, 8e-6}, number of epochs in the range of {3, 5, 8}
and batches sizes in the range { 32, 128 } (for efficiency
reasons, most tuning with done with a batch size of 32),
which follow many of the suggested ranges in Meng et al.
(2024). Importantly, length normalization was used through-
out to make all losses comparable and given that it has
been shown to improve training performance (Meng et al.,
2024). We used λs in the range of {0.0, 0.01, 0.1, 0.3, 1.0}
(we found lower values, around 0.01 and 0.1, to be most
effective).

For each loss function we searched the best hyper-
parameters by performing a comprehensive search over the
ranges detailed above. Final model selection was then per-
formed by performing inference with each trained model
on our held-out development set and scoring the resulting
generating outputs using an off-the-shelf reward model, in
particular, a 1.8B parameter reward model from (Cai et al.,
2024)6. We then selected the models with the highest aver-

5https://huggingface.co/trl-lib/qwen1.5-0.
5b-sft

6internlm/internlm2-1_8b-reward
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age reward score over the development set for comparison.

For the log probability experiments shown in Figure 10, we
kept the learning rate, epoch and cross-entropy term constant
(with learning rate equal to 1e-6, 3 epochs, and a low
cross-entropy term 0.01) to directly compare the different
approaches and try to bring out their more extreme behavior.

Evaluation protocol and win-rate comparison We com-
pare models tuned using our different losses using a proce-
dure similar to how model selection is performance, which
also follows the setup in Hong et al. (2024). Specifically, we
do a instance-level comparison of the reward score given for
each generated output, compare that score with the score of
our baseline ℓcpo and compute an overall win-rate, i.e., % of
instances where the reward score is higher than or equal to
the reward score for ℓcpo (we consider cases where items are
equal given that some tasks involve generating single token
output, such as the identifier of a multiple choice question
or yes or no). We report the average win-rate averaged over
3 runs of each models with different generation seeds using
vllm (Kwon et al., 2023).

G.1. Results and discussion

How does constrainedness relate to loss behavior? Un-
intentional alignment shortcuts Moving left to the right
in Figure 5 yields semantically less constrained losses. For
example, we see through the Boolean semantics in Figure 10
that some unconstrained losses can be satisfied by making
the winner and loser both false (ℓunCPO, ℓcfUNL) or by mak-
ing the the winner and loser both true (ℓunCPO, ℓcfUNL). One
natural question is: How does constrainedness contribute to
a loss functions empirical success?

We observe, consistent with other recent work on neuro-
symbolic modeling (Marconato et al., 2024; van Krieken
et al., 2024b), that such unconstrainedness can yield extreme
behavior as illustrated in Figure 10. For example, ℓunCPO and
ℓcfUNL attempt to make both the winners and losers false by
driving their probability in the direction of zero (as shown
in both training (b) and evaluation (c)), whereas ℓcfUNL
keeps both probabilities high to make both true. When
viewing learning as a constraint satisfaction problem, such
behavior makes sense and could help to better understand
various spurious training behavior observed elsewhere in
the DPA literature, e.g., related to likelihood displacement
and unintentional unalignment studied in Razin et al. (2025)
or issues with preference ranking (Chen et al., 2024a).

These results suggest that understanding the way in which
a loss is constrained and whether it gives rise to spurious
or unintentional alignment shortcuts (e.g., making both
predictions false) is an important factor when designing
new loss functions. We note that existing losses in Figure 5
are in the middle of the two extreme points and seem less
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Figure 10. An illustration (A) of how to semantically satisfy losses
( ✓ ) and the corresponding log probability behavior during train-
ing (B) and evaluation (C).

susceptible to such extreme behavior, which could explain
their success.

Can we find empirically improved losses using our
method? Formalize and refine Our ultimate aim to use
our framework to help discover new and successful pref-
erence algorithms. Given the spurious behavior of losses
ℓunCPO and ℓcfUNL, we would expect them to be less em-
pirically successful. To test this and compare against ℓCPO,
we performed a model-as-judge-style experiment based on
(Hong et al., 2024) that uses an off-the-shelf reward model
(Cai et al., 2024) to score the outputs generated by our new
models using the prompts from the ultrafeedback test
set. We then compare these rewards scores against those
of ℓCPO to compute a win-rate, which gives an indication of
improved or comparable generation quality over ℓCPO. In-
deed, we see in Table 5 that in aggregate, ℓunCPO and ℓcfUNL
have the lowest win-rate against ℓCPO. Interestingly, we see
that ℓcCPO has a win-rate that suggests comparable genera-
tion quality to ℓCPO, which shows the potential of using our
framework to derive new and empirically successful losses.

These experiments are an exercise in an approach we call
formalize and refine, i.e., starting from empirically suc-
cessful losses such as ℓCPO, one can formalize such losses
then modify the semantics to be more or less constrained
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based on empirical findings. We think more large scale
exploration of the full loss space, especially for DPO, is a
promising direction of future research.

Is there a single semantics for all preference learning?
The different semantics conjecture We note that win-
rate across different categories in ultrafeedback (i.e.,
the right most columns in Table 5) varies quite considerably
across models and loss types. This suggests that different
types of preference data rely on a different semantics of
preference, which requires a tuning approach that’s tailored
to those differences. We conjecture that such a phenomenon
is likely to be wide spread across different tasks and datasets,
and we see more empirical work on understanding the kinds
of semantics needed in different scenarios as a promising
direction of future work. Such work will benefit for recent
attempts as incorporating more fine-grained annotation into
preference such, such as in Miranda et al. (2024).

H. DPOP equation
The original DPOP loss (Pal et al., 2024) in Table 2 subtracts
an additional term λ ·max(0, log Pref(yw|x)

Pθ(yw|x) ) from DPO loss,
with the aim of ensuring that the log-likelihood of the winner
for model θ is high relative to the reference model (in their
study λ is set to a whole number ranging from 5 to 50).
At first glance, this formulation does not fit the core loss
equation format introduced in Table 2. Our approach is
the following: first, we make this into a single log ratio
by making λ an instance-level parameter set to 0 whenever
Pref(yw|x)
Pθ(yw|x) is less than zero and to be the original λ otherwise,

resulting in log Pref(yw|x)λ
Pθ(yw|x)λ . Expanding this out to the full

DPOP loss function, this results in the core loss equation:

log
Pref(yl | x)Pθ(yw | x)λ+1

Pref(yw | x)λ+1Pθ(yl | x)

which is not multilinear when λ > 1. In order to ensure
multilinearity, while also maintaining compositionality from
Assumption 1, we treat Pref(yw | x)λ and Pθ(yw | x)λ as
separate probabilistic variables, Pref2(yw | x) and Pθ2(yw |
x), respectively. This results in the core loss equation shown
in Tables 2 and 6.

Below we show the core semantic formula for DPOP, which,
as noted before, makes a small adjustment to the DPO se-
mantics as shown in Table 4:

P := Implies(
And(Ref(x,yw), Ref2(x,yw ), M(x ,yl )),
And(Ref(x,yl), M(x ,yw ), M1(x ,yw ))

)
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