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Abstract—Marine aquaculture semantic segmentation provides
a scientific basis for marine regulation and plays an important
role in marine ecological protection and management. Currently,
most high-performance marine aquaculture segmentation net-
works are trained by supervised learning. This approach requires
collecting a large number of accurate manually labelled samples
for training, but the labelled samples are difficult to obtain. To
solve this problem, this paper proposes an unsupervised feature
fusion model (UFFM) for marine raft aquaculture semantic
segmentation. Firstly, a pseudo-label generator is designed to
label the training samples, and a coarse mask is generated using
saliency feature clustering. The training samples with pseudo-
labels are inputted into a multilevel feature fusion module to
extract further and continuously improve the graphical shapes
and categories of the objects under the guidance of cross-entropy
loss. The pseudo-labels are optimised under continuous iteration
to improve the model segmentation performance. Comparison
experiments on the GF-3 dataset demonstrate the effectiveness
of UFFM.

Index Terms—unsupervised learning, pseudo-label, SAR im-
ages, semantic segmentation

I. INTRODUCTION

China has witnessed rapid growth in the scale and bene-
fits of marine aquaculture development in recent years [1].
However, while the marine aquaculture industry has made
significant progress, it is also faced with problems such
as pollution around aquaculture waters, irrational layout of
aquaculture, and excessive density of offshore aquaculture [2].
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Synthetic aperture radar (SAR) has the advantage of being all-
weather and does not need to consider factors such as cloudy
weather. It has become an essential tool for monitoring marine
aquaculture. The backscattering features of the mariculture raft
target in SAR images are much larger than the backscattering
features of the seawater surface, which makes the aquaculture
rafts and seawater background present a high contrast [3].
Researchers have adopted deep learning techniques to design
various mariculture semantic segmentation methods to effi-
ciently and accurately extract the mariculture information [4].

However, existing neural network models usually rely on a
large amount of manually labeled data for training to obtain
high-accuracy results. This approach faces two main problems:
1) the cost of obtaining high-quality manually labeled data is
extremely high in complex scenarios and when dealing with
massive remote sensing data, resulting in a large amount of re-
mote sensing data that cannot be fully utilized. 2) the reliance
on manual labelling as the only learning signal leads to limited
feature learning. Several studies have proposed unsupervised
methods for extracting information on marine aquaculture to
address these challenges. Fan et al. [3] proposed using the
multi-source characteristics of floating rafts and combining
the neurodynamic optimization with the collective multi-core
fuzzy C-means algorithm to classify unsupervised aquaculture.
Wang et al. [5] designed an incremental dual unsupervised
deep learning model based on the idea of alternating iterative
optimization of pseudo-labels and segmentation results to
maintain and strengthen the edge semantic information of
pseudo-labels and effectively reduce the influence of coherent
spot noise in SAR images. Subsequently, Zhou et al. [6]
constructed an unsupervised semantic segmentation network
for mariculture based on mutual information theory and su-
perpixel algorithm, which improves the continuity and spatial
consistency of mariculture target extraction through global



feature learning, pseudo-label generation, and optimization
with mutual information loss. However, the above unsuper-
vised deep learning models mainly rely on single-area data
training, which is difficult to generalize to intelligent image
interpretation in wide-area and complex scenes.

With the emergence of transformer [7], a self-supervised
representation learning model using unlabeled remote sens-
ing big data to address regional feature differences. Self-
supervised transformer network can learn its spatial features
from a large amount of remote sensing data by constructing a
pretexting task and pre-training the vision transformer model,
which applies to a variety of downstream tasks by fine-tuning,
e.g., change detection [8], classification [9], target detection
[10], and semantic segmentation tasks [11]. Fan et al. [12]
established a self-supervised feature fusion transformer model
to obtain the essential features of mariculture through a large
number of unlabeled samples, introduced contrast loss and
mask loss, and paid attention to the global and local features
of aquaculture at the same time, which mitigated the problems
of mutual interference among multiple targets and imbalance
of data between classes, and realized the accurate segmenta-
tion of mariculture. However, the self-supervised transformer
model can rely on a large number of unlabeled floating raft
aquaculture data for information extraction on a single sea
area but still needs high-quality labeled data fine-tuning in the
downstream segmentation network.

To solve the above problems, this paper applies the
saliency information obtained from self-supervised represen-
tation learning to the downstream segmentation network. It
combines it with a multi-stage feature fusion module to
further enhance the semantic segmentation performance of
the network. Specifically, a pseudo-label generator is first de-
signed to generate saliency pseudo-labels. Then, the semantic
segmentation results output by the multilevel feature fusion
module is cross-entropy loss with the pseudo-labels, which
are constrained and directionally passed parameters to the
network. The pseudo-labels are optimised through continu-
ous iteration to improve network segmentation performance
further.

II. RELATED WORK
A. Self-supervised feature learning

Self-supervised learning mainly utilizes auxiliary tasks to
mine supervised information from large-scale unmanually
labeled data. It trains the network with this constructed
supervised information to learn valuable representations for
downstream tasks. Common auxiliary tasks include compara-
tive learning, generative learning, and comparative generative
methods that design learning paradigms based on data distri-
bution characteristics to obtain better feature representations.
However, these methods are mainly focused on image classi-
fication tasks and thus are typically designed to generate sep-
arate global vectors from images as input. This problem leads
to poor results downstream for densely predicted segmentation
tasks, requiring high-quality truth-labeled fine-tuned models.
However, the emergence of self-supervised transformer has

made it possible to extract dense feature vectors without
requiring specialized dense contrast learning methods, which
can reveal hidden semantic relationships in images. In this
paper, inspired by DINO [13], the upstream trained image
saliency features generate pseudo-labels for the training data
to fine-tune the downstream segmentation network to construct
a fully unsupervised semantic segmentation model.

B. Unsupervised semantic segmentation

Unsupervised semantic segmentation aims at class predic-
tion for each pixel point in an image without artificial labels.
Ji et al. [14] proposed invariant information clustering (IIC),
which ensures cross-view consistency by maximising the
mutual information between neighbouring pixels of different
views. Li et al. [15] constructed PiCIE to learn the invariance
and isotropy of photometric and geometric variations by using
geometric consistency as an inductive bias. This approach
is that it only works on dataset MS COCO, which does
not distinguish between foreground and background classes.
MaskContrast [16] first generates object masks using DINO
pre-trained ViT and then uses pixel-level embeddings obtained
from contrast loss. However, the method can only be applied
to saliency datasets. For the multi-stage paradigm, researchers
tried to utilise class activation maps (CAM) [17] to obtain
initial pixel-level pseudo-labels, which were then refined using
a teacher-student network. However, this would result in losing
features during training, decreasing segmentation accuracy.
In this paper, to solve the above problems, Grad-CAM [18§]
is introduced in multi-stage to generate pseudo-labels and
improve the segmentation performance by multi-scale feature
fusion.

III. METHOD
A. Overall framework

In the upstream task, a large amount of unlabeled marine
aquaculture data is trained from zero to obtain the pre-trained
ViT weights 0; and initialize the downstream feature extraction
network. The overall architecture designed for the downstream
segmentation task is shown in Fig. 1. The processed unlabeled
marine aquaculture images are used as inputs to the network
to obtain the segmentation results of the aquaculture. The de-
signed network have two branches, one for generating pseudo
labels using saliency features and the other is a segmentation
branch for multi-layer feature fusion. First, in the upstream
task, large-scale unlabeled data is used to pre-train the ViT
[13] in order to obtain the initialization parameters 6; of the
downstream feature extraction network, which can accelerate
the convergence of the downstream segmentation network by
using the pre-training weights and is crucial for the extraction
of the model to salient features. The designed network is
shown in Fig. 1. First, an input unlabeled marine aquaculture
image, which has been stretched in a linear phase and rotated
randomly, is used to augment the original image with data. The
input image will go through two branches: one is the saliency
pseudo-label generation branch, which will be presented in
III-B, and the other is the multi-layer transformer feature
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Fig. 1. Overview model of UFFM. (a) Obtaining saliency pseudo-label: Input the multi-head self-attention mechanism of the last layer feature map in the

transformer block into Grad-CAM to obtain saliency patch features and generate saliency pseudo-label. (b) Obtaining segmentation results: The semantic
information is enhanced using a multilayer transformer with PPM, and the semantic segmentation results with pseudo-labels are output by backpropagation
after the loss computation. After continuous iterative updates, the network segmentation performance is improved.

fusion branch, which will be presented in III-C. In network
training, the supervisory loss L is the pixel-by-pixel cross-
entropy loss between the pseudo-labeled pixel level and the
prediction:

N-1
1 _
L, = ¥ ;,0 CrossEntropy(ii, yi) (D

where N denotes the number of pixels in the image = €
RIXWx3 and 4; € R is the network’s prediction probability
for pixel ¢, where C' is the number of predicted classes and
i € RC is the labelling class of pixel i in the pseudo-label.

During the network training, the loss will be gradient back
to the feature extraction network, and in particular, the weights
of the two branches will be shared and updated simultaneously.
Through continuous iteration of the network, the pseudo-label
is updated, thus improving the segmentation performance of
the network.

B. Saliency pseudo-label generation

In unsupervised tasks, the design of pseudo-labels is crucial.
A simple approach is to use confidence thresholds followed by
direct results output as pseudo-labels. However, this approach
is unsatisfactory in processing complex data and produces poor
results. To solve this problem, a variant of activation graph-
like Grad-CAM is used in this paper to generate significance
discriminative pseudo-labels by stepwise subdivision from the
target localisation method. Given an image x, generate a
sequence of patch embeddings zpatcn € RP*P, where P is
the number of patches, and D is the output dimension. Then,
zors € R™P and position embedding P are also added to

the concatenated inputs. Therefore, the input sequence zy of
ViT is described as:

2

After that, the last layer of features is obtained through
multiple layers of transformer encoders. The saliency feature
map is computed using Grad-CAM. The first k salient patches
with the largest absolute value of the gradient of the embedded
image patch features are selected as the salient patches, and
finally, a binary operation is performed to mark the first &
salient patches as 0 and the rest as 255. The generated saliency
pseudo-label ¢ is written as:

20 = [xpatch7$CLS] + P

8gjpatch
- 0, if g in topkG
§= I gr 1N Top (4)

255, otherwise

where G € R = {g1, g2, . . . gk } is the salience map of patches

topk is the set of selected

_ 1 K
Tpatch = xpatch’ ce zpatch

salient patches.

C. Multi-stage feature fusion

The segmentation decoder consists of a pyramid pooling
module (PPM) and a multi-scale feature pyramid to enable
the network to capture contextual semantic information better.
Firstly, three feature maps {Va, V3, V,} are generated at the
transformer encoder. The output feature vectors are the same
size since the model chosen is the base ViT model, and the
last transversal L5 is generated from the last feature map
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Fig. 2. Visual comparison of raft marine aquqculture segmentation on the GF-3 dataset. (a) original images. (b) ground-truth labels. (c) IIC. (d) PiCIE. (e)

IDUDL. (f) UFFM.

Vs through the PPM module. The FPN sub-network then
paths down from the top to the branch to obtain F; =
L;4+UPy (Fi11), 7 = {2, 3,4}, where the operation Up denotes
bilinear upsampling. The FPN then uses the convolutional
block h; to obtain the output P; respectively. The final feature
fusion of the FPN output requires bilinear upsampling of
each po to ensure that they have the same spatial size and
is finally connected by the channel dimension and fused by
the convolutional unit block h

Z = h([P2;UPy (P3);UPy (Py); UPs (P5)])  (5)

The fused feature Z is then subjected to 1x1 convolution
and 4x bilinear upsampling to obtain the final prediction y.

IV. EXPERIMENTAL RESULTS
A. Experiment Setup and Datasets

All experiments are conducted in PyTorch 1.8.1, using an
Intel Xeon Platinum 8255C with a clock speed of 2.5 GHz
and an Nvidia GeForce RTX 3090. The data enhancement
strategy was consistent with DINO [13]. A vit - s /16 model
[7] trained with self jitter loss was used to extract features from
the patches. The learning rate was set to 0.05. In addition, a
stochastic gradient descent (SGD) optimiser with a momentum
of 0.9 was used. The encoder part uses ViT as the main
network. The decoder part uses the UPerHead architecture to
receive features from all levels of the encoder and generate the
final prediction through pooling and upsampling operations.
Meanwhile, the auxiliary head uses FCNHead architecture to
receive features from specific encoder layers.

The study area is located in the sea water aquaculture
area of Changhai County, China. The remote sensing images

were preprocessed with radiometric calibration and geographic
correction, and the remote sensing images with horizontal-
horizontal(HH) polarisation mode are selected as the experi-
mental data. The images are subsequently cropped to 512x 512
pixels. The self-supervised pre-training of the GF-3 dataset is
more than 13,000, the downstream train datasets is 369, and
the test datasets is 160.

B. Evaluation Metrics

In SAR images, there are a large number of coherent
spot noise effects on raft aquaculture targets, resulting in a
large number of isolated noise points in the image, which
affects the accurate extraction of raft aquaculture targets.
Therefore, in this paper, multiple evaluation metrics are used to
evaluate the segmentation results. The metrics refer to IDUDL,
which contains mIoU (mIoU), Kappa coefficient (K'), Overall
Accuracy (OA), Precision (P), Recall (R) and F1 score (F}).

Where mlIoU evaluates the average degree of overlap
between the predicted pixel categories and the true value pixel
categories, which enables a better evaluation of the seman-
tic continuity and consistency of the model predictions. K
considered the effect of chance coincidences when evaluating
the degree of consistency. OA evaluates the proportion of
correctly predicted pixel classes in the overall correctly pre-
dicted pixel classes, reflecting the global accuracy. P denotes
the proportion of float samples predicted by the model. R
represents the ability of the model to find all positive samples.
F synthesis balances P and R.



TABLE I
QUANTITATIVE COMPARISON OF PROPOSED WITH OTHER UNSUPERVISED
DEEP LEARNING METHODS ON THE SAME DATASET. THE BEST RESULTS
ARE HIGHLIGHTED AS BOLD.

Methods mloU Kappa  OA(%) P(%) R(%) Fl

1IC [14] 0.4613  0.2375 70.95 7276 89.60  0.8063
PiCIE [15] 0.4905 0.3504 68.73 80.98 70.60 0.7198
IDUDL [5] 0.6102 0.5364 78.46 83.07 91.34 0.8130

UFFM 0.6371  0.5890 79.44 91.74 7530 0.8371

C. Comparison Results for Semantic Segmentation

Two classical unsupervised deep learning IIC [14] methods
with PiCIE [15] method and an unsupervised deep learning
model IDUDL [5] specifically designed for marine aquaculture
are selected. The semantic segmentation results of different
methods are shown in Table I. The results showed that the
proposed method improved the mIoU by 0.0269 compared to
IDUDL, while P increased by 8.67%.

The visualisation results are shown in Fig. 2. In Fig. 2, the
proposed method performs better in continuity and can reduce
the interference of coherent spot noise. The effect of coherent
spot noise in SAR images leads to many bright noises, affect-
ing the segmentation results. The method of utilising mutual
information in IIC can enhance the degree of correlation
between similar samples. However, the noisy pixels are still
strongly correlated with the target pixels, which leads to the
impossibility of removing a large number of noisy pixels in the
segmentation results.PiCIE utilises the method of geometric
invariance and photometric invariance to maintain semantic
consistency, but a large number of misclassifications occur.
IDUDL can extract semantic features, overcome many noisy
pixels, and perform the floating boundary better. However, the
lack of global information leads to many missed judgments.
Sample (2) shows that the proposed method can reduce the
underdetermination in rafting compared to IDUDL.

V. CONCLUSION

This paper proposes a new unsupervised feature fusion
model, UFFM, for marine raft aquaculture semantic segmen-
tation based on SAR images. The saliency obtained from
representational learning generates saliency pseudo-labels in
the pseudo-label generator. During network training, multi-
stage feature fusion is designed to enhance the semantic infor-
mation and the extraction of raft aquaculture target boundaries
and semantic continuity. The experimental results show that
UFFM can effectively reduce the problem of omission and
misjudgment of raft aquaculture targets.
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