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ABSTRACT

Cross-domain recommendation (CDR) has emerged as an effective strategy to mitigate
data sparsity and cold-start challenges by transferring knowledge from a source domain
to a target domain. Despite recent progress, two key issues remain: (i) Sparse overlap.
In real-world datasets such as Amazon, the proportion of users active in both domains
is extremely low, significantly limiting the effectiveness of many state-of-the-art CDR
approaches. (ii) Negative transfer. Existing methods primarily address this problem at
the model level, often assuming that logged interactions are unbiased and noise-free. In
practice, however, recommender data contain numerous spurious correlations, and this
issue is exacerbated in CDR due to domain heterogeneity. To address these challenges,
we propose a dataset regeneration framework. First, we leverage a prediction model to
generate a pool of high-confidence candidate interactions to link non-overlapping target-
domain users and source-domain items. Second, inspired by causal inference, we introduce
a filtering process designed to prune spurious interactions. This process identifies and
removes not only noisy edges created during generation but also those from the original
dataset, retaining only the interactions that have a positive causal effect on the target-domain
performance. Through these two processes, we can regenerate a source-domain dataset that
exhibits a tighter coupling and a more explicit causal connection with the target domain. By
integrating our method with three representative recommendation backbones—LightGCN,
BiTGCF, and CUT—we show that it significantly boosts their predictive accuracy on the
target domain, achieving substantial gains of up to 23.81% in Recall@10 and 22.22% in
NDCG@10.

1 INTRODUCTION

Data sparsity and cold start problems have been critical challenges in recommender systems, as user interac-
tions with items are often limited, especially for new users or items |Lika et al.| (2014); [Kang et al.| (2019).
Traditional single-domain recommendation models struggle to provide accurate recommendations when
faced with sparse user-item interactions because their operations are limited in isolated data silos, preventing
them from leveraging rich user signals that may exist in other, more data-abundant domains. A natural and
promising idea to overcome this is to break down these barriers and transfer knowledge across different
domains.

Following this idea, Cross-Domain Recommendation (CDR) emerges as a promising direction to tackle this
challenge by transferring knowledge from one (source) domain to improve recommendation accuracy in
another (target) domain. Through CDR, the aim is to leverage richer user interaction signals in the source
domain, thus alleviating data sparsity and cold start issues in the target domain Singh & Gordon| (2008a); Gao
et al.| (2013); Hu et al.[|(2018)); Liu et al.|(2020);|Yang et al.|(2024). The core challenge of CDR lies in how to
effectively transfer knowledge from the source domain to the target domain. Some early attempts at CDR are



Under review as a conference paper at ICLR 2026

Book Domain
Science fiction novel

Transferring method

‘ Most exciting COR

models highly depend on

Science fiction film

A
-

THe
THAEE=BODY

FhtBLEn Traditional COR model

overlapping users. e ‘ 5 - ie =
prediction L
Source domain Target domain p N Romance novel It's likely that users
" X i 1 who enjoy sci-fi movies,
it { like scl-fl movies e also have a high
because | enjo probability of liking

Overlapping users are grand scenes sci-fi novels.

very low in most real-
world datasets.

—> : False positive =~ —> : Actual interactions  --->: False negative
(a) Sparse overlap (b) An example of dataset-level negative transfer

Figure 1: TIllustration of challenges in Cross-Domain Recommendation (CDR). (a) Overlapping users’
preferences for sci-fi movies (driven by grand scenes rather than narrative) lead to false positives (e.g.,
recommending sci-fi novels) and false negatives (e.g., missing romance novels) in the book domain when
using traditional CDR models. (b) Most CDR models rely heavily on overlapping users to transfer information
from the source domain to the target domain, but overlapping users are very low in most real-world datasets,
making effective knowledge transfer difficult.

based on shared latent space [Hu et al.| (2018); Singh & Gordon|(2008a) or transfer function Liu et al.| (2020);
Yang et al.| (2024) to transfer information in different domains. These methods assume that users exhibit
similar behavior patterns in different domains, allowing knowledge transfer through a shared representation.

However, there are still two open problems: (i) Sparse overlap, In real-world benchmarks like Amazon, the
proportion of users active in both domains is often extremely low (e.g., below 5%), which severely restricts
the ability of many state-of-the-art CDR models (e.g.,|Liu et al.|(2020); Zhao et al.|(2021); [Li et al.| (2024)) to
establish effective cross-domain bridges. Existing approaches have aimed to address this challenge Wang
et al.| (2024); | Xiang et al.|(2025) by mainly considering how to efficiently utilize overlap users at the model
level to solve this problem. (ii) Negative transfer, which occurs when knowledge transferred from the
source domain adversely affects performance in the target domain due to domain discrepancies or irrelevant
information |Cao et al.| (2022a)); |Li et al.| (2024} 2023). Recently, several methods have been proposed to
effectively address negative transfer. In general, these approaches can be categorized into two main streams:
(1) Filtering-based approaches, which selectively transfer highly relevant knowledge, such as user groups or
interactions, while excluding irrelevant or noisy data to mitigate negative transfer Li et al.|(2024); Song et al.
(2024); (2) Disentanglement-based approaches, which explicitly separate domain-shared and domain-specific
representations, thus preventing the propagation of domain-specific noise across domains |Cao et al.|(2022a;
2023)).

Although recent work has made impressive progress in these two challenges of CDR separately, most efforts
are model-centric methods which tacitly assume that user interactions are objective, unbiased, and recorded
in perfectly clean logs Lai et al.|(2024). However, many of these challenges are fundamentally dataset-level
problems. In tackling sparse overlap, while many models aim to efficiently leverage overlapping users Wang
et al.| (2024); Xiang et al.|(2025), as is shown in Fig a) their performance is still bottlenecked by the sheer
scarcity of these users in the data itself. Similarly, in addressing negative transfer, the issue often stems from
the dataset level: noisy or non-causal interactions imported from the source domain can mislead the model
and distort its understanding of the target domain’s preferences. Consequently, even the most sophisticated
model-centric approaches will be misled if they are trained on data that are inherently flawed for the transfer
task. For example, as is shown in Fig Ekb), consider a scenario where the source domain involves movie
interactions and the target domain involves book recommendations. A user show strong preferences for
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science fiction movies, driven primarily by grand visual effects rather than a genuine affinity for the science
fiction narrative. Transferring this “’science fiction” genre preference directly to the target domain can lead
to suboptimal outcomes, as it may result in recommending books with superficial thematic similarities that
overlook users’ actual interests in narrative depth. This introduces noisy shared representations, where the
apparent preference stems from biased, superficial correlations rather than authentic causal links.

In order to fundamentally address both challenges, we propose a generate-filter dataset regeneration frame-
work that operates entirely at the data level, enhancing the source dataset to better align with the target
domain. To tackle sparse overlap, we first pretrain a self-supervised prediction model on the combined
graph, masking interactions of selected overlapping users and reconstructing them alongside whole-graph
predictions. This model is then frozen to generate high-confidence candidate interactions in the source
domain for non-overlapping target users, effectively augmenting the overlap and bridging domain gaps. To
mitigate negative transfer, inspired by causal inference and leveraging Structural Causal Models (SCM) as
defined in Appendix|Al we introduce a counterfactual filtering process that observes changes in target-domain
prediction performance. Specifically, we train a GNN to learn continuous edge weights and perform inverse
optimization, retaining only those source interactions whose removal would degrade target accuracy—thus
pruning non-causal, noisy edges prior to training. Although this edge impact assessment technique draws
from prior work, such as |Ma et al.| (2022) for causal graph analysis, our regenerated dataset serves as a
plug-and-play enhancement compatible with any CDR backbone, yielding tighter coupling and explicit causal
connections between domains.

The main contributions of this work are as follows:

* We introduce a generate-filter dataset regeneration framework for CDR that operates at the data level,
effectively addressing sparse overlap and negative transfer problems.

* We propose a self-supervised generation module to hallucinate plausible synthetic interactions
for non-overlapping target-domain users in the source domain, thereby enhancing cross-domain
connections.

* We develop a counterfactual filtering process to identify and retain causal interactions by observing
their impact on target-domain prediction performance, mitigating biases and spurious correlations at
their root.

* Our approach serves as a plug-and-play enhancement compatible with any CDR backbone. Extensive
experiments on Douban and Amazon datasets demonstrate significant improvements, with gains up
to0 23.81% in Recall@10 and 22.22% in NDCG @10 across various baselines.

2 METHODOLOGY
2.1 OVERALL STRUCTURE

In this section, we outline our method as a unified workflow, which is shown in Fig[2] We begin by pre-training
a prediction model, 7', which serves as a surrogate for subsequent steps, including generating interactions
for non-overlapping users in the source domain and filtering causal edges. Due to space constraints, we have
placed the detailed structure of the prediction model ]-"GT in the Appendix Next, we freeze the parameters of

this pre-trained model and predict the most likely interactions for non-overlapping users u € U T.=yYT \U°
with items 7% € 79 in the source domain, selecting these as candidate synthetic edges. We then train another
GNN model to predict which edges, when removed, cause the greatest degradation in the pre-trained model’s
performance on the target domain, thereby identifying edges with causal relevance to the target domain.
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Figure 2: The overall pipeline of our proposed method is illustrated in this figure. We first perform a
pretraining process, during which we randomly mask all edges of some selected users. The model is then
trained through two tasks simultaneously. Next, we fix the parameters of the prediction model. Afterwards,
we predict the most likely interactions in the source domain for the target-specific users in the target domain,
obtaining candidate edges for generation. Finally, we utilize g4 to adjust the weights of edges in the source
domain, aiming to maximally reduce the performance of the prediction model in the target domain.

2.2  OVERLAPPING USERS GENERATION

Most existing CDR approaches rely on a large set of overlapping users to transfer knowledge through shared
user representations. However, real-world datasets (e.g., Amazon) often contain only a few shared users,
which significantly restricts the ability of these models to transfer knowledge across domains and thus hampers
their performance on real-world applications. Moreover, in the CDR setting, many users appear in only
one domain, and their absence in the other domain is not necessarily due to a lack of interest, but rather
because they are unaware of the existence of that domain. As a result, the model fails to capture the potential
connections that should exist between the two domains. To address this issue, we let the model learn from the
behavior patterns of existing overlapping users of both domains and then predict the potential behaviors of
users who have no interactions in one of the domains. To achieve this, we first pre-train a prediction model,
which is detailed in Appendix |B} and then use it to predict these possible interactions.

Self-supervised pretraining. We randomly mask all interactions of a number of overlapping users in the
source domain, and we denote these interactions as Egask. Then, by learning their behaviors in the target
domain as well as the behaviors of other users, the model aimed at reconstructing these masked interactions. In
order to learn information from the entire graph, we also train the model to predict the remaining interactions
in both the source and target domains. Concretely, we optimize the following BPR objective:

L= > > logo(fui —ius)+ D > logo (s — Guys),

(u,i)€EZUED, (u,5)€EZ,UEL, (u,i5)€€S  (w,i%)EER, (@€))
‘Whole-graph interaction prediction Masked-edge reconstruction

where j7 and j° are negative samples from Z7 and Z°, respectively.

Generation phase. After fine-tuning, we freeze the surrogate J, and, for every non-overlapping user v €
U™, score all candidate pairs (u,i%) with % € 79 to obtain u,i5 . We then select the k highest-scoring items
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and define the synthetic set £5 := { (u, i) | i is in the top-k }. The augmented edge set is £5 := £5 U £s,
yielding the dataset

Ds = (U uu®, 15, €%,
which connects every target-domain user to the source domain and serves as the input for the subsequent
counterfactual filtering described in the next section.

2.3 COUNTERFACTUAL INTERACTION FILTERING

Based on Definition our aim is to identify which part of the interactions in the source domain has a
causal effect on recommendations in the target domain. To pinpoint the source-domain interactions that truly
affect the target domain, we pose the following counterfactual question: ‘If the recommender system did not
observe certain interactions in the source domain, would it still provide accurate predictions in the target
domain?’ This question guides us to distinguish causal interactions from spurious co-occurrences.

An intuitive strategy is to identify non-causal edges by optimizing the removal of interactions so as to
maximize the prediction model’s performance on the target domain 5;5, and it can be formalized into an
optimization problem.

Suppose |€°| = N, the feedback function is defined as a binary function, and ys = (I(e)) o5 € {0,1}".
max  JEY) = D0 [F (wi]Ds,UE%) — FF (u,i | Do, 1(ET)) ]

gsices (u,i)€ET P®)
S.t. Nmax 2 |gri;‘7 ys, Ys’ € {07 1}N7

where Np.x denotes the maximum number of negative edges in é’fe:g that are allowed to be retained, and Npax
is used as a threshold in the regularization term for negative edge.

However, directly solving the following often leads to overfitting: the optimization may exploit spurious
patterns in the training data, failing to generalize and improve genuine target-domain predictions. Instead, we
adopt an inverse approach inspired by adversarial robustness techniques. We optimize to find edges whose
removal maximally degrades the surrogate model’s performance. These edges are deemed causal, as their
presence is critical for accurate predictions; the remaining edges are non-causal and can be filtered out to
mitigate negative transfer.

For the fixed domain DD and feedback function /, we have the following formula:

o Fm= > F- > A

(u,i)€ET (u, )€€, (u,i)€ET,

Since the variable of problem (P) is the subset £ C €9, then 3, ;ycer Fg (u,i | D, I(€9)) is a constant
value for fixed parameter ¢, and the objective function of the problem (P) is equivalent to minimizing
D uiyeer Fo (w51 | Ds,(£5")). We have Nnax > || = |11 — ysllo. so the exact-penalty objective
function of problem (P) is
j(gs )= AL —ysllo — NmaX]+ )

where [z]; := max(0,2), A > 0.
Formally, this leads to the following optimization problem:

. — a8’ . 4 . g’
Jmin TE =[50 Al Do €)= 3T Filu | D)) + Al = ysrllo — Now],

= (4,1) €& (w,§) €& eq

s.t. Ys € {0, I}N,
P)
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Worse still, solving this discrete edge-selection problem is intractable, as it constitutes an NP-hard combinato-
rial optimization. To make it differentiable, we relax the binary (0/1) edge inclusion decisions into continuous
edge weights. Specifically, we introduce a trainable feedback function g¢ : € ¥ — [0, 1], implemented by any
GNN models.

The pre-trained prediction model ]—"(,T is adapted to incorporate these weights into its aggregation process,
which is defined as ws = (l1(€)), o5 = (9(94(€))).ces € (0, )N, and also ys = (la(e)) o5 €
{0,1}". Then, the relaxed differentiable objective is:

min £(6:6%) = [ Y0 F(wilDe b))~ X Fi(wi|Ds h(E™) + Alws © (1 -yl ]

(1,3) EEpys (4,5) E€peq

s.t. wg € (0, I)N,

(Pr)
where © denotes the Hadamard product, the ¢; regularization term with coefficient A > 0 penalizes weights
of negative edges, encouraging most weights to remain high (close to 1) while allowing only a few to be
lowered to achieve performance degradation.

After optimization, interactions with low weights (w. < 7) are classified as causal, since attenuating them
significantly worsens predictions. To regenerate the dataset, we retain these causal edges in £’ for the filtered
source domain Dg/, discarding the non-causal ones (w, > 7) that contribute to negative transfer.

The relationships among the three optimization problems El, and are given by the following lemma:
Lemma 1. Problem is equivalent to problem (@, and problem provides relaxed solution:

L(675€%) = ANpax < T((€%)")
where (-)* denotes the optimal solution, and X\ > 0 is certain penalty parameter;, N > N,y > 0.

The proof is given in Appendix

3 EXPERIMENTS

In this section, we conduct extensive experiments on multiple public datasets to evaluate the proposed method.

3.1 SETUP

Datasets. To assess the effectiveness of our proposed approach alongside various baseline models, we utilize
three distinct domain pairs sourced from two widely recognized real-world cross-domain datasets, Douban
datasets and Amazon datasets. And we designed six cross-domain recommendation tasks. Each domain
within a pair is alternately designated as the target domain for evaluation. To facilitate the reproduction of our
results, we have included the specific data, processing methods, and download sources of the dataset in the
Appendix

Baselines. We compared our methods with two single-domain methods (1) MF |Koren et al.|(2009) (2) Light-
GCN |He et al.| (2020) and six cross domain methods (3) CMF [Singh & Gordon| (2008b) (4) EMCDR Man
et al.[(2017) (5) BiTGCF [Liu et al.|(2020) (6) DTCDR Zhu et al|(2019) (7) CAT-ART [Li et al.| (2023)
(8) UniCDR |Cao et al.|(2023) (9) CUT |Li et al.| (2024). The single-domain baselines, trained exclusively
on the target dataset and the cross domain baselines are trained on both domains and tested on the target
domain. To ensure the fairness of the comparison, we adopted the Recbole-CDRZhao et al.| (2022) framework
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Table 1: Performance comparison of three method categories: single-domain, cross-domain, and our proposed
method applied to three representative backbones. For the experiment of Light GCN+Gen/Del, as Light GCN
is a single-domain baseline, we merge source and target data for training, and evaluation was performed on
the target domain. Bolded and underlined values indicate the best and second-best results in each column,
respectively. * denotes that our method achieves statistically significant improvement over the best baseline
in that column (paired t-test with p-value < 0.05).

Amazon Douban

Cloth—Sport Sport—Cloth Cloth— Video Video— Cloth Movie—Music Music—Movie

Method R N R N R N R N R N R N
Single domain MF 0.0492  0.0270  0.0243  0.0137  0.1153  0.0623  0.0243  0.0137  0.1004 0.0733  0.1053  0.0997
g LightGCN 0.0604  0.0331  0.0385 0.0207 0.1181  0.0639  0.0385  0.0207 0.1069 0.0806  0.1031  0.1096
CMF 0.0545  0.0293  0.0291  0.0157 0.1194  0.0644 0.0246 00136  0.0944  0.0725 0.0946  0.1031
EMCDR 0.0538 0.0288 0.0234 0.0127 0.1165 0.0633 0.0232 0.0124 0.1014 0.0756 0.1064 0.1156
DTCDR 0.0558  0.0332  0.0263 0.0141  0.1085  0.0584 0.0241 0.0126  0.0881  0.0658  0.0943  0.0982
Cross domain  CAT-ART 0.0515  0.0276  0.0240  0.0130  0.1133  0.0609  0.0245 0.0123  0.0901  0.0685  0.1055  0.1048
UniCDR 0.0624  0.0340  0.0433  0.0239  0.1249  0.0684  0.0349 0.0191 0.1073  0.0754  0.1095  0.0994
BiTGCF 0.0655  0.0360  0.0508  0.0286  0.1311  0.0715  0.0411  0.0230  0.1228  0.0918  0.1280  0.1219
CUT 0.0653  0.0364  0.0441  0.0252  0.1303  0.0720  0.0381  0.0213  0.1205  0.0946  0.1393  0.1437
LightGCN+Gen/Del  0.0632 0.0354 0.0458 0.0262 0.1344 0.0733 0.0422 0.0236 0.1097 0.0785 0.1024 0.1008
Our methods  CUT+Gen/Del 0.0652  0.0366 0.0546* 0.0308* 0.1325  0.0740  0.0463  0.0256  0.1248* 0.0962* 0.1396* 0.1442*

BiTGCF+Gen/Del 0.0692*  0.0378*  0.0532  0.0297 0.1389* 0.0766* 0.0498* 0.0278* 0.1237  0.0926  0.1362  0.1275

for all baselines. And more detailed information on these methods and implementations is provided in
Appendix [D.3]

Evaluation metrics. Evaluations are performed using a full ranking approach, considering all items in the
datasets. All models are evaluated by Recall@K, and NDCG @K, where K is set to 10 in this research. The
formal definition of their metrics is detailed in Appendix [D.2]

Experimental environment. All experiments are executed on a system featuring an NVIDIA GeForce RTX
3090 GPU and an Intel Core i7-13700F CPU. The implementation leverages the RecBole-CDRZhao et al.
(2022) toolkit, offering a consistent platform for cross-domain recommendation studies.

3.2 OVERALL PERFORMANCE

To evaluate the overall effectiveness and generalizability of our proposed Gen/Del modules, we integrated
them with three distinct backbones: LightGCN, CUT, and BiTGCF. We then benchmarked these enhanced
models against a comprehensive suite of single-domain and cross-domain baselines. The full results, presented
in Table[I] demonstrate that our method consistently achieves state-of-the-art performance across various
datasets.

1. Against strong baselines such as EMCDR, DTCDR, CAT-ART, UniCDR, BiTGCF, and CUT, our
methods deliver consistent gains. Notably, CUT+Gen/Del attains the highest scores in Sport—Cloth
(0.0546 in R, 0.0308 in N) and Music—Movie (0.1396 in R, 0.1442 in N), with statistical significance
(p < 0.05) over the best baselines, highlighting the modules’ ability to alleviate negative transfer.

2. On Amazon datasets, our methods excel in asymmetric pairs like Cloth— Video and Video—Cloth,
with BiTGCF+Gen/Del leading at 0.1389 in R and 0.0766 in N for Cloth—Video. On Douban,
CUT+Gen/Del dominates Movie—Music and Music—Movie. Overall, our approach yields average
improvements of 5-20% over the strongest baselines, validating its robustness and adaptability.
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Table 2: Ablation study of the proposed generative modules on the BiITGCF backbone. Each cell for a variant
shows the absolute metric value, with the relative improvement over the vanilla BITGCF in parentheses.

Improvements are in orange, drops in , with color intensity scaling with the magnitude of change.
Dataset BiTGCF BiTGCF+Del BiTGCF+Gen BiTGCF+Gen/Del
R N R N R N R N

Cloth—Sport  0.0655 0.0360 0.0672 ¢260%  0.0378 ¢s00%  0.0668 +198%  0.0374 +389%  0.0692 s65%  0.0378 (+5.00%)
Sport—Cloth  0.0508 0.0286 0.0523 ¢295%  0.0292 2.10%  0.0513 09s%  0.0293 245%)  0.0532 4729  0.0297 (+3.85%)
Cloth—Video  0.1311 0.0715  0.1392 ¢e1s%  0.0768 ¢741%  0.1297 107% — 0.0703 ¢168%  0.1389 595%  0.0766 (+7.13%)
Video— Cloth 0.0411 0.0230 0.0462 1241% 0.0256 +11.30%) 0.0458 (+11.44%)  0.0252 (49.57%)

Movie—Music 0.1209 0.0906  0.1216 #oss%)  0.0918 13299  0.1212 025%)  0.0911 os5%) — 0.1237 @2329%)  0.0926 +2.21%)
Music—Movie 0.1289 0.1219  0.1344 4219  0.1271 4279  0.1320 241%  0.1262 +353%)  0.1362 @566%)  0.1275 (+4.59%)

3.3 ABLATION STUDY

To validate the individual contributions of our proposed generative modules, we conduct a detailed ablation
study. Specifically, we investigate the impact of the deletion-based module (+Del) and the generation-based
module (+Gen) by applying them both individually and in combination (+Gen/Del) to one of our backbones,
BiTGCF. The results, summarized in Table[2] Our key findings are as follows:

1. The Del module alone yields consistent improvements across most datasets by removing noisy or
spurious interactions. For instance, it achieves +12.41% in Recall@10 and +11.30% in NDCG@10
on Video—Cloth, effectively mitigating negative transfer in asymmetric domain pairs.

2. The +Gen module individually enhances performance in several cases, such as +11.44% in Re-
call@10 on Video—Cloth, by creating aligned interactions. However, it occasionally leads to minor
drops (e.g., -1.07% in Recall@10 on Cloth—Video), likely due to imperfect generation without
noise control.

3. Combining both modules results in the strongest gains, outperforming individual variants. Notable
improvements include +21.17% in Recall@10 and +20.87% in NDCG@10 on Video—Cloth,
demonstrating their complementary nature in generating useful data while deleting harmful noise for
robust CDR.

4 RELATED WORK

4.1 CROSS-DOMAIN RECOMMENDATION

Cross-domain recommendation (CDR) addresses data sparsity by transferring knowledge across domains.
Early approaches focused on shared representations, with CMF Singh & Gordon|(2008a), CLFM |Gao et al.
(2013), and CoNet Hu et al.| (2018)) enabling parameter sharing between domains through matrix factorization
or neural networks. However, these methods assume universal preference similarity across domains, which
often fails in practice. Recent work has shifted toward embedding alignment strategies. BiITGCF [Liu et al.
(2020) employs transfer functions to align user embeddings, while CCDR [Xie et al.|(2022) and HCTS |Yang
et al.| (2024) leverage contrastive learning to pull same-user embeddings closer across domains. Another
prominent direction uses mapping functions, pioneered by EMCDR [Man et al|(2017), with subsequent
work|Cao et al.|(2023)); [ Kang et al.|(2019);|Zhu et al.| (202 1)) refining cross-domain correlations through learned
transformations. Despite these advances, negative transfer remains a critical challenge. Recent methods
address this through model-level constraints: DisenCDR |Cao et al.| (2022a) disentangles domain-shared
and domain-specific representations; CDRIB |Cao et al.| (2022b) applies information bottleneck principles;
UniCDR |Cao et al.| (2023) combines contrastive learning with domain masking. While effective, these
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approaches focus solely on model architectures, overlooking data-level issues that fundamentally cause
negative transfer.

4.2 DATASET REGENERATION FOR RECOMMENDER SYSTEMS

The emergence of data-centric recommender systems |Lai et al.| (2024)) recognizes that model complexity
alone cannot overcome inherent data limitations. This paradigm shift has spawned several research directions.
Denoising methods tackle noisy interactions: ADT |[Wang et al.|(2021) adaptively prunes noisy feedback
during training; SGDL |Gao et al.| (2022) leverages early-training memorization patterns; SLED [Zhang
et al.| (2023) employs structure learning for systematic denoising. For incomplete data, fairAC |Guo
et al.| (2023)) addresses missing attributes in graph learning, while|You et al.| (2020) proposes graph-based
imputation. Debiasing approaches |Schnabel et al.| (2016)); Saito et al.| (2020) correct for selection and
exposure biases through causal inference techniques. Recent work has explored data augmentation for
sequential recommendations|Yin et al.|(2024)). However, no prior research has applied dataset regeneration
specifically to CDR scenarios. Our approach uniquely modifies source domain data to enhance cross-domain
transfer, complementing existing single-domain methods.

4.3 CAUSAL INFERENCE IN RECOMMENDER SYSTEMS

Causal inference has revolutionized recommender systems by moving beyond correlations to understand
true causal effects, addressing fundamental issues like bias and robustness. Debiasing and unbiased
learning represents the most mature application. Schnabel et al.|Schnabel et al.|(2016)) introduced inverse
propensity scoring (IPS) for recommendation, treating items as interventions. Recent advances include
doubly robust estimators [Wang et al.|(2019), AutoDebias Chen et al.|(2021) for automatic bias discovery, and
CauslInt/Wang et al|(2022a) for handling multiple biases simultaneously. Causal modeling and intervention
methods explicitly model recommendation processes through causal graphs. DICE [Zheng et al.| (2021)
disentangles user interest from social conformity; CauseRec [Zhang et al.| (2021)) removes popularity bias
through backdoor adjustment; recent work explores causal prompting for LLM-based recommendations|Zhang
et al.| (2025)). These approaches intervene during model training to align with presumed causal structures.
Causal representation learning seeks invariant features across environments. InvPref|Wang et al.| (2022b)
learns stable preferences under distribution shifts; CausPref He et al.| (2022)) discovers causal preference
structures for out-of-distribution generalization; DCCL [Zhao et al.|(2023)) achieves causal disentanglement
via contrastive learning. Critically, all existing causal methods in recommender systems operate at the single-
domain, model level. Our work pioneers a fundamentally different approach: data-level causal intervention
for cross-domain scenarios. Rather than modifying learning algorithms, we directly regenerate the source
dataset through counterfactual reasoning, identifying and filtering interactions that causally harm target
domain performance. This data-centric causal filtering uniquely addresses cross-domain negative transfer at
its root, offering a novel complement to model-centric solutions.

5 CONCLUSION

We have introduced a dataset regeneration framework for cross-domain recommendation that addresses
fundamental data sparsity challenges by generating synthetic interactions tailored to the target domain. By
integrating a customized surrogate model for graph-based aggregation and causal-inspired techniques to reduce
negative transfer, our method demonstrates superior performance across multiple datasets and CDR baselines.
Experimental results validate its effectiveness, showing significant improvements in recommendation accuracy
and robustness. While our approach advances data-centric CDR, limitations such as computational overhead in
large-scale regeneration and potential biases in generated data warrant further exploration. Future work could
extend this to multi-domain scenarios or incorporate advanced generative models like diffusion processes for
even finer-grained data reproduction.
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6 ETHIC STATEMENT

This work relies on publicly available datasets (Amazon and Douban) that contain anonymized user-item
interactions. No new data collection was performed, and all datasets were used in accordance with their
original terms of use and licensing. We acknowledge potential risks associated with our dataset regeneration
framework. By generating synthetic interactions and filtering based on causal inference, the method could
inadvertently amplify existing biases in the source data, such as demographic or cultural stereotypes (e.g.,
genre preferences tied to user groups), leading to unfair recommendations in the target domain. This might
exacerbate issues like echo chambers or discriminatory outcomes in real-world recommender systems. To
mitigate this, we encourage downstream users to evaluate regenerated datasets for fairness metrics (e.g.,
demographic parity) and apply debiasing techniques. Additionally, while our approach aims to reduce
negative transfer, misuse could introduce spurious correlations if applied to sensitive domains like healthcare
or finance, potentially causing harm through inaccurate predictions.

7 REPRODUCIBILITY STATEMENT

We detail our experimental setup, including datasets and baseline models, in Section[3.1] The source code
for this work is fully available in the Supplementary Material and can also be accessed via the following
anonymous link https://anonymous.4open.science/r/Dataset-regeneration-for-cross-domian-recommendation-
DS8FDV/ for review purposes.
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Appendix

A PRELIMINARIES

In this section, we introduce the task of this study and related concepts. First, we formally define Cross-
Domain Recommendation.

Definition A.1 (Domain). A domain is a triple D = (U, Z,E), where U is the set of users, T is the set of
items, £ C U X T is the set of observed interactions (edges).

Definition A.2 (Feedback Space and Feedback Function). Let D = (U, Z,E) with € C U x I. The feedback
space ) is the set of all possible user responses to items, such as binary clicks {0,1}, discrete ratings
{1,2,3,4,5}, or continuous scores. We define a feedback function

1: &=,

such that for each (u,1) € &, the value l(u, i) € Y is the observed feedback of user u on item i in domain D.
For brevity, we denote y,; := l(u,1).

Definition A.3 (Cross-Domain Recommendation (CDR) Task). Given a changeable source domain Dg =
U5, T5,E9) with certain feedback function [(£%), and a fixed target domain Dy = (U™, I7,ET), the goal
of the CDR task is to learn a function

Fl(u,i | Dg, 1(E%) :UT x I = Y,

parameterized by 0. CDR function leverages knowledge from both the source domain Dg and target domain
Dy to predict the feedback of user u € U on item i € I7 in the target domain.

Assume a non-empty overlap of users, defined as U° = U’ NUT # @. Let us' = uys \ U° and
ur =uy’ \ U© denote the non-overlapping users in the source and target domains, respectively. In the
target domain D, for each u € UT and i € Z7, with a binary feedback function y,,; € ¥ = {0,1}, we

define the set of observed positive interactions as Elgs = {(u, %) | yu,; = 1}, and the set of observed negative

interactions as £, := {(u,%) | yu,; = 0}.

However, while the CDR task, as defined above, focuses on learning a predictive function through model-level
strategies, such approaches often overlook inherent data-level issues like biases and spurious correlations
that persist across domains. These limitations highlight the need for interventions at the dataset level
to complement and enhance model performance. Our proposed dataset-level solution addresses this by
regenerating the source domain data to filter out non-causal interactions, offering a unique and effective
supplement to existing CDR strategies. It is defined formally as follows:

Definition A.4 (Dataset regeneration for CDR). Given the source domain dataset Dg = (U°,T°,£%) and
the target domain dataset Dy = (UT,ZT ET). Dataset regeneration refers to learning a transformation
function

f:Dg x Dy — Dg = U5, T5,&),
such that the regenerated dataset Dg: improves the utility of Dg for cross-domain recommendation tasks
involving D (e.g., in terms of NDCG@K, Hit Rate@K and Recall @K on the target domain,).

While the concept of filtering or refining a dataset to mitigate negative transfer—where knowledge from
the source domain (Dg) adversely affects the target domain (ID7)—is intuitive, systematically identifying
which interactions in the source domain contribute to this issue poses a significant challenge. To address
this, we turn to causal inference, specifically leveraging the framework of Structural Causal Models (SCM),
which provides a rigorous method to evaluate how modifications in the source domain causally influence
the target domain. This approach is particularly valuable in the context of dataset regeneration (as defined
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earlier), where the goal is to enhance cross-domain recommendation by removing detrimental interactions.
In practice, our causal interventions focus on disrupting non-causal pathways from the source to the target
domain to alleviate negative transfer. This involves selectively removing edges that do not contribute to
accurate predictions, guided by a counterfactual evaluation process. To formalize this, we introduce the
following definition:

Definition A.5 (Counterfactual Evaluation of Causal Interactions). Given a subset of source domain inter-
actions 5" C £S5 and a prediction function FF(u,i | Dg,U(E9)), we assess the causal impact of these
edges through counterfactual reasoning. This involves comparing the factual prediction F} (u,i | Dg, (€ )
with the counterfactual prediction under the intervention do(£5 = 5\ ES"), where do(-) denotes Pearl’s
do-operator. If removing &S results in unchanged or improved prediction performance in the target domain,

ES' is classified as a spurious co-occurrence and marked for removal. Conversely, if the removal leads to a
degradation in performance, the interaction is deemed causal and retained.

This counterfactual evaluation serves as the foundation for our dataset regeneration strategy, enabling us to
distinguish between causal and spurious interactions with precision. By systematically applying this process,
we can construct a refined source dataset that enhances the robustness of cross-domain recommendations,
particularly in scenarios with sparse overlapping users. The next section details the optimization techniques
used to implement this filtering, integrating the pre-trained prediction model with edge weight adjustments to
achieve the desired causal pruning.

B DETAILED STRUCTURE OF THE PREDICTION MODEL

We adopted a structure similar to LightGCN |He et al.| (2020), but to accommodate the subsequent filtering
process, we modified LightGCN'’s aggregation process to a weighted average that considers edge weights. In
the [-th layer, we perform weighted average aggregation, where each neighbor’s contribution is normalized by
the sum of edge weights from the node:
eg) _ Wy i eglfl),
{eN () 2N (u) Waj

) _ Z _ Wuwi -1
i Cu )
weri(iy 2N () Wosi
where AV (u) and NV (i) are the neighbor sets, and w,, ; is the edge weight between v and ¢ and e') and el(-l)
are trainable embeddings of users and items. During the pre-training process, we set the edge weight as a
fixed value of 1, which is the same as LightGCN. The final embeddings are averaged across L layers:

L

L
1 1
_ S el), o= 3 el
Cu L+1l:0e“’ e L+1l:0el'

The prediction score for a pair (u, 7) is the inner product:

@u,i = e;r €;.
For brevity, we denote this weighted-aggregation model by Fy in the following sections; when it is used
solely to predict interactions in the target domain (as specified in Definition , we write it as F7 .

C PROOF OF LEMMA 1

Lemma 2. Problem is equivalent to problem (E]) and problem provides relaxed solution:
E(Qb*; 55/) — ANpax < 7((55/)*)
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where (-)* denotes the optimal solution, and \ > 0 is certain penalty parameter, N > N, > 0.

Proof. Since
€= () = Al = ysllo = Nowd )| = T(E)

where C' is a constant, by the exact penalty function of the objective function with constraint in problem (P),

max J (€% : .
, < max j gs — A1 — Ys — Nmax < min ._7 gS
{s.t. Nimax > |E| (T(E7) = Al s'llo in (&%)

So for certain A, (P) < (P). We also have:
Alws) © (1 =ys)l
=AY wel-yd) < A Y (1-yd)
cces’ cced )
= A1 =ysllo

S A]\/vmaqx + )\I:”]- - YS'”O - Nrrlax}+7

then E(d)*, 55’) - )\Nmax S 7((55/)*) =

D EXPERIMENTS SETTINGS AND EXTRA EXPERIMENTS

D.1 DETAILS OF DATASETS

Amazon Dataset This extensive e-commerce collection encompasses item interactions across multiple cate-
gories. We select two domain pairs—Cloth & Sports, and Cloth & Video—for cross-domain recommendation
experiments. The Cloth and Sports categories exhibit a moderate degree of relatedness, whereas Cloth and
Video share relatively limited cross-domain knowledge.

Douban DatasetE] Originating from a popular music and movie online platform, this dataset supports two
cross-domain tasks, with music and movie domains serving as target or source domains interchangeably.

In our experiments, we filter the dataset to keep users and items with at least 5 interactions and split the user
history with the ratio of 8:1:1 for training, validation, and testing in the target domain for each user. The
source domain is partitioned into training and validation sets with an 8:2 ratio. The detailed statistics of these
datasets are provided in Appendix [D.1]

Table 3: Dataset statistics. The subscript o indicates overlap.

Dataset | Domain 2 IZ| # Clicks U] |Zo|
Sports | 35,599 18,358 296,337
Amagon | Cloth | 39,388 23,034 278,677 3,908 704
azo Video | 24,034 10,673 231,780 999 0
Cloth | 39,388 23,034 278,677
Music | 16,041 40,405 1,140,090
Douban |- \y Ve | 22254 27432 2760500 #0000

"http://jmcauley.ucsd.edu/data/amazon/index_2014.html
*https://recbole.s3-accelerate.amazonaws.com/CrossDomain/Douban.zip
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D.2 DEFINITION OF EVALUATION METRICS

Recall @K. It is a metric that measures the fraction of relevant items retrieved out of all relevant items, which
is formally defined as:

Recall@K = l Z R |) N Rw)l 3)

e B@E

where U is the set of all users, R(u) represents a ranked list of items that a model produces, and R(u)
represents a ground-truth set of items that the user has interacted with.

NDCG@XK. It is a metric that measures ranking quality where positions are discounted logarithmically. It
accounts for the position of the hits by assigning higher scores to hits at top ranks and it is formally defined
as:

NDCG@K = Z
|M| uweU

1 0(i € R(u
(me(|R(u)| K 1 Z logy(i + 1) ) 4)

log, (i+1) =1
D.3 DETAILS OF THE BASELINES
The detailed introduction of the baselines compared with our model is as follows.

e MF [Koren et al.|(2009): This is a foundational collaborative filtering technique that models user-item
interactions by decomposing the interaction matrix into low-dimensional latent factors. Specifically,
it represents users and items as vectors in a shared latent space, capturing their characteristics through
these latent factors.

e LightGCN [He et al.|(2020): LightGCN is a state-of-the-art single-domain recommender system
designed for top-K recommendations. It leverages a simplified graph convolutional network (GCNs)
to model collaborative signals by propagating user and item embeddings over a user-item interaction
graph. Unlike traditional GCNs, LightGCN removes feature transformation and nonlinear activation,
focusing solely on neighborhood aggregation to capture high-order connectivity. This streamlined
approach enhances scalability and performance, making it a strong baseline for collaborative filtering
tasks.

e CMF Singh & Gordon!(2008b): CMF is a classical cross-domain recommender system that extends
matrix factorization to multiple domains. It jointly factorizes the interaction matrices of both source
and target domains, sharing latent factors for overlapping users or items. CMF adjusts prediction loss
weights to balance contributions from each domain, enabling knowledge transfer while mitigating
domain-specific noise.

e EMCDR Man et al.| (2017): EMCDR introduces a cross-domain framework that aligns user em-
beddings between the source and target domains. It first trains separate embedding spaces for each
domain using matrix factorization, then learns a mapping function to project source-domain user
embeddings into the target-domain space. This mapping enables knowledge transfer for overlap-
ping users while preserving domain-specific characteristics, making it effective for cross-domain
recommendation tasks with shared users.

e BiTGCEF Liu et al. (2020): BiTGCEF is a cross-domain recommendation model that utilizes bi-
directional graph convolutional networks to transfer knowledge between source and target domains.
It learns robust user and item embeddings by modeling both shared preferences and domain-specific
features, often using a triplet loss to refine the learned representations.
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e DTCDR|Zhu et al.[(2019): DTCDR focuses on extracting domain-shared knowledge by integrat-
ing representations of overlapping users. It employs a deep neural network to model user-item
interactions, capturing both domain-specific and shared features. By aligning representations of
overlapping users across domains, DTCDR facilitates knowledge transfer while addressing negative
transfer through careful feature disentanglement.

e CAT-ART [Li et al.| (2023): CAT-ART is a state-of-the-art cross-domain recommender that mitigates
negative transfer by constructing a resilient global user representation. It employs an attention-
driven transfer module to selectively transfer relevant information from the source domain to the
target domain. The attention mechanism prioritizes domain-shared patterns, reducing the impact of
irrelevant source-domain data.

e UniCDR Cao et al.[(2023): UniCDR enhances cross-domain recommendation by facilitating the
transfer of pertinent domain-shared information. It uses distinct user embeddings for each domain,
augmented by interaction-level contrastive learning. This approach aligns user representations across
domains while preserving domain-specific behaviors, improving recommendation accuracy.

e CUT Liet al.|(2024): CUT is a recent cross-domain recommender that suppresses negative transfer
by imposing explicit constraints based on target-domain user-similarity graphs. It constructs a graph
of user similarities in the target domain and uses this structure to guide knowledge transfer from
the source domain, ensuring only relevant information is incorporated. In our experiments, CUT
is instantiated with both LightGCN and MF as backbone encoders, leveraging their strengths in
modeling user-item interactions to enhance cross-domain performance.

For MF and LightGCN, we adopted the implementation from RecBole Zhao et al.|(2021). For CMF Singh
& Gordon| (2008a), EMCDR Man et al.[| (2017), and DTCDR |Zhu et al.|(2019), we directly adopted the
implementation from RecBole-CDR [Zhao et al.| (2022)). For BiTGCF [Liu et al.| (2020), we made some
modifications based on the RecBole-CDR [Zhao et al|(2022) implementation; we tried changing the original
cross entropy loss to BPR-loss|Rendle et al.|(2012) and found that it led to significant improvements across all
datasets, so the results use the version with BPR-loss version. For CAT-ART L1 et al.|(2023)) and UniCDR |Cao
et al.[(2023)), we integrated their original implementations into the RecBole-CDR [Zhao et al.|(2022) framework.
For CUT |Li et al.| (2024), since the method in that paper is also based on RecBole-CDR [Zhao et al.| (2022),
we adopted the implementation from the original paper.

D.4 FURTHER ABLATION STUDY

To evaluate the efficacy of our proposed method in mitigating negative transfer, we benchmarked its perfor-
mance on three representative backbones: BiTGCF, CUT, and LightGCN. We compared the performance of
these models in three settings: (1) Single-domain setup, denoted as (S), (2) the Cross-domain setup, denoted
as (C), and (3) the Cross-domain setup enhanced with our method, denoted as +our method. Fig|3|provides
an intuitive visual comparison, while Table E]presents a detailed breakdown of the results.

1. Asillustrated in Fig[3] a key challenge becomes apparent when comparing the single-domain (S)
and cross-domain (C) variants: cross-domain transfer does not always yield significant gains and
can even be detrimental. For instance, as shown in Table 4] applying the cross-domain strategy
to LightGCN on the Movie—Music dataset results in a substantial performance drop of -9.07 %
in Recall. This phenomenon of negative transfer is particularly consistent on the Video— Cloth
dataset, where all three backbones suffer performance degradation; BiTGCEF, for example, drops by
a notable -4.96% in NDCG. Encouragingly, the integration of our proposed dataset regeneration
method substantially ameliorates this problem. On this same challenging dataset, +Our Method not
only reverses the negative trend but delivers remarkable gains, boosting the Recall of BiTGCF by
+21.17% and CUT by +21.52% over their respective cross-domain counterparts.

18



Under review as a conference paper at ICLR 2026

LightGEN

aosapon8o832

0330078

Cloth-sport Sport-cloth Cloth-video Video-cloth Movie-musicMusic-movie

e

Cloth-sport Sport-cloth Video-cloth

Pevery

BITGCF

sasesisnt

azrg1zes
2o 127

aosedt®2 oouss

aonpesnger

acnopen i

Cloth-sport Sport-cloth Cloth-video Video-cloth Movie-musicMusic-movie

T pempereesss

ooragoree

Cloth-sport Sport-cloth Cloth-video Video-cloth Movie-musicMusic-movie

Single Domain

Cross Domain

e

sozopens

Cross Domain + Our Method

asnaf el
mmmmm

Cloth-sport Sport-cloth Cloth-video Video-cloth Movie-musicMusic-movie

Figure 3: Ablation study on negative transfer

Table 4: Ablation study on different backbones. (S) denotes the single-domain version, while (C) represents
the cross-domain version. +Our Method indicates the addition of our proposed modules to (C). The percentage
change for (C) is relative to (S), and for +Our Method, it is relative to (C). Improvements are in orange, drops

in , with color intensity scaling with the magnitude of change.
Amazon Douban
Backbone  Model Cloth—Sport Sport—Cloth Cloth— Video Video—Cloth Movie—sMusic Music—Movie
R N R N R N R N R N R N
© 00604 00331 00385 00207  0.1181 00639 00385 00207  0.069 00806  0.1031 _ 0.109
LightGCN (¢, 00614 00335 00421 00231 01171 00639 00379 00206 [100972° 00772 00966  0.1096
+1.66%  +121%  4935% +1159% -0.85%  +0.00%  -1.56%  -0.48% | 9.07% @ -422%  -630%  +0.00%
+Our Method 00632 00354 00458 00262  0.1344 00733 00422 00236  0.1097 00815  0.1058  0.1124
$293%  +5.67%  +8.79% +1342% +1477% +1471% +11.35% +14.56% +12.86% +5.57%  +9.52%  +2.55%
) 00604 00331 00385 00207 01181 00639 00385 00207  0.1069 00806  0.103]  0.109
cur (©) 00653 00364 00441 1100252 0.303 00720 0038l 00213 _ 0.205  0.0946 0.1437
+8.11%  +9.97% +1455% +21.74% +10.33% +12.68% -1.04%  +2.90% +12.72% +17.37% +31.11%
+Our Method  0.0652  0.0366 |0I054607 00308 0.1325  0.0740 [ 00463 00256 0.1248 00975  0.1396  0.1442
0.15%  +0.55% | 423.81% +2222% +1.69%  +2.78% | 421.52% 420.19% +3.57%  +3.07% +0.22%  +035%
©) 00602 00328 00428 00242 0.1302 00708 00428 00242  0.1048 00796  0.1276  0.1206
BITGCF ") 00655  0.0360 | 00508 00286 | 01311 00715 00411 00230  0.209 00906  0.1289  0.1219
+8.80%  +9.76%  +18.69% +18.18% +0.69%  +0.99%  -3.97%  -496% +1536% +13.82% +1.02%  +1.08%
+Our Method 00692 00378 00532 00207  0.1389  0.0766 [ 00498 00278 0.1237 00926  0.1362  0.1275
+5.65%  +5.00%  +472%  +3.85%  +595%  +7.13% | 42L17% +20.87% +2.32%  +221%  +5.66%  +4.59%

2. When comparing the performance of LightGCN in single-domain versus cross-domain settings, it is
often found that the single-domain version performs better. For example, on the Movie—Music
dataset, the cross-domain model’s Recall@ 10 drops to 0.0972 from the single-domain’s 0.1069, a
significant degradation of 9.07 %. This indicates that simply merging data from two distinct domains
can cause severe negative transfer due to their inherent discrepancies. However, this phenomenon
is effectively mitigated by more advanced cross-domain recommendation methods. On that same
Movie—Music dataset, dedicated CDR models like BITGCF and CUT achieve much higher
Recall@10 scores of 0.1209 and 0.1205 respectively, outperforming the single-domain baseline by
an impressive 13.10% and 12.72%. This pattern is even more pronounced on the Music—Movie
dataset, where CUT reaches a remarkable 0.1393 in Recall—a massive 35.11% improvement over
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the single-domain performance—demonstrating the clear superiority of sophisticated cross-domain
architectures in overcoming negative transfer.

3. After applying +Our Method, this trend is dramatically reversed. The Recall for CUT improves by
a remarkable +21.52%, and for BiTGCF by +21.17%. This success stems from our model’s ability
to effectively identify and prune these noisy or irrelevant interactions, thereby preventing them from
negatively impacting the model’s training and allowing the genuine transfer of useful knowledge. .

D.5 THE USE OF LARGE LANGUAGE MODELS

In the preparation of this manuscript, we utilized Large LLMs to assist with several tasks. Primarily, LLMs
were employed to help format and input complex experimental results into LaTeX tables. Furthermore, they
served as a tool for proofreading the manuscript to identify potential logical inconsistencies and correct
English grammatical errors. Finally, LLMs were also used to assist in translating some of the content into
English.
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