
Task Plan verbalizations with causal justifications

Gerard Canal,1 Senka Krivić,1 Paul Luff,2 Andrew Coles1

1 Department of Informatics, King’s College London
2 King’s Business School, King’s College London

{name.surname}@kcl.ac.uk

Abstract

To increase user trust in planning algorithms, users must be
able to understand the output of the planner while getting
some notion of the underlying reasons for the action selec-
tion. The output of task planners have not been traditionally
user-friendly, often consisting of sequences of parametrised
actions or task networks, which may not be practical for lay
and non-expert users who may find it easier to read natural
language descriptions. In this paper, we propose PlanVerb,
a domain and planner-independent method for the verbaliza-
tion of task plans based on semantic tagging of the actions
and predicates. Our method can generate natural language
descriptions of plans including explanations of causality be-
tween actions. The verbalized plans can be summarized by
compressing the actions that act on the same parameters. We
further extend the concept of verbalization space, previously
applied to robot navigation, and apply it to planning to gen-
erate different kinds of plan descriptions depending on the
needs or preferences of the user. Our method can deal with
PDDL and RDDL domains, provided that they are tagged
accordingly. We evaluate our results with a user survey that
shows that users can read our automatically generated plan
descriptions, and are able to successfully answer questions
about the plan. We believe methods like the one we propose
can be used to foster trust in planning algorithms in a wide
range of domains and applications.

Introduction
The plans produced by a task planner may not be easy to
understand by lay users and people not familiar with plan-
ning. This plan output, usually written as a sequence of
parametrised actions, does not integrate enough information
for users who are not experts in the domain to understand it
and the possible reasons for each action in the plan.

These users may be more familiar with natural language
descriptions of the plans, narrated as a sequence of sentences
describing the actions and involving the parameters. Further-
more, this narration of the plan can include causality infor-
mation to link the actions together, making more explicit
why a specific action was taken. We believe this would make
it even easier for those users to understand the plan, possibly
increasing their trust in the planner. Additionally, this may
also enable the planning systems to narrate the plan them-
selves, fostering interaction with the user. A clear example
of this would be that of a robot acting in a human-inhabited

environment and explaining its plans to the users around.
In this paper, we present PlanVerb, a domain-independent

method to verbalize task plans for planners based on PDDL
(Fox and Long 2003) and RDDL (Sanner 2010). For this,we
first propose semantic tagging for planning domains that
specify the building blocks of the verbalized sentences (verb,
subject, and complements). The tags are used by PlanVerb
to generate the sentences, but may also be useful for read-
ers of the domain to get a quick idea of what each action
represents. We also present an action compression method
with the intent of summarising plans by joining together ac-
tions that act on the same parameters. An example of this
are compressions of navigation actions which go through an
intermediate point. Finally, we propose an extension to the
verbalization space parameters from (Rosenthal, Selvaraj,
and Veloso 2016), previously used to narrate robot naviga-
tion routes. These parameters represent user preferences on
the narration, and allow the generation of verbalizations at
different levels of detail including only certain actions or
objects, and with more or fewer causality explanations. A
user evaluation with 42 participants has demonstrated that
the proposed approach generates understandable plan ver-
balizations.

Related work
This work on task plan verbalizations extends the work by
Rosenthal, Selvaraj, and Veloso (2016), where verbalization
is applied to the narration of mobile navigation routes. In
that work, the authors introduce a verbalization space that
covers the variability in utterances that can be used to de-
scribe the route to different users. The route and map of
the robot are used to instantiate sentences that narrate the
robot experience. Then they performed a user study in (Per-
era et al. 2016) where they analysed the kinds of questions
that the users can request to the robots to obtain the desired
explanations, to then learn a mapping between user queries
and verbalization space parameters. This approach was fur-
ther adapted in (Zhu et al. 2017) to narrate manipulation
tasks along with navigation, including PDDL actions. We
have extended this notion of verbalization and verbalization
spaces and applied to task plans in a domain-independent
fashion and integrating causality information to explain the
relations between actions, with applications not restricted to
robotics. Furthermore, we don’t need pre-writing sentence



templates, but only tagging the syntactic elements of the ac-
tions in the domain.

Verbal communication of plans has been deemed neces-
sary in robotic scenarios involving humans. Fiore, Clodic,
and Alami (2016) verbalize the actions in the plan for the
user, explaining which actions be executed and in what or-
der. Canal, Alenyà, and Torras (2019) communicate the next
action in the plan when the “inform” action, which is part of
the plan, is executed. Both works provide domain-dependent
verbalization of the plans, probably written specifically for
the task to be performed. In (Singh et al. 2020), robot teams
verbalize explanations of their actions and intentions to in-
crease human understanding. The plan is verbalized by par-
titioning it based on the informativeness of the actions.
The utterances come from predefined templates of possible
words and phrases. Similarly, Nikolaidis et al. (2018) ex-
plore how utterances improve Human-Robot Collaboration
with a robot that issues commands to users and explains why
it is doing some actions. The proposed formalism combines
the verbal communications and the robot actions optimally
to improve task performance. Neither of these works make
causal relation between actions explicit, which may help the
users understand the reasoning behind the actions.

State verbalization was performed in (Moon et al. 2019),
where language descriptions of scene graphs are verbalized
and used for scene understanding to describe the states while
executing the plan, although these descriptions are not yet
linked with the planning domain or planner.

Hayes and Shah (2017) explain robot control policies, ver-
balizing learned action conditions queried by the user. Sim-
ilar to our domain description tagging, they add function
decorators in the code to be able to verbalize the actions
performed by the robot. Sridharan and Meadows (2019)
present a theory of explanations for Human-Robot Collab-
oration. With it, they represent, reason, and learn knowledge
to generate explanations, an explanation categorisation, and
an explanation construction method. The defined character-
istic axes can be seen as an equivalent of the verbalization
space. Causal chains have been used to provide explanations
in Seegebarth et al. (2012), where plans are represented in
first-order logic with explanations being proofs based on
causal links. Madumal et al. (2020) also use causal chains
to generate explanations for RL agents using decision trees.

We summarise the plans by compressing some of the ac-
tions appearing in it. This is similar to work performed on
Macro-Operators (Botea et al. 2005; Coles, Fox, and Smith
2007), where a set of ground actions are joined to form a
macro-action. Similarly, we join sets of actions operating in
intermediate parameters to verbalize them together. Other
summarisation approaches, such as (Myers 2006), perform
summarisation by only describing features based on seman-
tic concepts, while we compress redundant parts of the plan
to show it as a whole.

Semantic domain information tagging
In order to generate sound sentences that represent each of
the actions and their parameters, we need information on
how those actions relate to the parameters, and what do they
represent in the planning context.

For this, we propose to tag the domain file with informa-
tion on how to generate the sentences. Thus, our methods
require the input domains to be tagged with semantic infor-
mation. While this introduces some manual work on the side
of the domain expert, we believe this can also be useful to
encourage commenting those domains, making it easier to
understand the meaning of each action by the users of the
domain. Therefore, we propose a commenting format to add
the semantic information on the actions. Thus, we denote
those tags as “semantic information tags” as they will help
the domain readers to understand the semantics of the action
without the need of digging into its conditions and effects.
The tags describe the syntactic information from the actions
and their parameters.

We propose a flexible approach to obtain the necessary in-
formation to verbalize the actions in the domain. Instead of
writing all the template verbalization sentences, we tag each
action and predicate with the verb that they represent along
with its syntactic complements, and the subject of the sen-
tence. These tags may include the parameters of the actions
which will be replaced by their grounded value in the plan.

Our proposed format allows for the specification of al-
ternatives to produce richer verbalizations (i.e., synonyms
for verbs), which will be selected at random. For optional
complements such as some prepositional clauses, we also
have the option to flag them as required to avoid them be-
ing omitted based on the verbalization space parameters (as
detailed in the following section). Alternative forms of the
syntactical clause are separated by a forward slash (/), while
prepositional clauses can be flagged as required by adding
an exclamation mark (!) at the end. Phrasal verbs can be
added by putting the particle in parentheses such that only
the non-parenthesised part will be conjugated. For instance,
the phrasal verb “look for” would be set up as ; verb
= look (for). Figure 1 shows an example of a tagged
action and predicate/fluent for both PDDL and RDDL in a
robotics domain, including different verbal options.

These tags are then used to generate sentences for each ac-
tion. The verb is conjugated to the appropriate tense by using
the mlconjug3 library (Diao 2020). Thus, our method is
able to generate sentences in past, present, and future, which
allows the planning system to update the verbalization of the
plan while it is being executed.

Task plan verbalizations
Following the definition from Rosenthal, Selvaraj, and
Veloso (2016), we will define the verbalization of a task plan
as the process that converts the plan into a natural language
description. A natural language description of the plan may
be easier to understand by a wider range of users, including
non-experts in planning nor the domain. This understand-
ing can then be key to increasing the trust of the users in
the plan, as well as its transparency. User’s acceptance can
increase when the reasons for the system’s actions are ex-
plained (Koo et al. 2015).

We propose a verbalization method that is domain-
independent provided that the input domain has been tagged
appropriately, as described above. For this, we use the ROS-
Plan system (Cashmore et al. 2015) as the planning frame-



; Moves the robot from waypoint ?from to waypoint ?to
; verb = go / travel / move
; subject = ?v
; prep = from the ?from
; prep = to the ?to / towards the ?to !
(:durative-action goto_waypoint
:parameters (?v - robot ?from ?to - waypoint)

(a) Example of PDDL action tagging.

; The robot ?r is at the waypoint ?wp
; verb = be
; subject = ?r
; prep = at the ?wp
(robot_at ?r - robot ?wp - waypoint)

(b) Example of PDDL predicate tagging.

// Moves the robot from one waypoint to another
// verb = go / travel / move
// subject = \1
// prep = from the \2
// prep = to the \3 / towards the \3 !
goto_waypoint(robot, waypoint, waypoint): { action-fluent, bool,

default = false };

(c) Example of RDDL action fluent tagging.

// The robot is at the waypoint
// verb = be
// prep = at \2
robot_at(robot, waypoint): { state-fluent, bool,

default = false };

(d) Example of RDDL state fluent tagging.

Figure 1: Examples of semantic tags representing syntactic information of the planning actions and predicates. In RDDL, the
parameter reference uses positional arguments such as \i for i ∈ [1..n] for a fluent with n parameters.

work. This allows us to have a planner-agnostic method, as
well as to be able to work with both PDDL-based planners
and RDDL-based planners (by using the probabilistic ex-
tension by Canal et al. (2019)). Note that, in the case of
RDDL, there’s one caveat which is that we are constrained
to the subset of it supported by ROSPlan. Thus, causality
information and goals (if present) may not be appropriately
captured by ROSPlan, restricting the amount of verbaliza-
tion that can be performed by our method. We support dura-
tive and non-durative actions (PDDL2.1) but not processes
or events (PDDL+).

Verbalization space
Different users will have distinct preferences or needs when
it comes to obtaining task plan descriptions. An expert user
may need a detailed, step by step description of the plan to
find incongruities or erroneous actions. A lay user, instead,
may prefer to read a summarised version of the plan, know
what was performed to achieve the main goals, or get a sum-
mary of the actions that were applied on a particular object.

In order to cope with these different verbalization use
cases, we have extended the concept of verbalization space
suggested by Rosenthal, Selvaraj, and Veloso (2016) to
cover the narration task plans. The verbalization space spec-
ifies different variations of the descriptions of the plans to
cover different user preferences. Our verbalization space for
task plans includes four parameters: abstraction, locality,
specificity, and explanation, as detailed below.

The combinations of the different parameters allow to
generate various plan descriptions, from more detailed to
more abstract and summarised, covering for a wide range
of situations. This verbalization space for task plans should
be general enough for most of the use-cases, but can easily
be extended to deal with more parameters or combinations
of them.

Abstraction The abstraction parameter a ∈ A represents
the level of concretion used in the verbalization of the plans.

We consider four levels of abstraction:

• Level 1: The lowest level does not include any abstraction.
This means that the verbalization will include numerical
values such as real-world coordinates of objects or loca-
tions. It also includes the duration of the actions (if avail-
able), as well as all the action parameters. For this level,
an extra file with the mapping between object instances
and real-world data can be provided.

• Level 2: In this level, the parameter names are used in-
stead of the available real-world values. It still verbalizes
action durations and all the parameters, as well as inter-
mediate values for compressed actions.

• Level 3: The duration of the actions is not verbalized,
while all the parameters and intermediate values (such as
via points) for compressed actions are kept.

• Level 4: In the more abstract level, only the essential pa-
rameters of the actions are verbalized, which are those
needed for a grammatically correct sentence and the ones
flagged as required. Intermediate values are also skipped.

Locality The locality parameter l ∈ L is used to narrow
the scope of the verbalization, to perform it only based on
points of interest of the user or a range of actions. We define
three values for the locality:

• All the plan: Does not restrict the scope, and all the ac-
tions in the plan are verbalized.

• Range of actions: Restricts the scope to a subset of the
actions of the plan. For instance, the verbalization would
only take from the third action to the fifteenth one.

• Action or object: Limits the verbalization to those actions
including a specific object instance as a parameter, or ver-
balizes all the actions with a given name.

Specificity The specificity parameter s ∈ S describes how
specific the description of the plan should be regarding the
level of detail. It includes three options:



• General picture: Provides a generic description of the
main highlights of the plan. It focuses on the actions
achieving the goals, and verbalizes those actions along
with their justifications, provided that they are set so by
the explanation parameter.

• Summary: The verbalization of the plan will compress ac-
tions when possible, generating a more compact represen-
tation of the plan. These compressions include shortcut-
ting actions that act on intermediate objects (such as nav-
igation actions through some via points), or join actions
that are repeated with different objects or subjects. This is
further detailed in the following section.

• Detailed narrative: Generates a detailed description of the
plan without summarising nor compressing any action.
Thus, all the actions will appear in the narration of the
plan.

Explanation The explanation parameter e ∈ E specifies
the level of justifications between actions that will be nar-
rated. We have considered three kinds of verbalizable justi-
fications: immediate justifications of actions, deferred justi-
fications of actions, and goal-achieving explanations.

An action aj is an immediate justification of another ac-
tion ai if ∀k ∈ [i..j), there is a causal link between ak and
aj , where i, j, and k are the indices in which the actions
appear in the original plan. Thus, aj will be an immediate
justification of all the actions in [ai..aj), which are the ac-
tions that allow aj to happen.

A deferred justification, instead, happens when an action
ai has a causal link with a non-consecutive action aj . There-
fore, we have a deferred justification when ∃k ∈ [i..j) such
that ak does not have a causal link with aj .

Goal-achieving explanations make explicit the achieve-
ment of a goal, and show when an action was performed to
complete a specific goal.

Following are the levels of explanation verbalizations:

• Level 1: No explanation is added to the plan, thus actions
are verbalized sequentially in order of appearance.

• Level 2: Joins actions together when one action is an
immediate justification of another action, and verbalizes
them making the causality between the actions explicit.

• Level 3: Adds deferred justifications for actions that have
a causal link with another action that appears later in the
plan, but only if that action that is being justified achieves
a goal. Deferred justifications to actions that act as an im-
mediate justification are not verbalized.

• Level 4: The explanations of the goals that are achieved
by the actions are added to the verbalization, along with
the explanations from the lower levels.

• Level 5: Includes all the deferred justifications (for all the
causal links of an action).

Plan summarisation through action compression
It is often the case with some domains that the same ac-
tion is sequentially repeated throughout the plan, with the
in-between appearances of the action providing intermedi-
ate values that may not be very informative to the user.

(grasp r A)
(grasp r [A B])

(grasp r C)
(grasp r [A B C])(grasp r B) → →

(grasp r C)

(a) Compression with multiple objects. The resulting ac-
tion symbolizes “r will grasp A, B, and C”

(goto r1 A B) → (goto [r1 r2] A B)
(goto r2 A B)

(b) Compression with multiple subject and the same pa-
rameters. The resulting action represents that “r1 and r2
will go from A to B”

(goto r A B) (goto r A C)
(goto r A D)
(through B and C)

(goto r B C) → (through B) →
(goto r C D) (goto r C D)

(c) Compression with intermediate parameters. The result-
ing action means “r will go from A to D”

Figure 2: Examples of action compressions for plan sum-
marisation

Examples of this include navigation actions for a robot,
where it can only move between the waypoint it is at to an-
other waypoint connected to it. Thus, to reach a certain po-
sition, it must traverse a set of these waypoints, generating
many actions that reach intermediate positions. Similarly, a
consecutive sequence of the same action applied to different
objects can be summarised as the action applied to the set of
objects.

We propose an action compression method to deal with
these kinds of actions to generate shorter verbalizations of
the plan. We only compress actions in the two aforemen-
tioned cases, and when there is only one free parameter (i.e.,
a grounded parameter whose value does not appear in both
actions). Nonetheless, the method is easily extendable to
handle more complex situations.

Given two consecutive appearances of an action in the
plan, we compare their grounded parameters to generate a
pattern that indicates whether each parameter had the same
value in the two actions, or whether the same instance ap-
peared in different parameter positions. We then perform the
compression as follows:

• When all the parameters of the action but one have the
same values in the same position, the resulting compres-
sion keeps those parameters and joins the free parameter
in a list. Notice that this method will compress parameters
that act as an object to the action and also those acting as
a subject. Figs. 2a and 2b show examples of this.

• When the same grounded parameter appears in different
positions in both actions, we consider that parameter to
be an intermediate one. The resulting compression re-
moves the intermediate parameter and joins both actions
by keeping the rest of parameters. To do so, the space left
by the intermediate parameter is filled by the grounded



values appearing at the same place in the other action. The
intermediate parameters are kept to be used in the verbal-
ization with abstraction levels 1 to 3. An example of this
kind of compression can be found in Fig. 2c.

The compression method starts at the beginning of the
plan and checks every pair of consecutive actions trying
to compress them according to the above procedure. When
two actions are compressed, the resulting action is compared
with the next one, extending the compression to the subse-
quent actions in the plan. The compressed action duration is
computed as the time overlap between the two actions.

The PlanVerb algorithm
The plan is pre-processed and stored in an intermediate
structure that will later allow the generation of the verbal-
ized sentences. This structure is a script of the plan to be
verbalized. Each element sl ∈ V in the script V is a 4-
tuple sl = 〈ai, Iai

, Dai
, Gai

〉, where ai is an action, Iai
is a

list of immediate justifications (actions aj that have a causal
link to ai), Dai is a list of deferred justifications (actions ak
that have a causal link from ai), and Gai a list of the goals
achieved by ai.

We first compute the action causality chains from the plan.
For this, we use a graph-based representation of the plan,
such as the one from Lima et al. (2020) that is integrated into
ROSPlan. From the plan graph, we compute the causality
chains for those actions achieving a goal by traversing the
causal edges of the graph from these goal-achieving actions
backwards.

Algorithm 1 shows the pseudocode of the PlanVerb algo-
rithm. To start, the actions in the plan are compressed using
the COMPUTEPLANCOMPRESSIONS method (line 5), as de-
scribed in the section above. The compression method splits
the plan into one plan per each subject performing an action
in the plan. This enhances the number of action compres-
sions, as only actions appearing consecutively in the plan are
compressed. Thus, actions are considered in a per-subject
manner instead of in the whole plan.

Then, the causality chains are used to generate a full
plan script integrating all the information (immediate jus-
tifications, deferred, and goals) for every action in the plan.
We call this script the causality script, and it is generated
in COMPUTECAUSALITYSCRIPT (line 2). The justifications
are also considered on a per-subject basis, so immediate jus-
tifications may not be consecutive in the general plan, but be
in the plan split by subject.

The causality script is then iterated, and the verbaliza-
tion space parameters are applied, generating a verbalization
script that includes the actions that will be finally verbalized.
The actions and action justifications are filtered based on the
verbalization space parameters (lines 12–15). Actions acting
as an immediate justification of another action are skipped
and not included in the script, given that they will be ver-
balized along with the action they support. Actions appear-
ing in a deferred justification are not skipped. Instead, they
are verbalized both as a (later) consequence of the causing
action when it is verbalized, and as an action with its own
justifications when it appears later in the plan.

Algorithm 1: The PlanVerb algorithm
Input: Plan π; Causality chains C; Semantic tags T

Verbalization space (a, l, s, e) ∈ (A,L, S,E)
Output: Verbalization v
1 GA := GETGOALACHIEVINGACTIONS(C )
2 CS := COMPUTECAUSALITYSCRIPT(π, C)
3 PC := []
4 if s == Summary then
5 PC := COMPUTEPLANCOMPRESSIONS(π, GA)

6 else if s == General P icture then
7 CS := GETGOALACHIEVINGSCRIPTS(GA, CS)

8 v := []
9 foreach c ∈ CS do

10 if NOTINLOCALITY(c, l) then skip c
11 else // Filter the scripts according to e

12 c.I := FILTERIMMEDIATEJUSTIFICATIONS(c.I , e)
13 c.D := FILTERDEFERREDJUSTIFICATIONS(c.D, e)
14 c.G := FILTERGOALS(c.G, e)
15 v.add(GENERATESENTENCE(c, a, T , π, PC))

16 return v

To avoid over cluttering the sentences, deferred justifica-
tions are skipped when they justify an action that has been
skipped (i.e., it acts as an immediate justification to another
action), or when they appear in a sentence where a goal is
verbalized and the explanation level is lower than 5 (thus,
goals take precedence).

Sentence generation Each action in the script is verbal-
ized in line 15 of Algorithm 1. The GENERATESENTENCE
method checks whether there are immediate, deferred justi-
fications, or goals in the script, verbalizes each of them and
joins them with pre-defined sentence linkers. The selected
linker is chosen at random, and the actions are verbalized to
the appropriate tense based on the structure of the linker and
the tense of the main action in the script.

The script may be tensed in future, past, or present de-
pending on the execution point of the plan. The justifica-
tions and deferred justifications are tensed accordingly, with
the verbs conjugated using the mlconjug3 library. All the
actions and predicates (goals) are verbalized similarly, tak-
ing the form of subject + verb + indirect-object
+ direct-object + prepositional clauses, using
only the available parts of the sentence based on the seman-
tic tags of the action and the abstraction parameter.

The sentence generation process also checks whether the
actions in the script are compressed and uses the compressed
version, adding the intermediate values as via points and the
action duration when specified by the level of abstraction.

Evaluation
We have evaluated the proposed plan verbalization method
and spaces. First, we provide some examples of automati-
cally verbalized actions. Then, we analyse the impact of the



verbalization space parameters. Finally, we comment on the
results of an online survey regarding the verbalization.

For all the examples and results below, we have user ROS-
Plan with the POPF planner (Coles et al. 2010) for PDDL
domains, and the PROST planner (Keller and Eyerich 2012)
for RDDL domains1 .

Examples of verbalized actions
Here we will present some verbalized actions produced by
our algorithm. In this section, we will use a robotics domain
where mobile robots work in an office performing naviga-
tion, pick and place, and handover tasks. In the exemplified
plans, two robots are acting in the environment, where one
of the robots is the narrator, speaking in the first person, and
the other one is called “Tomo”.

In the following examples, black sentences refer to the
main action, blue sentences to immediate justifications,
green sentences to deferred justifications, and red sentences
to goals. We have added sentences in different tenses to show
the ability of the method to generate sentences at different
points of execution.

Example 1: Abstraction We start with an action appear-
ing early in the plan where Tomo locates the manager. This
action enables the actions of “request person” and “give ob-
ject”, being the latter achieved by the other robot at the last
part of the plan. The sentence verbalized with (a, l, s, e) =
(Level 3, All plan, Summary, Level 4), action durations are
not included, and all the parameters are verbalized.

Tomo will locate the manager, which will allow me to
later request the manager at the kitchen corridor and
me to hand post2 to the manager at the kitchen corridor.

If verbalized with abstraction level 4, the resulting sen-
tence ignores the location prepositional clause:

Tomo is going to locate the manager, which will allow
me to later ask the manager and me to deliver post2 to
the manager.

Example 2: Specificity Here we’ll show how actions get
compressed in the plan. With verbalization space parameters
(a, l, s, e) = (Level 3, All plan, Summary, Level 4), interme-
diate actions are compressed as follows:

Tomo will travel from the main office desk towards
the kitchen chair (via main office doorway and meet-
ing room hallway) to move from the kitchen chair to
the entrance to achieve the goal of Tomo being at the
entrance.

When using the Detailed Narrative value instead, the sen-
tence is the following (this time in past tense). Notice that

1The code, domains, and the complete set of verbalized plans
with all the combinations of verbalization space parameters can be
found in https://github.com/gerardcanal/task plan verbalization

as there is no compression employed, actions from different
subjects are interleaved:

Tomo went from the main office desk towards the main
office doorway to then go from the main office door-
way to the meeting room hallway. I traveled from the
kitchen corridor towards the kitchen shelf to reach the
goal of me being at the kitchen shelf. Tomo went from
the meeting room hallway to the kitchen chair so Tomo
could travel from the kitchen chair to the entrance to
fulfill the goal of Tomo being at the entrance.

In the following example from the IPC 2002 Rovers do-
main (Long and Fox 2003), subjects are compressed. With
verbalization space parameters (a, l, s, e) = (Level 2, All
plan, Detailed Narrative, Level 1), the verbalization is:

Rover3 will travel from waypoint7 towards waypoint0
(taking 5 seconds). Rover2 is going to travel from way-
point7 towards waypoint0 (taking 5 seconds).

When compressed with the Summary specificity parame-
ter and set to present tense, it becomes:

Rover3 and Rover2 are traveling from waypoint7 to-
wards waypoint0 (taking 5 seconds).

Example 3: Immediate and deferred explanations Fi-
nally, we show an example of sentence verbalized with both
immediate and deferred justifications. For this one, the ver-
balizations parameters are (a, l, s, e) = (Level 4, All plan,
Summary, Level 4):

Tomo is going to move to the office entrance 1, which
will allow Tomo to grasp the post1 so Tomo can later
leave the post1 at the main office desk.

Effect of the verbalization space parameters
We have validated the effect of the different verbalization
space parameters with a set of test domains. Those include
the office robot domain (4 instances), the IPC 2002 Rovers
domain (Long and Fox 2003) (19 instances), the IPC 2008
CrewPlanning domain (Barreiro, Jones, and Schaffer 2009)
(30 instances) for PDDL. For RDDL, we have used the IPPC
2014 triangle tireworld (Little, Thiebaux et al. 2007), the
print fetching domain from (Canal et al. 2019), and three
interactive assistive robotics domains (Canal 2020), where
the tasks involve a robotic assistant feeding and dressing a
human.

We have computed a plan for all the domains and in-
stances and verbalized it with all the combination of param-
eters. Fig. 3 shows the average number of words for all the
verbalized plans in different combinations of parameters.

Regarding the abstraction parameter (Figs. 3a and 3b),
the figures show that the higher the level of abstraction, the



fewer the number of verbalized words. Note that for abstrac-
tion level 1, in this experiment we have sampled random real
coordinates from a 2D space to represent the locations ap-
pearing in the problem instances.

For the explanation parameter (Figs. 3b and 3c), the num-
ber of words increases with the level of explanation, as the
text becomes more verbose. Level 2 has a slight increase,
as the same number of actions are verbalized but linked to-
gether. The deferred justifications added by level 3 increase
more the number of words, surpassed by level 4 with the
verbalized goals. Lastly, the inclusion of all the deferred jus-
tifications in level 5 generates the largest verbalizations.

The specificity parameter (Figs. 3a and 3c) also has a
clear effect on the number of words. The General Picture
is the most summarised one, including only some actions.
The Summary level includes all the actions but compresses
some of them, thus producing shorter narrations than with
the Detailed Narrative parameter.

As can be seen in the different plots of Fig. 3, the verbal-
ization space parameters are consistent with the generated
plan narratives.

Online user survey
We have conducted an online survey to assess both the use-
fulness of the provided explanations and the understandabil-
ity of the generated sentences. The survey was answered by
42 people in two groups. Two verbalizations were shown to
each of the users. The first one, v1 is a step-by-step plan
of two robots, Tomo and Asro, performing the tasks of the
office domain. The narration for v1 was generated with pa-
rameters (a, l, s, e) = (Level 3, All plan, Detailed Narrative,
Level 1). The other one, v2 is a summarised version of the
same plan including explanations, generated with the pa-
rameters (a, l, s, e) = (Level 3, All plan, Summary, Level
4). One group would see first the step-by-step plan v1 and
then the summarised one v2; the other would see them in the
opposite order. The background of the users ranged from
robotics, computer science, AI planning, and unrelated dis-
ciplines (non-technical). The 57% of the users not familiar
with task planning (lay users), and the 28% had occasionally
seen or used a task planner before (non-experts). Four users
were considered expert. We kept them in the analysis be-
cause, while our focus is on non-expert users, we wanted to
see if there were notable differences in views or comments
from them. We did not find difference in performance, while
we got meaningful opinions from them. All of the users
were fluent in English. The survey involved multiple-choice
questions on their opinions on why they thought some spe-
cific actions were happening in the plan based on the goals
of the robots. The multiple-choice questions were followed
by 5-point and 7-point Likert-scale questions regarding their
agreement with different statements on the understandability
of the plans. Finally, some open-ended questions concluded
the survey. In the statistical tests used to analyse the results
of the survey, which we will now discuss, we have used a
confidence level of 95%.

An F-test showed there were not significant differences
between the two groups, for which the following results will
aggregate the answers regarding v1 and v2 for both groups.

(a) Average number of words in the verbalizations for the
abstraction and specificity parameters

(b) Average number of words in the verbalizations for the
abstraction and explanation parameters

(c) Average number of words in the verbalizations for the
explanation and specificity parameters

Figure 3: Effect of the verbalization space parameters in the
average number of generated words



The answers to the multiple-choice questions were given
one point for a correct value, and half a point for partially
correct answers (for instance, when the answer involved two
reasons but only one of them was selected). Our results
clearly show that v2, which included justifications, helped
the users to better answer the questions. More than 80%
of the users were able to answer correctly, with the high-
est question being 97.62%. In contrast, for the step-by-step
description v1 (without justifications) only half of the users
gave a correct answer, with the maximum for a single ques-
tion being 61.90%. For each question, between the 20% and
40% of the users stated they did not know the answer for v1,
while this percentage was at most 2.38% for v2. We have
assessed the significance of these results with a χ2 test.

Regarding the Likert questions, users were more confident
in their responses for v2 (x̃ = 5.672 out of 7) than for v1
(x̃ = 4.11 out of 7). Regarding how easy it was to answer,
the means were x̃ = 4.02 out of 5 for v2 and x̃ = 2.45
for v1. Those results indicate that users found explanations
to be helpful to answer the questions, clearly shown by the
answers to how quickly they could find the reasons behind
each questioned action. For this, the answers were x̃ = 4.12
out of 5 for v2 and x̃ = 2.30 for v1. Users also found the
descriptions in v2 easier to read and understand. Similarly,
they reported higher satisfaction with the plan description
for v2, which included explanations. A t-test found statistical
significance for all these answers.

When asked about the grammatical soundness of the gen-
erated sentences, there were no significant differences be-
tween both verbalizations. For v1, x̃ = 4.19 out of 5, while
v2 got a x̃ = 4.17. Thus, both representations generated by
PlanVerb were found to be correct and readable regardless
of the parametrised level of explanation.

When asked by whether the description of the plan made
it easier to answer the questions, most of the users agreed
for v2 (with justifications) against v1 (without justifications).
Users that got v2 last agreed it helped more than v1 with a
mean of x̃ = 4.85 out of 5, while those seeing v1 last gave
a mean score of x̃ = 2.14 regarding v1 helping more than
v2. This supports the claim that the justifications help users
understand the reasons for the actions. A t-test also showed
significance for these results.

When asked about improvements, some users pointed to
elements that can already be solved by the different com-
bination of verbalization space parameters, such as show-
ing only actions achieving goals. Some users believed there
was too much information, with excessive granularity in v1,
while others mentioned v1 was missing information while
v2 wasn’t. This appears in different answers and suggestions
such as adding temporal information (which we can do with
different parameters). Therefore, users’ answers clearly sup-
port the need for different parametrizations, given that users
will have their preferences over the best verbalization. A few
users mentioned that one plan for each robot would be easier
to understand, which supports the idea of joining plans by
subject and summarizing them separately as we have pro-
posed. Finally, many users suggested adding different kinds

2Where x̃ represents the arithmetic mean.

of visualisation along with the verbalization, with different
ideas that we leave for future work.

The conducted survey demonstrates how PlanVerb can
generate narrations of task plans that make sense to users
and are grammatically sound. The users’ answers further
support the need for different kinds of verbalizations, which
can be achieved with the verbalization space parameters we
have proposed.

Conclusions
In this paper, we have presented PlanVerb as a domain-
independent method to automatically verbalize task plans.
We have proposed a semantic tagging for PDDL/RDDL ac-
tions and predicates that provide the necessary information
for PlanVerb to generate natural language sentences. Then,
by using causality information between actions, we are able
to generate sentences that make this causality explicit, both
for immediate justifications of actions appearing consecu-
tively in the plan and for deferred justifications of actions
that appear at a later stage. The narrated plans can also be
summarised by compressing related actions. We have further
extended the concept of verbalization space introduced by
(Rosenthal, Selvaraj, and Veloso 2016) used to narrate robot
navigation experiences to cover task plans. We have added a
new parameter of explanation, which decides the number of
justifications that are verbalized, as well as the filtering by
object or action introduced in the locality parameter.

We have shown examples of verbalized sentences using
our method and evaluated the effect of the verbalization
space parameters in different domains. An extended set of
examples can be found in the repository3. Finally, we have
conducted an online survey where users were shown ex-
amples of verbalized texts. All the users were able to read
the texts and confirmed the sentences were grammatically
sound. Moreover, the justifications helped them to under-
stand the plan, easing the process of answering questions
about the plan, supporting the hypothesis that verbalizing
causal chains fosters plan understanding. We believe this is
a good step towards making task plans more understandable
by lay users and users unfamiliar with the domains. How-
ever, users’ answers also pointed to the need for better Ex-
plainable Planning (XAIP) methods, able to explain the un-
derlying reasons for some of the actions beyond making ac-
tion causality explicit.

Although we can successfully verbalize plans that are un-
derstandable by users, there are still some improvements
that can be done as future work. First, using some natu-
ral language processing techniques to improve the gener-
ated sentences. Pronominalisation could help to make sen-
tences more natural by avoiding subject repetition, as well as
pluralization of nouns when needed (i.e., after some action
compressions). Finally, the addition of preconditions and ef-
fects could be beneficial to the verbalization process, along
with an improved justification selection mechanism. This
could be accompanied by plan visualization techniques, that
clarify the different steps involved in the plan.

3Examples can be found at https://github.com/gerardcanal/task
plan verbalization/tree/with examples/verbalized examples



Acknowledgments
This work has been supported by the EPSRC grant THuMP
(EP/R033722/1). The authors would like to thank Mr. Sekou
Diao for his insights and help with the use of mlconjug3,
and Mr. Ionut Moraru, Mr. Alexander Ortiz de Guinea, Dr.
Michael Cashmore, Dr. Rita Borgo, and Dr. Xavier Ferrer
for fruitful discussions.

References
Barreiro, J.; Jones, G.; and Schaffer, S. 2009. Peer-to-peer
planning for space mission control. In IEEE Aerospace con-
ference, 1–9.

Botea, A.; Enzenberger, M.; Müller, M.; and Schaeffer, J.
2005. Macro-FF: Improving AI planning with automatically
learned macro-operators. Journal of Artificial Intelligence
Research 24: 581–621.

Canal, G. 2020. Adapting robot behavior to user preferences
in assistive scenarios. Ph.D. thesis, Universitat Politècnica
de Catalunya · BarcelonaTech (UPC).

Canal, G.; Alenyà, G.; and Torras, C. 2019. Adapting robot
task planning to user preferences: an assistive shoe dressing
example. Autonomous Robots 43(6): 1343–1356.

Canal, G.; Cashmore, M.; Krivić, S.; Alenyà, G.; Maga-
zzeni, D.; and Torras, C. 2019. Probabilistic Planning for
Robotics with ROSPlan. In Towards Autonomous Robotic
Systems, 236–250. Springer International Publishing.

Cashmore, M.; Fox, M.; Long, D.; Magazzeni, D.; Ridder,
B.; Carrera Viñas, A.; Palomeras Rovira, N.; Hurtós Vilar-
nau, N.; and Carreras Pérez, M. 2015. Rosplan: Planning in
the robot operating system. In International Conference on
Automated Planning and Scheduling, 333–341.

Coles, A.; Coles, A.; Fox, M.; and Long, D. 2010. Forward-
chaining partial-order planning. In International Conference
on Automated Planning and Scheduling, 42–49.

Coles, A.; Fox, M.; and Smith, A. 2007. Online Identifica-
tion of Useful Macro-Actions for Planning. In Intl. Confer-
ence on Automated Planning and Scheduling, 97–104.

Diao, S. 2020. mlconjug3. GitHub. https://github.com/
SekouDiaoNlp/mlconjug3 .

Fiore, M.; Clodic, A.; and Alami, R. 2016. On Planning
and Task Achievement Modalities for Human-Robot Collab-
oration. In 14th International Symposium on Experimental
Robotics, 293–306. doi:10.1007/978-3-319-23778-7 20.

Fox, M.; and Long, D. 2003. PDDL2. 1: An extension to
PDDL for expressing temporal planning domains. Journal
of artificial intelligence research 20: 61–124.

Hayes, B.; and Shah, J. A. 2017. Improving robot controller
transparency through autonomous policy explanation. In
ACM/IEEE International Conference on Human-Robot In-
teraction (HRI), 303–312. IEEE.

Keller, T.; and Eyerich, P. 2012. PROST: probabilistic plan-
ning based on UCT. In International Conference on Auto-
mated Planning and Scheduling, 119–127.

Koo, J.; Kwac, J.; Ju, W.; Steinert, M.; Leifer, L.; and Nass,
C. 2015. Why did my car just do that? Explaining semi-
autonomous driving actions to improve driver understand-
ing, trust, and performance. International Journal on Inter-
active Design and Manufacturing (IJIDeM) 9(4): 269–275.
Lima, O.; Cashmore, M.; Magazzeni, D.; Micheli, A.; and
Ventura, R. 2020. Robust Plan Execution with Unexpected
Observations. In ICAPS Workshop on Integrated Execution
(IntEx) / Goal Reasoning (GR).
Little, I.; Thiebaux, S.; et al. 2007. Probabilistic planning
vs. replanning. In ICAPS Workshop on IPC: Past, Present
and Future.
Long, D.; and Fox, M. 2003. The 3rd international plan-
ning competition: Results and analysis. Journal of Artificial
Intelligence Research 20: 1–59.
Madumal, P.; Miller, T.; Sonenberg, L.; and Vetere, F. 2020.
Distal Explanations for Explainable Reinforcement Learn-
ing Agents. arXiv preprint arXiv:2001.10284 .
Moon, J.; Magazzeni, D.; Cashmore, M.; Buksz, D.; Lee,
B.-H.; Moon, Y.-S.; and Roh, S.-H. 2019. Towards Expla-
nations of Plan Execution for Human-Robot Teaming. In
SDMM19.
Myers, K. L. 2006. Metatheoretic Plan Summarization and
Comparison. In International Conference on Automated
Planning and Scheduling, 182–192.
Nikolaidis, S.; Kwon, M.; Forlizzi, J.; and Srinivasa, S.
2018. Planning with verbal communication for human-robot
collaboration. ACM Transactions on Human-Robot Interac-
tion (THRI) 7(3): 1–21.
Perera, V.; Selveraj, S. P.; Rosenthal, S.; and Veloso, M.
2016. Dynamic generation and refinement of robot verbal-
ization. In IEEE International Symposium on Robot and Hu-
man Interactive Communication (RO-MAN), 212–218.
Rosenthal, S.; Selvaraj, S. P.; and Veloso, M. 2016. Verbal-
ization: Narration of Autonomous Robot Experience. In In-
ternational Joint Conference on Artificial Intelligence, vol-
ume 16, 862–868.
Sanner, S. 2010. Relational Dynamic Influence Diagram
Language (RDDL): Language Description. http://users.cecs.
anu.edu.au/∼ssanner/IPPC 2011/RDDL.pdf.
Seegebarth, B.; Müller, F.; Schattenberg, B.; and Biundo, S.
2012. Making hybrid plans more clear to human users-a for-
mal approach for generating sound explanations. In Interna-
tional Conference on Automated Planning and Scheduling.
Singh, A. K.; Baranwal, N.; Richter, K.-F.; Hellström, T.;
and Bensch, S. 2020. Verbal explanations by collaborating
robot teams. Journal of Behavioral Robotics 12(1): 47–57.
Sridharan, M.; and Meadows, B. 2019. Towards a The-
ory of Explanations for Human–Robot Collaboration. KI-
Künstliche Intelligenz 33(4): 331–342.
Zhu, Q.; Perera, V.; Wächter, M.; Asfour, T.; and Veloso,
M. 2017. Autonomous narration of humanoid robot kitchen
task experience. In IEEE-RAS International Conference on
Humanoid Robotics (Humanoids), 390–397. IEEE.


