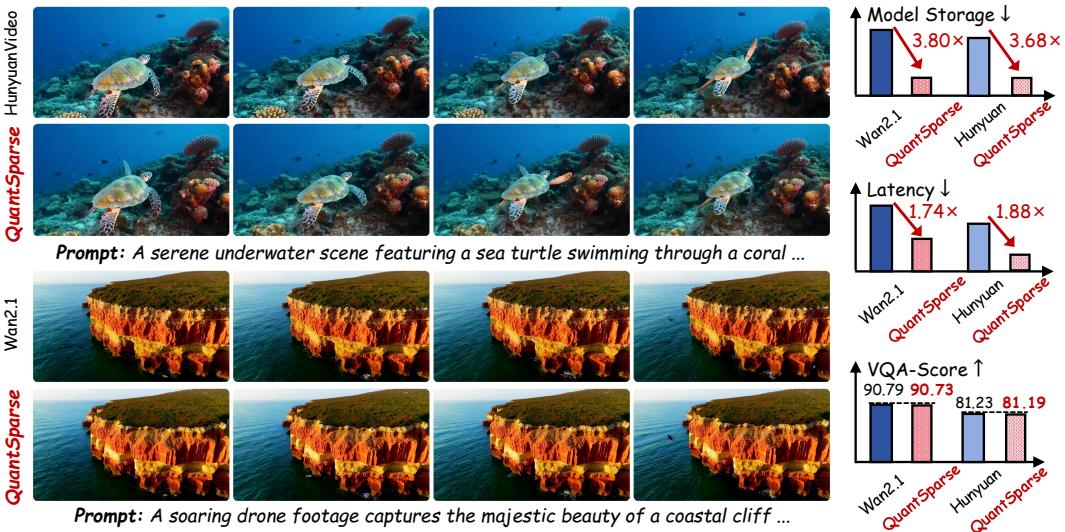


000 001 QUANTSPARSE: COMPREHENSIVELY COMPRESSING 002 VIDEO DIFFUSION TRANSFORMER WITH MODEL 003 QUANTIZATION AND ATTENTION SPARSIFICATION 004 005 006

007 **Anonymous authors**
008 Paper under double-blind review



029
030 Figure 1: **QuantSparse** effectively quantizes Wan2.1-14B (Wan et al., 2025) and Hunyuan-
031 Video (Kong et al., 2024) to W4A8 with 15% attention density without compromising visual quality.

ABSTRACT

033 Diffusion transformers exhibit remarkable video generation capability, yet their
034 prohibitive computational and memory costs hinder practical deployment. Model
035 quantization and attention sparsification are two promising directions for
036 compression, but each alone suffers severe performance degradation under aggres-
037 sive compression. Combining them promises compounded efficiency gains, but
038 naive integration is ineffective. The sparsity-induced information loss exacerbates
039 quantization noise, leading to amplified attention shifts. To address this, we pro-
040 pose **QuantSparse**, a unified framework that integrates model quantization with
041 attention sparsification. Specifically, we introduce *Multi-Scale Salient Attention*
042 *Distillation*, which leverages both global structural guidance and local salient su-
043 pervision to mitigate quantization-induced bias. In addition, we develop *Second-
044 Order Sparse Attention Reparameterization*, which exploits the temporal stabili-
045 ty of second-order residuals to efficiently recover information lost under spar-
046 sity. Experiments on HunyuanVideo-13B demonstrate that QuantSparse achieves
047 20.88 PSNR, substantially outperforming the state-of-the-art quantization base-
048 line Q-VDiT (16.85 PSNR), while simultaneously delivering a **3.68×** reduction
049 in storage and **1.88×** acceleration in end-to-end inference.

1 INTRODUCTION

051 Recently, Diffusion Transformer (DiT) (Peebles & Xie, 2023) has attracted significant attention due
052 to its outstanding capability in visual generation, particularly in video generation (Liu et al., 2024c;

054 [Sun et al., 2024a](#); [HPC-AI, 2024](#)). Despite the remarkable progress, state-of-the-art models such
 055 as Wan2.1-14B ([Wan et al., 2025](#)) still demand extraordinary computational resources: generating
 056 a single high-resolution video clip can consume more than **20GB** of GPU memory and take nearly
 057 **one hour** of inference time. Such prohibitive memory and latency requirements fundamentally limit
 058 the deployment of diffusion-based video generation models in real-world applications, especially
 059 under resource-constrained scenarios.

060 Model quantization ([Jacob et al., 2018](#); [Gholami et al., 2022](#); [Krishnamoorthi, 1806](#)) and attention
 061 sparsification ([Xi et al., 2025](#); [Yuan et al., 2024](#)) have emerged as two promising directions for com-
 062 pression and acceleration. Quantization reduces memory footprint and computation by representing
 063 weights and activations in compact integer formats, while attention sparsification prunes redun-
 064 dant computations by removing negligible attention scores. However, pushing either technique to
 065 the extreme inevitably causes severe degradation. For instance, binary quantization ([Zheng et al.,
 066 2024b;a](#)) collapses representational capacity, while aggressive sparsification ([Xi et al., 2025](#); [Zhang
 067 et al., 2025d](#)) discards crucial context information.

068 Since quantization and sparsification are fundamentally orthogonal, a natural idea is to combine
 069 them for compounded efficiency gains while maintaining complementary benefits. Ideally, such in-
 070 tegration could approach a Pareto frontier between performance and efficiency. Yet, our empirical
 071 analysis shows that **naïvely combining quantization and sparsification leads to severe perfor-**
 072 **mance degradation.** We attribute this to an *amplified attention shift*: while sparsification removes
 073 low-magnitude attention weights, quantization introduces systematic perturbations to the remaining
 074 attention products. These two effects reinforce each other, producing compounded distortions in at-
 075 tention distributions and severely impairing fine-grained dependency modeling in video generation.

076 To overcome this challenge, we propose **QuantSparse**, a unified compression framework that syner-
 077 gistically integrates model quantization and attention sparsification as shown in Fig. 2. QuantSparse
 078 introduces two novel techniques. First, *Multi-Scale Salient Attention Distillation (MSAD)*. We de-
 079 sign a memory-efficient distillation scheme that balances global and local supervision. Specifically,
 080 we employ *global guidance* by distilling attention patterns on downsampled token sequences to
 081 capture coarse structural topology, while *local guidance* focuses high-resolution supervision on a
 082 small set of salient tokens that dominate the attention distribution. Second, *Second-Order Sparse*
 083 *Attention Reparameterization (SSAR)*. We exploit the temporal stability of *second-order residuals*
 084 to recover information lost due to sparsity. Furthermore, we introduce singular value decomposi-
 085 tion (SVD) projection onto dominant principal components, enabling a lightweight yet accurate correc-
 086 tion mechanism that restores fine-grained attention outputs at negligible computational overhead.

087 Our contributions can be summarized as follows:

- 088 1. We provide formal analysis of the *amplified attention shift* problem, showing that naive
 089 integration of quantization and sparsification severely damages video generation quality.
- 090 2. We propose **QuantSparse**, a unified compression framework that seamlessly combines
 091 model quantization and attention sparsification, breaking the traditional trade-off between
 092 efficiency and performance.
- 093 3. We introduce two key techniques: *Multi-Scale Salient Attention Distillation* for robust at-
 094 tention alignment and *Second-Order Sparse Attention Reparameterization* for temporally
 095 stable correction for efficient yet accurate approximation of full-attention outputs.
- 096 4. Extensive experiments on large-scale video generation models ranging from 1.3B to 14B
 097 parameters demonstrate that QuantSparse achieves superior efficiency–quality trade-offs,
 098 outperforming both quantization-only and sparsification-only baselines, while preserving
 099 state-of-the-art performance.

101 2 RELATED WORKS

104 2.1 SPARSE ATTENTION IN DIFFUSION MODELS

105 Sparse attention has been extensively explored in transformer-based models to accelerate attention
 106 computation ([Lu et al., 2025](#); [Yuan et al., 2025](#); [Lou et al., 2024](#); [Gao et al., 2024](#); [Zhang et al.,
 107 2025b](#)). In large language models, common designs include sliding-window ([Xiao et al., 2024a;b](#);

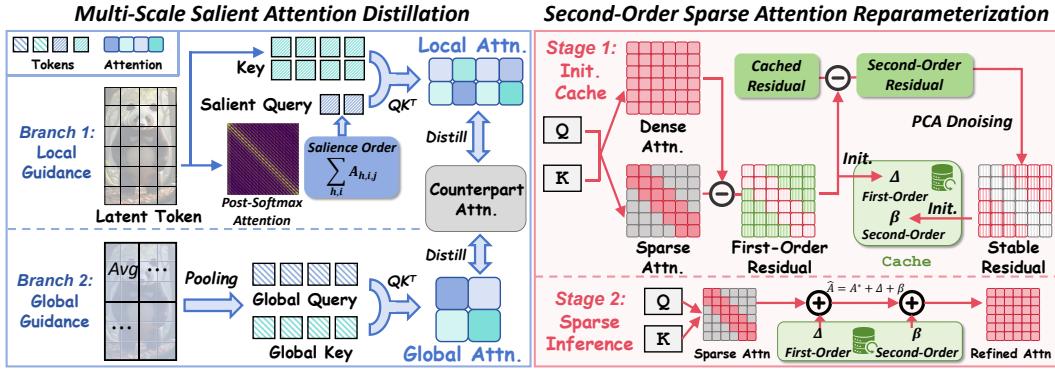


Figure 2: **Overview of proposed QuantSparse.** **Left:** During calibration, we apply two parallel attention distillation branch for efficient and robust attention alignment. **Right:** During inference, we apply an accurate attention approximation using temporal stable second-order residual.

Zhang et al., 2023) and sink-based patterns (Fu et al.; Xiao et al., 2023b). For diffusion-based visual generation, spatial window masks (Yuan et al., 2024; Zhang et al., 2025c; Ren et al., 2025) and spatial-temporal masks (Xi et al., 2025) have been proposed. Other approaches dynamically generate masks via sampling (Zhang et al., 2025b) or low-resolution attention (Zhang et al., 2025d), though at higher computational cost. However, these works mainly focus on preserving the original attention pattern, while the adaptation to other acceleration techniques that alter attention distributions, such as quantization, remains underexplored.

2.2 QUANTIZATION IN DIFFUSION MODELS

Quantization (Gholami et al., 2022; Chitty-Venkata et al., 2023; Jacob et al., 2018; Pilipović et al., 2018) reduces model precision to improve efficiency and has been applied to diffusion-based visual generation (Shang et al., 2023; Li et al., 2024b; He et al., 2024; Huang et al., 2024a; He et al., 2023; Feng et al., 2025a; Wu et al., 2024; Zheng et al., 2024a;b; Li et al., 2024a). For video generation, some works target the attention module (Zhang et al., 2024b;a; 2025a), but often keep linear operations in high precision. Other methods focus on quantizing linear layers: Q-DiT (Chen et al., 2024) uses automatic granularity allocation; ViDiT-Q (Zhao et al., 2024) adopts a static–dynamic strategy; Q-VDiT (Feng et al., 2025b) introduces temporal distillation. These methods primarily pursue acceleration via quantization, without exploring its synergy with sparse attention. In this work, we integrate the two orthogonal compression techniques to enhance the efficiency and practicality of video generation models.

3 METHODS

3.1 PRELIMINARY

3.1.1 POST-TRAINING QUANTIZATION (PTQ)

Model Quantization (Gholami et al., 2022; Chitty-Venkata et al., 2023) reduces weights/activations from floating-point (FP32) to low-bit integers (e.g., INT8). Given an floating-point tensor $\mathbf{X} \in \mathbb{R}^d$ with dimension d , quantization maps \mathbf{X} to a discrete representation $\mathbf{X}_Q \in \{0, 1, \dots, 2^b - 1\}^d$ as:

$$\mathbf{X}_Q = \text{clip} \left(\left\lfloor \frac{\mathbf{X}}{s} \right\rfloor + z, 0, 2^b - 1 \right), \quad Q(\mathbf{X}) = s \cdot (\mathbf{X}_Q - z), \quad (1)$$

with scale s , zero-point z , and bit-width b , $Q(\mathbf{X})$ denotes the de-quantized value. Post-training Quantization (PTQ) (Wei et al., 2024; Wu et al., 2024) calibrates (s, z) on a small dataset by minimizing reconstruction error:

$$\mathcal{L}_{\text{quant}} = \min_{s, z} \sum_{\mathbf{X}_i \in \mathcal{D}_{\text{cal}}} \|\mathbf{X}_i - Q(\mathbf{X}_{Q_i}; s, z)\|_2^2. \quad (2)$$

162 Notably, PTQ avoids retraining the model weights, thus being computationally efficient.
 163

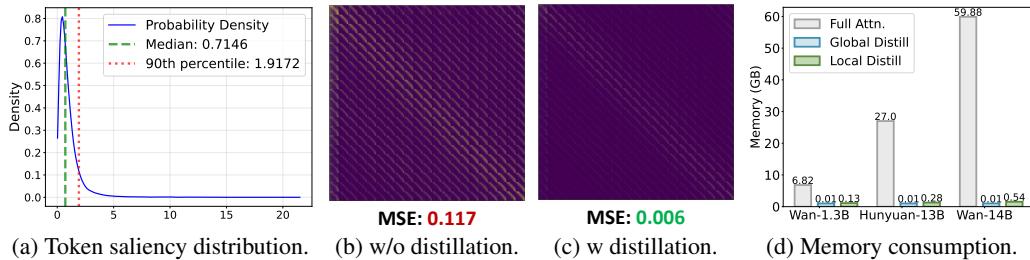
164 3.1.2 SPARSE ATTENTION 165

166 Sparse attention (Zhang et al., 2025b; Xi et al., 2025; Yuan et al., 2024) prunes token pairs via a
 167 mask $\mathbf{M} \in \{0, 1\}^{L \times L}$, reducing complexity from $\mathcal{O}(L^2)$ to near-linear (L is the sequence length).
 168 Given $\mathbf{X} \in \mathbb{R}^{L \times d_{in}}$ and query, key, value projection matrices $\mathbf{W}_q, \mathbf{W}_k, \mathbf{W}_v \in \mathbb{R}^{d_{out} \times d_{in}}$, sparse
 169 attention computes:

$$170 \quad \mathbf{Q} = \mathbf{X}\mathbf{W}_q^\top, \quad \mathbf{K} = \mathbf{X}\mathbf{W}_k^\top, \quad \mathbf{V} = \mathbf{X}\mathbf{W}_v^\top, \\ 171$$

$$172 \quad \text{SparseAttention}(\mathbf{Q}, \mathbf{K}, \mathbf{V}; \mathbf{M}) = \text{softmax} \left(\frac{\mathbf{Q}\mathbf{K}^\top}{\sqrt{d_k}} \odot \mathbf{M} \right) \mathbf{V}, \quad (3) \\ 173$$

174 where \odot denotes element-wise multiplication.
 175



186 Figure 3: **The motivation and effect of Multi-Scale Salient Attention Distillation.** (a): Token
 187 saliency distribution of Wan2.1-1.3B (Wan et al., 2025) *block19 head1*. Only less than 10% tokens
 188 are salient. (b)(c): Visualization of attention difference between quantized model and FP model.
 189 (d): Memory consumption of different attention distillation.

191 3.2 MULTI-SCALE SALIENT ATTENTION DISTILLATION 192

193 The combination PTQ and sparse attention offers a promising route toward efficient video genera-
 194 tion. However, naively integrating these techniques results in severe performance degradation.

195 **Proposition 3.1.** *Quantization injects noise ϵ into the $\mathbf{Q}\mathbf{K}$ dot product $\mathbf{Q}\mathbf{K}^\top$, yielding a systematic
 196 bias δ :*

$$197 \quad \hat{\mathbf{Q}} = Q(\mathbf{X})Q(\mathbf{W}_q)^\top, \quad \hat{\mathbf{K}} = Q(\mathbf{X})Q(\mathbf{W}_k)^\top, \\ 198 \quad \hat{\mathbf{Q}}\hat{\mathbf{K}}^\top = \mathbf{Q}\mathbf{K}^\top + \epsilon, \quad \text{where } \|\epsilon\|_F \leq \delta. \quad (4) \\ 199$$

200 *The parallel error caused by quantization and sparse attention further leads to a compounded shift:*

$$201 \quad \Delta_{\text{total}} = \Delta_{\text{sparse}} + \Delta_{\text{quant}} + \mathcal{O}(\|\epsilon\|_F \cdot \|\mathbf{M}\|_0). \quad (5) \\ 202$$

203 Proposition 3.1 indicates that the joint of quantization and sparse attention introduces an *amplified
 204 attention shift* (see Fig. 3b), resulting in notable attention degradation. A straightforward mitigation
 205 strategy is to perform attention distillation during PTQ. However, for large-scale video generation
 206 models (e.g., with $L > 10^4$ for HunyuanVideo (Kong et al., 2024)), storing the full attention matrices
 207 is prohibitively expensive as shown in Fig. 3d, incurring $\mathcal{O}(L^2)$ memory and compute overhead.

209 To address this, we propose *Multi-Scale Salient Attention Distillation* (MSAD), a memory-efficient
 210 framework that distills attention across multiple resolutions, preserving both global structure and
 211 local saliency without excessive resource consumption. MSAD employs two complementary guid-
 212 ance mechanisms: *global guidance* for high-level structural supervision, and *local guidance* for
 213 fine-grained detail preservation.

214 **Global Guidance.** Our approach exploits the intrinsic *locality* of video data: spatially adjacent
 215 tokens exhibit high similarity due to temporal smoothness and spatial continuity (Ren et al., 2025;
 216 Xi et al., 2025; Yuan et al., 2024). To efficiently capture global attention patterns, we downsample

216 \mathbf{Q} and \mathbf{K} via average pooling with stride s , producing low-resolution features $\tilde{\mathbf{Q}}, \tilde{\mathbf{K}} \in \mathbb{R}^{\tilde{L} \times d_k}$ where
 217 $\tilde{L} = L/s^2 \ll L$. The global distillation is computed as:
 218

$$219 \quad \mathbf{A}_{\text{global}} = \text{softmax} \left(\frac{\tilde{\mathbf{Q}} \tilde{\mathbf{K}}^\top}{\sqrt{d_k}} \right), \quad \mathcal{L}_{\text{global}} = \text{MSE} \left(\mathbf{A}_{\text{global}}^{\text{FP}} \parallel \mathbf{A}_{\text{global}}^{\text{quant}} \right), \quad (6)$$

223 where MSE denotes the Mean Square Error. This approach requires only $\mathcal{O}(\tilde{L}^2)$ complexity, which
 224 is s^2 times cheaper than full attention.
 225

226 **Local Guidance.** While global guidance ensures structural fidelity, it fails to capture the fine-grained
 227 details crucial for high-quality video synthesis. We further observe that the attention saliency in
 228 video models is highly *skewed*: only a small subset of tokens dominates the attention mass (see
 229 Fig 3a). Formally, we define the token saliency as:
 230

$$230 \quad \mathbf{A} = \text{softmax}(\mathbf{Q} \mathbf{K}^\top / \sqrt{d_k}) \in \mathbb{R}^{h, L, L}, \quad s_j = \sum_{h, i} A_{h, i, j}, \quad (7)$$

233 where h denotes the attention head, i denotes the key token index, and s_j measures the aggregate
 234 attention received by token j . Empirically, s_j follows a heavy-tailed distribution, with fewer tokens
 235 accounting for the majority of attention mass (we provide more analysis in Appendix Sec. F). We
 236 exploit this by selecting the top- k queries $\mathcal{I} = \{j \mid s_j \text{ is top-}k\}$ from the FP model and computing
 237 high-resolution attention *only* for these salient queries:
 238

$$239 \quad \mathbf{A}_{\text{local}} = \text{softmax} \left(\frac{\mathbf{Q}_{\mathcal{I}, :} \mathbf{K}^\top}{\sqrt{d_k}} \right), \quad \mathcal{L}_{\text{local}} = \text{MSE} \left(\mathbf{A}_{\text{local}}^{\text{FP}} \parallel \mathbf{A}_{\text{local}}^{\text{quant}} \right), \quad (8)$$

242 where $\mathbf{Q}_{\mathcal{I}, :} \in \mathbb{R}^{k \times d_k}$. Local distillation focuses supervision on high-impact regions at minimal cost.
 243

244 **Integration and Optimization.** We combine both guidance terms into a unified distillation object:
 245

$$246 \quad \mathcal{L}_{\text{distill}} = \mathcal{L}_{\text{quant}} + \lambda_{\text{global}} \mathcal{L}_{\text{global}} + \lambda_{\text{local}} \mathcal{L}_{\text{local}}, \quad (9)$$

248 where λ_{global} and λ_{local} balance the two guidance component. During PTQ calibration, we optimize
 249 the quantization parameters over \mathcal{D}_{cal} to minimize $\mathcal{L}_{\text{distill}}$, aligning the quantized attention with its FP
 250 counterpart. As shown in Fig 3b and Fig 3c, MSAD substantially reduces attention shift, enabling
 251 robust integration of quantization and sparse attention in video generation.
 252

253 3.3 SECOND-ORDER SPARSE ATTENTION REPARAMETERIZATION

254 While the proposed MSAD mitigates the quantization-induced attention shift during calibration
 255 phase by aligning attention maps, the intrinsic bottleneck of sparse attention (i.e., the unavoidable
 256 discard of low-magnitude yet non-trivial attention connections) still exacerbates the amplified attention
 257 shift, especially under high sparsity rates (Xi et al., 2025; Zhang et al., 2025b). We formalize
 258 this deviation at denoising timestep t in the diffusion process as: $\Delta^{(t)} = \mathbf{A}_{\text{full}}^{(t)} - \mathbf{A}_{\text{sparse}}^{(t)}$, where
 259 \mathbf{A}_{full} and $\mathbf{A}_{\text{sparse}}$ denote the full-attention and sparse attention. We define this deviation $\Delta^{(t)}$ as the
 260 *first-order residual*. This residual is intrinsic to sparsity and cannot be recovered through attention
 261 distillation alone. Prior work (Yuan et al., 2024) exploits temporal coherence in video generation by
 262 assuming that residuals are invariant across timesteps:
 263

$$264 \quad \Delta^{(t')} \approx \Delta^{(t)} \quad \forall t, t', \quad (10)$$

265 Under this assumption, one can cache a reference residual $\Delta^{(t_{\text{ref}})}$ from a chosen timestep and reuse
 266 it across the successive timesteps, yielding a *first-order sparse attention reparameterization*:
 267

$$268 \quad \mathbf{A}_{\text{full}}^{(t)} - \mathbf{A}_{\text{sparse}}^{(t)} \approx \mathbf{A}_{\text{full}}^{(t_{\text{ref}})} - \mathbf{A}_{\text{sparse}}^{(t_{\text{ref}})} = \Delta^{(t_{\text{ref}})} \Rightarrow \hat{\mathbf{A}}^{(t)} = \mathbf{A}_{\text{sparse}}^{(t)} + \underbrace{\Delta^{(t_{\text{ref}})}}_{\text{cached}}, \quad (11)$$

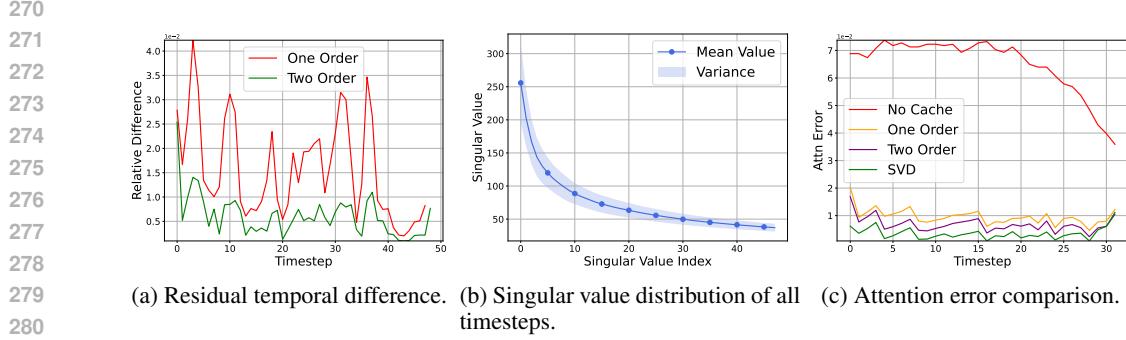


Figure 4: **The motivation and effect of Second-Order Sparse Attention Reparameterization.** The results are from HunyuanVideo-13B (Kong et al., 2024) `single_transformer_block.10` under W4A8. **We provide more visualization and analysis in Appendix Sec. G.**

Proposition 3.2. Let $\mathbf{A}_{s,q}^{(t)}$ denote the quantized sparse attention output. The quantization-induced perturbation $\epsilon^{(t)}$ (as defined in Eq. 4) modifies the one-order residual to:

$$\begin{aligned} \Delta_{\text{quant}}^{(t)} &= \mathbf{A}_{\text{full}}^{(t)} - \mathbf{A}_{s,q}^{(t)} = \Delta^{(t)} + \epsilon^{(t)} + \mathcal{O}(\|\epsilon^{(t)}\|_F \cdot \|\mathbf{M}\|_0), \\ &\Rightarrow \Delta_{\text{quant}}^{(t')} \neq \Delta_{\text{quant}}^{(t)}, \quad \text{for } t' \neq t. \end{aligned} \quad (12)$$

Proposition 3.2 indicates that, unlike $\Delta^{(t)}$, $\Delta_{\text{quant}}^{(t)}$ varies with $\epsilon^{(t)}$ due to the quantization noise (Wu et al., 2024; Zhao et al., 2024; He et al., 2023) which violating Eq. 10. We visualize this variance of $\Delta^{(t)} - \Delta^{(t-1)}$ in Fig. 4a. This temporal variance undermines the accuracy of Eq. 11, causing non-negligible attention errors when *first-order reparameterization* is applied after quantization.

Proposition 3.3. Although $\Delta_{\text{quant}}^{(t)}$ is unstable, we observe that the second-order residual $\hat{\Delta}_{\text{quant}}^{(t)} := \Delta_{\text{quant}}^{(t)} - \Delta_{\text{quant}}^{(t-1)}$ exhibits significantly higher temporal stability:

$$\mathbb{E}_t \left[\left\| \hat{\Delta}_{\text{quant}}^{(t)} - \hat{\Delta}_{\text{quant}}^{(t')} \right\|_F \right] \leq \mathbb{E}_t \left[\left\| \Delta_{\text{quant}}^{(t)} - \Delta_{\text{quant}}^{(t')} \right\|_F \right] \quad \text{for } |t - t'| \leq \tau. \quad (13)$$

We visualize the empirical analysis results in Fig. 4a. This stability arises because quantization noise $\epsilon^{(t)}$ follows a *slow-varying stochastic process* in diffusion process (Ma et al., 2024; Liu et al., 2024a): adjacent timesteps share similar distributions, rendering $\epsilon^{(t)} - \epsilon^{(t-1)}$ approximately stationary. Leveraging this property, we propose *second-order sparse attention reparameterization*:

$$\begin{aligned} (\mathbf{A}_{\text{full}}^{(t)} - \mathbf{A}_{s,q}^{(t)}) - (\mathbf{A}_{\text{full}}^{(t_{\text{ref}})} - \mathbf{A}_{s,q}^{(t_{\text{ref}})}) &\approx (\mathbf{A}_{\text{full}}^{(t_{\text{ref}})} - \mathbf{A}_{s,q}^{(t_{\text{ref}})}) - (\mathbf{A}_{\text{full}}^{(t'_{\text{ref}})} - \mathbf{A}_{s,q}^{(t'_{\text{ref}})}) = \hat{\Delta}_{\text{quant}}^{(t_{\text{ref}})}, \\ \Rightarrow \tilde{\mathbf{A}}^{(t)} &= \mathbf{A}_{s,q}^{(t)} + (\mathbf{A}_{\text{full}}^{(t_{\text{ref}})} - \mathbf{A}_{s,q}^{(t_{\text{ref}})}) + \hat{\Delta}_{\text{quant}}^{(t_{\text{ref}})}, \\ &= \mathbf{A}_{s,q}^{(t)} + \underbrace{\Delta_{\text{quant}}^{(t_{\text{ref}})} + \hat{\Delta}_{\text{quant}}^{(t_{\text{ref}})}}_{\text{cached}}. \end{aligned} \quad (14)$$

Theorem 3.4. When Proposition 3.3 holds, the expected approximation error of sparse attention satisfies:

$$\mathbb{E}_t \underbrace{\left[\left\| \mathbf{A}_{\text{full}}^{(t)} - \tilde{\mathbf{A}}_{s,q}^{(t)} \right\|_F \right]}_{\text{second-order}} \leq \mathbb{E}_t \underbrace{\left[\left\| \mathbf{A}_{\text{full}}^{(t)} - \hat{\Delta}_{\text{quant}}^{(t)} \right\|_F \right]}_{\text{first-order}} \quad \text{for } |t - t'| \leq \tau. \quad (15)$$

Theorem 3.4 indicates *two-order* guaranteeing tighter full-attention approximation than the first-order method. Also $\Delta_{\text{quant}}^{(t_{\text{ref}})} + \hat{\Delta}_{\text{quant}}^{(t_{\text{ref}})}$ in Eq. 14 can be jointly cached, without any additional storage burden compared with one-order residual. We further reduce the temporal variance of $\hat{\Delta}_{\text{quant}}$ by

324 Table 1: Text-to-Video generation results on Wan2.1-1.3B. Density is the attention density. Full
 325 Prec. denotes Full Precision model. **Bold**: the best result.

Method	#Bits (W/A)	Density \downarrow	Quality					
			Video Quality Metrics			FP Diff. Metrics		
			CLIPSIM \uparrow	VQA \uparrow	Δ FSCore \downarrow	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow
Wan2.1 1.3B (CFG = 6.0, 480 \times 832p, frames = 80)								
Full Prec.	16/16	100%	0.191	73.12	0.000	-	-	-
PTQ4DiT	6/6	100%	0.182	36.79	2.287	10.20	0.343	0.598
Q-DiT	6/6	100%	0.183	39.21	2.125	10.36	0.351	0.577
SmoothQuant	6/6	100%	0.184	40.57	2.008	10.44	0.353	0.574
QuaRot	6/6	100%	0.190	42.81	1.754	10.71	0.379	0.571
ViDiT-Q	6/6	100%	0.190	50.85	1.253	11.02	0.385	0.526
Q-VDiT	6/6	100%	0.191	75.20	0.982	12.06	0.405	0.474
QuaRot+DFT	6/6	40%	0.183	36.79	2.297	11.29	0.321	0.546
QuaRot+Jenga	6/6	40%	0.184	38.78	2.165	11.32	0.329	0.543
QuaRot+SVG	6/6	40%	0.183	41.93	1.940	11.43	0.331	0.541
Q-VDiT+DFT	6/6	40%	0.188	47.33	1.377	11.06	0.345	0.577
Q-VDiT+Jenga	6/6	40%	0.189	53.52	1.087	11.21	0.345	0.583
Q-VDiT+SVG	6/6	40%	0.191	55.92	0.942	11.61	0.384	0.508
QuantSparse	6/6	40%	0.193	78.35	0.055	15.51	0.511	0.324
PTQ4DiT	4/8	100%	0.181	30.26	2.574	10.00	0.318	0.603
Q-DiT	4/8	100%	0.182	32.57	2.767	10.11	0.320	0.594
SmoothQuant	4/8	100%	0.182	34.82	2.174	10.20	0.327	0.569
QuaRot	4/8	100%	0.185	65.15	1.870	11.72	0.349	0.514
ViDiT-Q	4/8	100%	0.186	63.21	1.698	11.24	0.351	0.526
Q-VDiT	4/8	100%	0.190	56.45	2.240	11.01	0.394	0.565
QuaRot+DFT	4/8	40%	0.187	32.23	2.329	10.32	0.360	0.583
QuaRot+Jenga	4/8	40%	0.191	32.83	2.148	10.33	0.346	0.578
QuaRot+SVG	4/8	40%	0.190	32.48	2.088	10.58	0.370	0.576
Q-VDiT+DFT	4/8	40%	0.185	45.60	2.907	10.03	0.331	0.594
Q-VDiT+Jenga	4/8	40%	0.185	47.61	3.000	10.04	0.334	0.596
Q-VDiT+SVG	4/8	40%	0.184	51.84	3.035	10.07	0.342	0.592
QuantSparse	4/8	40%	0.193	81.09	0.576	15.22	0.502	0.338

351 projecting it onto its most stable subspace. Empirically, the top- r principal components from the
 352 singular value decomposition (SVD) of $\hat{\Delta}_{\text{quant}}$ capture the dominant, temporally stable patterns (see
 353 Fig. 4b). Critically, the dominant principal component exhibit exceptional temporal stability, which
 354 inspired us to project residuals onto the top- r extracted stable components:

$$\begin{aligned}
 \text{SVD}(\hat{\Delta}_{\text{quant}}) &= \mathbf{SUV}^\top, \quad \tilde{\Delta}_{\text{quant}} := \mathbf{S}_{:,r} \mathbf{U}_{:r} \mathbf{V}_{:,r}^\top, \\
 \tilde{\mathbf{A}}^{(t)} &= \mathbf{A}_{s,q}^{(t)} + \underbrace{\Delta_{\text{quant}}^{(t_{\text{ref}})} + \tilde{\Delta}_{\text{quant}}^{t_{\text{ref}}}}_{\text{cached}}.
 \end{aligned} \tag{16}$$

361 We apply the sparse attention for inference with a fixed cache-refreshing interval (5 in experiments)
 362 for full-attention calculation. As visualized in Fig. 4c, SVD-based second-order reparameterization
 363 further suppresses temporal variance, yielding accurate full-attention approximation results.
 364

3.4 OVERALL PIPELINE

369 Our proposed QuantSparse framework consists of two component as shown in Fig. 2: *MSAD* for
 370 attention distillation during calibration and *SSAR* for dynamic attention reparameterization during
 371 inference. The detailed overall pipeline is provided in Appendix Algorithm 1.

373 4 EXPERIMENTS

375 4.1 EXPERIMENTAL AND EVALUATION SETTINGS

377 **Evaluation Settings.** We apply QuantSparse to HunyuanVideo-13B (Kong et al., 2024), Wan2.1-
 1.3B and 14B (Wan et al., 2025) with 50 sampling steps. We employ two types of metrics: (1)

378
379
380
381 Table 2: Video generation on large video generation models. **Bold**: the best result. Underline: the
382 second best result.
383

Method	#Bits (W/A)	Density _↓	Quality						Latency & Speed	
			Video Quality Metrics			FP Diff. Metrics			DiT Time _↓	Speedup _↑
			CLIPSIM _↑	VQA _↑	ΔFSCore _↓	PSNR _↑	SSIM _↑	LPIPS _↓		
HunyuanVideo 13B (CFG = 6.0, 720 × 1280p, frames = 60)										
Full Prec.	16/16	100%	0.184	81.23	0.000	-	-	-	1264s	1.00×
SmoothQuant	4/8	100%	0.178	42.21	1.194	15.44	0.479	0.583	1149s	1.10×
QuaRot	4/8	100%	0.180	42.89	0.708	15.46	0.502	0.528	1149s	1.10×
ViDiT-Q	4/8	100%	0.181	49.82	1.254	15.75	0.534	0.489	1149s	1.10×
Q-VDiT	4/8	100%	0.182	67.95	1.168	16.85	0.605	0.461	1155s	1.09×
QuaRot+SVG	4/8	25%	0.181	43.34	0.900	15.39	0.497	0.530	731s	1.73×
Q-VDiT+SVG	4/8	25%	0.182	70.99	1.379	16.71	0.595	0.458	743s	1.70×
QuaRot+SVG	4/8	15%	0.181	41.40	1.004	15.34	0.494	0.536	671s	1.88×
Q-VDiT+SVG	4/8	15%	0.182	76.30	1.393	16.66	0.591	0.460	687s	1.84×
QuantSparse	4/8	25%	<u>0.183</u>	<u>79.05</u>	0.014	20.86	<u>0.675</u>	0.272	731s	1.73×
QuantSparse	4/8	15%	0.184	81.19	0.016	20.88	0.678	0.273	671s	1.88×
Wan2.1 14B (CFG = 5.0, 720 × 1280p, frames = 80)										
Full Prec.	16/16	100%	0.182	90.79	0.000	-	-	-	4031s	1.00×
SmoothQuant	4/8	100%	0.180	73.11	0.875	13.70	0.423	0.510	3425s	1.18×
QuaRot	4/8	100%	<u>0.182</u>	85.91	0.753	13.79	0.431	0.494	3425s	1.18×
ViDiT-Q	4/8	100%	<u>0.182</u>	83.13	0.496	15.12	0.487	0.425	3425s	1.18×
Q-VDiT	4/8	100%	<u>0.182</u>	83.76	0.343	15.85	0.512	0.398	3457s	1.17×
QuaRot+SVG	4/8	25%	<u>0.182</u>	85.66	0.134	13.70	0.427	0.487	2594s	1.55×
Q-VDiT+SVG	4/8	25%	<u>0.182</u>	87.89	0.310	15.48	0.507	0.409	2635s	1.53×
QuaRot+SVG	4/8	15%	<u>0.182</u>	81.93	0.152	13.40	0.415	0.494	2315s	1.74×
Q-VDiT+SVG	4/8	15%	0.181	82.31	0.411	15.18	0.493	0.429	2372s	1.70×
QuantSparse	4/8	25%	0.183	91.98	<u>0.056</u>	18.72	0.630	0.240	2594s	1.55×
QuantSparse	4/8	15%	<u>0.182</u>	<u>90.73</u>	0.042	<u>18.22</u>	<u>0.605</u>	<u>0.272</u>	2315s	1.74×

401
402 Multi-aspects metrics evaluation: including CLIPSIM (Wu et al., 2021), VQA (Wu et al., 2023),
403 FlowScore (Liu et al., 2024b), PSNR, SSIM, and LPIPS (Zhang et al., 2018). All metrics are evalua-
404 ted on the prompt sets used in (Zhao et al., 2024; Feng et al., 2025b) (2) Benchmark evaluation: We
405 select 8 major dimensions from Vbench (Huang et al., 2024) following prior works (Zhao et al.,
406 2024; Chen et al., 2024; Feng et al., 2025b). For bit setting, we use W6A6 and W4A8 following prior
407 work (Zhao et al., 2024; Chen et al., 2024; Wu et al., 2024), since they can bring more compression
408 effects and ensure the performance.

409 **Baseline Methods.** We select PTQ4DiT (Wu et al., 2024), Q-DiT (Chen et al., 2024), ViDiT-
410 Q (Zhao et al., 2024), and Q-VDiT (Feng et al., 2025b) for diffusion baseline. We also compare with
411 strong LLM baseline SmoothQuant (Xiao et al., 2023a) and QuaRot (Ashkboos et al., 2024). For
412 sparsification, we compare with DiTFastAttn (DFT) (Yuan et al., 2024) (cache-based), Jenga (Zhang
413 et al., 2025d) (dynamic pattern), and SparseVideoGen (SVG) (Xi et al., 2025) (static pattern).

414 **Implementation Detail.** Same with prior works (Zhao et al., 2024; Ashkboos et al., 2024; Feng
415 et al., 2025b), we adopt channel-wise weight quantization and dynamic token-wise activation quan-
416 tization. We follow block-wise post-training strategy used in (Wu et al., 2024; Chen et al., 2024;
417 Sun et al., 2024b) for calibration. **More details can be found in Appendix C.**

418 419 4.2 MAIN RESULTS

420 We present multi-aspects metrics evaluation results
421 on HunyuanVideo (Kong et al., 2024) and Wan2.1-
422 14B (Wan et al., 2025) in Tab. 2. It can be seen
423 that the existing SOTA quantization methods have
424 a significant performance degradation after apply-
425 ing sparse attention. But QuantSparse still maintains
426 high generation performance even at high sparsity.
427 It is worth mentioning that QuantSparse even sur-
428 passes the existing quantization-only methods under
429 the low-bit settings of W6A6 and W4A8. Compared
430 with the Full-Precision (FP) model, QuantSparse even maintains almost lossless performance. For
431 example, for HunyuanVideo under W6A6, QuantSparse achieved a VQA score of 82.26 with only
432 15% attention density, far exceeding current SOTA method Q-VDiT (Feng et al., 2025b) of 73.68,

433 Table 3: Ablation results of each component.

Method	VQA _↑	PSNR _↑	SSIM _↑	LPIPS _↓
Distillation Analysis				
None	81.92	14.35	0.486	0.425
Global	85.26	16.01	0.547	0.349
Local	86.95	16.82	0.561	0.325
MSAD	91.98_{-10.06}	18.72_{+4.37}	0.630_{+0.144}	0.240_{-0.185}
Cache Analysis				
None	68.00	14.16	0.470	0.445
First	70.82	17.08	0.572	0.285
Second	89.73	18.68	0.616	0.258
SSAR	91.98_{-23.98}	18.72_{+4.56}	0.630_{+0.160}	0.240_{-0.205}

Table 4: Detailed efficiency comparison.

Method	#Bits (W/A)	Density \downarrow	Model Overload		Latency & Speed	
			Model Storage \downarrow	Memory Consumption \downarrow	DiT Time \downarrow	Speedup \uparrow
HunyuanVideo 13B (CFG = 6.0, 720 \times 1280p, frames = 60)						
Full Prec.	16/16	100%	23.88GB	35.79GB	1264s	1.00 \times
QuaRot	4/8	100%	6.49GB	24.34GB	1149s	1.10 \times
Q-VDiT	4/8	100%	6.50GB	24.89GB	1155s	1.09 \times
DFT	16/16	25%	23.88GB	40.11GB	792s	1.60 \times
Jenga	16/16	25%	23.88GB	36.92GB	846s	1.49 \times
SVG	16/16	25%	23.88GB	40.10GB	786s	1.61 \times
SVG	16/16	15%	23.88GB	40.10GB	707s	1.79 \times
QuantSparse	4/8	25%	6.49GB \downarrow 3.68 \times	27.02GB \downarrow 1.32 \times	731s	1.73 \times
QuantSparse	4/8	15%	6.49GB \downarrow 3.68 \times	27.02GB \downarrow 1.32 \times	671s	1.88 \times
Wan2.1 14B (CFG = 5.0, 720 \times 1280p, frames = 80)						
Full Prec.	16/16	100%	26.61GB	42.48GB	4031s	1.00 \times
QuaRot	4/8	100%	7.00GB	26.04GB	3425s	1.18 \times
Q-VDiT	4/8	100%	7.02GB	26.73GB	3457s	1.17 \times
DFT	16/16	25%	26.61GB	44.86GB	3015s	1.34 \times
Jenga	16/16	25%	26.61GB	42.62GB	3087s	1.31 \times
SVG	16/16	25%	26.61GB	44.07GB	2987s	1.35 \times
SVG	16/16	15%	26.61GB	44.07GB	2661s	1.51 \times
QuantSparse	4/8	25%	7.00GB \downarrow 3.80 \times	28.14GB \downarrow 1.51 \times	2594s	1.55 \times
QuantSparse	4/8	15%	7.00GB \downarrow 3.80 \times	28.14GB \downarrow 1.51 \times	2315s	1.74 \times

and even surpassing the FP model of 81.23. We present more baseline methods comparison in Appendix Sec. D, and comprehensive VBench evaluation results in Appendix Sec. E. We also observed that QuantSparse slightly outperforms Full Precision model on certain metrics. This slight outperformance of QuantSparse can be attributed to its focus on task-critical tokens and reduced attention to noisy or irrelevant tokens, as shown in our saliency analysis. Additionally, the SSAR module stabilizes sparse attention, reducing quantization noise and improving temporal consistency. These effects, combined with targeted compression, allow QuantSparse to maintain near-lossless quality while offering substantial compression and acceleration. We also visualized the generated videos in Fig. 5. Compared with FP model, QuantSparse achieves almost lossless generation performance while other methods have notable quality degradation. We provide more visual comparison results in Appendix Sec. M.

Figure 5: Visual comparison on Wan2.1-14B under W4A8 quantization setting. We uniformly sample two frames for visualization. ‘(xx%)’ denotes the attention density.

4.3 ABLATION STUDY

We conduct ablation study on proposed Multi-Scale Salient Attention Distillation (MSAD) and Second-Order Sparse Attention Reparameterization (SSAR) on Wan2.1-14B under W4A8 in Tab. 3.

Effect of attention distillation. Compared with no distillation, both proposed attention guidance can enhance the model performance. The combined MSAD further improves PSNR from 14.35 to 18.72, demonstrating the effect of attention distillation.

Effect of attention reparameterization. Compared with naive sparse attention, first-order residual can reduce the attention error, demonstrating the effectiveness of attention reparameterization. Our proposed SSAR achieves the best approximation performance by reducing both the quantization-induced error and temporal variance.

486
 487 **Effect of cache-interval.** We also supplement the ablation and the results are shown in Tab. 5.
 488 While shorter intervals yield higher PSNR and SSIM, indicating better performance, they also result
 489 in a reduced speedup ($1.65\times$ and $1.69\times$ respectively). For instance, interval=3 achieves the highest
 490 PSNR (18.86) but sacrifices a noticeable amount of the potential speedup (9%). Longer intervals
 491 increasing the interval to 6 provides a slightly higher speedup ($1.76\times$). However, this comes at the
 492 cost of a degradation in performance (PSNR drops to 17.72). We choose interval=5 is based on
 493 its optimal balance between model performance and inference speedup. But we highlight that this
 494 is a trade-off based on computational resource and all interval settings offer reasonable results and
 notable acceleration.

495 Table 5: Ablation study of cache-fresh interval and attention density on W4A8 Wan2.1-14B.
 496

-	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	Speedup \uparrow
Interval Analysis				
Interval=3	18.86	0.631	0.243	$1.65\times$
Interval=4	18.48	0.617	0.260	$1.69\times$
Interval=5	18.22	0.605	0.272	$1.74\times$
Interval=6	17.72	0.566	0.321	$1.76\times$
Density Analysis				
Density=25%	18.72	0.630	0.240	$1.55\times$
Density=20%	18.45	0.622	0.252	$1.63\times$
Density=15%	18.22	0.605	0.272	$1.74\times$
Density=10%	17.73	0.589	0.288	$1.80\times$

509
 510 **Effect of attention density.** We conduct an ablation study on attention density, analyzing the trade-
 511 off between performance and inference speed. The results are presented in Tab. 5. As shown, a 25%
 512 density offers a good balance, achieving a significant $1.55\times$ speedup with minimal performance
 513 degradation (PSNR of 18.72). A 15% density further boosts the speedup to $1.74\times$ while maintaining
 514 acceptable performance (PSNR of 18.22). Based on these results, we selected 25% and 15% density
 515 for the experiments presented in the main paper. The 25% density provides a strong baseline for
 516 high performance with good acceleration, while the 15% density demonstrates the potential for even
 517 greater inference speedup at a slightly decreased performance trade-off.

518 **More ablation study about pooling stride s , salient token k , weight factor λ , and SVD rank r
 519 in Eq. 9 and Eq. 16 in Appendix Sec. H.**

520 4.4 EFFICIENCY ANALYSIS
 521

522 We present the deployment efficiency in Tab. 4. All the experiments are conducted on a single
 523 NVIDIA A800 80G GPU with CUDA 12.4. We use CUTLASS (Thakkar et al., 2023) on top of
 524 PyTorch for performing INT matrix multiplication. Existing quantization methods can bring higher
 525 model compression, but the effect of inference acceleration is limited. Sparse attention brings sig-
 526 nificant acceleration, but has almost no model compression, and even brings more memory con-
 527 sumption. QuantSparse combines the advantages of both quantization and sparse attention, bringing
 528 significant model compression and acceleration. For Wan2.1-14B (Wan et al., 2025), QuantSparse
 529 (15% density) brings $3.80\times$ storage compression, $1.51\times$ memory saving, and $1.74\times$ end-to-end
 530 acceleration. We further report the calibration resource consumption in Appendix Sec. I and
 531 report the performance combined with other acceleration methods in Appendix Sec. J.

532 5 CONCLUSION
 533

535 In this paper, we propose QuantSparse, a unified compression framework that effectively combines
 536 model quantization and sparse attention. To address the amplified attention shift, we propose Multi-
 537 Scale Salient Attention Distillation to efficiently align the attention shift. To address the intrinsic
 538 sparsity loss, we propose Second-Order Sparse Attention Reparameterization to utilize decomposed
 539 second-order residual for attention approximation. Extensive experiments shown that QuantSparse
 achieves lossless performance while bringing significant model compression and acceleration.

540

6 ETHICS STATEMENT

541
 542 This research strictly adheres to the ICLR Code of Ethics with no ethics-related risks: it uses public
 543 open-source video-generation models (Wan2.1 (Wan et al., 2025) and HunyuanVideo (Kong et al.,
 544 2024)) and focuses on algorithmic innovation for inference acceleration and compression, without
 545 involving scenarios endangering public safety, infringing privacy, or producing discrimination.
 546

547

7 REPRODUCIBILITY STATEMENT

548
 549 To ensure reproducibility, experimental configurations, method details, and evaluation metrics are
 550 thoroughly described in Sec. 4.1 and Appendix Sec. C. Experimental results of comparative methods
 551 are sourced from public literature, and our experiments strictly follow the same configurations as
 552 baseline methods for fair comparison. The key codes and the presented video source files are also
 553 attached in the supplementary materials. For the theorem used in the paper, we also provided a
 554 detailed proof in Appendix Sec. A.
 555

556

REFERENCES

557
 558 Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian L Croci, Bo Li, Pashmina Cameron, Martin
 559 Jaggi, Dan Alistarh, Torsten Hoefer, and James Hensman. Quarot: Outlier-free 4-bit inference in
 560 rotated llms. *arXiv preprint arXiv:2404.00456*, 2024. 8, 16, 17, 18, 19, 25

561 Lei Chen, Yuan Meng, Chen Tang, Xinzhu Ma, Jingyan Jiang, Xin Wang, Zhi Wang, and Wenwu
 562 Zhu. Q-dit: Accurate post-training quantization for diffusion transformers. *arXiv preprint*
 563 *arXiv:2406.17343*, 2024. 3, 8, 17

564 Krishna Teja Chitty-Venkata, Sparsh Mittal, Murali Emani, Venkatram Vishwanath, and Arun K
 565 Somani. A survey of techniques for optimizing transformer inference. *Journal of Systems Archi-*
 566 *tecture*, pp. 102990, 2023. 3

567 Weilun Feng, Haotong Qin, Chuanguang Yang, Zhulin An, Libo Huang, Boyu Diao, Fei Wang,
 568 Renshuai Tao, Yongjun Xu, and Michele Magno. Mpq-dm: Mixed precision quantization for
 569 extremely low bit diffusion models. In *Proceedings of the AAAI Conference on Artificial Intelli-*
 570 *gence*, volume 39, pp. 16595–16603, 2025a. 3

571 Weilun Feng, Chuanguang Yang, Haotong Qin, Xiangqi Li, Yu Wang, Zhulin An, Libo Huang, Boyu
 572 Diao, Zixiang Zhao, Yongjun Xu, et al. Q-vdit: Towards accurate quantization and distillation of
 573 video-generation diffusion transformers. *arXiv preprint arXiv:2505.22167*, 2025b. 3, 8, 15, 16,
 574 17, 19, 25

575 Tianyu Fu, Haofeng Huang, Xuefei Ning, Genghan Zhang, Boju Chen, Tianqi Wu, Hongyi Wang,
 576 Zixiao Huang, Shiyao Li, Shengen Yan, et al. Moa: Mixture of sparse attention for automatic
 577 large language model compression, 2024. URL <https://arxiv.org/abs/2406.14909>. 3

578 Yizhao Gao, Zhichen Zeng, Dayou Du, Shijie Cao, Peiyuan Zhou, Jiaxing Qi, Junjie Lai, Hayden
 579 Kwok-Hay So, Ting Cao, Fan Yang, et al. Seerattention: Learning intrinsic sparse attention in
 580 your llms. *arXiv preprint arXiv:2410.13276*, 2024. 2

581 Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer. A
 582 survey of quantization methods for efficient neural network inference. In *Low-Power Computer*
 583 *Vision*, pp. 291–326. Chapman and Hall/CRC, 2022. 2, 3

584 Yefei He, Jing Liu, Weijia Wu, Hong Zhou, and Bohan Zhuang. Efficientdm: Efficient quantization-
 585 aware fine-tuning of low-bit diffusion models. *arXiv preprint arXiv:2310.03270*, 2023. 3, 6

586 Yefei He, Luping Liu, Jing Liu, Weijia Wu, Hong Zhou, and Bohan Zhuang. Ptqd: Accurate post-
 587 training quantization for diffusion models. *Advances in Neural Information Processing Systems*,
 588 36, 2024. 3

589 HPC-AI. Open-sora, 2024. URL <https://github.com/hpcaiitech/Open-Sora>. 2

594 Yushi Huang, Ruihao Gong, Jing Liu, Tianlong Chen, and Xianglong Liu. Tfmq-dm: Temporal fea-
 595 ture maintenance quantization for diffusion models. In *Proceedings of the IEEE/CVF Conference*
 596 *on Computer Vision and Pattern Recognition*, pp. 7362–7371, 2024a. 3

597

598 Ziqi Huang, Yinan He, Jiahuo Yu, Fan Zhang, Chenyang Si, Yuming Jiang, Yuanhan Zhang, Tianx-
 599 ing Wu, Qingyang Jin, Nattapol Chanpaisit, et al. Vbench: Comprehensive benchmark suite for
 600 video generative models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 601 *Pattern Recognition*, pp. 21807–21818, 2024b. 8, 16, 19

602 Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard,
 603 Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for
 604 efficient integer-arithmetic-only inference. In *Proceedings of the IEEE conference on computer*
 605 *vision and pattern recognition*, pp. 2704–2713, 2018. 2, 3

606

607 Weijie Kong, Qi Tian, Zijian Zhang, Rox Min, Zuozhuo Dai, Jin Zhou, Jiangfeng Xiong, Xin Li,
 608 Bo Wu, Jianwei Zhang, et al. Hunyuandvideo: A systematic framework for large video generative
 609 models. *arXiv preprint arXiv:2412.03603*, 2024. 1, 4, 6, 7, 8, 11, 19, 20, 21

610 Raghuraman Krishnamoorthi. Quantizing deep convolutional networks for efficient inference: A
 611 whitepaper. *arXiv* 2018. *arXiv preprint arXiv:1806.08342*, 1806. 2

612

613 Muyang Li, Yujun Lin, Zhekai Zhang, Tianle Cai, Xiuyu Li, Junxian Guo, Enze Xie, Chenlin Meng,
 614 Jun-Yan Zhu, and Song Han. Svdqunat: Absorbing outliers by low-rank components for 4-bit
 615 diffusion models. *arXiv preprint arXiv:2411.05007*, 2024a. 3

616 Yanjing Li, Sheng Xu, Xianbin Cao, Xiao Sun, and Baochang Zhang. Q-dm: An efficient low-bit
 617 quantized diffusion model. *Advances in Neural Information Processing Systems*, 36, 2024b. 3

618

619 Zhimin Li, Jianwei Zhang, Qin Lin, Jiangfeng Xiong, Yanxin Long, Xinchi Deng, Yingfang Zhang,
 620 Xingchao Liu, Minbin Huang, Zedong Xiao, et al. Hunyuand-dit: A powerful multi-resolution
 621 diffusion transformer with fine-grained chinese understanding. *arXiv preprint arXiv:2405.08748*,
 622 2024c. 24

623

624 Feng Liu, Shiwei Zhang, Xiaofeng Wang, Yujie Wei, Haonan Qiu, Yuzhong Zhao, Yingya Zhang,
 625 Qixiang Ye, and Fang Wan. Timestep embedding tells: It's time to cache for video diffusion
 626 model. *arXiv preprint arXiv:2411.19108*, 2024a. 6, 24

627

628 Yaofang Liu, Xiaodong Cun, Xuebo Liu, Xintao Wang, Yong Zhang, Haoxin Chen, Yang Liu,
 629 Tieyong Zeng, Raymond Chan, and Ying Shan. Evalcrafter: Benchmarking and evaluating large
 630 video generation models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 631 *Pattern Recognition*, pp. 22139–22149, 2024b. 8

632

633 Yixin Liu, Kai Zhang, Yuan Li, Zhiling Yan, Chujie Gao, Ruoxi Chen, Zhengqing Yuan, Yue Huang,
 634 Hanchi Sun, Jianfeng Gao, et al. Sora: A review on background, technology, limitations, and
 635 opportunities of large vision models. *arXiv preprint arXiv:2402.17177*, 2024c. 1

636

637 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint*
 638 *arXiv:1711.05101*, 2017. 17

639

640 Chao Lou, Zixia Jia, Zilong Zheng, and Kewei Tu. Sparser is faster and less is more: Efficient sparse
 641 attention for long-range transformers. *arXiv preprint arXiv:2406.16747*, 2024. 2

642

643 Enzhe Lu, Zhejun Jiang, Jingyuan Liu, Yulun Du, Tao Jiang, Chao Hong, Shaowei Liu, Weiran He,
 644 Enming Yuan, Yuzhi Wang, et al. Moba: Mixture of block attention for long-context llms. *arXiv*
 645 *preprint arXiv:2502.13189*, 2025. 2

646

647 Xinyin Ma, Gongfan Fang, and Xinchao Wang. Deepcache: Accelerating diffusion models for
 648 free. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
 649 pp. 15762–15772, 2024. 6

650

651 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of*
 652 *the IEEE/CVF International Conference on Computer Vision*, pp. 4195–4205, 2023. 1

648 Ratko Pilipović, Patricio Bulić, and Vladimir Risojević. Compression of convolutional neural
 649 networks: A short survey. In *2018 17th International Symposium INFOTEH-JAHORINA (INFOTEH)*, pp. 1–6. IEEE, 2018. 3
 650

651 Sucheng Ren, Qihang Yu, Ju He, Alan Yuille, and Liang-Chieh Chen. Grouping first, attending
 652 smartly: Training-free acceleration for diffusion transformers. *arXiv preprint arXiv:2505.14687*,
 653 2025. 3, 4, 15

654 Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
 655 Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
 656 text-to-image diffusion models with deep language understanding. *Advances in neural information
 657 processing systems*, 35:36479–36494, 2022. 24

658

659 Yuzhang Shang, Zhihang Yuan, Bin Xie, Bingzhe Wu, and Yan Yan. Post-training quantization on
 660 diffusion models. In *Proceedings of the IEEE/CVF conference on computer vision and pattern
 661 recognition*, pp. 1972–1981, 2023. 3

662

663 Rui Sun, Yumin Zhang, Tejal Shah, Jiahao Sun, Shuoying Zhang, Wenqi Li, Haoran Duan, Bo Wei,
 664 and Rajiv Ranjan. From sora what we can see: A survey of text-to-video generation. *arXiv
 665 preprint arXiv:2405.10674*, 2024a. 2

666

667 Yuxuan Sun, Ruikang Liu, Haoli Bai, Han Bao, Kang Zhao, Yuening Li, Jiaxin Hu, Xianzhi Yu,
 668 Lu Hou, Chun Yuan, et al. Flatquant: Flatness matters for llm quantization. *arXiv preprint
 669 arXiv:2410.09426*, 2024b. 8, 17

670

671 V. Thakkar et al. CUTLASS, 2023. URL <https://github.com/NVIDIA/cutlass>. 10

672

673 Team Wan, Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu,
 674 Haiming Zhao, Jianxiao Yang, et al. Wan: Open and advanced large-scale video generative
 675 models. *arXiv preprint arXiv:2503.20314*, 2025. 1, 2, 4, 7, 8, 10, 11, 17, 19, 20, 22, 23, 24

676

677 Lu Wei, Zhong Ma, Chaojie Yang, and Qin Yao. Advances in the neural network quantization: A
 678 comprehensive review. *Applied Sciences*, 14(17):7445, 2024. 3

679

680 Chenfei Wu, Lun Huang, Qianxi Zhang, Binyang Li, Lei Ji, Fan Yang, Guillermo Sapiro, and
 681 Nan Duan. Godiva: Generating open-domain videos from natural descriptions. *arXiv preprint
 682 arXiv:2104.14806*, 2021. 8

683

684 Haoning Wu, Erli Zhang, Liang Liao, Chaofeng Chen, Jingwen Hou, Annan Wang, Wenxiu Sun,
 685 Qiong Yan, and Weisi Lin. Exploring video quality assessment on user generated contents from
 686 aesthetic and technical perspectives. In *Proceedings of the IEEE/CVF International Conference
 687 on Computer Vision*, pp. 20144–20154, 2023. 8

688

689 Junyi Wu, Haoxuan Wang, Yuzhang Shang, Mubarak Shah, and Yan Yan. Ptq4dit: Post-training
 690 quantization for diffusion transformers. *arXiv preprint arXiv:2405.16005*, 2024. 3, 6, 8, 17

691

692 Haocheng Xi, Shuo Yang, Yilong Zhao, Chenfeng Xu, Muyang Li, Xiuyu Li, Yujun Lin, Han Cai,
 693 Jintao Zhang, Dacheng Li, et al. Sparse videogen: Accelerating video diffusion transformers with
 694 spatial-temporal sparsity. *arXiv preprint arXiv:2502.01776*, 2025. 2, 3, 4, 5, 8, 15, 18, 19

695

696 Chaojun Xiao, Pengle Zhang, Xu Han, Guangxuan Xiao, Yankai Lin, Zhengyan Zhang, Zhiyuan
 697 Liu, and Maosong Sun. Inflm: Training-free long-context extrapolation for llms with an effi-
 698 cient context memory. *Advances in Neural Information Processing Systems*, 37:119638–119661,
 699 2024a. 2

700

701 Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
 702 Accurate and efficient post-training quantization for large language models. In *International
 703 Conference on Machine Learning*, pp. 38087–38099. PMLR, 2023a. 8, 17

704

705 Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
 706 language models with attention sinks. *arXiv preprint arXiv:2309.17453*, 2023b. 3

702 Guangxuan Xiao, Jiaming Tang, Jingwei Zuo, Junxian Guo, Shang Yang, Haotian Tang, Yao Fu,
 703 and Song Han. Duoattention: Efficient long-context llm inference with retrieval and streaming
 704 heads. *arXiv preprint arXiv:2410.10819*, 2024b. 2

705 Jingyang Yuan, Huazuo Gao, Damai Dai, Junyu Luo, Liang Zhao, Zhengyan Zhang, Zhenda Xie,
 706 YX Wei, Lean Wang, Zhiping Xiao, et al. Native sparse attention: Hardware-aligned and natively
 707 trainable sparse attention. *arXiv preprint arXiv:2502.11089*, 2025. 2

708 Zhihang Yuan, Hanling Zhang, Lu Pu, Xuefei Ning, Linfeng Zhang, Tianchen Zhao, Shengen Yan,
 709 Guohao Dai, and Yu Wang. Difastattn: Attention compression for diffusion transformer models.
 710 *Advances in Neural Information Processing Systems*, 37:1196–1219, 2024. 2, 3, 4, 5, 8, 15

711 Jintao Zhang, Haofeng Huang, Pingle Zhang, Jia Wei, Jun Zhu, and Jianfei Chen. Sageattention2:
 712 Efficient attention with thorough outlier smoothing and per-thread int4 quantization. *arXiv
 713 preprint arXiv:2411.10958*, 2024a. 3

714 Jintao Zhang, Jia Wei, Haofeng Huang, Pingle Zhang, Jun Zhu, and Jianfei Chen. Sageattention:
 715 Accurate 8-bit attention for plug-and-play inference acceleration. *arXiv preprint
 716 arXiv:2410.02367*, 2024b. 3, 24

717 Jintao Zhang, Jia Wei, Pingle Zhang, Xiaoming Xu, Haofeng Huang, Haoxu Wang, Kai Jiang,
 718 Jun Zhu, and Jianfei Chen. Sageattention3: Microscaling fp4 attention for inference and an
 719 exploration of 8-bit training. *arXiv preprint arXiv:2505.11594*, 2025a. 3

720 Jintao Zhang, Chendong Xiang, Haofeng Huang, Jia Wei, Haocheng Xi, Jun Zhu, and Jianfei
 721 Chen. Spargeattn: Accurate sparse attention accelerating any model inference. *arXiv preprint
 722 arXiv:2502.18137*, 2025b. 2, 3, 4, 5

723 Peiyuan Zhang, Yongqi Chen, Runlong Su, Hangliang Ding, Ion Stoica, Zhenghong Liu, and Hao
 724 Zhang. Fast video generation with sliding tile attention. *arXiv preprint arXiv:2502.04507*, 2025c.
 725 3

726 Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
 727 effectiveness of deep features as a perceptual metric. In *Proceedings of the IEEE conference on
 728 computer vision and pattern recognition*, pp. 586–595, 2018. 8

729 Yuechen Zhang, Jinbo Xing, Bin Xia, Shaoteng Liu, Bohao Peng, Xin Tao, Pengfei Wan, Eric Lo,
 730 and Jiaya Jia. Training-free efficient video generation via dynamic token carving. *arXiv preprint
 731 arXiv:2505.16864*, 2025d. 2, 3, 8, 15

732 Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
 733 Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient
 734 generative inference of large language models. *Advances in Neural Information Processing Systems*,
 735 36:34661–34710, 2023. 3

736 Tianchen Zhao, Tongcheng Fang, Enshu Liu, Wan Rui, Widjadewi Soedarmadji, Shiyao Li, Zinan
 737 Lin, Guohao Dai, Shengen Yan, Huazhong Yang, et al. Vudit-q: Efficient and accurate quantiza-
 738 tion of diffusion transformers for image and video generation. *arXiv preprint arXiv:2406.02540*,
 739 2024. 3, 6, 8, 15, 16, 17

740 Xingyu Zheng, Xianglong Liu, Yichen Bian, Xudong Ma, Yulun Zhang, Jiakai Wang, Jinyang Guo,
 741 and Haotong Qin. Bidm: Pushing the limit of quantization for diffusion models. *arXiv preprint
 742 arXiv:2412.05926*, 2024a. 2, 3

743 Xingyu Zheng, Haotong Qin, Xudong Ma, Mingyuan Zhang, Haojie Hao, Jiakai Wang, Zixiang
 744 Zhao, Jinyang Guo, and Xianglong Liu. Binarydm: Towards accurate binarization of diffusion
 745 model. *arXiv preprint arXiv:2404.05662*, 2024b. 2, 3

746

747

748

749

750

751

752

753

754

755

756 A PROOF OF THEOREM 3.4.
757758 *Proof of Theorem 3.4.*
759760 For $\tilde{\mathbf{A}}_{s,q}^{(t)}$, we have:
761

762
$$\begin{aligned} 763 (\mathbf{A}_{\text{full}}^{(t)} - \mathbf{A}_{s,q}^{(t)}) - (\mathbf{A}_{\text{full}}^{(t_{\text{ref}})} - \mathbf{A}_{s,q}^{(t_{\text{ref}})}) &= \hat{\Delta}_{\text{quant}}^t \\ 764 \Rightarrow \mathbf{A}_{\text{full}}^{(t)} &= \mathbf{A}_{s,q}^{(t)} + (\mathbf{A}_{\text{full}}^{(t_{\text{ref}})} - \mathbf{A}_{s,q}^{(t_{\text{ref}})}) + \hat{\Delta}_{\text{quant}}^t \\ 766 &= \mathbf{A}_{s,q}^{(t)} + \Delta_{\text{quant}}^{(t_{\text{ref}})} + \hat{\Delta}_{\text{quant}}^t. \end{aligned} \tag{17}$$

767

768 Given this, we further have:
769

770
$$\begin{aligned} 771 \mathbf{A}_{\text{full}}^{(t)} - \tilde{\mathbf{A}}_{s,q}^{(t)} &= (\mathbf{A}_{s,q}^{(t)} + \Delta_{\text{quant}}^{(t_{\text{ref}})} + \hat{\Delta}_{\text{quant}}^t) - \tilde{\mathbf{A}}_{s,q}^{(t)} \\ 772 &= (\mathbf{A}_{s,q}^{(t)} + \Delta_{\text{quant}}^{(t_{\text{ref}})} + \hat{\Delta}_{\text{quant}}^t) - (\mathbf{A}_{s,q}^{(t)} + \Delta_{\text{quant}}^{(t_{\text{ref}})} + \hat{\Delta}_{\text{quant}}^{(t_{\text{ref}})}) \\ 774 &= \hat{\Delta}_{\text{quant}}^t - \hat{\Delta}_{\text{quant}}^{(t_{\text{ref}})}. \end{aligned} \tag{18}$$

775

776 Similarly, for $\hat{\mathbf{A}}_{s,q}^{(t)}$, we also have:
777

778
$$\begin{aligned} 779 \mathbf{A}_{\text{full}}^{(t)} - \hat{\mathbf{A}}_{s,q}^{(t)} &= (\mathbf{A}_{s,q}^{(t)} + \Delta_{\text{quant}}^{(t)}) - \hat{\mathbf{A}}_{s,q}^{(t)} \\ 780 &= (\mathbf{A}_{s,q}^{(t)} + \Delta_{\text{quant}}^{(t)}) - (\mathbf{A}_{s,q}^{(t)} + \Delta_{\text{quant}}^{(t_{\text{ref}})}) \\ 782 &= \Delta_{\text{quant}}^{(t)} - \Delta_{\text{quant}}^{(t_{\text{ref}})}. \end{aligned} \tag{19}$$

783

784 Based on Proposition 3.3, we have:
785

786
$$\mathbb{E}_t \left[\underbrace{\left\| \mathbf{A}_{\text{full}}^{(t)} - \tilde{\mathbf{A}}_{s,q}^{(t)} \right\|_F}_{\text{second-order}} \right] = \mathbb{E}_t \left[\left\| \hat{\Delta}_{\text{quant}}^t - \hat{\Delta}_{\text{quant}}^{(t_{\text{ref}})} \right\|_F \right] \leq \mathbb{E}_t \left[\left\| \Delta_{\text{quant}}^{(t)} - \Delta_{\text{quant}}^{(t_{\text{ref}})} \right\|_F \right] = \mathbb{E}_t \left[\underbrace{\left\| \mathbf{A}_{\text{full}}^{(t)} - \hat{\mathbf{A}}_{s,q}^{(t)} \right\|_F}_{\text{first-order}} \right]. \tag{20}$$

787

788 Therefore, Theorem 3.4 holds.
789790 B DETAILS OF SELECTED EVALUATION METRICS
791792 B.1 MULTI-ASPECTS METRICS EVALUATION
793794 This evaluation suite includes absolute quality of videos and relative difference metrics that quantify
795 the difference between FP16 generation.
796800 **Absolute Quality.** Consistent with prior quantization works (Zhao et al., 2024; Feng et al., 2025b),
801 we adopt CLIPSIM, VQA, and FlowScore to measure text-video alignment, quality, and temporal
802 consistency, respectively.
803804 **Relative Difference Metrics.** Following prior sparse attention works (Xi et al., 2025; Yuan et al.,
805 2024; Ren et al., 2025; Zhang et al., 2025d), we adopt Peak Signal-to-Noise Ratio (PSNR), Structural
806 Similarity Index Measure (SSIM), and Learned Perceptual Image Patch Similarity (LPIPS) for pixel-
807 space differences, structural similarity, and high-level patch similarity, respectively.
808809 All the evaluations are conducted on high-resolution generation tasks. Due to the computational
810 overhead, we use the OpenSORA prompt sets used in (Zhao et al., 2024; Feng et al., 2025b) for
811 video generation.
812

810 **Algorithm 1** QuantSparse: Calibration to Inference Pipeline

811 **Require:** Pre-trained video diffusion transformer M (FP16), calibration dataset \mathcal{D}_{cal} , target bit-
 812 width (W/A), denoising steps T , cache interval τ

813 **Ensure:** Quantized-sparse model M_{QS} , generated video Y

814 1: **Calibration Phase:**

815 2: Initialize quantization parameters $\{s, z\}$ for weights (W) and activations (A)

816 3: Input $X \in \mathcal{D}_{\text{cal}}$ to M

817 4: Compute token saliency s_j using Eq. 7 for FP model M

818 5: Select top- k salient tokens $I = \{j \mid s_j \text{ is top-}k\}$

819 6: **Global Guidance Distillation:**

820 7: Calculate $\mathcal{L}_{\text{global}}$ using Eq. 6

821 8: **Local Guidance Distillation:**

822 9: Calculate $\mathcal{L}_{\text{local}}$ using Eq. 8

823 10: Optimize quantization parameters using Eq. 9 with $\mathcal{L}_{\text{global}}$ and $\mathcal{L}_{\text{local}}$

824 11: Obtain quantized model M_{quant} with optimized $\{s, z\}$

825 12: **Inference Phase:**

826 13: Load M_{quant} and input prompt P .

827 14: Input P into M_{quant} and initialize cached residuals $\{\Delta_{\text{quant}}^{(t_{\text{ref}})}, \hat{\Delta}_{\text{quant}}^{(t_{\text{ref}})}\}$

828 15: **for** t in T

829 16: Compute quantized sparse attention:

830
$$A_{\text{s},q}^{(t)} = \text{SparseAttention}(Q_{\text{quant}}, K_{\text{quant}}, V_{\text{quant}}; M)$$

831 17: **if** $t - t_{\text{ref}} \leq \tau$

832 18: Reuse cached residuals: $\Delta_{\text{curr}} = \Delta_{\text{quant}}^{(t_{\text{ref}})} + \hat{\Delta}_{\text{quant}}^{(t_{\text{ref}})}$

833 19: **else**

834 20: Update $t_{\text{ref}} = t$, recompute and cache residuals

835 21: **endif**

836 22: Refine attention using Eq. 16

837 23: **endfor**

838 24: Generate video Y **return** Y

840

841 **B.2 BENCHMARK EVALUATION**

842 To further provide benchmark evaluation, we follow previous works (Feng et al., 2025b; Zhao et al.,
 843 2024). We select 8 major dimensions from Vbench (Huang et al., 2024b), including frame-wise
 844 quality, temporal quality, and semantic evaluation.

845 For **Frame-wise Quality**, we select *Imaging Quality* and *Aesthetic Quality* for distortion assess-
 846 ment and artistic and beauty evaluation. For **Temporal Quality**, we use *Dynamic Degree*, *Motion*
 847 *Smoothness*, *Subject Consistency*, and *Background Consistency* for degree of dynamics, physical
 848 law smoothness, subject's appearance consistent, and temporal consistency of the background, re-
 849 spectively. For **Semantic Evaluation**, we use *Scene* and *Overall Consistency* for text prompt scene
 850 consistency and overall video-text consistency.

851 The evaluation follows the suite provided by VBench (Huang et al., 2024b). We generate one video
 852 for each prompt, same as previous works (Zhao et al., 2024; Feng et al., 2025b). Due to the large
 853 prompt sets used in VBench, we slightly decrease the resolution for computational efficiency. In
 854 addition, this experimental setup also provides an additional evaluation of multi-resolution video
 855 generation performance, which proves the generalization and effectiveness of our method in different
 856 application scenarios.

858

859 **C EXPERIMENT SETTINGS**

860 Same with prior works (Zhao et al., 2024; Ashkboos et al., 2024; Feng et al., 2025b), we adopt
 861 channel-wise weight quantization and dynamic token-wise activation quantization. And we use
 862 uniform symmetry quantization for both weight and activation for better hardware acceleration and
 863 memory saving. For fair comparison, we apply the same quantization granularity for all quantization

Table 6: Text-to-Video generation experiments on more huge models.

Method	#Bits (W/A)	Density _↓	Quality					
			Video Quality Metrics			FP Diff. Metrics		
			CLIPSIM _↑	VQA _↑	ΔFSCore _↓	PSNR _↑	SSIM _↑	LPIPS _↓
HunyuanVideo 13B (CFG = 6.0, 720 × 1280p, frames = 60)								
Full Prec.	16/16	100%	0.184	81.23	0.000	-	-	-
SmoothQuant	6/6	100%	0.180	69.55	1.406	15.91	0.553	0.411
QuaRot	6/6	100%	0.182	72.28	0.546	16.99	0.590	0.378
ViDiT-Q	6/6	100%	0.182	72.36	0.937	18.24	0.623	0.335
Q-VDiT	6/6	100%	0.182	73.68	1.232	21.02	0.675	0.264
QuaRot+SVG	6/6	25%	0.181	72.57	0.718	16.85	0.581	0.385
Q-VDiT+SVG	6/6	25%	0.181	72.59	1.405	20.38	0.658	0.284
QuaRot+SVG	6/6	15%	0.181	72.60	0.997	16.85	0.578	0.394
Q-VDiT+SVG	6/6	15%	0.181	72.04	1.763	19.94	0.644	0.307
QuantSparse	6/6	25%	0.183	81.17	0.435	22.71	0.720	0.221
QuantSparse	6/6	15%	0.183	82.26	0.328	22.68	0.720	0.224
Wan2.1 14B (CFG = 5.0, 720 × 1280p, frames = 80)								
Full Prec.	16/16	100%	0.182	90.79	0.000	-	-	-
SmoothQuant	6/6	100%	0.178	62.25	0.363	13.06	0.404	0.656
QuaRot	6/6	100%	0.180	66.56	0.313	13.59	0.409	0.566
ViDiT-Q	6/6	100%	0.180	71.26	0.251	15.30	0.513	0.376
Q-VDiT	6/6	100%	0.180	89.10	0.082	18.13	0.610	0.264
QuaRot+SVG	6/6	25%	0.179	67.64	0.336	13.60	0.407	0.555
Q-VDiT+SVG	6/6	25%	0.179	88.29	0.091	16.69	0.563	0.323
QuaRot+SVG	6/6	15%	0.180	60.14	0.396	13.55	0.399	0.567
Q-VDiT+SVG	6/6	15%	0.179	85.26	0.182	15.94	0.532	0.367
QuantSparse	6/6	25%	0.182	89.96	0.002	18.67	0.622	0.240
QuantSparse	6/6	15%	0.181	92.87	0.060	18.67	0.616	0.277

methods. We adopt channel-wise scale used in (Xiao et al., 2023a; Wu et al., 2024; Zhao et al., 2024; Feng et al., 2025b) and rotation-based matrix used in (Ashkboos et al., 2024; Zhao et al., 2024; Sun et al., 2024b) for quantization. We follow block-wise post-training strategy used in (Wu et al., 2024; Chen et al., 2024; Sun et al., 2024b) for calibration. All the experiments are conducted on a single NVIDIA A800 GPU.

During calibration, we set channel-wise scale, rotation matrix, and quantization scale as learnable following (Feng et al., 2025b; Sun et al., 2024b). We use 20 random generated samples and train 15 epoch for each transformer block. We apply the same calibration samples and epochs for all methods for fair comparison. We use AdamW (Loshchilov & Hutter, 2017) optimizer and cosine learning rate scheduler. For the channel-wise scale and rotation matrix, we use a learning rate of $5e^{-3}$. For the learnable quantization scale, we use a learning rate of $5e^{-2}$. For distillation, we use $r = 128$ for global distillation pooling, $k = 256$ for salient query selection, and $\lambda_{\text{global}} = 1e^{-4}$, $\lambda_{\text{global}} = 1e^{-4}$ for Wan2.1-1.3B, Wan2.1-14B, and $\lambda_{\text{global}} = 1.0$, $\lambda_{\text{global}} = 1e^2$ for HunyuanVideo, respectively. The selection of distillation balancing factor is based on the order of magnitude of the loss. For sparse attention, we use a fixed cache refreshing interval of 5, and use $k = 16$ for SVD.

For deployment, we quantize the weight and absorb all the quantization parameters following (Zhao et al., 2024; Sun et al., 2024b; Feng et al., 2025b; Ashkboos et al., 2024). For activation, we use dynamic online quantization same as (Feng et al., 2025b; Sun et al., 2024b; Zhao et al., 2024).

D MORE EVALUATION RESULTS ON WAN2.1-1.3B

We present comprehensive evaluation on Wan2.1-1.3B (Wan et al., 2025) in Tab. 6. Since Wan2.1-1.3B has less computation budget and we find that it will suffer from serious performance degradation under high sparsity, we uniformly adopt 40 density in sparse attention to ensure its performance.

Different quantization methods have obvious performance degradation, especially under W4A8. Among them, the quantization method specially designed for video model Q-VDiT (Feng et al.,

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
9999

Table 7: Performance of text-to-video generation under VBench evaluation benchmark suite. We evaluate on Imaging Quality (IQ), Aesthetic Quality (AQ), Motion Smoothness (MS), Dynamic Degree (DD), Background Consistency (BC), Subject Consistency (SuC), Scene Consistency (ScC), and Overall Consistency (OC). Higher (\uparrow) metrics represent better performance. **Bold**: the best result. Underline: The second best result.

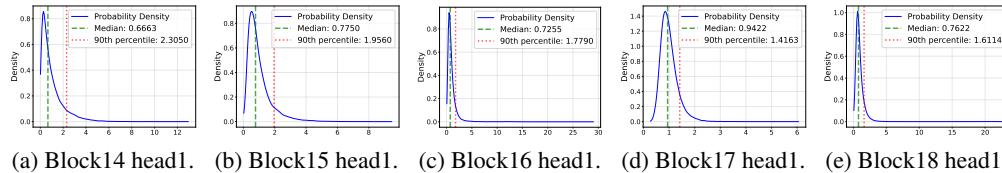
Method	#Bits (W/A)	Density	IQ	AQ	MS	DD	BC	SuC	ScC	OC
Wan2.1 1.3B (CFG = 6.0, $480 \times 832p$, frames = 80)										
Full Prec.	16/16	100%	64.05	57.86	97.03	87.50	94.94	93.00	16.72	23.16
QuaRot+SVG	6/6	40%	62.53	52.16	95.48	81.94	93.65	89.20	12.43	22.42
Q-VDiT+SVG	6/6	40%	64.01	53.89	96.25	81.94	94.23	91.78	17.81	22.90
QuantSparse	6/6	40%	64.96	56.44	96.68	<u>83.33</u>	94.84	92.56	18.46	23.12
QuaRot+SVG	4/8	40%	54.45	43.60	96.29	73.61	94.99	87.02	8.14	18.88
Q-VDiT+SVG	4/8	40%	56.08	48.12	97.27	61.11	95.86	89.72	10.32	19.89
QuantSparse	4/8	40%	64.41	58.00	97.35	<u>87.50</u>	94.99	93.02	18.24	23.31
HunyuanVideo 13B (CFG = 6.0, $512 \times 768p$, frames = 60)										
Full Prec.	16/16	100%	62.30	62.49	99.00	56.94	98.08	95.30	33.36	26.85
QuaRot+SVG	6/6	25%	56.82	57.23	97.93	40.00	97.75	95.10	23.98	25.63
Q-VDiT+SVG	6/6	25%	59.22	58.77	97.96	40.00	97.60	95.68	26.80	25.87
QuaRot+SVG	6/6	15%	53.95	56.43	97.84	38.89	97.48	94.40	23.36	25.57
Q-VDiT+SVG	6/6	15%	57.43	58.02	97.84	38.61	97.07	95.20	24.27	25.74
QuantSparse	6/6	25%	60.24	59.06	99.01	43.06	98.33	96.06	28.42	<u>26.62</u>
QuantSparse	6/6	15%	<u>59.54</u>	<u>58.87</u>	<u>98.95</u>	<u>40.28</u>	<u>98.08</u>	<u>95.84</u>	<u>27.69</u>	26.63
QuaRot+SVG	4/8	25%	45.81	56.59	98.26	22.22	98.18	95.78	21.00	24.64
Q-VDiT+SVG	4/8	25%	44.94	56.62	98.36	23.61	97.98	96.06	18.53	24.81
QuaRot+SVG	4/8	15%	43.51	55.35	98.21	20.83	97.21	95.15	18.31	24.50
Q-VDiT+SVG	4/8	15%	42.16	55.32	98.32	20.83	97.96	95.48	16.64	24.68
QuantSparse	4/8	25%	59.85	59.37	99.08	<u>38.89</u>	98.32	96.41	<u>29.80</u>	26.92
QuantSparse	4/8	15%	<u>59.27</u>	<u>59.20</u>	<u>99.04</u>	40.28	<u>98.21</u>	<u>96.18</u>	30.31	26.92
Wan2.1 14B (CFG = 5.0, $480 \times 832p$, frames = 80)										
Full Prec.	16/16	100%	63.38	59.56	96.73	86.11	96.71	90.84	28.13	25.68
QuaRot+SVG	6/6	25%	61.77	54.13	95.89	45.83	94.78	90.20	17.59	23.37
Q-VDiT+SVG	6/6	25%	60.92	57.53	96.44	82.50	95.48	89.34	27.76	25.46
QuaRot+SVG	6/6	15%	61.42	54.09	95.78	45.83	94.70	89.95	16.50	23.08
Q-VDiT+SVG	6/6	15%	59.77	56.56	96.31	82.50	95.68	89.25	27.05	25.28
QuantSparse	6/6	25%	63.89	58.77	96.77	<u>84.72</u>	96.48	90.91	29.80	<u>25.80</u>
QuantSparse	6/6	15%	<u>63.87</u>	<u>58.32</u>	<u>96.69</u>	90.28	<u>96.29</u>	<u>90.85</u>	<u>29.14</u>	26.07
QuaRot+SVG	4/8	25%	62.53	57.24	96.52	87.50	95.40	89.77	22.69	25.11
Q-VDiT+SVG	4/8	25%	60.92	58.53	96.44	87.50	95.48	89.34	22.76	25.46
QuaRot+SVG	4/8	15%	61.16	56.71	96.32	87.50	95.33	89.67	22.14	25.05
Q-VDiT+SVG	4/8	15%	59.77	57.56	96.31	87.50	95.68	89.25	22.04	25.08
QuantSparse	4/8	25%	<u>63.55</u>	59.59	96.82	87.50	96.69	90.69	27.76	<u>25.81</u>
QuantSparse	4/8	15%	63.81	<u>58.86</u>	<u>96.75</u>	87.50	<u>96.56</u>	<u>90.55</u>	<u>26.09</u>	25.93

2025b) and the strong LLM quantization method Quarot (Ashkboos et al., 2024) show relatively stronger performance. For a broader and fair comparison, we add existing sparse attention methods to Q-VDiT and Quarot to verify the effect of naive combination of model quantization and sparse attention. We find that when combining Q-VDiT and Quarot with different sparse attention methods, the performance decreases to varying degrees, and the performance of SVG (Xi et al., 2025) decreases the least. Therefore, we chose SVG as our baseline sparse attention in all other experiments.

Compared with all existing methods, QuantSparse achieves SOTA performance under all bit settings, and is almost lossless compared with the FP model. It is worth mentioning that QuantSparse even surpasses all quantization-only methods. It not only achieves better compression effect, but also has better performance, which fully demonstrates the effectiveness of our method.

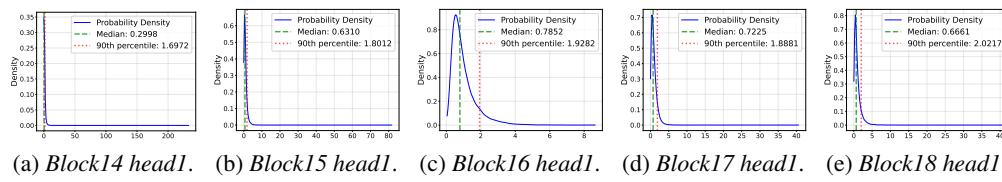
972 E V BENCH EVALUATION RESULTS 973

974 We present the V Bench (Huang et al., 2024b) evaluation results in Tab. 7. Under the comprehensive
975 evaluation of all 8 dimensions, the naive combination of Q-VDiT (Feng et al., 2025b), Quarot (Ashk-
976 boos et al., 2024) and SVG (Xi et al., 2025) all show significant performance degradation, which
977 fully demonstrates the disadvantage of simply combining existing quantization and sparse atten-
978 tion methods. While QuantSparse achieves comprehensive SOTA performance in all bit settings of
979 all models, and is almost lossless compared with FP model, even better in some dimensions. For
980 Wan2.1-14B (Wan et al., 2025) under W4A8, QuantSparse achieves 63.55 and 63.81 under 25% and
981 15% attention density, respectively, surpassing 63.38 of FP model.



982 (a) Block14 head1. (b) Block15 head1. (c) Block16 head1. (d) Block17 head1. (e) Block18 head1.

983 Figure 6: More token saliency distribution of Wan2.1-1.3B (Wan et al., 2025).



984 (a) Block14 head1. (b) Block15 head1. (c) Block16 head1. (d) Block17 head1. (e) Block18 head1.

985 Figure 7: More token saliency distribution of HunyuanVideo-13B (Kong et al., 2024).

1002 F MORE ANALYSIS OF MULTI-SCALE SALIENT ATTENTION DISTILLATION 1003

1004 We present more analysis of the proposed Multi-Scale Salient Attention Distillation (MSAD) here.

1005 We conducted quantitative experiments to test the impact of quantization and sparsification on at-
1006 tention shift by measuring the attention Mean Square Error (MSE). The results are collected from
1007 1000 random samples on Wan2.1-1.3B (Wan et al., 2025) under W4A8 and 40% attention density.
1008 The results are presented in Tab. 8. The attention shift caused by the simple combination of quanti-
1009 zation and sparsification methods is much greater than the sum of individual shifts. This proves the
1010 joint effect of quantization and sparsification on attention error, and our core motivation "amplified
1011 attention shift".

1012 Table 8: Quantitative experiment on attention shift caused by different compression techniques.

Method	Attention Shift
Quantization (QuaRot (Ashkboos et al., 2024))	0.216
Sparsification (SVG (Xi et al., 2025))	0.134
Quantization+Sparsification	0.685

1019 We supplement 4 additional attention map comparisons in Fig. 8 and Fig. 9, showing the attention
1020 distribution difference between the FP model and quantized model. The results are collected from
1021 Wan2.1-1.3B under W4A8.
1022

1023 Each column in Fig. 8 and Fig. 9 corresponds to the attention difference between the same attention
1024 map before and after the proposed distillation MSAD. This indicates that our MSAD effectively
1025 alleviates the attention shift.

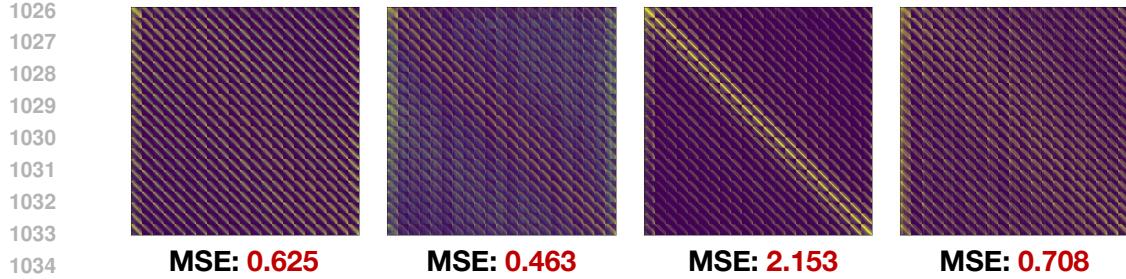


Figure 8: Attention differences between FP model and quantized model without distillation.

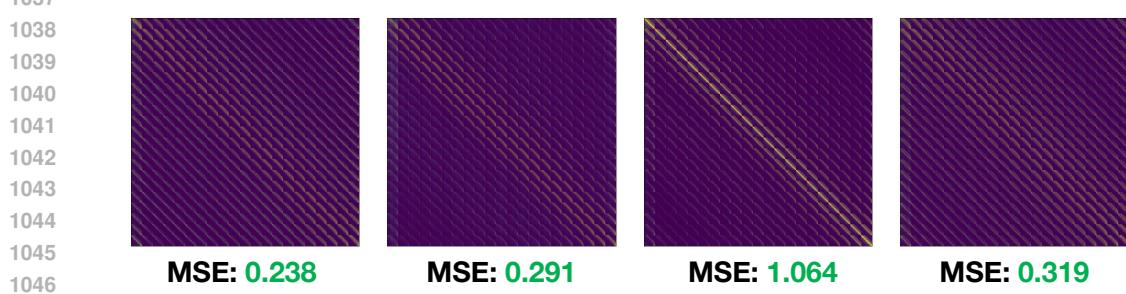


Figure 9: Attention differences between FP model and quantized model with distillation.

1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061

We present more visualization of heavy-tail token saliency distribution in Fig. 6 and Fig. 7. It can be seen that a significantly heavy-tailed token saliency phenomenon appears in different blocks of Wan2.1 (Wan et al., 2025) and HunyuanVideo (Kong et al., 2024), which fully shows that our salient local distillation is meaningful.

To further prove the effect of top- k salient queries selection, we compare with random selection methods and present the results in Tab. 9. Compared with random selection, our top- k salient selection further improves the PSNR from 15.49 to 16.82, fully demonstrating the effectiveness of our local distillation.

Table 9: Ablation results of local distillation.

Method	VQA \uparrow	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow
None	81.92	14.35	0.486	0.425
Random	83.17	15.49	0.523	0.372
Salient	86.95\pm5.03	16.82\pm2.47	0.561\pm0.075	0.325\pm0.100

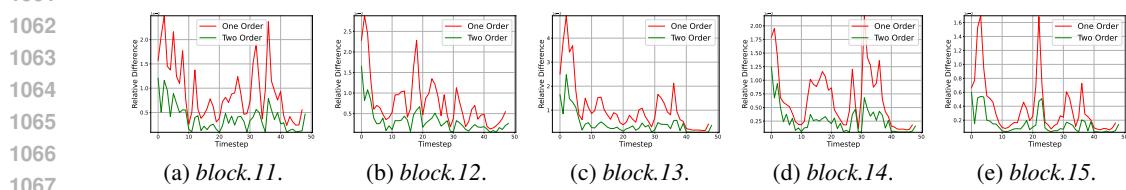


Figure 10: More residual temporal difference distribution of HunyuanVideo-13B (Kong et al., 2024).

G MORE ANALYSIS OF SECOND-ORDER SPARSE ATTENTION REPARAMETERIZATION

1075
1076
1077
1078
1079

We present more analysis of the proposed Second-Order Sparse Attention Reparameterization (SSAR) here. We present more visualization of residual temporal difference in Fig. 10. It can be seen that after the introduction of quantization, the numerical difference of the first-order residuals of adjacent time steps cannot be simply ignored. However, the numerical difference of the second-order residual is significantly smaller than that of the first-order residual, so the use of the second-order residual has a better approximation effect.

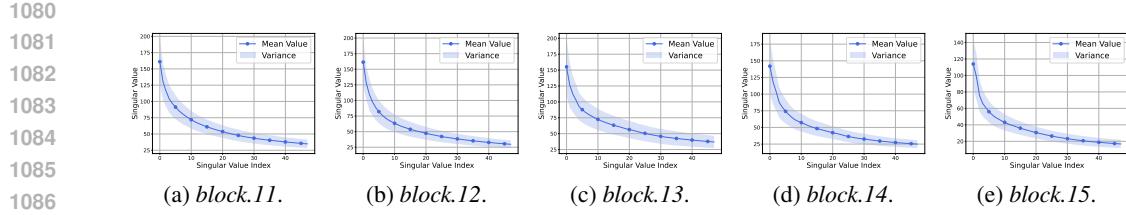


Figure 11: More singular value distribution of all timesteps of HunyuanVideo-13B (Kong et al., 2024).

To verify the motivation of using the temporal-stable component of the second-order residual, we visualize more singular value distribution of all timesteps in Fig. 11. It can be seen that in different blocks of different models, the second-order residuals at different time steps show considerable stability. Therefore, the second-order residual after SVD can retain the characteristics of time stability, further reduce the variance caused by different time steps, and have better approximation effect.

We further visualize more attention error comparison in Fig. 12. It can be seen that the residual mechanism significantly reduces the attention error, which proves the importance of sparse attention reparameterization. At the same time, compared with the first-order residual, the second-order residual further reduces the attention error, which proves the necessity of introducing the second-order residual after quantization. Also, the second-residual after using SVD can further reduce the attention error, which proves that we have indeed extracted the temporally stable component and achieved the best attention approximation effect.

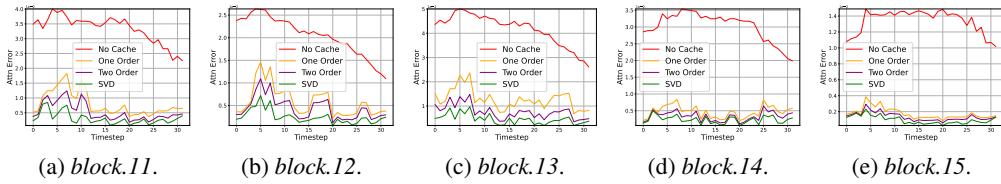


Figure 12: More attention error comparison of HunyuanVideo-13B (Kong et al., 2024).

H MORE ABLATION STUDY

Here, we provide more ablation study about the proposed Multi-Scale Salient Attention Distillation (MSAD) and Second-Order Sparse Attention Reparameterization (SSAR).

We first study the pooling stride s used in Eq. 6 and salient token k in Eq. 8 to verify the hyperparameter selection of both global and local distillation. We present the results in Tab. 10. It can be seen that different hyperparameters can improve the distillation performance. This shows that our distillation method is both effective and robust, which is insensitive to hyperparameters. This also demonstrates that the memory-efficient distillation are effective enough and we do not have to use the giant complete attention map to supervise the attention module. Higher s and lower k can reduce memory, but typically harm performance. Yet we identify that decreasing s and increasing k also brings little improvement. Since $s = 128$ and $k = 256$ are both effective and efficient as shown in Fig. 3d, we choose this balanced selection.

We then study the top- r components in SVD used in Eq. 16, and present the results in Tab. 11. Compared with the original second-order residual, it can be seen that the different selection of r in SVD can improve the temporal stability of the second-order residual and bring better performance. In our experiment, we chose $r = 16$ as it achieves good performance. We further explore higher-order residual effectiveness on attention approximation. Compared with the Second-Order residual, Third-

Table 10: Ablation on s and k used in attention distillation.

	VQA \uparrow	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow
None	81.92	14.35	0.486	0.425
pooling stride s				
$s=64$	85.19	16.05	0.543	0.348
$s=128$	85.26	16.01	0.547	0.349
$s=256$	85.12	15.93	0.545	0.355
salient token k				
$k=128$	86.21	16.72	0.551	0.349
$k=256$	86.95	16.82	0.561	0.325
$k=512$	86.93	16.95	0.561	0.324

1134

Table 11: Ablation on SVD used in SSAR.

1135

1136

Method	VQA \uparrow	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow
None	68.00	14.16	0.470	0.445
<i>First</i>	70.82	17.08	0.572	0.285
<i>Second</i>	89.73	18.68	0.616	0.258
<i>Third</i>	89.71	18.70	0.620	0.263
<i>top-8</i>	91.12	18.69	0.621	0.253
<i>top-16</i>	91.98_{+23.98}	18.72_{+4.56}	0.630_{+0.160}	0.240_{-0.205}
<i>top-32</i>	91.75	18.72	0.628	0.242

1143

1144

1145

Order residual only slightly improves PSNR from 18.70 to 18.68 and decreases the performance on VQA, SSIM, and LPIPS. This indicates that the stability brought by higher-order residuals will gradually saturate, and we attribute it to the additional noise brought by longer time series information on higher-order residuals. The second-order residual not only stabilizes the first-order residual, but SVD can further reduce spatiotemporal noise.

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

We then study the weight factor used in Eq. 9 to verify the distillation robustness of hyperparameters. We present the results in Tab. 12. The values are selected by controlling the distillation term to be of the same order of magnitude as $\mathcal{L}_{\text{quant}}$. It can be seen that different weight factors improve the model performance. This shows that our distillation method is not only effective but also insensitive to the choice of hyperparameters, indicating its generalization and effectiveness. Since $\lambda_{\text{global}} = 1e-4$ and $\lambda_{\text{local}} = 1e-4$ are good enough, and the hyperparameter selection is robust, we do not further fine-tune the hyperparameter selection.

1160

1161

1162

1163

1164

We further compare our Multi-Scale Salient Attention Distillation (MSAD) with full-attention distillation (using the complete FP attention map as the target) on Wan2.1-1.3B (Wan et al., 2025) under W4A8 quantization. The results are shown in Tab. 13. MSAD achieves nearly identical performance to full-attention distillation. The results highlight MSAD’s efficiency advantages while maintaining comparable performance.

1165

1166

1167

Table 13: Ablation study on full-attention distillation.

1168

1169

1170

1171

1172

1173

1174

1175

1176

I CALIBRATION COMPUTATION RESOURCE

1177

We study the calibration computation resource of each of our proposed methods and the overall pipeline. As Second-Order Sparse Attention Reparameterization (SSAR) is used for only inference, for calibration, we only add Multi-Scale Salient Attention Distillation (MSAD) compared to naive Post-Training Quantization (PTQ). We present the calibration resource in Tab. 14. Compared with naive PTQ, our *Global Distillation* only brings an average of 0.8% extra time burden and almost no additional memory consumption because of its efficient low-resolution attention operation. Also, our *Local Distillation* only needs to calculate the token saliency distribution once before each block calibration and reuse the salient token index in each optimization iteration, which is also very efficient. These two distillation methods are not only efficient but also can effectively alleviate the attention shift caused by quantization and improve the video generation effect. QuantSparse has significantly improved the model performance by combining two distillation methods, while ensuring high efficiency.

Table 12: Ablation on λ_* used in Eq. 9.

λ_*	VQA \uparrow	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow
None	81.92	14.35	0.486	0.425
* = global				
5e-3	84.76	15.79	0.518	0.362
1e-4	85.26	16.01	0.547	0.349
5e-4	85.33	15.72	0.540	0.351
* = local				
5e-3	86.73	16.86	0.547	0.336
1e-4	86.95	16.82	0.561	0.325
5e-4	86.54	16.72	0.562	0.328

1188 Table 14: Calibration computation resource report. PTQ denotes naive Post-Training Quantization
 1189 without attention distillation.

1190

1191

Method	Calibration Overload		Performance	
	GPU Memory (GB)↓	GPU Time (Hours)↓	PSNR↑	LPIPS↓
Wan2.1 1.3B				
PTQ	16.21	0.62	10.57	0.587
+Global	16.27 ^{+0.4%}	0.63 ^{+0.2%}	13.27	0.452
+Local	16.28 ^{+0.4%}	0.63 ^{+0.2%}	13.85	0.421
QuantSparse	16.34 ^{+0.8%}	0.64 ^{+1.6%}	15.22^{+4.65}	0.338^{-0.249}
HunyuanVideo 13B				
PTQ	39.22	5.08	16.27	0.472
+Global	39.33 ^{+0.3%}	5.10 ^{+0.4%}	18.42	0.357
+Local	39.32 ^{+0.3%}	5.11 ^{+0.6%}	18.96	0.342
QuantSparse	39.41 ^{+0.5%}	5.13 ^{+1.0%}	20.86^{+4.59}	0.272^{-0.200}
Wan2.1 14B				
PTQ	47.39	2.57	14.35	0.425
+Global	47.54 ^{+0.3%}	2.59 ^{+0.8%}	16.01	0.349
+Local	47.50 ^{+0.2%}	2.58 ^{+0.4%}	16.82	0.325
QuantSparse	47.65 ^{+0.5%}	2.60 ^{+1.1%}	18.72^{+4.37}	0.240^{-0.185}

1205

1206

1207

1208

1209 To further prove the effectiveness of proposed Second-Order Sparse Attention Reparameterization
 1210 (SSAR), we present the inference burden brought by SSAR in Tab. 15. Compared with Non-
 1211 Reparameterization, the cache-based method only requires one additional matrix addition opera-
 1212 tion for the sparse attention output, which is very efficient. Therefore, the cache-based method will
 1213 only bring little additional latency and memory burden. Furthermore, the second-order residual can
 1214 store and calculate the second-order term and the first-order term together. Therefore, compared
 1215 with the first-order residual, the second-order residual only requires an additional second order term
 1216 calculation, but significantly improves the sparse attention performance under quantization, and im-
 1217 proves the PSNR from 17.08 to 18.68 under Wan2.1-14B (Wan et al., 2025). In addition, using SVD
 1218 to extract the temporally stable component of second-order residuals brings almost no additional
 1219 consumption, but can further improve the effect of second-order residuals, which further decreases
 1220 LPIPS from 0.258 to 0.240 under Wan2.1-14B.

1221

1222 Table 15: Sparse attention reparameterization resource report. ‘None’ denotes Non-
 1223 Reparameterization.

1224

Method	Inference Overload		Performance	
	GPU Memory (GB)↓	DiT Time (s)↓	PSNR↑	LPIPS↓
Wan2.1 1.3B				
None	5.44	312	10.57	0.587
+First	5.84 ^{+7%}	313 ^{+0.3%}	12.76	0.493
+Second	5.93 ^{+9%}	313 ^{+0.3%}	13.55	0.427
QuantSparse	5.93 ^{+9%}	313 ^{+0.3%}	15.22^{+4.65}	0.338^{-0.249}
HunyuanVideo 13B				
None	24.34	725	16.27	0.472
+First	26.51 ^{+9%}	729 ^{+0.6%}	18.25	0.381
+Second	27.02 ^{+11%}	730 ^{+0.7%}	19.03	0.317
QuantSparse	27.02 ^{+11%}	731 ^{+0.8%}	20.86^{+4.59}	0.272^{-0.200}
Wan2.1 14B				
None	26.04	2589	14.16	0.445
+First	27.86 ^{+7%}	2593 ^{+0.2%}	17.08	0.285
+Second	28.14 ^{+8%}	2594 ^{+0.2%}	18.68	0.258
QuantSparse	28.14 ^{+8%}	2594 ^{+0.2%}	18.72^{+4.56}	0.240^{-0.205}

1240

1241

1242 **J COMBINATION WITH OTHER ACCELERATION TECHNIQUES**
1243

1244 To further validate the integration ability of QuantSparse with other acceleration techniques, we
 1245 combined it with existing attention quantization techniques SageAttention (Zhang et al., 2024b)
 1246 and cache techniques TeaCache (Liu et al., 2024a), and presented the results in Tab. 16. All the
 1247 experiments are conducted on Wan2.1-14B (Wan et al., 2025) under W4A8 quantization setting. We
 1248 apply SageAttention by quantizing attention into 8-bit. For TeaCache, we set the threshold as 0.16
 1249 to ensure performance.

1250 It can be seen that, despite retaining only 15% attention density under W4A8 quantization, the
 1251 combination of QuantSparse and SageAttention still incurs almost no performance loss. This in-
 1252 dicates that QuantSparse is highly friendly to sparsification and quantization, fully demon-
 1253 strating the necessity of attention distillation and second-order reparameterization. Although further adding
 1254 TeaCache may result in a slight performance decrease, it can bring significant additional inference
 1255 acceleration. This provides a further trade-off between performance and inference speed, and also
 1256 demonstrates the effectiveness of combining QuantSparse with cache-based methods.

1257 We further provide more visualization results in Fig. 13. It can be seen that the combination of
 1258 QuantSparse and other acceleration techniques not only shows almost no decrease in metrics but
 1259 also maintains good visual effects without producing any decrease in visual quality.

1260
1261 Table 16: More efficiency comparison under W4A8 quantization setting. Sage. denotes SageAtten-
1262 tion (Zhang et al., 2024b). Tea. denotes TeaCache (Liu et al., 2024a).

1264	Method			Density ↓	Quality			Latency & Speed	
	1265 QuantSparse	SageAttention	TeaCache		1266 CLIPSIM ↑	VQA ↑	ΔFScore ↓	1267 DiT Time ↓	1268 Speedup ↑
1266 Wan2.1 14B (CFG = 5.0, 720 × 1280p, frames = 80)									
1267	Full Prec.			100%	0.182	90.79	0.000	4031s	1.00×
1268	✓				0.183	91.98	0.056	2594s	1.55×
1269	✓	✓		25%	0.181	91.70	0.240	2480s	1.63×
1270	✓				0.180	84.01	0.211	1802s	2.24×
1271	✓	✓		15%	0.182	90.73	0.042	2315s	1.74×
1272	✓	✓	✓		0.180	90.58	0.046	2201s	1.83×
					0.179	86.24	0.249	1629s	2.47×

1285
1286 Figure 13: Combining with other acceleration techniques visualization on Wan2.1-14B under W4A8
1287 quantization setting.

1288 **K IMAGE GENERATION EXPERIMENT**
1289

1290 QuantSparse is designed as a general framework for Diffusion Transformers (DiTs) and is not lim-
 1291 ited to video generation. To validate its generalizability, we conducted an experiment on Hunyuan-
 1292 DiT (Li et al., 2024c), a 1.5B parameters model targeting image generation. We evaluate on Draw-
 1293 Bench (Saharia et al., 2022) under W4A8 quantization and present the results in Tab. 17. Even for

1296 image-generation DiTs, QuantSparse outperforms SOTA quantization baselines QuaRot (Ashkboos
 1297 et al., 2024) and Q-VDiT (Feng et al., 2025b) while using only 40% attention density. This con-
 1298 firms that our framework generalizes to DiT-based visual generation tasks and not limited to video
 1299 generation.

1301 Table 17: Image generation experiment results on Hunyuan-DiT.
 1302

Method	Density _↓	PSNR _↑	SSIM _↑	LPIPS _↓
Hunyuan-DiT				
QuaRot	100%	17.30	0.627	0.460
Q-VDiT	100%	19.32	0.658	0.347
QuantSparse	40%	20.34	0.692	0.289

1311

L THE USE OF LARGE LANGUAGE MODELS (LLMs)

1313 In this paper, Large Language Models are only used as general-purpose auxiliary tools, primarily for
 1314 document-level auxiliary tasks such as grammar checking and expression refinement. LLMs did not
 1315 participate in the core conceptualization, method derivation, or experimental design of this research,
 1316 nor did they contribute to any core writing content.

1318

M MORE VISUAL COMPARISON

1320 In the following pages, we provide more visual comparisons of different-scale video-generation
 1321 models. ‘Full Prec.’ denotes the Full Precision model. (xx%) denotes the attention density.

1322 We also provide the used text prompt for each figure:

1. Fig. 14: *A soaring drone footage captures the majestic beauty of a coastal cliff, its red and yellow stratified rock faces rich in color and against the vibrant turquoise of the sea. Seabirds can be seen taking flight around the cliff’s precipices. As the drone slowly moves from different angles, the changing sunlight casts shifting shadows that highlight the rugged textures of the cliff and the surrounding calm sea. The water gently laps at the rock base and the greenery that clings to the top of the cliff, and the scene gives a sense of peaceful isolation at the fringes of the ocean. The video captures the essence of pristine natural beauty untouched by human structures.*
2. Fig. 15: *A serene night scene in a forested area. The first frame shows a tranquil lake reflecting the star-filled sky above. The second frame reveals a beautiful sunset, casting a warm glow over the landscape. The third frame showcases the night sky, filled with stars and a vibrant Milky Way galaxy. The video is a time-lapse, capturing the transition from day to night, with the lake and forest serving as a constant backdrop. The style of the video is naturalistic, emphasizing the beauty of the night sky and the peacefulness of the forest.*
3. Fig. 16: *A serene underwater scene featuring a sea turtle swimming through a coral reef. The turtle, with its greenish-brown shell, is the main focus of the video, swimming gracefully towards the right side of the frame. The coral reef, teeming with life, is visible in the background, providing a vibrant and colorful backdrop to the turtle’s journey. Several small fish, darting around the turtle, add a sense of movement and dynamism to the scene. The video is shot from a slightly elevated angle, providing a comprehensive view of the turtle’s surroundings. The overall style of the video is calm and peaceful, capturing the beauty and tranquility of the underwater world.*
4. Fig. 17: *The video captures the majestic beauty of a waterfall cascading down a cliff into a serene lake. The waterfall, with its powerful flow, is the central focus of the video. The surrounding landscape is lush and green, with trees and foliage adding to the natural beauty of the scene. The camera angle provides a bird’s eye view of the waterfall, allowing viewers to appreciate the full height and grandeur of the waterfall. The video is a stunning representation of nature’s power and beauty.*

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

5. Fig. 18: *The dynamic movement of tall, wispy grasses swaying in the wind. The sky above is filled with clouds, creating a dramatic backdrop. The sunlight pierces through the clouds, casting a warm glow on the scene. The grasses are a mix of green and brown, indicating a change in seasons. The overall style of the video is naturalistic, capturing the beauty of the landscape in a realistic manner. The focus is on the grasses and their movement, with the sky serving as a secondary element. The video does not contain any human or animal elements.*
6. Fig. 19: *The video captures the majestic beauty of a waterfall cascading down a cliff into a serene lake. The waterfall, with its powerful flow, is the central focus of the video. The surrounding landscape is lush and green, with trees and foliage adding to the natural beauty of the scene. The camera angle provides a bird's eye view of the waterfall, allowing viewers to appreciate the full height and grandeur of the waterfall. The video is a stunning representation of nature's power and beauty.*

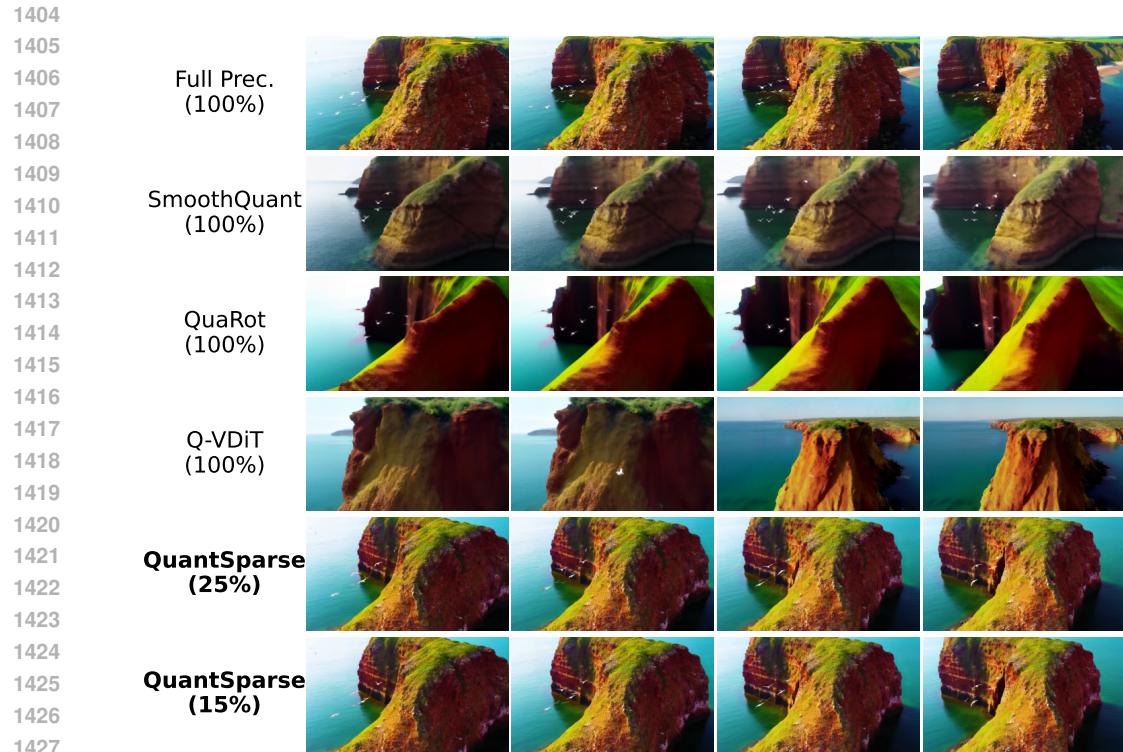


Figure 14: HunyuanVideo-13B results.

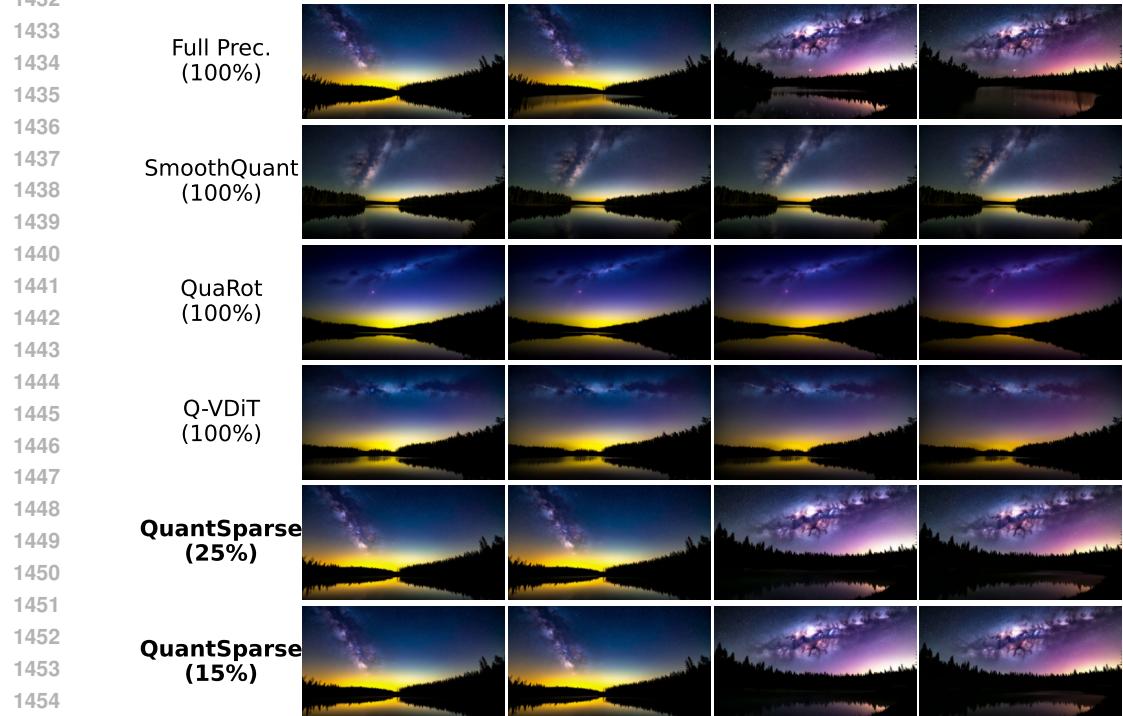


Figure 15: HunyuanVideo-13B results.

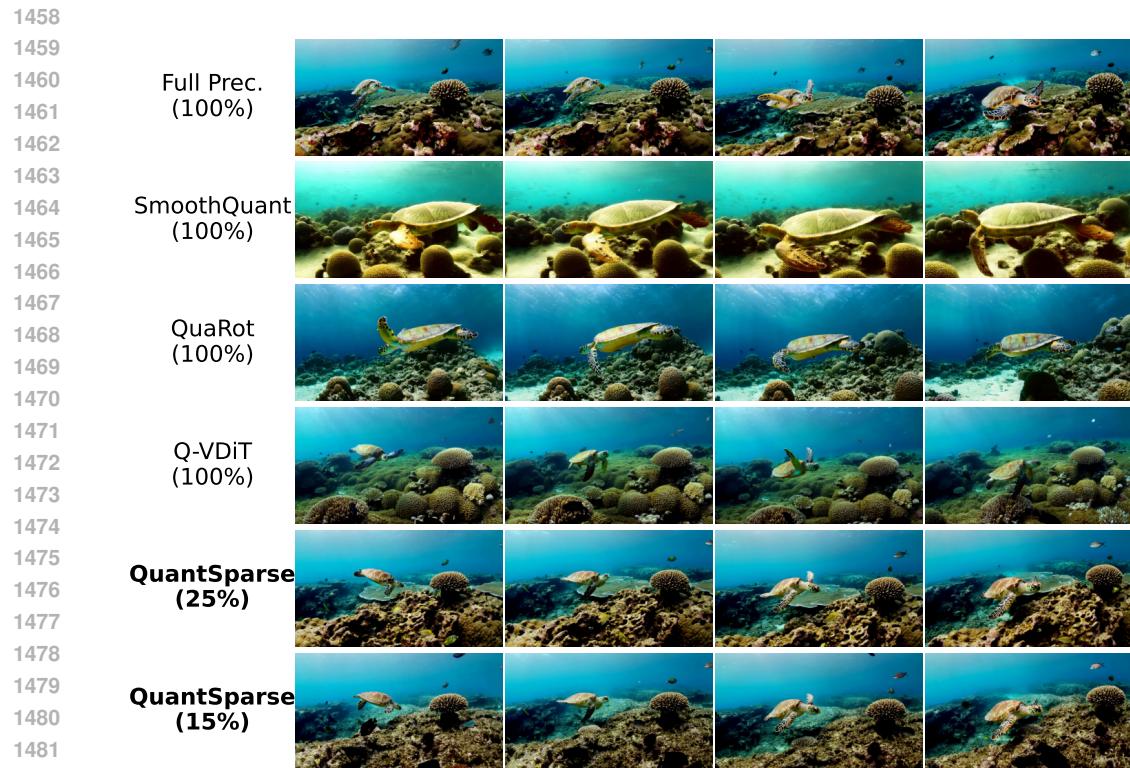


Figure 16: Wan2.1-14B results.

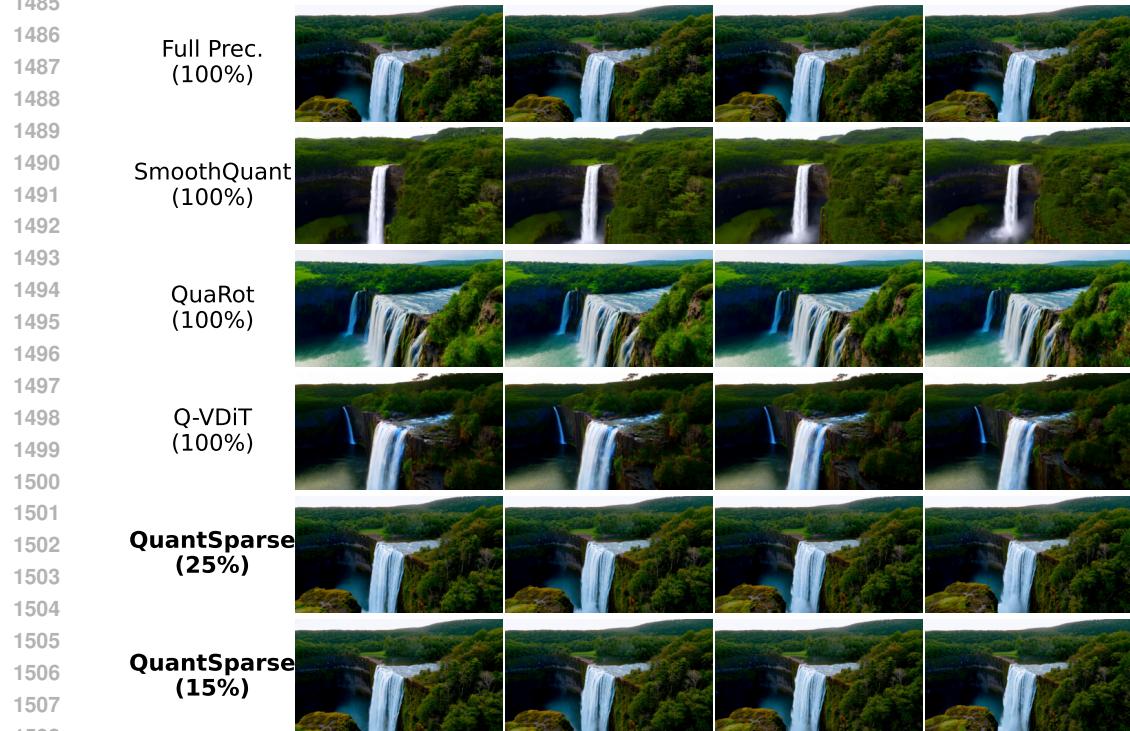


Figure 17: Wan2.1-14B results.

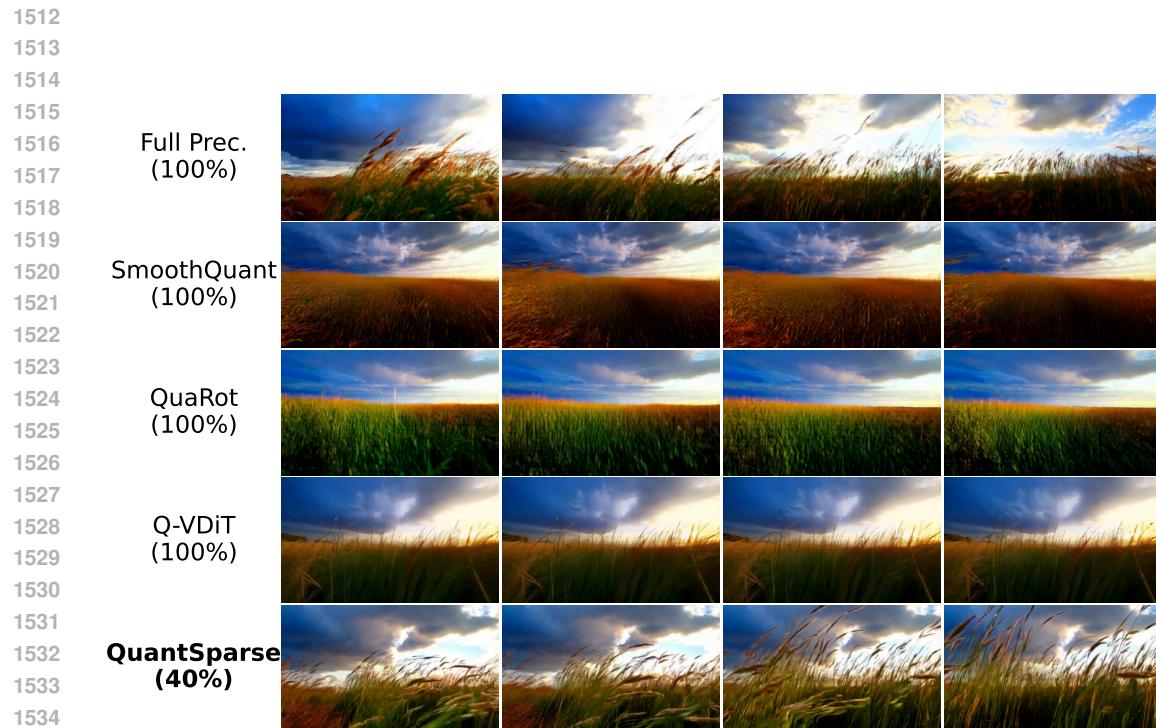


Figure 18: Wan2.1-1.3B results.

Figure 19: Wan2.1-1.3B results.