Under review as a conference paper at ICLR 2026

QUANTSPARSE: COMPREHENSIVELY COMPRESSING
VIDEO DIFFUSION TRANSFORMER WITH MODEL
QUANTIZATION AND ATTENTION SPARSIFICATION

Anonymous authors
Paper under double-blind review

4 Model Storage |

Ij 3.80><|:|Y‘68x

@ O v
> &
\‘Ao“@)o&"o‘? \?\o‘“ P ‘{&‘P

e

4 Latency |
1.74x 1.88x

QuantSparse HunyuanVideo

(A @
N <& & &
Q- o g o
N R R
N 0\59 Vo 0\\"(0

(e (e
4 VQA-Score 1

Wan2.1

° 90.79 90.73

0 -- 81.23 81.19

- »

§ < 3 ;"

S > N

<} L , IR
Prompt: A soaring drone footage captures the majestic beauty of a coastal cliff ... e &

Figure 1: QuantSparse effectively quantizes Wan2.1-14B (Wan et al., 2025) and Hunyuan-
Video (Kong et al., 2024) to W4 A8 with 15% attention density without compromising visual quality.

ABSTRACT

Diffusion transformers exhibit remarkable video generation capability, yet their
prohibitive computational and memory costs hinder practical deployment. Model
quantization and attention sparsification are two promising directions for com-
pression, but each alone suffers severe performance degradation under aggres-
sive compression. Combining them promises compounded efficiency gains, but
naive integration is ineffective. The sparsity-induced information loss exacerbates
quantization noise, leading to amplified attention shifts. To address this, we pro-
pose QuantSparse, a unified framework that integrates model quantization with
attention sparsification. Specifically, we introduce Multi-Scale Salient Attention
Distillation, which leverages both global structural guidance and local salient su-
pervision to mitigate quantization-induced bias. In addition, we develop Second-
Order Sparse Attention Reparameterization, which exploits the temporal stabil-
ity of second-order residuals to efficiently recover information lost under spar-
sity. Experiments on HunyuanVideo-13B demonstrate that QuantSparse achieves
20.88 PSNR, substantially outperforming the state-of-the-art quantization base-
line Q-VDiT (16.85 PSNR), while simultaneously delivering a 3.68 x reduction
in storage and 1.88x acceleration in end-to-end inference.

1 INTRODUCTION

Recently, Diffusion Transformer (DiT) (Peebles & Xie, 2023) has attracted significant attention due
to its outstanding capability in visual generation, particularly in video generation (Liu et al., 2024c;
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Sun et al., 2024a; HPC-AI, 2024). Despite the remarkable progress, state-of-the-art models such
as Wan2.1-14B (Wan et al., 2025) still demand extraordinary computational resources: generating
a single high-resolution video clip can consume more than 20GB of GPU memory and take nearly
one hour of inference time. Such prohibitive memory and latency requirements fundamentally limit
the deployment of diffusion-based video generation models in real-world applications, especially
under resource-constrained scenarios.

Model quantization (Jacob et al., 2018; Gholami et al., 2022; Krishnamoorthi, 1806) and attention
sparsification (Xi et al., 2025; Yuan et al., 2024) have emerged as two promising directions for com-
pression and acceleration. Quantization reduces memory footprint and computation by representing
weights and activations in compact integer formats, while attention sparsification prunes redun-
dant computations by removing negligible attention scores. However, pushing either technique to
the extreme inevitably causes severe degradation. For instance, binary quantization (Zheng et al.,
2024b;a) collapses representational capacity, while aggressive sparsification (Xi et al., 2025; Zhang
et al., 2025d) discards crucial context information.

Since quantization and sparsification are fundamentally orthogonal, a natural idea is to combine
them for compounded efficiency gains while maintaining complementary benefits. Ideally, such in-
tegration could approach a Pareto frontier between performance and efficiency. Yet, our empirical
analysis shows that naively combining quantization and sparsification leads to severe perfor-
mance degradation. We attribute this to an amplified attention shift: while sparsification removes
low-magnitude attention weights, quantization introduces systematic perturbations to the remaining
attention products. These two effects reinforce each other, producing compounded distortions in at-
tention distributions and severely impairing fine-grained dependency modeling in video generation.

To overcome this challenge, we propose QuantSparse, a unified compression framework that syner-
gistically integrates model quantization and attention sparsification as shown in Fig. 2. QuantSparse
introduces two novel techniques. First, Multi-Scale Salient Attention Distillation (MSAD). We de-
sign a memory-efficient distillation scheme that balances global and local supervision. Specifically,
we employ global guidance by distilling attention patterns on downsampled token sequences to
capture coarse structural topology, while local guidance focuses high-resolution supervision on a
small set of salient tokens that dominate the attention distribution. Second, Second-Order Sparse
Attention Reparameterization (SSAR). We exploit the temporal stability of second-order residuals
to recover information lost due to sparsity. Furthermore, we introduce singular value decomposition
(SVD) projection onto dominant principal components, enabling a lightweight yet accurate correc-
tion mechanism that restores fine-grained attention outputs at negligible computational overhead.

Our contributions can be summarized as follows:

1. We provide formal analysis of the amplified attention shift problem, showing that naive
integration of quantization and sparsification severely damages video generation quality.

2. We propose QuantSparse, a unified compression framework that seamlessly combines
model quantization and attention sparsification, breaking the traditional trade-off between
efficiency and performance.

3. We introduce two key techniques: Multi-Scale Salient Attention Distillation for robust at-
tention alignment and Second-Order Sparse Attention Reparameterization for temporally
stable correction for efficient yet accurate approximation of full-attention outputs.

4. Extensive experiments on large-scale video generation models ranging from 1.3B to 14B
parameters demonstrate that QuantSparse achieves superior efficiency—quality trade-offs,
outperforming both quantization-only and sparsification-only baselines, while preserving
state-of-the-art performance.

2 RELATED WORKS

2.1 SPARSE ATTENTION IN DIFFUSION MODELS

Sparse attention has been extensively explored in transformer-based models to accelerate attention
computation (Lu et al., 2025; Yuan et al., 2025; Lou et al., 2024; Gao et al., 2024; Zhang et al.,
2025b). In large language models, common designs include sliding-window (Xiao et al., 2024a;b;
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Figure 2: Overview of proposed QuantSparse. Left: During calibration, we apply two parallel
attention distillation branch for efficient and robust attention alignment. Right: During inference,
we apply an accurate attention approximation using temporal stable second-order residual.

Zhang et al., 2023) and sink-based patterns (Fu et al.; Xiao et al., 2023b). For diffusion-based vi-
sual generation, spatial window masks (Yuan et al., 2024; Zhang et al., 2025¢; Ren et al., 2025)
and spatial-temporal masks (Xi et al., 2025) have been proposed. Other approaches dynamically
generate masks via sampling (Zhang et al., 2025b) or low-resolution attention (Zhang et al., 2025d),
though at higher computational cost. However, these works mainly focus on preserving the original
attention pattern, while the adaptation to other acceleration techniques that alter attention distribu-
tions, such as quantization, remains underexplored.

2.2  QUANTIZATION IN DIFFUSION MODELS

Quantization (Gholami et al., 2022; Chitty-Venkata et al., 2023; Jacob et al., 2018; Pilipovi¢ et al.,
2018) reduces model precision to improve efficiency and has been applied to diffusion-based visual
generation (Shang et al., 2023; Li et al., 2024b; He et al., 2024; Huang et al., 2024a; He et al., 2023;
Feng et al., 2025a; Wu et al., 2024; Zheng et al., 2024a;b; Li et al., 2024a). For video generation,
some works target the attention module (Zhang et al., 2024b;a; 2025a), but often keep linear opera-
tions in high precision. Other methods focus on quantizing linear layers: Q-DiT (Chen et al., 2024)
uses automatic granularity allocation; ViDiT-Q (Zhao et al., 2024) adopts a static—dynamic strategy;
Q-VDiT (Feng et al., 2025b) introduces temporal distillation. These methods primarily pursue ac-
celeration via quantization, without exploring its synergy with sparse attention. In this work, we
integrate the two orthogonal compression techniques to enhance the efficiency and practicality of
video generation models.

3 METHODS

3.1 PRELIMINARY
3.1.1 POST-TRAINING QUANTIZATION (PTQ)

Model Quantization (Gholami et al., 2022; Chitty-Venkata et al., 2023) reduces weights/activations
from floating-point (FP32) to low-bit integers (e.g., INT8). Given an floating-point tensor X € R?
with dimension d, quantization maps X to a discrete representation Xq € {0,1,... ;20 — 119 as:

Xo = atp (| 2] 4202 -1). Q0=+ (xq-2) 1)

with scale s, zero-point z, and bit-width b, Q(X) denotes the de-quantized value. Post-training
Quantization (PTQ) (Wei et al., 2024; Wu et al., 2024) calibrates (s, z) on a small dataset by mini-
mizing reconstruction error:

»Cquant = mln Z HX Q(XQNS Z)||2 2)

X E€EDeal
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Notably, PTQ avoids retraining the model weights, thus being computationally efficient.

3.1.2 SPARSE ATTENTION

Sparse attention (Zhang et al., 2025b; Xi et al., 2025; Yuan et al., 2024) prunes token pairs via a
mask M € {0, 1}£*£, reducing complexity from O(L?) to near-linear (L is the sequence length).
Given X € RL*dn and query, key, value projection matrices W,, Wy, W, € RuXdi_sparse
attention computes:

Q=XW,, K=XW], V=XW/

v

. QK' (3)
SparseAttention(Q, K, V; M) = softmax < N OM |V,
k
where ® denotes element-wise multiplication.
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Figure 3: The motivation and effect of Multi-Scale Salient Attention Distillation. (a): Token
saliency distribution of Wan2.1-1.3B (Wan et al., 2025) blockl9 headl. Only less than 10% tokens
are salient. (b)(c): Visualization of attention difference between quantized model and FP model.
(d): Memory consumption of different attention distillation.

3.2 MULTI-SCALE SALIENT ATTENTION DISTILLATION

The combination PTQ and sparse attention offers a promising route toward efficient video genera-
tion. However, naively integrating these techniques results in severe performance degradation.

Proposition 3.1. Quantization injects noise € into the QK dot product QK T, yielding a systematic
bias §:
Q=QX)QW,) ", K=QX)QW)T,
QK" = QK" +¢, where |||l <é.

The parallel error caused by quantization and sparse attention further leads to a compounded shift:

Agoral = Asparse + Aquanl + O(||6HF : ||M||0) &)

“4)

Proposition 3.1 indicates that the joint of quantization and sparse attention introduces an amplified
attention shift (see Fig. 3b), resulting in notable attention degradation. A straightforward mitigation
strategy is to perform attention distillation during PTQ. However, for large-scale video generation
models (e.g., with L > 10* for HunyuanVideo (Kong et al., 2024)), storing the full attention matrices
is prohibitively expensive as shown in Fig. 3d, incurring O(L?) memory and compute overhead.

To address this, we propose Multi-Scale Salient Attention Distillation (MSAD), a memory-efficient
framework that distills attention across multiple resolutions, preserving both global structure and
local saliency without excessive resource consumption. MSAD employs two complementary guid-
ance mechanisms: global guidance for high-level structural supervision, and local guidance for
fine-grained detail preservation.

Global Guidance. Our approach exploits the intrinsic locality of video data: patially adjacent
tokens exhibit high similarity due to temporal smoothness and spatial continuity (Ren et al., 2025;
Xi et al., 2025; Yuan et al., 2024). To efficiently capture global attention patterns, we downsample
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Q and K via average pooling with stride s, producing low-resolution features Q.Ke RLxdx where
L = L/s*> < L. The global distillation is computed as:

QK™

A oba = softmax [ ———
g dr

) s Lgloba = MSE (Agll:)bal | A;*ffﬁi]) ) (©)

where MSE denotes the Mean Square Error. This approach requires only O(EQ) complexity, which
is 52 times cheaper than full attention.

Local Guidance. While global guidance ensures structural fidelity, it fails to capture the fine-grained
details crucial for high-quality video synthesis. We further observe that the attention saliency in
video models is highly skewed: only a small subset of tokens dominates the attention mass (see
Fig 3a). Formally, we define the token saliency as:

A = softmax(QK " //di) e RMPE, 55 =" Ay 5, (7)

h,i

where h denotes the attention head, 7 denotes the key token index, and s; measures the aggregate
attention received by token j. Empirically, s; follows a heavy-tailed distribution, with fewer tokens
accounting for the majority of attention mass (we provide more analysis in Appendix Sec. F). We
exploit this by selecting the top-k queries Z = {j | s; is top-k} from the FP model and computing
high-resolution attention only for these salient queries:

QI,:KT
Vi,

where Q7. € R¥*dk_ Local distillation focuses supervision on high-impact regions at minimal cost.

local local

Ajoca = softmax ( ) , Liocal = MSE (AFP | Aquanl) , )

Integration and Optimization. We combine both guidance terms into a unified distillation object:

Edistill = Equam + Aglobalﬁglobal + Alocalﬁlocala (9)

where Agjopal and Ajocal balance the two guidance component. During PTQ calibration, we optimize
the quantization parameters over D, to minimize L, aligning the quantized attention with its FP
counterpart. As shown in Fig 3b and Fig 3c, MSAD substantially reduces attention shift, enabling
robust integration of quantization and sparse attention in video generation.

3.3 SECOND-ORDER SPARSE ATTENTION REPARAMETERIZATION

While the proposed MSAD mitigates the quantization-induced attention shift during calibration
phase by aligning attention maps, the intrinsic bottleneck of sparse attention (i.e., the unavoidable
discard of low-magnitude yet non-trivial attention connections) still exacerbates the amplified atten-
tion shift, especially under high sparsity rates (Xi et al., 2025; Zhang et al., 2025b). We formalize

this deviation at denoising timestep ¢ in the diffusion process as: AD = Agl)l — Aélﬁgrse, where

Ay and Agparee denote the full-attention and sparse attention. We define this deviation A® ag the
first-order residual. This residual is intrinsic to sparsity and cannot be recovered through attention
distillation alone. Prior work (Yuan et al., 2024) exploits temporal coherence in video generation by
assuming that residuals are invariant across timesteps:

A~ AD (10)

Under this assumption, one can cache a reference residual A=) from a chosen timestep and reuse
it across the successive timesteps, yielding a first-order sparse attention reparameterization:

t ref el — re A . rel
Agul)l - Agée)xrse ~ At(‘lfllt) - Ag;arfs)e - A(t f) = A(t) - Aggrse +\A(t f),a (11)
cached
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Figure 4: The motivation and effect of Second-Order Sparse Attention Reparameterization.
The results are from HunyuanVideo-13B (Kong et al., 2024) single_transformer_block.10 under
W4A8. We provide more visualization and analysis in Appendix Sec. G.

Proposition 3.2. Let Astzl denote the quantized sparse attention output. The quantization-induced
perturbation € (as defined in Eq. 4) modifies the one-order residual to:
t t
Afoom = Al = AL = A0 10+ O(|V)| - [M]|o), )
= A(flant 7& Aquanu fOI' t/ 7é t.

Proposition 3.2 indicates that, unlike A, Aéﬁ)am varies with €®) due to the quantization noise (Wu
et al., 2024; Zhao et al., 2024; He et al., 2023) which violating Eq. 10. We visualize this variance
of AW — A=1 in Fig. 4a. This temporal variance undermines the accuracy of Eq. 11, causing
non-negligible attention errors when first-order reparameterization is applied after quantization.

Proposition 3.3. Although Aquam is unstable, we observe that the second-order residual Aquam =

Aéﬁlm — Aéuam) exhibits significantly higher temporal stability:

Et |: ‘ ‘ A((;l])ant A((Jlant

F} <E, [Hﬁéﬁlm Al F} for [t—t|<r. (13)

We visualize the empirical analysis results in Fig. 4a. This stability arises because quantization
noise €(*) follows a slow-varying stochastic process in diffusion process (Ma et al., 2024; Liu et al.,
2024a): adjacent timesteps share similar distributions, rendering e(*) — e(*=1) approximately station-
ary. Leveraging this property, we propose second-order sparse attention reparameterization:

rel re ~ ref rel t;e’ t:e‘ — A ref
(Af — AL — (AL -AL) = (ALY - Al — (A - A = A,

=AY = A+ (AG - Al + Ag,
_ A(t) +A (trer) —I—A (trer)
—_———

(14)
quant quant
cached
Theorem 3.4. When Proposition 3.3 holds, the expected approximation error of sparse attention
satisfies:

[ At

full

F] <E, H‘Afun AY F} for [t—¢| <.

15)

second-order first-order

Theorem 3.4 indicates two-order guaranteeing tighter full-attention approximation than the first-
order method. Also A=) 4 Atfgam in Eq. 14 can be jointly cached, without any additional storage

quant
burden compared with one-order residual. We further reduce the temporal variance of Aquam by
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Table 1: Text-to-Video generation results on Wan2.1-1.3B. Density is the attention density. Full
Prec. denotes Full Precision model. Bold: the best result.

#Bits . Quality
Method (W/A) Density, Video Quality Metrics FP Diff. Metrics
CLIPSIM; VQA; AFSCore;, PSNR; SSIM; LPIPS
Wan2.1 1.3B (CFG = 6.0,480 x 832p, frames = 80)
Full Prec. 16/16 100% 0.191 73.12 0.000 - - -
PTQ4DiT 6/6 100% 0.182 36.79 2.287 1020 0.343 0.598
Q-DiT 6/6 100% 0.183 39.21 2.125 1036 0.351 0.577
SmoothQuant 6/6 100% 0.184 40.57 2.008 1044 0353 0.574
QuaRot 6/6 100% 0.190 42.81 1.754 10.71 0.379 0.571
ViDiT-Q 6/6 100% 0.190 50.85 1.253 11.02  0.385 0.526
Q-VDiT 6/6 100% 0.191 75.20 0.982 12.06  0.405 0.474
QuaRot+DFT 6/6 40% 0.183 36.79 2.297 1129  0.321 0.546
QuaRot+Jenga 6/6 40% 0.184 38.78 2.165 1132 0329 0.543
QuaRot+SVG 6/6 40% 0.183 41.93 1.940 11.43 0.331 0.541
Q-VDiT+DFT 6/6 40% 0.188 47.33 1.377 11.06  0.345 0.577
Q-VDiT+Jenga 6/6 40% 0.189 53.52 1.087 11.21 0.345 0.583
Q-VDiT+SVG 6/6 40% 0.191 55.92 0.942 11.61 0.384 0.508
QuantSparse 6/6 40% 0.193 78.35 0.055 15.51 0.511 0.324
PTQ4DiT 4/8 100% 0.181 30.26 2.574 10.00  0.318 0.603
Q-DiT 4/8 100% 0.182 32.57 2.767 10.11 0.320 0.594
SmoothQuant 4/8 100% 0.182 34.82 2.174 1020 0.327 0.569
QuaRot 4/8 100% 0.185 65.15 1.870 11.72 0349 0.514
ViDiT-Q 4/8 100% 0.186 63.21 1.698 1124 0.351 0.526
Q-VDiT 4/8 100% 0.190 56.45 2.240 11.01 0.394 0.565
QuaRot+DFT 4/8 40% 0.187 32.23 2.329 1032 0.360 0.583
QuaRot+Jenga 4/8 40% 0.191 32.83 2.148 10.33 0.346 0.578
QuaRot+SVG 4/8 40% 0.190 32.48 2.088 10.58 0.370 0.576
Q-VDiT+DFT 4/8 40% 0.185 45.60 2.907 10.03 0.331 0.594
Q-VDiT+Jenga 4/8 40% 0.185 47.61 3.000 10.04  0.334 0.596
Q-VDiT+SVG 4/8 40% 0.184 51.84 3.035 10.07 0.342 0.592
QuantSparse 4/8 40% 0.193 81.09 0.576 1522 0.502 0.338

projecting it onto its most stable subspace. Empirically, the top-r principal components from the
singular value decomposition (SVD) of Aquam capture the dominant, temporally stable patterns (see
Fig. 4b). Critically, the dominant principal component exhibit exceptional temporal stability, which
inspired us to project residuals onto the top-r extracted stable components:

SVD(Aquant) = SUVT, Aquam = S:,:TU:T,:TV;T;ra
A0 = A0 + Al + Al (16)
S

quani quant *

cached

We apply the sparse attention for inference with a fixed cache-refreshing interval (5 in experiments)
for full-attention calculation. As visualized in Fig. 4c, SVD-based second-order reparameterization
further suppresses temporal variance, yielding accurate full-attention approximation results.

3.4 OVERALL PIPELINE
Our proposed QuantSparse framework consists of two component as shown in Fig. 2: MSAD for

attention distillation during calibration and SSAR for dynamic attention reparameterization during
inference. The detailed overall pipeline is provided in Appendix Algorithm 1.

4 EXPERIMENTS

4.1 EXPERIMENTAL AND EVALUATION SETTINGS

Evaluation Settings. We apply QuantSparse to HunyuanVideo-13B (Kong et al., 2024), Wan2.1-
1.3B and 14B (Wan et al., 2025) with 50 sampling steps. We employ two types of metrics: (1)
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Table 2: Video generation on large video generation models. Bold: the best result. Underline: the
second best result.

| #Bits | Quality Latency & Speed

Method | (WIA) | Density ‘ Video Quality Metrics FP Diff. Metrics
° : ’ DiT Time;  Speedup;
‘ ‘ ‘ CLIPSIM; VQA; AFSCore; PSNR; SSIM; LPIPS
HunyuanVideo 13B (CFG = 6.0, 720 x 1280p, frames = 60)
Full Prec. ‘ 16/16 ‘ 100% ‘ 0.184 81.23 0.000 - - - 1264s 1.00x
SmoothQuant 4/8 100% 0.178 42.21 1.194 15.44 0.479 0.583 1149s 1.10x
QuaRot 4/8 100% 0.180 42.89 0.708 15.46 0.502 0.528 1149s 1.10x
ViDiT-Q 4/8 100% 0.181 49.82 1.254 15.75 0.534 0.489 1149s 1.10x
Q-VDiT 4/8 100% 0.182 67.95 1.168 16.85  0.605 0.461 1155s 1.09%
QuaRot+SVG 4/8 25% 0.181 43.34 0.900 1539  0.497 0.530 731s 1.73x
Q-VDiT+SVG 4/8 25% 0.182 70.99 1.379 16.71 0.595 0.458 743s 1.70x
QuaRot+SVG 4/8 15% 0.181 41.40 1.004 15.34 0.494 0.536 671s 1.88%
Q-VDiT+SVG 4/8 15% 0.182 76.30 1.393 16.66 0.591 0.460 687s 1.84x
QuantSparse 4/8 25% 0.183 79.05 0.014 20.86  0.675 0.272 731s 1.73%
QuantSparse 4/8 15% 0.184 81.19 0.016 20.88 0.678 0.273 671s 1.88x
Wan2.1 14B (CEG = 5.0, 720 x 1280p, frames = 80)

Full Prec. ‘ 16/16 ‘ 100% ‘ 0.182 90.79 0.000 - - - 4031s 1.00x
SmoothQuant 4/8 100% 0.180 73.11 0.875 13.70 0.423 0.510 3425s 1.18x
QuaRot 4/8 100% 0.182 85.91 0.753 13.79 0.431 0.494 3425s 1.18%
ViDiT-Q 4/8 100% 0.182 83.13 0.496 15.12 0.487 0.425 3425s 1.18x
Q-VDIiT 4/8 100% 0.182 83.76 0.343 15.85 0.512 0.398 3457s 1.17x
QuaRot+SVG 4/8 25% 0.182 85.66 0.134 13.70  0.427 0.487 2594s 1.55x
Q-VDiT+SVG 4/8 25% 0.182 87.89 0.310 15.48 0.507 0.409 2635s 1.53%x
QuaRot+SVG 4/8 15% 0.182 81.93 0.152 13.40 0.415 0.494 2315s 1.74x
Q-VDiT+SVG 4/8 15% 0.181 82.31 0411 15.18 0.493 0.429 2372s 1.70x
QuantSparse 4/8 25% 0.183 91.98 0.056 18.72  0.630  0.240 2594s 1.55%
QuantSparse 4/8 15% 0.182 90.73 0.042 18.22 0.605 0.272 2315s 1.74x

Multi-aspects metrics evaluation: including CLIPSIM (Wu et al., 2021), VQA (Wu et al., 2023),
FlowScore (Liu et al., 2024b), PSNR, SSIM, and LPIPS (Zhang et al., 2018). All metrics are evalu-
ated on the prompt sets used in (Zhao et al., 2024; Feng et al., 2025b) (2) Benchmark evaluation: We
select 8 major dimensions from Vbench (Huang et al., 2024b) following prior works (Zhao et al.,
2024; Chen et al., 2024; Feng et al., 2025b). For bit setting, we use W6A6 and W4 A8 following prior
work (Zhao et al., 2024; Chen et al., 2024; Wu et al., 2024), since they can bring more compression
effects and ensure the performance.

Baseline Methods. We select PTQ4DiT (Wu et al., 2024), Q-DiT (Chen et al., 2024), ViDiT-
Q (Zhao et al., 2024), and Q-VDiT (Feng et al., 2025b) for diffusion baseline. We also compare with
strong LL.M baseline SmoothQuant (Xiao et al., 2023a) and QuaRot (Ashkboos et al., 2024). For
sparsification, we compare with DiTFastAttn (DFT) (Yuan et al., 2024) (cache-based), Jenga (Zhang
et al., 2025d) (dynamic pattern), and SparseVideoGen (SVG) (Xi et al., 2025) (static pattern).

Implementation Detail. Same with prior works (Zhao et al., 2024; Ashkboos et al., 2024; Feng
et al., 2025b), we adopt channel-wise weight quantization and dynamic token-wise activation quan-
tization. We follow block-wise post-training strategy used in (Wu et al., 2024; Chen et al., 2024;
Sun et al., 2024b) for calibration. More details can be found in Appendix C.

4.2 MAIN RESULTS

We present multi-aspects metrics evaluation results Table 3: Ablation results of each component.
on HunyuanVideo (Kong et al., 2024) and Wan2.1-

14B (Wan et al., 2025) in Tab. 2. It can be seen _ Method | VQA, PSNR+ SSIM LPIPS,
s ot . . Distillation Analysis

that the existing SOTA quantization methods have .. |10 1435 D6 0425
a significant performance degradation after apply- Global | 8526 lo01 0.547 0.349
. . . . . 0cdi B . .. ..
ing sparse attention. But QuantSparse still maintainS  MSAD | 91.98.1006 1872.457 0.630;0141 0.240 0185
high generation performance even at high sparsity. Cache Analysis

. . . N X 14.1 471 .44;
It is worth mentioning that QuantSparse even sur- oo | 5599 o g el

1St 1 1 - Second | 89.73 18.68 0.616 0.258

passes the existing quantization-only methods under S R B R —

the low-bit settings of W6A6 and W4A8. Compared
with the Full-Precision (FP) model, QuantSparse even maintains almost lossless performance. For
example, for HunyuanVideo under W6A6, QuantSparse achieved a VQA score of 82.26 with only
15% attention density, far exceeding current SOTA method Q-VDiT (Feng et al., 2025b) of 73.68,
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Table 4: Detailed efficiency comparison.

Method \ (ﬁg/l[t‘s) \ Density, \ Model Overload Latency & Speed
‘ ‘ | Model Storage;,  Memory Consumption,  DiT Time;  Speedup;
HunyuanVideo 13B (CFG = 6.0, 720 x 1280p, frames = 60)
Full Prec. | 16/16 | 100% | 23.88GB 35.79GB 1264s 1.00x
QuaRot 4/8 100% 6.49GB 24.34GB 1149s 1.10x
Q-VDiT 4/8 100% 6.50GB 24.89GB 1155s 1.09x
DFT 16/16 25% 23.88GB 40.11GB 792s 1.60x
Jenga 16/16 25% 23.88GB 36.92GB 846s 1.49x
SVG 16/16 25% 23.88GB 40.10GB 786s 1.61x
SVG 16/16 15% 23.88GB 40.10GB 707s 1.79%
QuantSparse 4/8 25% 6.49GB 3 68 27.02GB 1 .32x 731s 1.73x
QuantSparse 4/8 15% 6.49GB 3 68 27.02GB 1 .32 671s 1.88x
Wan2.1 14B (CFG = 5.0,720 x 1280p, frames = 80)

Full Prec. 16/16 100% | 26.61GB 42.48GB 4031s 1.00x
QuaRot 4/8 100% 7.00GB 26.04GB 3425s 1.18x
Q-VDiT 4/8 100% 7.02GB 26.73GB 3457s 1.17x
DFT 16/16 25% 26.61GB 44.86GB 3015s 1.34 %
Jenga 16/16 25% 26.61GB 42.62GB 3087s 1.31x
SVG 16/16 25% 26.61GB 44.07GB 2987s 1.35x%
SVG 16/16 15% 26.61GB 44.07GB 2661s 1.51x%
QuantSparse 4/8 25% 7.00GB 3.80x 28.14GB 1 51x 2594s 1.55%
QuantSparse 4/8 15% 7.00GB 3.80x 28.14GB 1 51x 2315s 1.74x

and even surpassing the FP model of 8§1.23. We present more baseline methods comparison in
Appendix Sec. D, and comprehensive VBench evaluation results in Appendix Sec. E. We also
observed that QuantSparse slightly outperforms Full Precision model on certain metrics. This slight
outperformance of QuantSparse can be attributed to its focus on task-critical tokens and reduced
attention to noisy or irrelevant tokens, as shown in our saliency analysis. Additionally, the SSAR
module stabilizes sparse attention, reducing quantization noise and improving temporal consistency.
These effects, combined with targeted compression, allow QuantSparse to maintain near-lossless
quality while offering substantial compression and acceleration. We also visualized the generated
videos in Fig. 5. Compared with FP model, QuantSparse achieves almost lossless generation perfor-
mance while other methods have notable quality degradation. We provide more visual comparison
results in Appendix Sec. M.

FP16 Full Attn. SmoothQuant ViDiT-Q Quarot+SV6 Q-VDiT+SV6 QuantSparse QuantSparse
(100%) (100%) (100%) (25%) (25%) (25%) (15%)

Figure 5: Visual comparison on Wan2.1-14B under W4AS8 quantization setting. We uniformly
sample two frames for visualization. ‘(xx%)’ denotes the attention density.

4.3 ABLATION STUDY

We conduct ablation study on proposed Multi-Scale Salient Attention Distillation (MSAD) and
Second-Order Sparse Attention Reparameterization (SSAR) on Wan2.1-14B under W4AS in Tab. 3.

Effect of attention distillation. Compared with no distillation, both proposed attention guidance
can enhance the model performance. The combined MSAD further improves PSNR from 14.35 to
18.72, demonstrating the effect of attention distillation.

Effect of attention reparameterization. Compared with naive sparse attention, first-order residual
can reduce the attention error, demonstrating the effectiveness of attention reparameterization. Our
proposed SSAR achieves the best approximation performance by reducing both the quantization-
induced error and temporal variance.



Under review as a conference paper at ICLR 2026

Effect of cache-interval. We also supplement the ablation and the results are shown in Tab. 5.
While shorter intervals yield higher PSNR and SSIM, indicating better performance, they also result
in a reduced speedup (1.65x and 1.69 x respectively). For instance, interval=3 achieves the highest
PSNR (18.86) but sacrifices a noticeable amount of the potential speedup (9%). Longer intervals
increasing the interval to 6 provides a slightly higher speedup (1.76x). However, this comes at the
cost of a degradation in performance (PSNR drops to 17.72). We choose interval=5 is based on
its optimal balance between model performance and inference speedup. But we highlight that this
is a trade-off based on computational resource and all interval settings offer reasonable results and
notable acceleration.

Table 5: Ablation study of cache-fresh interval and attention density on W4A8 Wan2.1-14B.

- | PSNR; SSIM; LPIPS; Speedup;
Interval Analysis

Interval=3 18.86 0.631 0.243 1.65x%
Interval=4 18.48 0.617 0.260 1.69x
Interval=5 18.22 0.605 0.272 1.74x
Interval=6 17.72 0.566 0.321 1.76x

Density Analysis

Density=25% | 18.72 0.630 0.240 1.55x%
Density=20% | 18.45 0.622 0.252 1.63%
Density=15% | 18.22 0.605 0.272 1.74x
Density=10% | 17.73 0.589 0.288 1.80x

Effect of attention density. We conduct an ablation study on attention density, analyzing the trade-
off between performance and inference speed. The results are presented in Tab. 5. As shown, a 25%
density offers a good balance, achieving a significant 1.55x speedup with minimal performance
degradation (PSNR of 18.72). A 15% density further boosts the speedup to 1.74 x while maintaining
acceptable performance (PSNR of 18.22). Based on these results, we selected 25% and 15% density
for the experiments presented in the main paper. The 25% density provides a strong baseline for
high performance with good acceleration, while the 15% density demonstrates the potential for even
greater inference speedup at a slightly decreased performance trade-off.

More ablation study about pooling stride s, salient token k, weight factor )\, and SVD rank r
in Eq. 9 and Eq. 16 in Appendix Sec. H.

4.4 EFFICIENCY ANALYSIS

We present the deployment efficiency in Tab. 4. All the experiments are conducted on a single
NVIDIA A800 80G GPU with CUDA 12.4. We use CUTLASS (Thakkar et al., 2023) on top of
PyTorch for performing INT matrix multiplication. Existing quantization methods can bring higher
model compression, but the effect of inference acceleration is limited. Sparse attention brings sig-
nificant acceleration, but has almost no model compression, and even brings more memory con-
sumption. QuantSparse combines the advantages of both quantization and sparse attention, bringing
significant model compression and acceleration. For Wan2.1-14B (Wan et al., 2025), QuantSparse
(15% density) brings 3.80x storage compression, 1.51x memory saving, and 1.74x end-to-end
acceleration. We further report the calibration resource consumption in Appendix Sec. I and
report the performance combined with other acceleration methods in Appendix Sec. J.

5 CONCLUSION

In this paper, we propose QuantSparse, a unified compression framework that effectively combines
model quantization and sparse attention. To address the amplified attention shift, we propose Multi-
Scale Salient Attention Distillation to efficiently align the attention shift. To address the intrinsic
sparsity loss, we propose Second-Order Sparse Attention Reparameterization to utilize decomposed
second-order residual for attention approximation. Extensive experiments shown that QuantSparse
achieves lossless performance while bringing significant model compression and acceleration.

10
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6 ETHICS STATEMENT

This research strictly adheres to the ICLR Code of Ethics with no ethics-related risks: it uses public
open-source video-generation models (Wan2.1 (Wan et al., 2025) and HunyuanVideo (Kong et al.,
2024)) and focuses on algorithmic innovation for inference acceleration and compression, without
involving scenarios endangering public safety, infringing privacy, or producing discrimination.

7 REPRODUCIBILITY STATEMENT

To ensure reproducibility, experimental configurations, method details, and evaluation metrics are
thoroughly described in Sec. 4.1 and Appendix Sec. C. Experimental results of comparative methods
are sourced from public literature, and our experiments strictly follow the same configurations as
baseline methods for fair comparison. The key codes and the presented video source files are also
attached in the supplementary materials. For the theorem used in the paper, we also provided a
detailed proof in Appendix Sec. A.
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A PROOF OF THEOREM 3 .4.
Proof of Theorem 3.4.

For Astq) , we have:

(AL —AD) — (A — Alt)) = Al

s,q quant

= ALl = Al + (AL - ALY + Al (17)
= A t) + Aéirzim + Aquam
Given this, we further have:
Al - ALY = (ALY + Al + Al - A
= (ALY + Al + Al — (AL + Al + Alle)) (18)
= AL(qu)ant AL(;JI:n)t
Similarly, for A§fq> , we also have:
t N t N
A~ ALY = (ALY + AL~ Al
tre'
= (A% + Alow) — (ALY + AL (19)
= Al — Aln.
Based on Proposition 3.3, we have:
[~ Al - [ - 242, ) < [Jada- sz - ] - A,
second-order first-order

(20)
Therefore, Theorem 3.4 holds.

B DETAILS OF SELECTED EVALUATION METRICS

B.1 MULTI-ASPECTS METRICS EVALUATION

This evaluation suite includes absolute quality of videos and relative difference metrics that quantify
the difference between FP16 generation.

Absolute Quality. Consistent with prior quantization works (Zhao et al., 2024; Feng et al., 2025b),
we adopt CLIPSIM, VQA, and FlowScore to measure text-video alignment, quality, and temporal
consistency, respectively.

Relative Difference Metrics. Following prior sparse attention works (Xi et al., 2025; Yuan et al.,
2024; Renetal., 2025; Zhang et al., 2025d), we adopt Peak Signal-to-Noise Ratio (PSNR), Structural
Similarity Index Measure (SSIM), and Learned Perceptual Image Patch Similarity (LPIPS) for pixel-
space differences, structural similarity, and high-level patch similarity, respectively.

All the evaluations are conducted on high-resolution generation tasks. Due to the computational
overhead, we use the OpenSORA prompt sets used in (Zhao et al., 2024; Feng et al., 2025b) for
video generation.
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Algorithm 1 QuantSparse: Calibration to Inference Pipeline

Require: Pre-trained video diffusion transformer M (FP16), calibration dataset D, target bit-
width (W/A), denoising steps 7', cache interval 7

Ensure: Quantized-sparse model Mg, generated video Y

1: Calibration Phase:

2:  Initialize quantization parameters {s, z} for weights (W) and activations (A)
Input X € Dy to M
Compute token saliency s; using Eq. 7 for FP model M
Select top-k salient tokens I = {j | s; is top-k}
Global Guidance Distillation:

Calculate Lgjopa using Eq. 6

Local Guidance Distillation:

9: Calculate Loy using Eq. 8
10:  Optimize quantization parameters using Eq. 9 with Lyjopa and Liocal
11:  Obtain quantized model Mqyan With optimized {s, z}
12: Inference Phase:
13:  Load Mguay and input prompt P.

AN A

14:  Input P into Myuan and initialize cached residuals {Aéﬁ‘;{l)t, A((;f;a;)t
15:  fortinT
16: Compute quantized sparse attention:

Agfq) = SparseAttention(Qquant, Kquant; Vquant; M)

17: ift —te <7

18: Reuse cached residuals: Ay, = Aéﬁ‘;ﬁlt + Aéﬁd;)t
19: else

20: Update t..f = t, recompute and cache residuals
21: endif

22: Refine attention using Eq. 16

23:  endfor

24:  Generate video Y return Y

B.2 BENCHMARK EVALUATION

To further provide benchmark evaluation, we follow previous works (Feng et al., 2025b; Zhao et al.,
2024). We select 8 major dimensions from Vbench (Huang et al., 2024b), including frame-wise
quality, temporal quality, and semantic evaluation.

For Frame-wise Quality, we select Imaging Quality and Aesthetic Quality for distortion assess-
ment and artistic and beauty evaluation. For Temporal Quality, we use Dynamic Degree, Motion
Smoothness, Subject Consistency, and Background Consistency for degree of dynamics, physical
law smoothness, subject’s appearance consistent, and temporal consistency of the background, re-
spectively. For Semantic Evaluation, we use Scene and Overall Consistency for text prompt scene
consistency and overall video-text consistency.

The evaluation follows the suite provided by VBench (Huang et al., 2024b). We generate one video
for each prompt, same as previous works (Zhao et al., 2024; Feng et al., 2025b). Due to the large
prompt sets used in VBench, we slightly decrease the resolution for computational efficiency. In
addition, this experimental setup also provides an additional evaluation of multi-resolution video
generation performance, which proves the generalization and effectiveness of our method in different
application scenarios.

C EXPERIMENT SETTINGS

Same with prior works (Zhao et al., 2024; Ashkboos et al., 2024; Feng et al., 2025b), we adopt
channel-wise weight quantization and dynamic token-wise activation quantization. And we use
uniform symmetry quantization for both weight and activation for better hardware acceleration and
memory saving. For fair comparison, we apply the same quantization granularity for all quantization
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Table 6: Text-to-Video generation experiments on more huge models.

| amits | Quality
Method | (W/A) | Density, | Video Quality Metrics FP Diff. Metrics
\ | CLIPSIM; VQA; AFSCore, PSNR; SSIM; LPIPS,
HunyuanVideo 13B (CFG = 6.0, 720 x 1280p, frames = 60)

Full Prec. | 16/16 | 100% 0.184 81.23 0.000 - - -

SmoothQuant 6/6 100% 0.180 69.55 1.406 1591 0.553 0.411
QuaRot 6/6 100% 0.182 72.28 0.546 16.99  0.590 0.378
ViDiT-Q 6/6 100% 0.182 72.36 0.937 1824  0.623 0.335
Q-VDiT 6/6 100% 0.182 73.68 1.232 21.02  0.675 0.264
QuaRot+SVG 6/6 25% 0.181 72.57 0.718 16.85 0.581 0.385
Q-VDiT+SVG 6/6 25% 0.181 72.59 1.405 20.38 0.658 0.284
QuaRot+SVG 6/6 15% 0.181 72.60 0.997 16.85 0.578 0.394
Q-VDiT+SVG 6/6 15% 0.181 72.04 1.763 19.94  0.644 0.307
QuantSparse 6/6 25% 0.183 81.17 0.435 22.71 0.720 0.221
QuantSparse 6/6 15% 0.183 82.26 0.328 22.68 0.720 0.224

Wan2.1 14B (CFG = 5.0, 720 x 1280p, frames = 80)

Full Prec. | 16/16 | 100% | 0.182 90.79 0.000 - - -

SmoothQuant 6/6 100% 0.178 62.25 0.363 13.06  0.404 0.656
QuaRot 6/6 100% 0.180 66.56 0.313 13.59  0.409 0.566
ViDiT-Q 6/6 100% 0.180 71.26 0.251 1530  0.513 0.376
Q-VDiT 6/6 100% 0.180 89.10 0.082 18.13 0.610 0.264
QuaRot+SVG 6/6 25% 0.179 67.64 0.336 13.60  0.407 0.555
Q-VDiT+SVG 6/6 25% 0.179 88.29 0.091 16.69  0.563 0.323
QuaRot+SVG 6/6 15% 0.180 60.14 0.396 13.55 0.399 0.567
Q-VDiT+SVG 6/6 15% 0.179 85.26 0.182 1594  0.532 0.367
QuantSparse 6/6 25% 0.182 89.96 0.002 18.67 0.622 0.240
QuantSparse 6/6 15% 0.181 92.87 0.060 18.67 0.616 0.277

methods. We adopt channel-wise scale used in (Xiao et al., 2023a; Wu et al., 2024; Zhao et al., 2024;
Feng et al., 2025b) and rotation-based matrix used in (Ashkboos et al., 2024; Zhao et al., 2024; Sun
et al., 2024b) for quantization. We follow block-wise post-training strategy used in (Wu et al., 2024;
Chen et al., 2024; Sun et al., 2024b) for calibration. All the experiments are conducted on a single
NVIDIA A800 GPU.

During calibration, we set channel-wise scale, rotation matrix, and quantization scale as learnable
following (Feng et al., 2025b; Sun et al., 2024b). We use 20 random generated samples and train 15
epoch for each transformer block. We apply the same calibration samples and epochs for all methods
for fair comparison. We use AdamW (Loshchilov & Hutter, 2017) optimizer and cosine learning
rate scheduler. For the channel-wise scale and rotation matrix, we use a learning rate of 5e 2. For
the learnable quantization scale, we use a learning rate of 5e~2. For distillation, we use r = 128 for
global distillation pooling, & = 256 for salient query selection, and Agjopat = le 4, Aglobal = le 4
for Wan2.1-1.3B, Wan2.1-14B, and Agigbat = 1.0, Agiobal = 1e2 for HunyuanVideo, respectively.
The selection of distillation balancing factor is based on the order of magnitude of the loss. For
sparse attention, we use a fixed cache refreshing interval of 5, and use k£ = 16 for SVD.

For deployment, we quantize the weight and absorb all the quantization parameters following (Zhao
et al., 2024; Sun et al., 2024b; Feng et al., 2025b; Ashkboos et al., 2024). For activation, we use
dynamic online quantization same as (Feng et al., 2025b; Sun et al., 2024b; Zhao et al., 2024).

D MORE EVALUATION RESULTS ON WAN2.1-1.3B

We present comprehensive evaluation on Wan2.1-1.3B (Wan et al., 2025) in Tab. 6. Since Wan2.1-
1.3B has less computation budget and we find that it will suffer from serious performance degrada-
tion under high sparsity, we uniformly adopt 40 density in sparse attention to ensure its performance.

Different quantization methods have obvious performance degradation, especially under W4AS.
Among them, the quantization method specially designed for video model Q-VDiT (Feng et al.,
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Table 7: Performance of text-to-video generation under VBench evaluation benchmark suite. We
evaluate on Imaging Quality (IQ), Aesthetic Quality (AQ), Motion Smoothness (MS), Dynamic
Degree (DD), Background Consistency (BC), Subject Consistency (SuC), Scene Consistency (ScC),
and Overall Consistency (OC). Higher (1) metrics represent better performance. Bold: the best
result. Underline: The second best result.

Method (’eg/‘g Density 1Q AQ MS DD BC SuC ScC  OC

Wan2.1 1.3B (CEG = 6.0, 480 x 832p, frames = 80)
Full Prec. 16/16  100% 64.05 57.86 97.03 87.50 9494 93.00 16.72 23.16

QuaRot+SVG 6/6 40% 62.53 52.16 9548 81.94 93.65 89.20 1243 2242
Q-VDiT+SVG 6/6 40% 64.01 53.89 96.25 8194 9423 91.78 17.81 22.90
QuantSparse 6/6 40% 64.96 56.44 96.68 83.33 94.84 92.56 18.46 23.12

QuaRot+SVG 4/8 40% 5445 43.60 96.29 73.61 9499 87.02 8.14 18.88
Q-VDiT+SVG 4/8 40% 56.08 48.12 97.27 61.11 9586 89.72 1032 19.89
QuantSparse 4/8 40% 64.41 58.00 9735 87.50 9499 93.02 1824 2331

HunyuanVideo 13B (CFG = 6.0, 512 x 768p, frames = 60)
Full Prec. 16/16 100%  62.30 6249 99.00 5694 98.08 9530 33.36 26.85

QuaRot+SVG 6/6 25% 56.82 5723 9793 40.00 97.75 95.10 2398 25.63
Q-VDiT+SVG 6/6 25% 59.22 58.77 9796 40.00 97.60 95.68 2680 25.87
QuaRot+SVG 6/6 15% 5395 5643 97.84 38.89 9748 9440 2336 2557
Q-VDiT+SVG 6/6 15% 5743 58.02 97.84 38.61 97.07 9520 2427 2574
QuantSparse 6/6 25% 60.24 59.06 99.01 43.06 98.33 96.06 28.42 26.62
QuantSparse 6/6 15% 59.54 58.87 9895 40.28 98.08 95.84 27.69 26.63

QuaRot+SVG 4/8 25% 4581 5659 9826 2222 98.18 95.78 21.00 24.64
Q-VDiT+SVG 4/8 25% 4494 56.62 9836 23.61 9798 96.06 18.53 24.81
QuaRot+SVG 4/8 15% 43.51 5535 9821 20.83 9721 9515 1831 24.50
Q-VDiT+SVG 4/8 15% 42.16 5532 9832 20.83 9796 9548 16.64 24.68
QuantSparse 4/8 25% 5985 59.37 99.08 38.89 98.32 96.41 29.80 26.92
QuantSparse 4/8 15% 59.27 59.20 99.04 40.28 98.21 96.18 30.31 26.92

Wan2.1 14B (CEG = 5.0,480 x 832p, frames = 80)
Full Prec. 16/16 100%  63.38 59.56 96.73 86.11 96.71 90.84 28.13 25.68

QuaRot+SVG 6/6 25% 61.77 54.13 9589 45.83 9478 9020 17.59 23.37
Q-VDiT+SVG 6/6 25% 60.92 57.53 96.44 8250 9548 8934 27776 25.46
QuaRot+SVG 6/6 15% 61.42 54.09 9578 45.83 9470 89.95 16.50 23.08
Q-VDiT+SVG 6/6 15% 59.77 56.56 9631 8250 95.68 89.25 27.05 2528
QuantSparse 6/6 25% 63.89 58.77 96.77 8472 96.48 9091 29.80 25.80
QuantSparse 6/6 15% 63.87 5832 96.69 90.28 96.29 90.85 29.14 26.07

QuaRot+SVG 4/8 25% 62.53 5724 96.52 87.50 9540 89.77 22.69 25.11
Q-VDiT+SVG 4/8 25% 60.92 58.53 96.44 8750 9548 8934 2276 2546
QuaRot+SVG 4/8 15% 61.16 56.71 9632 87.50 9533 89.67 22.14 25.05
Q-VDiT+SVG 4/8 15% 59.77 57.56 9631 87.50 95.68 89.25 22.04 25.08
QuantSparse 4/8 25% 63.55 59.59 96.82 87.50 96.69 90.69 27.76 25.81
QuantSparse 4/8 15% 63.81 58.86 96.75 87.50 96.56 90.55 26.09 25.93

2025b) and the strong LLM quantization method Quarot (Ashkboos et al., 2024) show relatively
stronger performance. For a broader and fair comparison, we add existing sparse attention methods
to Q-VDiT and Quarot to verify the effect of naive combination of model quantization and sparse
attention. We find that when combining Q-VDiT and Quarot with different sparse attention meth-
ods, the performance decreases to varying degrees, and the performance of SVG (Xi et al., 2025)
decreases the least. Therefore, we chose SVG as our baseline sparse attention in all other experi-
ments.

Compared with all existing methods, QuantSparse achieves SOTA performance under all bit settings,
and is almost lossless compared with the FP model. It is worth mentioning that QuantSparse even
surpasses all quantization-only methods. It not only achieves better compression effect, but also has
better performance, which fully demonstrates the effectiveness of our method.
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E VBENCH EVALUATION RESULTS

We present the VBench (Huang et al., 2024b) evaluation results in Tab. 7. Under the comprehensive
evaluation of all 8 dimensions, the naive combination of Q-VDiT (Feng et al., 2025b), Quarot (Ashk-
boos et al., 2024) and SVG (Xi et al., 2025) all show significant performance degradation, which
fully demonstrates the disadvantage of simply combining existing quantization and sparse atten-
tion methods. While QuantSparse achieves comprehensive SOTA performance in all bit settings of
all models, and is almost lossless compared with FP model, even better in some dimensions. For
Wan2.1-14B (Wan et al., 2025) under W4AS, QuantSparse achieves 63.55 and 63.81 under 25% and
15% attention density, respectively, surpassing 63.38 of FP model.
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Figure 6: More token saliency distribution of Wan2.1-1.3B (Wan et al., 2025).
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Figure 7: More token saliency distribution of HunyuanVideo-13B (Kong et al., 2024).

F MORE ANALYSIS OF MULTI-SCALE SALIENT ATTENTION DISTILLATION

We present more analysis of the proposed Multi-Scale Salient Attention Distillation (MSAD) here.

We conducted quantitative experiments to test the impact of quantization and sparsification on at-
tention shift by measuring the attention Mean Square Error (MSE). The results are collected from
1000 random samples on Wan2.1-1.3B (Wan et al., 2025) under W4A8 and 40% attention density.
The results are presented in Tab. 8. The attention shift caused by the simple combination of quanti-
zation and sparsification methods is much greater than the sum of individual shifts. This proves the
joint effect of quantization and sparsification on attention error, and our core motivation “amplified
attention shift”.

Table 8: Quantitative experiment on attention shift caused by different compression techniques.

Method | Attention Shift
Quantization (QuaRot (Ashkboos et al., 2024)) 0.216
Sparsification (SVG (Xi et al., 2025)) 0.134
Quantization+Sparsification 0.685

We supplement 4 additional attention map comparisons in Fig. 8 and Fig. 9, showing the attention
distribution difference between the FP model and quantized model. The results are collected from
Wan2.1-1.3B under W4AS8.

Each column in Fig. 8 and Fig. 9 corresponds to the attention difference between the same attention
map before and after the proposed distillation MSAD. This indicates that our MSAD effectively
alleviates the attention shift.
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MSE 0.625 MSE: 0.463 MSE: 2.153 MSE: 0.708

Figure 8: Attention differences between FP model and quantized model without distillation.

MSE: 0.238 MSE: 0.291 MSE: 1.064 MSE: 0.319

Figure 9: Attention differences between FP model and quantized model with distillation.

We present more visualization of heavy-tail token saliency distribution in Fig. 6 and Fig. 7. It can
be seen that a significantly heavy-tailed token saliency phenomenon appears in different blocks of
Wan2.1 (Wan et al., 2025) and HunyuanVideo (Kong et al., 2024), which fully shows that our salient
local distillation is meaningful.

To further prove the effect of top-k salient queries se- Table 9: Ablation results of local distillation.
lection, we compare with random selection methods

and present the results in Tab. 9. Compared with ran- ~_Method | VQA; PSNR;  SSIM; LPIPS,
: : : : None 81.92 14.35 0.486 0.425
dom selection, our top-k salient selection further im- % | 2272 1519 053 e

proves the PSNR from 15.49 to 16.82, fully demon-  Salient  86.95.505 1682:247 0561 0075 0325 0.100
strating the effectiveness of our local distillation.
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Figure 10: More residual temporal difference distribution of HunyuanVideo-13B (Kong et al., 2024).

G MORE ANALYSIS OF SECOND-ORDER SPARSE ATTENTION
REPARAMETERIZATION

We present more analysis of the proposed Second-Order Sparse Attention Reparameterization
(SSAR) here. We present more visualization of residual temporal difference in Fig. 10. It can
be seen that after the introduction of quantization, the numerical difference of the first-order resid-
uals of adjacent time steps cannot be simply ignored. However, the numerical difference of the
second-order residual is significantly smaller than that of the first-order residual, so the use of the
second-order residual has a better approximation effect.
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Figure 11: More singular value distribution of all timesteps of HunyuanVideo-13B (Kong et al.,
2024).

To verify the motivation of using the temporal-stable component of the second-order residual, we
visualize more singular value distribution of all timesteps in Fig. 11. It can be seen that in different
blocks of different models, the second-order residuals at different time steps show considerable sta-
bility. Therefore, the second-order residual after SVD can retain the characteristics of time stability,
further reduce the variance caused by different time steps, and have better approximation effect.

We further visualize more attention error comparison in Fig. 12. It can be seen that the residual
mechanism significantly reduces the attention error, which proves the importance of sparse atten-
tion reparameterization. At the same time, compared with the first-order residual, the second-order
residual further reduces the attention error, which proves the necessity of introducing the second-
order residual after quantization. Also, the second-residual after using SVD can further reduce the
attention error, which proves that we have indeed extracted the temporally stable component and
achieved the best attention approximation effect.
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Figure 12: More attention error comparison of HunyuanVideo-13B (Kong et al., 2024).

H MORE ABLATION STUDY

Here, we provide more ablation study about the proposed Multi-Scale Salient Attention Distillation
(MSAD) and Second-Order Sparse Attention Reparameterization (SSAR).

We first study the pooling stride s used in Eq. 6 and salient token & Table 10: Ablation on s and k
in Eq. 8 to verify the hyperparameter selection of both global and lo-  used in attention distillation.

cal distillation. We present the results in Tab. 10. It can be seen that
different hyperparameters can improve the distillation performance.

Value ‘ VQA; PSNR; SSIM; LPIPS,
None | 81.92 1435 0486  0.425

This shows that our distillation method is both effective and robust, T e
: et L 3 s=64 | 85.19  16.05 0.543  0.348
which is insensitive to hyperparameters. This also demonstrates S5 | 3358 (608 0593 0.8

85.12 15.93 0.545 0.355
salient token k

86.21 16.72 0.551 0.349

86.95 1682  0.561  0.325

86.93  16.95 0.561  0.324

that the memory-efficient distillation are effective enough and we  s=256
do not have to use the giant complete attention map to supervise the k=128
attention module. Higher s and lower k can reduce memory, but =29
typically harm performance. Yet we identify that decreasing s and
increasing k also brings little improvement. Since s = 128 and k£ = 256 are both effective and
efficient as shown in Fig. 3d, we choose this balanced selection.

We then study the top-r components in SVD used in Eq. 16, and present the results in Tab. 11. Com-
pared with the original second-order residual, it can be seen that the different selection of 7 in SVD
can improve the temporal stability of the second-order residual and bring better performance. In
our experiment, we chose = 16 as it achieves good performance. We further explore higher-order
residual effectiveness on attention approximation. Compared with the Second-Order residual, Third-
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Table 11: Ablation on SVD used in SSAR.

Method ‘ VQAT PSNR)F SSIMT LPIPS‘L
None 68.00 14.16 0.470 0.445

First 70.82 17.08 0.572 0.285
Second | 89.73 18.68 0.616 0.258

Third 89.71 18.70 0.620 0.263

top-8 91.12 18.69 0.621 0.253
top-16 91.98+23_98 18.72+4_56 0.630+0_160 0.240,0_205
top-32 91.75 18.72 0.628 0.242

Order residual only slightly improves PSNR from 18.70 to 18.68 and decreases the performance on
VQA, SSIM, and LPIPS. This indicates that the stability brought by higher-order residuals will grad-
ually saturate, and we attribute it to the additional noise brought by longer time series information
on higher-order residuals. The second-order residual not only stabilizes the first-order residual, but
SVD can further reduce spatiotemporal noise.

We then study the weight factor used in Eq. 9 to verify the dis- Table 12: Ablation on A, used

tillation robustness of hyperparameters. We present the results in  in Eq. 9.

Tab. 12. The values are selected by controlling the distillation term

to be of the same order of magnitude as Lyun. It can be seen A | VQA; PSNRy SSIMp LPIPS,

that different weight factors improve the model performance. This =~ N [$192 143 | 046 042
1St 1 1 1 1mn- S5e-3 | 84.76  15.79 0.518  0.362

shovs./s. that our dlStll.latIOIl method is not only ef.fect.lve but also in Dl B I e P

sensitive to the choice of hyperparameters, indicating its general-  se4 | 8533 1572 0540 0351

. . . . * =local

ization and effectiveness. Since Agighal = 1le —4 and Ajocal = 1€ =4 5c3 8673 1686 0547 0336

are good enough, and the hyperparameter selection is robust, we do 14

not further fine-tune the hyperparameter selection.

86.95 16.82 0.561  0.325
86.54 16.72 0.562  0.328

We further compare our Multi-Scale Salient Attention Distillation (MSAD) with full-attention distil-
lation (using the complete FP attention map as the target) on Wan2.1-1.3B (Wan et al., 2025) under
W4A8 quantization. The results are shown in Tab. 13. MSAD achieves nearly identical performance
to full-attention distillation. The results highlight MSAD’s efficiency advantages while maintaining
comparable performance.

Table 13: Ablation study on full-attention distillation.

Method | Resolution PSNR; LPIPS; Attention Memory Cost (GB);,  Calibration Time (Hours),
Wan2.1 1.3B

Full Attention (17472, 17472)  15.25 0.338 6.82 1.86

MSAD (s = 64) (273, 273) 15.23 0.338 0.17 0.66

MSAD (s = 128) (137, 137) 15.22 0.338 0.14 0.64

MSAD (s = 256) (69, 69) 15.21 0.339 0.13 0.63

I CALIBRATION COMPUTATION RESOURCE

We study the calibration computation resource of each of our proposed methods and the overall
pipeline. As Second-Order Sparse Attention Reparameterization (SSAR) is used for only inference,
for calibration, we only add Multi-Scale Salient Attention Distillation (MSAD) compared to naive
Post-Training Quantization (PTQ). We present the calibration resource in Tab. 14. Compared with
naive PTQ, our Global Distillation only brings an average of 0.8% extra time burden and almost no
additional memory consumption because of its efficient low-resolution attention operation. Also,
our Local Distillation only needs to calculate the token saliency distribution once before each block
calibration and reuse the salient token index in each optimization iteration, which is also very ef-
ficient. These two distillation methods are not only efficient but also can effectively alleviate the
attention shift caused by quantization and improve the video generation effect. QuantSparse has sig-
nificantly improved the model performance by combining two distillation methods, while ensuring
high efficiency.
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Table 14: Calibration computation resource report. PTQ denotes naive Post-Training Quantization
without attention distillation.

Method \ Calibration Overload Performance
\ GPU Memory (GB),  GPU Time (Hours); PSNR; LPIPS,

Wan2.1 1.3B

PTQ 16.21 0.62 10.57 0.587

+Global 16.27 10.4% 0.63 . ¢.2% 13.27 0.452

+Local 16.28 .4 0.63 ., 0.2% 13.85 0.421

QuantSparse | 16.34 gy 0.64.1 6% 1522 465 0.338_¢ 249

HunyuanVideo 13B

PTQ 39.22 5.08 16.27 0.472

+Global 39.33.10.3% 5.10,0.4% 18.42 0.357

+Local 39.32,0.3% 5.11.0.6% 18.96 0.342

QuantSparse | 39.41,¢ 5% 51341 0% 20.86. 459 0.272_¢ 200
Wan2.1 14B

PTQ 47.39 2.57 14.35 0.425

+Global 47.54 10.3% 2.59.0.8% 16.01 0.349

+Local 47.50 1 0.2% 2.58.0.4% 16.82 0.325

QuantSparse | 47.65¢ 5% 26051 19 18.72 437 0.240_¢ 155

To further prove the effectiveness of proposed Second-Order Sparse Attention Reparameterization
(SSAR), we present the inference burden brought by SSAR in Tab. 15. Compared with Non-
Reparameterization, the cache-based method only requires one additional matrix addition opera-
tion for the sparse attention output, which is very efficient. Therefore, the cache-based method will
only bring little additional latency and memory burden. Furthermore, the second-order residual can
store and calculate the second-order term and the first-order term together. Therefore, compared
with the first-order residual, the second-order residual only requires an additional second order term
calculation, but significantly improves the sparse attention performance under quantization, and im-
proves the PSNR from 17.08 to 18.68 under Wan2.1-14B (Wan et al., 2025). In addition, using SVD
to extract the temporally stable component of second-order residuals brings almost no additional
consumption, but can further improve the effect of second-order residuals, which further decreases
LPIPS from 0.258 to 0.240 under Wan2.1-14B.

Table 15: Sparse attention reparameterization resource report. ‘None’ denotes Non-
Reparameterization.
Method \ Inference Overload Performance
| GPU Memory (GB),  DiT Time (s), PSNR: LPIPS,
Wan2.1 1.3B
None 5.44 312 10.57 0.587
+First 5.84, 79, 313.40.5% 12.76 0.493
+Second 5.93 g9, 313.0.5% 13.55 0.427
QuantSparse | 593,99 313.0.3% 1522, 465 0.338_0. 249
HunyuanVideo 13B
None 24.34 725 16.27 0.472
+First 26.51 9% 729, 0.6% 18.25 0.381
+Second 27.02 119 7304 0.7% 19.03 0.317
QuantSparse | 27.02, 119 731 10.8% 20.86, 459 0.272_( 200
Wan2.1 14B
None 26.04 2589 14.16 0.445
+First 27.86 79, 2593, 0.2% 17.08 0.285
+Second 28.14, 5 25940 200 18.68 0.258
QuantSparse | 28.14, g9, 2594 9 2% 18.72 456 0.240_ 205
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J COMBINATION WITH OTHER ACCELERATION TECHNIQUES

To further validate the integration ability of QuantSparse with other acceleration techniques, we
combined it with existing attention quantization techniques SageAttention (Zhang et al., 2024b)
and cache techniques TeaCache (Liu et al., 2024a), and presented the results in Tab. 16. All the
experiments are conducted on Wan2.1-14B (Wan et al., 2025) under W4AS8 quantization setting. We
apply SageAttention by quantizing attention into 8-bit. For TeaCache, we set the threshold as 0.16
to ensure performance.

It can be seen that, despite retaining only 15% attention density under W4A8 quantization, the
combination of QuantSparse and SageAttention still incurs almost no performance loss. This in-
dicates that QuantSparse is highly friendly to sparsification and quantization, fully demonstrating
the necessity of attention distillation and second-order reparameterization. Although further adding
TeaCache may result in a slight performance decrease, it can bring significant additional inference
acceleration. This provides a further trade-off between performance and inference speed, and also
demonstrates the effectiveness of combining QuantSparse with cache-based methods.

We further provide more visualization results in Fig. 13. It can be seen that the combination of
QuantSparse and other acceleration techniques not only shows almost no decrease in metrics but
also maintains good visual effects without producing any decrease in visual quality.

Table 16: More efficiency comparison under W4AS8 quantization setting. Sage. denotes SageAtten-
tion (Zhang et al., 2024b). Tea. denotes TeaCache (Liu et al., 2024a).

Method Density \ Quality Latency & Speed
1
QuantSparse ~ SageAttention ~ TeaCache | | CLIPSIM; VQA; AFSCore; DiT Time; Speedup;
Wan2.1 14B (CEG = 5.0, 720 x 1280p, frames = 80)
Full Prec. 100% | 0.182 90.79 0.000 4031s 1.00x
v 0.183 91.98 0.056 2594s 1.55%
4 v 25% 0.181 91.70 0.240 2480s 1.63x
4 v 4 0.180 84.01 0.211 1802s 2.24x%
v 0.182 90.73 0.042 2315s 1.74x
v v 15% 0.180 90.58 0.046 2201s 1.83x
v v 4 0.179 86.24 0.249 1629s 2.47x%
FP16 Full Attn. QuantSparse QuantSparse + Sage. QuantSparse + Sage. + Tea.
(100%) (15%) (15%) (15%)

Figure 13: Combining with other acceleration techniques visualization on Wan2.1-14B under W4AS8
quantization setting.

K IMAGE GENERATION EXPERIMENT

QuantSparse is designed as a general framework for Diffusion Transformers (DiTs) and is not lim-
ited to video generation. To validate its generalizability, we conducted an experiment on Hunyuan-
DiT (Li et al., 2024c), a 1.5B parameters model targeting image generation. We evaluate on Draw-
Bench (Saharia et al., 2022) under W4A8 quantization and present the results in Tab. 17. Even for
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image-generation DiTs, QuantSparse outperforms SOTA quantization baselines QuaRot (Ashkboos
et al., 2024) and Q-VDiT (Feng et al., 2025b) while using only 40% attention density. This con-
firms that our framework generalizes to DiT-based visual generation tasks and not limited to video
generation.

Table 17: Image generation experiment results on Hunyuan-DiT.

Method | Density, PSNR; SSIM; LPIPS;
Hunyuan-DiT

QuaRot 100% 17.30  0.627 0.460

Q-VDiT 100% 19.32  0.658 0.347

QuantSparse 40% 20.34 0.692 0.289

L THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this paper, Large Language Models are only used as general-purpose auxiliary tools, primarily for
document-level auxiliary tasks such as grammar checking and expression refinement. LLMs did not
participate in the core conceptualization, method derivation, or experimental design of this research,
nor did they contribute to any core writing content.

M MORE VISUAL COMPARISON

In the following pages, we provide more visual comparisons of different-scale video-generation
models. ‘Full Prec.” denotes the Full Precision model. (xx%) denotes the attention density.

We also provide the used text prompt for each figure:

1. Fig. 14: A soaring drone footage captures the majestic beauty of a coastal cliff, its red
and yellow stratified rock faces rich in color and against the vibrant turquoise of the sea.
Seabirds can be seen taking flight around the cliff’s precipices. As the drone slowly moves
from different angles, the changing sunlight casts shifting shadows that highlight the rugged
textures of the cliff and the surrounding calm sea. The water gently laps at the rock base
and the greenery that clings to the top of the cliff, and the scene gives a sense of peaceful
isolation at the fringes of the ocean. The video captures the essence of pristine natural
beauty untouched by human structures.

2. Fig. 15: A serene night scene in a forested area. The first frame shows a tranquil lake
reflecting the star-filled sky above. The second frame reveals a beautiful sunset, casting a
warm glow over the landscape. The third frame showcases the night sky, filled with stars
and a vibrant Milky Way galaxy. The video is a time-lapse, capturing the transition from
day to night, with the lake and forest serving as a constant backdrop. The style of the video
is naturalistic, emphasizing the beauty of the night sky and the peacefulness of the forest.

3. Fig. 16: A serene underwater scene featuring a sea turtle swimming through a coral reef.
The turtle, with its greenish-brown shell, is the main focus of the video, swimming grace-
fully towards the right side of the frame. The coral reef, teeming with life, is visible in
the background, providing a vibrant and colorful backdrop to the turtle’s journey. Several
small fish, darting around the turtle, add a sense of movement and dynamism to the scene.
The video is shot from a slightly elevated angle, providing a comprehensive view of the
turtle’s surroundings. The overall style of the video is calm and peaceful, capturing the
beauty and tranquility of the underwater world.

4. Fig. 17: The video captures the majestic beauty of a waterfall cascading down a cliff into a
serene lake. The waterfall, with its powerful flow, is the central focus of the video. The sur-
rounding landscape is lush and green, with trees and foliage adding to the natural beauty
of the scene. The camera angle provides a bird’s eye view of the waterfall, allowing view-
ers to appreciate the full height and grandeur of the waterfall. The video is a stunning
representation of nature’s power and beauty.
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5. Fig. 18: The dynamic movement of tall, wispy grasses swaying in the wind. The sky above
is filled with clouds, creating a dramatic backdrop. The sunlight pierces through the clouds,
casting a warm glow on the scene. The grasses are a mix of green and brown, indicating
a change in seasons. The overall style of the video is naturalistic, capturing the beauty of
the landscape in a realistic manner. The focus is on the grasses and their movement, with
the sky serving as a secondary element. The video does not contain any human or animal
elements.

6. Fig. 19: The video captures the majestic beauty of a waterfall cascading down a cliff into a
serene lake. The waterfall, with its powerful flow, is the central focus of the video. The sur-
rounding landscape is lush and green, with trees and foliage adding to the natural beauty
of the scene. The camera angle provides a bird’s eye view of the waterfall, allowing view-
ers to appreciate the full height and grandeur of the waterfall. The video is a stunning
representation of nature’s power and beauty.
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Figure 15: HunyuanVideo-13B results.
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Figure 17: Wan2.1-14B results.
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Figure 18: Wan2.1-1.3B results.

Figure 19: Wan2.1-1.3B results.
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