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Abstract

We present elliptical processes—a family of non-parametric probabilistic models that sub-
sumes the Gaussian processes and the Student’s t processes. This generalization includes a
range of new heavy-tailed behaviors while retaining computational tractability. The ellipti-
cal processes are based on a representation of elliptical distributions as a continuous mixture
of Gaussian distributions. We parameterize this mixture distribution as a spline normal-
izing flow, which we train in two different ways using variational inference. The proposed
form of the variational posterior enables a sparse variational elliptical process applicable
to large-scale problems. We highlight some advantages compared to a Gaussian process
through regression and classification experiments. Elliptical processes can replace Gaussian
processes in several settings, including cases where the likelihood is non-Gaussian or when
accurate tail modeling is essential.

1 Introduction
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Figure 1: Posterior distributions of an ellip-
tical process and a Gaussian process with
equal kernel hyperparameters and covari-
ance. The shaded area are confidence in-
tervals of the posterior processes. The el-
liptical confidence regions are wider due to
the process’s heavier tail, which makes the
confidence region similar to the Gaussian’s
close to the mean, but also allows samples
further out at the tail.

Systems for autonomous decision-making are increasingly de-
pendent on predictive models. To ensure safety and reliability,
it is essential that these models capture uncertainty and risk ac-
curately. Gaussian processes (GPs) offer a powerful framework
for probabilistic modeling that is widely used, in part because it
provides such uncertainty estimates. However, these estimates
are only reliable to the extent that the model is correctly spec-
ified, i.e. that the assumptions of Gaussianity hold true. On
the contrary, heavy-tailed data arise in many real-world appli-
cations, including finance (Mandelbrot, 1963), signal processing
(Zoubir et al., 2012) and geostatistics (Diggle et al., 1998). We
use a combination of normalizing flows and modern variational
inference techniques to extend the modeling capabilities of GPs
to the more general class of elliptical processes (EPs).

Elliptical processes. The elliptical processes subsume the
Gaussian process and the Student’s t process (Rasmussen &
Williams, 2006; Shah et al., 2014). It is based on the elliptical
distribution—a scale-mixture of Gaussian distributions attrac-
tive mainly because it can describe heavy-tailed distributions
while retaining most of the Gaussian distribution’s computa-
tional tractability (Fang et al., 1990). We use a normaliz-
ing flow (Papamakarios et al., 2021a) to model the continu-
ous scale-mixture, which provides an added flexibility that can
benefit a range of applications. We explore the use of ellipti-
cal processes as both a prior (over functions) and a likelihood,
as well as the combination thereof. We also explore the use
of EPs as a variational posterior that can adapt its shape to
match complex posterior distributions.
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Variational inference. Variational inference is a powerful tool for approximate inference that uses op-
timization to find a member of a predefined family of distributions that is close to the target distribution
(Wainwright et al., 2008; Blei et al., 2017). Significant advances made in the last decade have made vari-
ational inference the method of choice for scalable approximate inference in complex parametric models
(Ranganath et al., 2014; Hoffman et al., 2013; Kingma & Welling, 2013; Rezende et al., 2014).

It is thus not surprising that the quest for more expressive and scalable variations of Gaussian processes has
gone hand-in-hand with the developments in variational inference. For instance, sparse GPs use variational
inference to select inducing points to approximate the prior (Titsias, 2009). Inducing points is a common
building block in deep probabilistic models such as deep Gaussian processes (Damianou & Lawrence, 2013;
Salimbeni et al., 2019) and can also be applied in Bayesian neural networks Maroñas et al. (2021); Ober &
Aitchison (2021). Similarly, the combination of inducing points and variational inference enables scalable
approximate inference in models with non-Gaussian likelihoods (Hensman et al., 2013a), such as when
performing GP classification (Hensman et al., 2015; Wilson et al., 2016).
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Figure 2: Left: A contour plot of an elliptical two-
dimensional, correlated distribution with zero means.
The name derives from its elliptical level sets. Right:
Three examples of one-dimensional elliptical distribu-
tions with zero means and varying tail-heaviness. El-
liptical distributions are symmetric around the mean
E[X] = µ.

However, the closeness of the variational distribu-
tion to the target distribution is bounded by the flex-
ibility of the variational distribution. Consequently,
the success of deep (neural network) models have
inspired various suggestions on flexible yet tractable
variational distributions, often based on parameter-
ized transformations of a simple base distribution
(Tran et al., 2016). In particular, models using
a composition of invertible transformations, known
as normalizing flows, have been especially popular
(Rezende & Mohamed, 2015; Papamakarios et al.,
2021a).

Our contributions. We propose an adaptation
of elliptical distributions and processes in the same
spirit as modern Gaussian processes. Constructing
elliptical distributions based on a normalizing flow
provides a high degree of flexibility without sacrific-
ing computational tractability. This makes it possi-
ble to sidestep the “curse of Gaussianity”, and adapt
to heavy-tailed behavior when called for. We thus
foresee many synergies between EPs and recently developed GP methods. We make a first exploration of
these, and simultaneously demonstrate the versatility of the elliptical process as a model for the prior and/or
the likelihood, or as the variational posterior. In more detail, our contributions are:

• a construction of the elliptical process and the elliptical likelihood as a continuous scale-mixture of
Gaussian processes parameterized by a normalizing flow;

• a variational approximation that can either learn an elliptical likelihood or handle known non-
Gaussian likelihoods, such as in classification problems;

• formulating a sparse variational approximation for large-scale problems, as well as developing and
comparing two different training schemes;

• describing extensions to heteroscedastic and multi-path data enabled by amortized variational in-
ference.
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2 Background

In this section, we present the necessary background on elliptical distributions, elliptical processes and
normalizing flow models. Throughout, we consider the regression problem, where we are given a set of N
scalar observations, y = [y1, · · · , yN ]⊤, at the locations [x1, · · · , xN ]⊤, where xn is D-dimensional. The
measurements yn are assumed to be noisy measurements, such that,

yn = f(xn) + ϵn, (1)

where ϵn is zero mean, i.i.d., noise. The task is to infer the underlying function, f : RD → R.

2.1 Elliptical distributions

The elliptical process is based on elliptical distributions (Figure 2), which include Gaussian distributions as
well as more heavy-tailed distributions, such as the Student’s t distribution and the Cauchy distribution.

The probability density of a random variable Y ∈ RN that follows the elliptical distribution can be expressed
as,

p(u; η) = cn,η|Σ|−1/2gN (u; η), (2)

where u = (y − µ)TΣ−1(y − µ) is the squared Mahalanobis distance, µ is the location vector, Σ is the
non-negative definite scale matrix, and cN,η is a normalization constant. The density generator gN,η(u) is a
non-negative function with finite integral parameterized by η which determines the shape of the distribution.

Elliptical distributions are consistent, i.e., closed under marginalization, if and only if p(u; η) is a scale-
mixture of Gaussian distributions (Kano, 1994). The density can be expressed as

p(u; η) = |Σ|− 1
2

∫ ∞

0

(
1

2πξ

)n
2

e
−u
2ξ p(ξ; ηξ)dξ, (3)

using a mixing variable ξ ∼ p(ξ; ηξ). Any mixing distribution p(ξ; ηξ) that is strictly positive can be used
to define a consistent elliptical process. In particular, we recover the Gaussian distribution if the mixing
distribution is a Dirac delta function and the Student’s t distribution if it is a scaled inverse chi-square
distribution. For more information on the elliptical distribution, see Appendix A

2.2 Elliptical processes

The elliptical process is defined, analogously to a Gaussian process, as:

Definition 1 An elliptical process (EP) is a collection of random variables such that every finite subset has
a consistent elliptical distribution, where the scale matrix is given by a covariance kernel.

This means that an EP is specified by a mean function µ(x), scale matrix (kernel) k(x, x) and mixing dis-
tribution p(ξ; ηξ). Since the EP is built upon consistent elliptical distributions it is closed under marginal-
ization. The marginal mean µ is the same as the mean for the Gaussian distribution, and the covariance is
Cov[Y] = E [ξ] Σ where Y is an elliptical random variable, Σ is the covariance for a Gaussian distribution
and ξ is the mixing variable.

Formally a stochastic process {Xt : t ∈ T} on a probability space (Ω, F , P ) consists of random maps
Xt : ω → St, t ∈ T , for measurable spaces (St, St), t ∈ T (Bhattacharya & Waymire, 2007). We focus on
the setting where S = R and the index set T is a subset of RN , in particular, the half-line [0, ∞). Due to
Kolmogorov’s extension theorem, we may construct the EP from the family of finite-dimensional, consistent,
elliptical distributions, which is easy to check due to the restriction to S = R (which is a Polish space) and
Kano’s characterization above.
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Identifiability. When using GP for regression or classification we usually assume that the data originate
from a single sample path, which is a single sample from the GP. An elliptical process, on the other hand, can
be viewed as a hierarchical model, constructed by first sampling ξ ∼ p(ξ; ηξ) and then f ∼ GP(f ; µ, Kξ).
This structure implies that it is not possible to infer the mixing distribution p(ξ; ηξ) from a single path.In
other words, the identification condition for the mixing distribution p(ξ; ηξ) is to have draws from multiple
paths. This point is explored further in sections 3.4 and 4.5.

Prediction. To use the EP for predictions, we need the conditional mean and covariance of the correspond-
ing elliptical distribution. The conditional distribution is guaranteed to be a consistent elliptical distribution
but not necessarily the same as the original one—the shape depends on the training samples. (Recall that
consistency only concerns the marginal distribution.) The conditional distribution can be derived analyti-
cally (see Appendix B) but we will instead solve it by approximate the posterior p(ξ| y; ηξ) with a variational
distribution q(ξ; φξ). The approximate inference framework also let us to incorporate (non-Gaussian) noise
according to the graphical models in Figure 3.

We aim to model mixing distributions that can capture any shape of the elliptical noise in the data. One
way to learn complex probability distributions is to normalize flows, which we will now go through.

2.3 Flow based models

Normalizing flows are a family of generative models that map simple distributions to complex ones through
a series of learned transformations (Papamakarios et al., 2021b). Suppose we have a random variable x
that follows an unknown probability distribution px(x). Then, the main idea of a normalizing flow is to
express x as a transformation Tγ of a variable z with a known simple probability distribution pz(z). The
transformation Tγ has to be bijective and invertible, and it can have learnable parameters γ. Both T and
its inverse have to be differentiable. The probability density of x is obtained by a change of variables:

px(x) = pz(z)
∣∣∣∣det

(
∂Tγ(z)

∂z

)∣∣∣∣−1
. (4)

We focus on one-dimensional flows, since we are interested in modeling the mixing distribution. In particular,
we use linear rational spline flows Dolatabadi et al. (2020); Durkan et al. (2019), wherein the mapping Tγ is
an elementwise, monotonic linear rational spline: a piecewise function where each piece is a linear rational
function. The parameters are the number of pieces (bins) and the knot locations.

To train the model parameters, we use amortized variational inference, which we go through next.

2.4 Amortized variational inference

In amortized variational inference (Gershman & Goodman, 2014) we replace the variational parameters,
φ with a function that maps the input to the variational parameters φ = g(x). This is convenient for
modelling local latent variables, i.e., variables associated directly to individual data points xn which have
corresponding variational parameters φi. By replacing the local parameter with a function, φi = g(xn), we
reduce the problem to fitting a function g, rather than fitting each φi. Furthermore, it becomes easy to add
new data points, since the local variational parameters are then given by the function g.

3 Method

We propose the variational EP with elliptical noise, where the variational EP can learn any consistent ellip-
tical process, and the elliptical noise can capture any consistent elliptical noise. The key idea is to model the
mixing distributions with a normalizing flow. The joint probability distribution of the model (see Figure 3c) is

p(y, f , ω, ξ; η) = p(f |ξ; ηf )p(ξ; ηξ)︸ ︷︷ ︸
prior

N∏
i=1

p(yi|fi, ω)p(ω; ηω)︸ ︷︷ ︸
likelihood

. (5)
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(a) (b)

(c)

Figure 3: Graphical models of (a), the elliptical
likelihood, (b) the EP-prior, and (c) the EP with
independent elliptical noise.

Here, p(f |ξ; ηf ) ∼ N (0, Kξ) is a regular EP prior with
the covariance kernel K containing the parameters ηf ,
p(ξ; ηξ) is the process mixing distribution and p(ω; ηω)
is the noise mixing distribution.

To learn the mixing distributions p(ξ; ηξ) and p(ω; ηω)
by gradient-based optimization, they need to be differ-
entiable with respect to the parameters ηξ and ηω in
addition to being flexible and computationally efficient
to sample and evaluate. Based on these criteria, a spline
flow (Section 2.3) is a natural fit. We construct the mix-
ing distributions by transforming a sample from a stan-
dard normal distribution with a spline flow. The output
of the spline flow is then projected onto the positive real
axis using a differentiable function such as Softplus or
Sigmoid.

In the following sections, we detail the construction of the model and show how to train it using variational
inference. For clarity, we describe the likelihood first, before combining it with the prior and describing a
(computationally efficient) sparse approximation.

3.1 Likelihood

By definition, the likelihood (Figure 3a) describes the measurement noise ϵn (Equation (1)). The probability
distribution of the independent elliptical likelihood is,

p(ϵn; σ, ηω) =
∫

N (ϵn; 0, σ2ω)p(ω; ηω)dω, (6)

where σ can be set to unity without loss of generality. In other words, the likelihood is a continuous mixture of
Gaussian distributions where, e.g., ϵn follows a Student’s t distribution if ω is scaled chi-squared distributed.

Parameterization. We parameterize p(ω; ηω) as a spline flow,

p(ω; ηω) = p(ζ)
∣∣∣∣∂T (ζ; ηω)

∂ζ

∣∣∣∣−1
(7)

although it could, in principle, be any positive, finite probability distribution. Here, p(ζ) ∼ N (0, 1) is
the base distribution and ω = T (ζ ; ηω) represents the spline flow transformation followed by a Softplus
transformation to guarantee ω to be positive. The flexibility of this flow-based construction lets us capture
a broad range of elliptical likelihoods, but we could also specify an appropriate likelihood ourselves. For
instance, using a categorical likelihood enables EP classification, see section 4.3.

Training objective. Now, assume that we observe N independent and identically distributed residuals
ϵn = yn − fn between the observations y and some function, f . We are primarily interested in estimating
the noise for the purpose of “denoising” the measurements. Hence, we fit an elliptical distribution to the
residuals by maximizing the (log) marginal likelihood with respect to the parameters ηω, that is

log p(ϵ; ηω) =
N∑

n=1
log
∫

N (ϵn; 0, T (ζ; ηω))
∣∣∣∣∂T (ζ; ηω)

∂ζ

∣∣∣∣−1
p(ζ)dζ. (8)

For general mixing distributions this integral is intractable, but we can approximate it using variational
inference.

Variational approximation. Instead of optimizing the marginal likelihood (8) directly, we approximate
the posterior base distribution p(ζ|ϵn) ≈ q(ζn; φζn), where φζn are variational parameters, and maximize
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the corresponding evidence lower bound (ELBO):

L(ηω, φζ1 , . . . , φζN
) =

N∑
n=1

Eq(ζn; φζn )

[
log
(

N (ϵn; 0, T (ζ; ηω))
∣∣∣∣∂T (ζ; ηω)

∂ζ

∣∣∣∣−1
)]

− DKL (q(ζn; φζn)||p(ζ)) .

(9)
In this variational approximation we have one set of variational parameters φζn for each observed noise ϵn. To
reduce complexity, we amortize (see Section 2.4) the variational parameters by letting φζn = g(ϵn; γζ), which
reduces the ELBO to L(ηω, γζ). Specifically, we model the variational posterior as a Normal distribution
q(ζn) = N (µζ(ϵn), σζ(ϵn)) where the variational parameters φζn

, namely the mean µζ and standard deviation
σζ , are functions defined by a neural network with parameters γζ . The parameters of the normalizing flow
and variational posterior are trained jointly by gradient-based optimization of the ELBO, ∇ηω,γζ

L(ηω, γζ).
The gradients are estimated using black-box variational inference (Bingham et al., 2019).

Ultimately, we arrive at the likelihood

p(y|f) =
N∏

n=1

∫
N (yn; fn, T (ζ; ηω))

∣∣∣∣∂T (ζ; ηω)
∂ζ

∣∣∣∣−1
p(ζ)dζ. (10)

Note that the variational posterior q(ζn) does not appear in this expression—it is only used as an aid for
training the mixing distribution (specifically, the parameters ηω).

3.2 Prior

Recall that our main objective is to infer the latent function f∗ = f(x∗) at arbitrary locations x∗ ∈ RD

given a finite set of noisy observations y. In probabilistic machine learning, the mapping y 7→ f∗ is often
defined by the posterior predictive distribution

p(f∗|y) =
∫

p(f∗|f)p(f |y)df , (11)

which turns modeling into a search for suitable choices of p(f∗|f) and p(f |y). Accordingly, the noise
estimation described in the previous section is only done in pursuit of this higher purpose.

Sparse formulation. For an elliptical process (EP) we can rewrite the posterior predictive distribution
as

p(f∗|y) =
∫

p(f∗|f , ξ) p(f , u, ξ|y)dfdu dξ, (12)

where we are marginalizing not only over the mixing variable ξ and the function values f (at the given inputs
x) but also over the function values u at the, so called, M inducing inputs Xu. Introducing inducing points
lets us derive a sparse variational EP—a computationally scalable version of the EP similar to the sparse
variational GP (Titsias, 2009). We refer to Appendix D for a non-sparse version of the model.

The need for approximation arises because of the intractable second factor, p(f , u, ξ|y), in (12). (The first
factor, p(f∗|f , ξ), is simply a Normal distribution.)

Variational approximation. We make the variational ansatz p(f , u, ξ|y) ≈ p(f |u, ξ)q(u, ξ) q(ξ), and
parameterize this variational posterior as an elliptical distribution. We do so for two reasons: first, this
makes the variational posterior similar to the true posterior, and second, we can then use the conditional
distribution to make predictions. In full detail, we factorize the posterior as

q(f , u, ξ; φ) = p(f |u, ξ; ηf )q(u|ξ; φu)q(ξ; φξ), (13)

where φ = (φf , φu, φξ) are the variational parameters, q(u|ξ; φu) = N (m, Sξ) is a Gaussian distribu-
tion with the variational mixing distribution ξ ∼ q(ξ; φξ). Again, q(ξ; φξ) could be any positive finite
distribution, but we parameterize it with a spline flow.
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Note that, because of the conditioning on ξ, the first two factors in (13) is a Gaussian conjugate pair in u.
Thus, marginalization over u results in a Gaussian distribution, for which the marginals of fn only depends
on the corresponding input xn (Salimbeni et al., 2019):

q(fn|ξ; φ) = N (fn|µf (xn), σf (xn)ξ), (14)

where

µf (xn) = k⊤
n K−1

uum, (15)
σf (xn) = knn − k⊤

n

(
K−1

uu − K−1
uuSK−1

uu

)
kn, (16)

and kn = k(xn, Xu), knn = k(xn, xn), and Kuu = k(Xu, Xu).

Predictions on unseen data points, x∗, are then computed according to (see Appendix E)

p(f∗|y; x∗) = Eq(ξ; φξ) [N (f∗|µf (x∗), σf (x∗)ξ)] , (17)

We consider two distinct methods for training the variational parameters: (VI) variational inference, i.e.
maximizing the evidence lower bound to indirectly maximize the marginal likelihood, and (PP) maximum
likelihood estimation of the posterior predictive distribution (Jankowiak et al., 2020). Both models are,
however, trained by stochastic gradient descent and black-box variational inference (Bingham et al., 2019;
Wingate & Weber, 2013; Ranganath et al., 2014).

VI training. The marginal likelihood is

p(y; ηf , ηξ) =
∫

p(y, f , u, ξ; ηf , ηξ)dfdudξ =
∫

p(y|f)p(f |u, ξ; ηf )p(ξ; ηξ)dfdudξ. (18)

However, this integral is intractable—just as it was for the elliptical likelihood—since p(ξ; ηξ) is param-
eterized by a spline flow. To overcome this we use the same procedure as for the likelihood model and
approximate the marginal likelihood with the ELBO

LELBO(ηf , ηξ, φf , φξ) = Eq(f ,ξ; φ) [ log p(y|f)] − log DKL (q(u, ξ; φ) || p(u, ξ; η))

=
N∑

n=1
Eq(fn,ξ; φ) [log p(yn|fn)] − log DKL (q(u, ξ; φ) || p(u, ξ; η)) ,

(19)

Had the likelihood been Gaussian, the expectation Eq(fn,ξ; φ) [log p(yn|fn; ηf )] could have been computed
analytically. In our case, however, it is elliptical and we therefore use a Monte Carlo estimate instead.
Inserting the elliptical likelihood (10) from the previous section gives

L(η, φ) =
N∑

n=1
Eq(fn,ξ; φ)q(ζn; φζn )

[
log
(

N (yn; fn, T (ζ; ηω))
∣∣∣∣∂T (ζ; ηω)

∂ζ

∣∣∣∣−1
)]

−
N∑

n=1
DKL (q(ζn; φζn

)||p(ζ)) − log DKL (q(u, ξ; φ)||p(u, ξ; η)] .

(20)

PP training. To train directly on the predictive posterior of the elliptical process has the effect of moving
the posterior distribution q(fn|ξ; xn) inside the log (Jankowiak et al., 2020),

L(η, φ) =
N∑

n=1
Eq(ζn; φζn )q(ξ;φξ)

[
log
(

N (yn; µf (xn), σf (xn)ξ + T (ζ; ηω))
∣∣∣∣∂T (ζ; ηω)

∂ζ

∣∣∣∣−1
)]

−
N∑

n=1
DKL (q(ζn; φζn

)||p(ζ)) − log DKL (q(u, ξ; φ)||p(u, ξ; η)]

(21)

Note that when drawing a single Monte Carlo sample from q(fn, ξ; φ) the two methods are equivalent.
Similarly, the expectation over q(ξ; φξ) can be moved inside the log if a single Monte Carlo sample from
q(ξ; φξ) is used.
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3.3 Extension to heteroscedastic noise

We extend the elliptical likelihood by modeling heteroscedastic noise. First, recall from Section 3.1 that
we amortized the variational mixing distribution for the elliptical likelihood. Here, we describe how we can
model elliptic heteroscedastic noise by letting the parameters ηω of the mixing distribution of the likelihood
depend on the input location.

In heteroscedastic regression, the noise depends on the input location xn. For example, heteroscedastic
elliptical noise can be useful in a time series where the noise variance and tail-heaviness change over time.
Examples of this can be found in statistical finance (Liu et al., 2020) and robotics (Kersting et al., 2007). To
model this, we return to the idea of amortized variational inference and use a neural network with parameters
γω to represent the mapping from input location to spline flow parameters, xn 7→ ηωn

. To train the likelihood
(see Section 3.1) we used a variational approximation of the posterior base distribution but kept the same
flow as the mixing distribution. As shown later, in Section 4.1, this works well for homoscedastic noise.
For heteroscedastic noise, on the other hand, we got better results by instead keeping the base distribution
fixed and learning a different spline flow with parameters dependent on both input location and noise,
φωn

= g(xn, ϵn; γ̃ω).

We train the model by minimizing the ELBO

L(γω, γ̃ω) =
N∑

n=1
Eζn∼q(ηn; φωn ) [log p(ϵn| ωn)] − DKL (q(ωn; φωn

) || p(ωn; ηωn
)) . (22)

This model can be extended by including additional inputs to the spline flow.

3.4 Extension to multi-path data

Figure 4: Illustration of multi-path EP-data,
where the data includes multiple draws from one
single EP-prior.

Here, we look at data with multiple independent realiza-
tions from the same EP prior, called sample paths, see
Figure 4. For example, it could be multiple time series
generated by an underlying physical process like temper-
ature or pressure. Suppose we have M sample paths such
that every pair (ym, Xm) represent one of the trajecto-
ries. We create a model where the sample paths share
the same EP prior, i.e. have the same mixing distribu-
tion and kernel, but where each sample path has its own
approximate posterior

q(ξ; φm
ξ ) ≈ p(ξ|ym; ηξ),

q(u; φm
u ) ≈ p(u|ym; ηu).

(23)

By sharing the prior, the hope is that the model will be
less prone to overfitting. Also, the final EP prior repre-
sents a unified representation of all sample paths, which
may provide additional insight into the underlying pro-
cess.

The main challenge of this model is that each path has a separate tuple of variational parameters
(ηξ,m, mm, Sm), which can be problematic if there are many of them. We, again, resolve this by amor-
tizing the variational parameters:

φm
ξ = g(ym, Xm; γξ),

mm, Sm = g(ym, Xm; γu).
(24)

The functions g( · ; γξ) and g( · ; γu) are parameterized by neural networks with parameters γξ and γu in a
similar fashion as in Jafrasteh et al. (2021).
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Figure 5: The posterior predictive distribution when using an GP with elliptical noise, modeled with a spline
flow. The histograms show the learned and the true noise mixing distribution.

4 Experiments

We examine the variational elliptical processes using five different experiments. In the first experiment, we
investigate how well the elliptical likelihood (Section 3.1) recovers known elliptical noise in synthetic data.
In the second experiment, we investigate the benefits of using the sparse EP compared to the sparse GP
for regression on standard benchmarks. In the third experiment, we examine if using a EP is beneficial in
classification tasks. In the fourth experiment, we investigate the amortized elliptical processes described in
Section 3.3 to model heteroscedastic noise. In the fifth and last experiment we illustrate how we can use an
amortized multi-path EP ( Section 3.3) on a dataset with multiple similar trajectories.

Implementation. The mixing distribution of the variational EP uses a linear rational spline flow, where
we transform the likelihood flow p(ω) using Softplus and the posterior flow p(ξ) using a Softmax to ensure
that it is bounded from below and positive. We use a squared exponential kernel with independent length
scales in all experiments. See Appendix F for further implementation details. The code from the experiments
will be published on GitHub if the paper is accepted, with a link added here.

4.1 Noise identification

To examine how well the elliptical likelihood, described in Section 3.1, captures different types of elliptical
noises, we created three equal synthetic datasets, each with N = 300 data points, by using the function
fn = sin(3xn)/2, where x ∈ R is uniformly sampled, xn ∼ U(−2, 2). Each of the dataset has its own
independent elliptical noise ϵn, which are andomly sampled and added to the function, yn = fn + ϵn. For
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Figure 6: The predictive distribution of the latent function together with the 99 % credibility interval when
using (top row) an GP with elliptical noise, modeled with a spline flow and a (bottom row) a GP with
Gaussian noise. The histograms show the learned and the true noise mixing distribution.

each dataset, we trained a sparse variational GP with a variational elliptical likelihood. For the loss, we used
the parametric posterior (21).

Figure 5 illustrates the results from the experiments. The histograms illustrated the trained mixing distri-
bution p(ω; ηω) which we compare to the actual mixing distribution (the red curve) from which the noise
ϵn originated. The learned distribution follows the shape of the actual mixing distribution quite well, which
indicates that it is possible to learn a noise mixing distribution. The predictive posterior (plotted in Figure
21). The figure also presents the predictive posterior of the final models, demonstrating that the models
learned suitable kernel parameters simultaneously as they learned the likelihood mixing distribution.

Figure 6 compares the final mixing distribution using an elliptical likelihood and a Gaussian one. We see
that the Gaussian likelihood matches the heavier-tailed mixing distribution with a variance (ω = 0.4) that
is too wide. This results in a latent function confidence interval that is extremely narrow.

4.2 Regression

We investigated the effects of the elliptical process and the elliptical noise by running experiments on several
datasets from the UCI repository (Dua & Graff, 2017). The models we investigate, summarized in Table 1,
all use a GP prior, but for some models, we use an approximated EP posterior instead of the regular GP
posterior. We compare our model to the sparse variational GP described in Hensman et al. (2013b), which
we call VI-GP-GP and the parametric GP described in Jankowiak et al. (2020), which we call PP-GP-GP.
We also compare the models to an exact GP for all but the two largest datasets.

Figure 7 summarizes the results from the experiment by plotting the mean and standard deviation from the
outcome of ten randomly sampled training validation and test data points. The figures show a hold-out test
set’s mean squared error (MSE) and the negative test log-likelihood (LL). See Appendix G for more details.

An elliptic likelihood gives a lower negative log-likelihood than a Gaussian likelihood on most datasets. How-
ever, the advantage of an elliptical likelihood on the three smaller datasets is small at best. We hypothesize
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Figure 7: Predictive negative log-likelihood (LL) and mean-squared error (MSE) on the hold out sets from
the experiments (smaller is better). We show the average of the ten folds and standard deviation as a line.

Table 1: The different types of models we train on the regression datasets.

Name Approx Loss Likelihood Posterior

Exact GP Exact Marginal likelihood Gaussian Gaussian
VI-GP- GP Variational ELBO Gaussian Gaussian
VI-EP-GP Variational ELBO Elliptic Gaussian
VI-EP-EP Variational ELBO Elliptic Elliptic
PP-GP- GP Variational Parametric Gaussian Gaussian
PP-EP-GP Variational Parametric Elliptic Gaussian
PP-EP-EP Variational Parametric Elliptic Elliptic

that the elliptic likelihood may be too flexible and overfits the training data. Potentially, a less flexible
mixing distribution combined with stronger regularization might improve performance.

On the larger datasets the elliptic posterior yields lower negative log-likelihoods compared to a Gaussian
posterior, even though the extra benefit from only the elliptic likelihood is marginal. Theoretically, a Gaussian
prior combined with an elliptical likelihood should yield an elliptical poster. However, finding the correct
posterior during training might be challenging, which could be why we only see the benefit for the largest
datasets.

We notice that for the majority of the datasets, we get a lower negative predictive log-likelihood when we
train the predictive log-likelihood directly. This is true for both the GP and the EP models. However, the
improvement is not as clear when considering the mean square error, even though we see a considerably
decreased MSE on the three largest datasets.
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4.3 Binary classification
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Figure 8: The classification AUC (Area Under the Curve)
and accuracy score from the ten-fold cross validation (higher
is better).

To evaluate the EP on classifications tasks,
we perform variational EP and GP classi-
fication by simply replacing the likelihood
with a binary one. To derive the expecta-
tion in Equation 19 we first sample fn ∼
N (fn|µf (xn, σf (xn)ξ) and then derive the
likelihood as Ber(Sigmoid(fi)).

This realization is interesting since here, we do
not have a likelihood that captures the noise in
the data, but instead, the process itself has to
do it. Therefore, we can indicate the value of
the elliptical process itself without the ellipti-
cal noise. We compare two sparse EP mod-
els with a sparse GP model using 20 induc-
ing points. The two EPs differs in the prior
mixing distribution. We used a GP prior and
a EP posterior for the first model. For the
second model, we insted replace the GP prior
to an elliptical one. We can see the trainable
prior mixing distribution as using a contin-
uously scaled mixture of Gaussian processes,
which can be more expressive than a single GP.

We trained the models on three classification datasets, described in Appendix I. The results from a ten-fold
cross-validation is presented in Figure 8. From the area under the curve (AUC) score, we see that the EP
prior separates the two classes better. It seems that the variational elliptical distribution mainly contributes
to the higher AUC score. Training the mixing distribution of the EP prior did not improve the score.

4.4 Elliptic heteroskedastic noise
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Figure 9: The result form training a GP pro-
cess with heteroscedastic elliptical noise on a syn-
thetic dataset. The histogram shows the noise
resulting mixing distributions ad different xn.

In this experiment, we aimed to learn heteroscedastic
noise as described in Section 3.3 on a synthetic dataset of
150 samples, see Figure 9. We created the dataset using
the function f(x) = sin(5x)+x. We then added Student’s
t noise, ϵ(x) ∼ St(ν(x), σ(x), where we decreased the
noise scale by ν(x) = 25 − 11|x + 1|0.9, and the increased
the standard deviation by σ(x) = 0.5|x+1|1.6 +0.001. We
used a variational sparse GP with heteroscedastic noise as
described in Section 3.3.

We used six bins for the prior mixing distribution and
eight bins for the posterior mixing distribution, which re-
sulted in 19 and 35 parameters to predict, respectively.
We had more bins for the posterior mixing distribution
since we wanted the approximate posterior to be as flex-
ible as possible to fit the true posterior.

The results from the experiments are depicted in Figure 9
and show that the model was able to capture the varying
noise, both in term of the scale and the increasing heavi-
ness of the tail. A single spike in the mixing distribution
indicates that the noise is Gaussian, and the wider the
mixing distribution is, the heavier tailed the noise is.
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Figure 11: Posterior predictive distributions of the wind speed during one year at nine different locations in
Australia. They all share the same EP prior but have data-dependent posterior predictive distributions.

4.5 Multi-path data
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Figure 10: Negative predictive log
likelihood (LL) of the multi-EP com-
pare with modelling every trajectory
individually (ind EP).

Here we experimented with multi-path data, as described in Section
3.4. The dataset, (Young & Young, 2020), contains daily temper-
ature observations from J = 49 different locations in Australia in
2015. We randomly divided trajectories (time series) corresponding
to different locations into training and test sets. We used a multi-
path EP-process (Section 3.4) since we assumed that temperature
trajectories at different locations still have an underlying similarity
and thus correspond to sample paths from the same EP-prior. Fur-
thermore, we used the same elliptical likelihood for all trajectories.

The variational mixing distribution parameters φm
ξ are amortized

by a dense neural networks with two hidden layers, each with 512
hidden units. The parameters µm and Σm are amortized by a dense
neural networks with two hidden layers, with 512 and 1024 hidden
units for µm and Σm, respectively.

Figure 11 illustrate the resulting posterior distribution q(fm; φ) for
a some of the sample paths. We compare the negative log likelihood when training all trajectories individually
(Figure 10) and see an see a decrease in negative log likelihood when sharing the EP prior.

5 Related work

In general, attempts at modeling heavy-tailed stochastic processes modify either the likelihood or the stochas-
tic process prior—rarely both. Approximate inference is typically needed when going beyond Gaussian
likelihoods (Neal, 1997; Jylänki et al., 2011), e.g., for robust regression, but approximations that preserve
analytical tractability have been proposed (Shah et al., 2014).

Ma et al. (2019) describes a class of stochastic processes where the finite-dimensional distributions are only
defined implicitly as a parameterized transformation of some base distribution, thereby generalizing earlier
work on warped Gaussian processes (Snelson et al., 2004; Rios & Tobar, 2019). However, the price of this
generality is that standard variational inference is no longer possible. Based on an assumption of a Gaussian
likelihood, they describe an alternative based on the wake-sleep algorithm by Hinton et al. (1995).

Other attempts at creating more expressive GP priors include Maroñas et al. (2021), who used a GP in
combination with a normalizing flow, and Luo & Sun (2017), who used a discrete mixture of Gaussian
processes. Similar ideas combining mixtures and normalizing flows have also been proposed to create
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more expressive likelihoods (Abdelhamed et al., 2019; Daemi et al., 2019; Winkler et al., 2019; Rivero &
Dvorkin, 2020) and variational posteriors (Nguyen & Bonilla, 2014). Non-stationary extensions of Gaussian
processes, such as when modeling heteroscedastic noise, are quite rare but the mixture model of Li et al.
(2021) and the variational model of Lázaro-Gredilla & Titsias (2011) are two examples.

In the statistics literature, it is well-known that the elliptical processes can be defined as scale-mixtures of
Gaussian processes (Huang & Cambanis, 1979; O’Hagan, 1991; O’Hagan et al., 1999). However, unlike in
machine learning, little emphasis is placed on building the models from data (i.e., training). These models
have found applications in environmental statistics because of the field’s inherent interest in modeling spatial
extremes (Davison et al., 2012). Several works take the mixing distribution as the starting point, like us, and
make localized predictions of quantiles (Maume-Deschamps et al., 2017) or other tail-risk measures (Opitz,
2016).

6 Conclusions

The Gaussian distribution is the default choice in statistical modeling for good reasons. Even so, far from
everything is Gaussian—casually pretending it is, comes at a risk. The elliptical distribution offers a com-
putationally tractable alternative that can capture heavy-tailed distributions. The same reasoning applies
when comparing the Gaussian process to the elliptical process. We believe that a sensible approach in many
applications would be to start from the weaker assumptions of the elliptical process and let the data decide
whether the evidence supports gaussianity.

We constructed the elliptical processes as a scale mixture of Gaussian distributions. By parameterizing the
mixing distribution using a normalizing flow, we show how a corresponding elliptical process can be trained
using variational inference. The variational approximation we propose enables us to capture heavy-tailed
posteriors and makes it straightforward to create a sparse variational elliptical process that scales to large
datasets.

We performed experiments on regression and classification. In addition, we compared the elliptical processes
with the Gaussian process. Our experiments show that the elliptical process achieves a lower predictive log
likelihood on the majority of the datasets, in particular the larger ones (n > 10000).

The added flexibility of the elliptical processes could benefit a range of applications, both classical and new.
However, advanced statistical models are not a cure-all, and one needs to avoid over-reliance on such models,
especially in safety-critical applications.
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A The elliptical distribution

The Gaussian distribution—the basic building block of Gaussian processes—has several attractive properties
that we wish the elliptical process to inherit, namely (i) closure under marginalization, (ii) closure under
conditioning, and (iii) straightforward sampling. This leads us to consider the family of consistent elliptical
distributions. Following Kano (1994), we say that a family of elliptical distributions {p(u(yN ); η) | N ∈ N}
is consistent if and only if ∫ ∞

−∞
p (u(yN+1); η) dyN+1 = p (u(yN ); η) . (25)

In other words, a consistent elliptical distribution is closed under marginalization.

Far from all elliptical distributions are consistent, but the complete characterization of those that are is
provided by the following theorem (Kano, 1994).

Theorem 1 An elliptical distribution is consistent if and only if it originates from the integral

p(u; η) = |Σ|− 1
2

∫ ∞

0

(
1

ξ2π

)N
2

e
−u
2ξ p(ξ; ηξ)dξ, (26)

where ξ is a mixing variable with the corresponding, strictly positive finite, mixing distribution p(ξ; η), that
is independent of N .

This shows that consistent elliptical distributions p(u; η) are scale-mixtures of Gaussian distributions, with
a mixing variable ξ ∼ p(ξ; η). Note that any mixing distribution fulfilling Theorem 1 can be used to define a
consistent elliptical process. We recover the Gaussian distribution if the mixing distribution is a Dirac delta
function and the Student’s t distribution if it is a scaled chi-square distribution.

If p(u; η) is a scale-mixture of normal distributions, it has the stochastic representation

Y| ξ ∼ N (µ, Σξ), ξ ∼ p(ξ; η). (27)

By using the following representation of the elliptical distribution,

Y = µ + Σ1/2Zξ1/2, (28)

where Z follows the standard normal distribution, we get the mean

E[Y] = µ + Σ1/2E [Z] E[ξ1/2] = µ (29)

and the covariance

Cov(Y) = E
[
(Y − µ)(Y − µ)⊤]

= E
[
(Σ1/2Z

√
ξ)(Σ1/2Z

√
ξ)⊤
]

= E
[
ξΣ1/2ZZ⊤(Σ1/2)⊤

]
= E [ξ] Σ. (30)

The variance is a scale factor of the scale matrix Σ. To get the variance we have to derive E [ξ]. Note that if ξ
follows the inverse chi-square distribution, E[ξ] = ν/(ν − 2). We recognize form the Student’s t distribution,
where Cov(Y) = ν/(ν − 2)Σ.

B Conditional distribution

To use the EP for predictions, we need the conditional mean and covariance of the corresponding elliptical
distribution, which are derived next. We partition the data as y = [y1, y2], where y1 is the N1 observed
data points, y2 is the N2 data points to predict, and N1 + N2 = N . We have the following result:
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Proposition 1 If the data y = [y1, y2] originate from the consistent elliptical distribution in (3), the con-
ditional distribution originates from the distribution

py2|u1(y2) = cN1,η∣∣Σ22|1
∣∣ 1

2 (2π)
N2

2

∫ ∞

0
ξ− n

2 e−(u2|1+u1) 1
2ξ p(ξ; η)dξ (31)

with the conditional mean E[y2|y1] = µ2|1 and the conditional covariance

Cov[Y2|Y1 = y2] = E[ξ̂]Σ22|1, ξ̂ ∼ ξ|y1, (32)

where u1 = (y1 − µ1)⊤Σ−1
11 (y1 − µ1), u2|1 = (y2 − µ2|1)⊤Σ−1

22|1(y2 − µ2|1), and cN1,η is a normalization
constant. The conditional scale matrix Σ22|1 and the conditional mean vector µ2|1 are the same as the mean
and the covariance matrix for a Gaussian distribution. The proof is derived in Appendix B.

The conditional distribution is guaranteed to be a consistent elliptical distribution but not necessarily the
same as the original one—the shape depends on the training samples. (Recall that consistency only concerns
the marginal distribution.) To prove Proposition 1, we partition the data y as [y1, y2], so n1 data points
belong to y1, n2 data points belong to y2 and n1 + n2 = n.

Proof of proposition 1. The joint distribution of [y1, y2] is p(y1, y2|ξ)p(ξ; η) and the conditional distri-
bution of y2, given y1 is p(y2|y1, ξ)p(ξ|y1M ; η).

For a given ξ, p(y2|y1, ξ) is the conditional normal distribution and so

p(y2|y1, ξ) ∼ N (µ2|1, Σ22|1ξ̂), ξ̂ ∼ p(ξ|y1; η) (33)

where,

µ2|1 = µ2 + Σ21Σ−1
11 (y1 − µ1) (34)

Σ22|1 = Σ22 − Σ21Σ−1
11 Σ21, (35)

the same as for the conditional Gaussian distribution. We obtain the conditional distribution p(ξ|y1; η) by
remembering that

p(y1|ξ) ∼ N (µ1, Σ11ξ). (36)
Using Bayes’ Theorem we get

p(ξ|y1; η) ∝ p(y1|ξ)p(ξ; η)

∝ |Σ11ξ|−1/2 exp
{

−u1

2ξ

}
p(ξ; η)

∝ ξ−N1/2 exp
{

−ξ
u1

2

}
p(ξ; η). (37)

Recall that u1 = (y − µ1)⊤Σ−1
11 (y − µ1)). We normalize the distribution by

c−1
N1,η =

∫ ∞

0
ξ−N1/2 exp

{
−u1

2ξ

}
p(ξ; η)dξ (38)

The conditional mixing distribution is

p(ξ|y1; η) = cN1,ηξ−N1/2 exp
{

−u1

2ξ

}
p(ξ; η) (39)

The conditional distribution of y2 given y1 is derived by using the consistency formula

p(y2|y1) = 1
|Σ22|1|1/2(2π)N2/2

∫ ∞

0
ξ−N2/2 exp −

u2|1

2ξ
p(ξ|y1)dξ, (40)

where u2|1 = (y2 − µ2|1)⊤Σ−1
22|1(y2 − µ2|1). Using (39) we get

p(y2|y1) = cN1,η

|Σ22|1|1/2(2π)N2/2

∫ ∞

0
ξ−n/2e−(u2|1+u1)/(2ξ)p(ξ; η)dξ (41)

20



Under review as submission to TMLR

C Derivation of the confidence regions of the elliptical process

We derive the confidence region of the elliptical process, by using Monte Carlo approximation of the integral,
as

p(−zσ < x < zσ) = 1
σ

√
2π

∫ zσ

−zσ

∫ ∞

0
ξ−1/2e−x2/(ξ2σ2)p(ξ)dξdx (42)

= 1
σ

√
2π

∫ zσ

−zσ

1
m

m∑
i=1

ξ
−1/2
i e−x2/(2ξiσ2)dx (43)

= 1
σm

√
2π

m∑
i=1

ξ
−1/2
i

∫ zσ

−zσ

e−x2/(2ξiσ2)dx (44)

= 2
m

√
π

m∑
i=1

∫ z√
2ξi

0
e−u2

du (45)

= 1
m

m∑
i=1

erf
(

z√
2ξi

)
(46)

For every mixing distribution we can derive the confidence of the prediction. It is the number of samples m
we take that decides the accuracy of the confidence.

D Training the elliptical process

For a Gaussian process the posterior of the latent variables f is

p(f |y) ∝ p(y|f)p(f). (47)

Here, the prior p(f |x) ∼ N (0, K), is a Gaussian process with kernel K and the likelihood p(y|x, f) ∼
N (f , σ2I) is Gaussian. The posterior derives to

p(f |y) ∼ N
(

f |K
(
K + σ2I

)−1 y,
(
K−1 + σ−2I

)−1
)

(48)

and we can derive the predictive distribution of an arbitrary input location x∗ by

p(f∗|y) =
∫

p(f∗|f)p(f |y)df , (49)

where p(f∗|f , x, x∗) is the conditional distribution, which is again Gaussian with

N
(
f∗|k⊤

∗ (k + σ2I)−1y, k∗∗ − k⊤
∗ (K + σ2I)−1k∗

)
. (50)

We want to derive the predictive distribution for the elliptical process, but the problem is that the posterior
is intractable. In order to get a tractable posterior, we train the model using variational inference, where we
approximate the intractable posterior with a tractable one,

p(f , ξ, ω|y; η) ≈ q(f , ξ, ω; φ) = q(f |ξ; φf )q(ξ; φξ). (51)

Here, q(f |ξ; φ) ∼ N (mf , Sf ξ), where mf and Sf are variational parameters, and q(ξ; φξ) and q(ω; φω) are
parameterized with any positive distribution such as a normalizing flow. We use this approximation when
we derive the predictive distribution

p(f∗|y) =
∫

p(f∗|f , ξ; η)p(f , ξ|y; η)dfdξ (52)

=
∫

p(f∗|f , ξ; ηf )p(f , ξ|y; η)dfdξ (53)

≈
∫

p(f∗|f , ξ; ηf )q(f |ξ; φf )q(ξ; φξ)dfdξ. (54)

(55)
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If we first take a look at the prior distribution p(f∗, f |ξ) when ξ is constant, which is[
f∗

f

]
ξ ∼ N

(
0,

[
k∗∗ k⊤

∗
k∗ K

]
ξ

)
, (56)

with the the conditional distribution

p(f∗|f , ξ; η) = N
(
k⊤

∗ K−1f ,
(
k∗∗ − k⊤

∗ K−1k∗
)

ξ
)

(57)
= N

(
a⊤f , bξ

)
. (58)

Here, a⊤ = k⊤
∗ K−1 and b = k∗∗ − k⊤

∗ K−1k∗. We use this expression and the variational approximation
when we derive the posterior predictive distribution,

p(f∗|y) =
∫

p(f∗|f , ξ; η)q(f |ξ; φf )q(ξ; φξ)dfdξ (59)

= Eq(ξ; φξ)

[∫
p(f∗|f , ξ)q(f |ξ; φf )df

]
(60)

= Eq(ξ; φξ)

[∫
N
(
f∗|a⊤f , bξ

)
N (f |m, Sξ) df

]
(61)

= Eq(ξ; φξ)

[∫
N
(
f∗|a⊤m, a⊤Saξ + bξ

)]
(62)

= Eq(ξ; φξ) [N (f∗|m∗, s∗ξ)] (63)

where

m∗ = a⊤m (64)
s∗ = a⊤Sa + b (65)

and we get the covariance by E[ξ]s∗.

Optimizing the ELBO

We train the model by optimizing the evidence lower bound (ELBO) given by

L(φ, η) = Eq(f |ξ; φf )q(ξ; φξ)q(ω; φω) [log p(y, f , ξ, ω; η) − log (q(f |ξ; φf )q(ξ; φξ)q(ω; φω))] . (66)

The model is implemented in Pyro (Bingham et al., 2018), see Section F for details.

E Sparse elliptical processes

With the variational inference framework we can create a sparse version of the model∫
p(f , u, ξ; η)dξ =

∫
p(f |u, ξ; ηf )p(u|ξ; ηu)p(ξ; ηξ)dξ, (67)

where u are outputs of the elliptical process, located at the inducing inputs xu. We approximate the
posterior with

p(f , u, ξ|y; η) ≈ p(f |u, ξ; ηf )q(u|ξ; φu)q(ξ; φξ) (68)
The posterior of the distribution is given by

p(f∗|y) =
∫

p(f∗|f , u, ξ; η)p(f , u, ξ|y; η)dfdudξ

≈
∫

p(f∗|f , u, ξ; η)p(f |u, ξ; ηf )q(u|ξ; φu)q(ξ; φξ)dfdudξ

=
∫ [∫

p(f∗|f , u, ξ; η)p(f |u, ξ; ηf )df

]
q(u|ξ; φu)q(ξ; φξ)dudξ (69)
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We can simplify the inner expression by using the fact that the elliptical distribution is consistent,∫
p(f∗|f , u, ξ; η)p(f |u, ξ; η)df =

∫
p(f∗, f |u, ξ; η)df = p(f∗|u, ξ; η). (70)

Hence, Equation (69) is simplifies to

p(f∗|y) =
∫

p(f∗|u, ξ; η)q(u|ξ; φu)q(ξ; φξ)dudξ, (71)

where q(u|ξ; φu) = N (mu, Suξ) with the variational parameters mu and Su, and ξ is parameterized, e.g.,
by a normalizing flow

Finally, we obtain the posterior p(f∗|x∗) = Eq(ξ;φξ) [N (fn|µf (x∗), σf (x∗))] where

µf (xn) = k⊤
n K−1

uum (72)
σf (xn) = knn − k⊤

n

(
K−1

uu − K−1
uuSK−1

uu

)
kn. (73)

Here kn = k(xn, Xu), knn = k(xn, xn), and Kuu = k(Xu, Xu).

F Implementation: variational inference

We used the Pyro library (Bingham et al., 2018), which is a universal probabilistic programming language
(PPL) written in Python and supported by PyTorch on the backend.

In Pyro, we trained a model with variational inference (Kingma & Welling, 2013) by creating "stochas-
tic functions" called model and a guide, where the model samples from the prior latent distributions
p(f , ξ, ω; η), and the observed distribution p(y|f , ω), and the guide samples the approximate posterior
q(f |ξ; φf )q(ξ; φξ)q(ω; φω). We then trained the model by minimizing the ELBO, where we simulta-
neously optimized the model parameters η and the variational parameters φ. (See more details here,
https://pyro.ai/examples/svi_part_i.html.)

To implemented the model in Pyro, we created the guide and the model (see Algorithm 3), which we did by
building upon the already implemented variational Gaussian process. We used the guide and the model to
derive the evidence lower bound (ELBO), which we then optimized with stochastic gradient descent using
the Adam optimizer (Kingma & Ba, 2015).

We used the already implemented rational linear spline flow for the normalizing flow in Pyro.

Algorithm 1 PyTorch implementation of the variational sparse elliptical process (VI-EP-EP).
1: procedure model(X, y)
2: Sample ξ = from p(ξ; ηξ)( Normalizing flow )
3: Sample u from N (0, ξKuu)) ▷ Take a sample from the latent u, ξ and ω

4: Derive the variational posterior
N∏

n=1
q(fn|ξ; φ) = N (µf (xn), σf (xn)ξ). ▷ During training ξ is sampled from

the posterior/guide.
5: Take a Monte-Carlo sample f̂n from each q(fn|ξ; φ)
6: Sample for each xn ζn = from N (0, 1)
7: Derive ωn = T (ζn; ηω)

8: Derive the log probability of
N∏

n=1
N (yn|f̂n, ωn) ▷ during training ωn is sampled from the posterior/guide.

9: end procedure
10: procedure guide
11: Sample ξ = from q(ξ; φξ)( Normalizing flow )
12: Sample u, from N (m, Sξ))
13: For each xn sample ζ from N (µζ((yn − fn)2), σζ((yn − fn))).
14: end procedure
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Algorithm 2 PyTorch implementation of the variational sparse parametric elliptical process (PP-EP-EP).
1: procedure model(X, y)
2: Sample ξ = from p(ξ; ηξ)( Normalizing flow )
3: Sample u from N (0, ξKuu)) ▷ Take a sample from the latent u, ξ and ω

4: Derive the variational posterior
N∏

n=1
q(fn|ξ; φ) = N (µf (xn), σf (xn)ξ). ▷ During training ξ is sampled from

the posterior/guide.
5: For each xn sample ζn = from N (0, 1)
6: Derive ωn = T (ζn; ηω)

7: Derive the log probability of
N∏

n=1
N (yn|µf (xn), σf (xn)ξ + ωn) ▷ during training ωn is sampled from the

posterior/guide.
8: end procedure
9: procedure guide

10: Sample ξ = from q(ξ; φξ)( Normalizing flow )
11: Sample u, from N (m, Sξ))
12: For each xn sample ζ from N (µζ(z), σζ(z). Were z = [(yn − µf (xn))2), σf (xn)].
13: end procedure

G Regression experiment setup

In the regression experiments in section 4.2 we ran all experiments using the Adam optimizer (Kingma
& Ba, 2015) with a learning rate of 0.003 that was sequentially decreased during the training. For all
experiments, we created ten random train/val/test splits with the proportions 0.75/0.1/0.15, except for the
two smallest datasets (machine and mpg), where we instead evaluated the model on the training data (the
split proportions was train/test =0.75/0.25). We used the model with the lowest predictive probability on
the validation set. For the large datasets (n > 1000), we used 500 inducing points and a batch size of 1000.
For the small datasets, we used 100 inducing points and no batching. We run the training for the large
dataset during 250 epochs and the small dataset for 5000 epochs. For the full GP, we used a learning rate
of 0.01, which we decreased during the training. For the large datasets (n>1000), we trained the full GP on
a single split.

Elliptical process setup. The likelihood mixing distribution uses a spline flow with 9 bins and Softplus
as its output transformation. The elliptic posterior mixing distribution uses a spline flow with 5 bins and a
Sigmoid otput transformation. The reason we use a Sigmoid for the process is that we want to regularize it
more since we hypothesis it is more difficult to learn. The neural network of the posterior likelihood mixing
distribution uses a two layer neural network with 32 hidden dimensions.

H Results

The regression results from figures 7 are presented in tables 2 and 3.

Table 2: Predictive Mean Square Error (MSE) on the hold out sets from the experiments. We show the
average of the ten runs and one standard deviation in parenthesis.

Machine MPG Concrete Elevators California Kin40k Protein

PP-EP-EP 0.472 (0.516) 0.111 (0.029) 0.131 (0.025) 0.166 (0.006) 0.230 (0.013) 0.106 (0.004) 0.506 (0.007)
PP-EP-GP 0.503 (0.478) 0.121 (0.027) 0.123 (0.009) 0.170 (0.006) 0.237 (0.013) 0.139 (0.003) 0.533 (0.012)
PP-GP-GP 0.395 (0.304) 0.125 (0.019) 0.154 (0.015) 0.173 (0.006) 0.249 (0.013) 0.176 (0.006) 0.575 (0.006)
VI-EP-EP 0.580 (0.518) 0.108 (0.022) 0.134 (0.024) 0.155 (0.005) 0.255 (0.015) 0.154 (0.003) 0.651 (0.009)
VI-EP-GP 0.274 (0.460) 0.117 (0.025) 0.122 (0.013) 0.160 (0.005) 0.261 (0.015) 0.152 (0.004) 0.647 (0.013)
VI-GP-GP 0.261 (0.219) 0.121 (0.027) 0.119 (0.015) 0.157 (0.005) 0.251 (0.011) 0.170 (0.003) 0.652 (0.013)
Exact GP 0.417 (0.417) 0.123 (0.123) 0.098 (0.098) 0.175 (0.175) 0.227 (0.227)
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Table 3: Negative log likelihood on the hold out sets from the experiments. We show the average of the ten
runs and one standard deviation in parenthesis.

Machine MPG Concrete Elevators California Kin40k Protein

PP-EP-EP -0.053 (0.215) 0.168 (0.076) 0.247 (0.075) 0.393 (0.012) 0.453 (0.015) 0.247 (0.010) 0.975 (0.007)
PP-EP-GP -0.206 (0.315) 0.215 (0.087) 0.180 (0.062) 0.397 (0.011) 0.464 (0.016) 0.312 (0.005) 1.006 (0.010)
PP-GP-GP -0.403 (0.245) 0.220 (0.066) 0.359 (0.050) 0.426 (0.009) 0.554 (0.017) 0.387 (0.007) 1.060 (0.004)
VI-EP-EP 0.237 (0.559) 0.240 (0.082) 0.379 (0.085) 0.466 (0.011) 0.618 (0.020) 0.527 (0.010) 1.209 (0.006)
VI-EP-GP -0.134 (0.250) 0.265 (0.066) 0.340 (0.042) 0.481 (0.005) 0.633 (0.038) 0.558 (0.009) 1.207 (0.009)
VI-GP-GP -0.063 (0.259) 0.339 (0.091) 0.339 (0.052) 0.491 (0.010) 0.730 (0.018) 0.608 (0.005) 1.210 (0.009)
Exact GP -0.135 (-0.135) 0.438 (0.438) 0.180 (0.180) 0.520 (0.520) 0.771 (0.771)

I Datasets

Elevators dataset (Dua & Graff, 2017) is obtained from the task of controlling a F16 aircraft, and the
objective is related to an action taken on the elevators of the aircraft according to the status attributes of
the aeroplane.

Physicochemical properties of protein tertiary structure dataset The data set is taken from CASP
5-9. There are 45730 decoys and size varying from 0 to 21 armstrong.

California housing dataset was originally published by Pace & Barry (1997). There are 20 640 samples
and 9 feature variables in this dataset. The targets are prices on houses in the California area.

The Concrete dataset (Yeh, 1998) has 8 input variables and 1030 observations. The target variables are
the concrete compressive strength.

Machine CPU dataset (Kibler et al., 1989) where the target value is the relative performance of the
CPU. The dataset consist of 209 samples with nine attributes.

Auto MPG dataset (Alcalá-Fdez et al., 2011) originally from the StatLib library which is maintained at
Carnegie Mellon University. The data concerns city-cycle fuel consumption in miles per gallon and consists
of 392 samples with five features each.

Pima Indians Diabetes Database (Smith et al., 1988) originally from the National Institute of Diabetes
and Digestive and Kidney Diseases. The objective of the dataset is to diagnostically predict whether or not a
patient has diabetes, based on certain diagnostic measurements included in the dataset. The dataset consist
of 768 samples with eight attributes.

The Cleveland Heart Disease dataset consists of 13 input variables and 270 samples. The target
classifies whether a person is suffering from heart disease or not.

The Mammographic Mass dataset predicts the severity (benign or malignant) of a mammographic
mass lesion from BI-RADS attributes and the patient’s age. This dataset consists of 961 with six attributes.
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