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Abstract
Seq2seq language generation models are001
trained with multiple domains in a continue002
learning manner, where data from each domain003
being observed in an online fashion. However,004
continual learning studies often suffer from005
catastrophic forgetting, a persistent challenge006
for lifelong learning. To handle this problem,007
existing work has leveraged experience replay008
or dynamic architecture to consolidate the past009
knowledge, which however results in incremen-010
tal memory space or high computational cost.011

In this work, we propose an innovative frame-012
work PNLLL that remedies catastrophic forget-013
ting with a power normalization on NLP trans-014
former models. Specifically, PNLLL leverages015
power norm to achieve a better balance between016
past experience rehearsal and new knowledge017
acquisition. These designs enable the knowl-018
edge transfer to new tasks while memorizing019
the experience of past ones. Our experiments020
on, paraphrase generation, show that PNLLL021
outperforms SOTA models by a considerable022
margin and remedy the forgetting greatly.023

1 Introduction024

Seq2seq language generation is the essential frame-025

work for many tasks such as machine translation,026

summarization, paraphrase, question answering,027

dialog response generation. In these applications,028

models are typically trained offline using annotated029

data from a fixed set of domains. However, in real-030

world applications, it is desirable for the system to031

expand its knowledge to new domains and function-032

alities, i.e., continuously inquiring new knowledges033

without forgetting the previously learned skills,034

which is called lifelong learning (LLL) (Ring et al.,035

1994; Chaudhry et al., 2019).036

Neural networks struggle to learn continuously037

and experience catastrophic forgetting (CF) when038

optimized on a sequence of learning problems (Mc-039

Closkey and Cohen, 1989; French, 1999). Some040

past works in LLL demonstrated that discriminative041

models can be incrementally learnt for a sequence 042

of tasks (Chen et al., 2020; Kirkpatrick et al., 2017). 043

In contrast, under generative settings such as lan- 044

guage generation, there has been limited research. 045

Recent works in this area include Mi et al. (2020) 046

and Madotto et al. (2020). 047

Existing work in LLL adopts the replay based 048

methods (Pellegrini et al., 2019), such as Latent 049

Replay, or regularization based methods (Huszár, 050

2018), such as Elastic Weight Consolidation 051

(EWC) (Kirkpatrick et al., 2017). Although they 052

can rectify CF in several scenarios, they have some 053

limitations. The replay-based methods require stor- 054

ing samples from previous tasks, and regularization 055

methods often view all the model parameters as 056

equally important and regularize them to the same 057

extent. In addition, those approaches do not explic- 058

itly address the data distribution shift that causes 059

the CF problem. The semantic gap between the em- 060

bedding spaces of two domains is a leading reason 061

of CF (Wang et al., 2021). 062

In this work, we propose a novel method, power 063

norm based lifelong learning (PNLLL) to allevi- 064

ate CF in continuous seq2seq language generation. 065

Essentially, power norm, proposed by Shen et al. 066

(2020) is a variant of layer norm (Ba et al., 2016) or 067

batch normalization (Ioffe, 2017). It is proposed to 068

overcome problems of batch normalization, where 069

large distances between batch statistics leads to 070

large fluctuations among batches and thus poor per- 071

formances in inferences and layer normalization, 072

where running statistics is calculated at batch level, 073

leading large number of outliers being weighted 074

long sentence. In contrast, power normalization 075

overcomes problems of both batch and layer nor- 076

malization by enforcing unit quadratic mean for the 077

activations and incorporating running statistics for 078

the quadratic mean of the signal in the process of 079

continual learning. Such designing and incorpora- 080

tion enables our lifelong learning improve general- 081

ization performances, maintaining a better balance 082
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Figure 1: Overview of PNLLL for LLL Seq2seq Language Generation. Figure best viewed in color.

between stability and plasticity in our experiments,083

showing the effectiveness of PNLLL.084

Our main contributions are:085

• We design an innovative algorithm based on086

power norm to store distributions of previous087

tasks while training for the current task for088

LLL seq2seq generation.089

• Our experiments on seq2seq generation bench-090

mark datasets show that our model achieves091

SOTA in current task learning and reduces092

forgetting rates for previous tasks.093

2 Proposed Method094

In this section, we introduce our proposed frame-095

work power norm based lifelong learning (PNLLL).096

In LLL scenario, models are trained for a sequence097

of domains or tasks. The model of the first task098

is trained using pretrained models. Starting from099

the second model, the network is initialized with100

parameters of its previous model.101

2.1 System Architecture102

As shown in Figure 1, input data of task1 with103

source and target pairs are passed into transformer-104

based encoder and decoder for training (BART is105

the encoder and decoder in our context). Power nor-106

malization is employed to get running statistics of107

quadratic means rather than the usual batch means108

and variances. They are updated with a new types109

of back propagation for better estimate distributions110

of each layer’s parameters. Trained models’ param-111

eters are deployed as initialization of later models.112

2.2 Power Normalization113

Power normalization (PN), mentioned in Introduc-114

tion, enforces unit quadratic mean for the activation115

to avoid fluctuations brought by using batch nor-116

malization in tasks involving small batches (seen of-117

ten in NLP) (Shen et al., 2018). It has been proven118

effective in both machine translation and language 119

modeling. In this work, we make revisions so as to 120

integrate it into our life-long learning framework. 121

Firstly, we still follow Shen et al. (2018) to en- 122

force quadratic mean for the activations rather than 123

enforce unit variance in order to overcome large 124

variations in the mean. In addition, we pass through 125

running statistics for the quadratic mean during 126

model initialization from past tasks to next ones to 127

facilitate knowledge transfer among related tasks. 128

The above modifications aim to seeking a robust 129

model training process against outlier and noise, 130

meanwhile maintaining stability in parameter up- 131

dating and consistency of two continuous models. 132

2.2.1 Replacing batch mean and variance 133

with unit quadratic mean 134

Technically, for both batch normalization and layer 135

normalization, in their forward inference, a batch 136

norm (BN) layer is added to calculate mean and 137

variances batch by batch as following, 138

X̂ =
X− µB
σB

, Y = γ ⊙ X̂+ β 139

s.t. µB =
1

B

B∑
i=1

xi, σ2B =
1

B
(xi − µB)

2 140

where B refers to batch, xi, X and yi, Y refer 141

to input and output of BN, respectively. The BN 142

layer enforces zero mean and unit variance and 143

then performs an affine transformation by scaling 144

X̂ with γ and β. 145

In the PN framework, the feature embedding 146

is scale by quadratic means of the batch and the 147

operation of PN is formally defined as 148

X̂ =
X
ψB

, Y = γ ⊙ X̂+ β 149

s.t. ψ2
B =

1

B

B∑
i=1

x2i (1) 150
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where ψ2 refers to quadratic mean. Compared with151

BN, there are two modifications in PN: 1) the152

means of the batch µB are removed from the nor-153

malization operation; 2) the variance of the batch154

σB is replaced by the quadratic mean of batch ψB .155

This is becaue enforcing zero-mean and variance in156

BN may result in instability due to a large variation157

of the mean in the NLP data (Shen et al., 2020).158

Thus, PN performs more stable on the NLP tasks.159

In our lifelong learning setting, we address the160

catastrophic forgetting via balancing the learned pa-161

rameters on previous tasks and new ones. Besides162

updating running statistics within current tasks, we163

update running statistics of model training based on164

those of previous tasks as well. Formally, we pro-165

pose an adaptive forward pass for passing through166

running statistics in the sequential tasks,167

X̂ =
X

ψ(t−1)
Y(t) = γ ⊙ X̂(t) + β168

s.t. (ψ(t))2 = (ψ(t−1))2 + (1− α)(ψ2
B − (ψ(t−1))2)169

where t refers to current task and t − 1 refers to170

previous task, α ∈ (0, 1) is a moving average co-171

efficient. When α ≈ 0, the equation reduces to172

per-batch power normalization, while α ≈ 1, the173

PN on current tasks relies much on the previous174

experiences. Similarly, since forward pass evolves175

running statistics, the backward propagation can-176

not be accurately computed. We resort to similar177

strategies to do the gradient approximation in the178

backward propagation as following,179

ν = νt−1(1− (1− α)Γt) + (1− α)Λ(t) (2)180

where Γt = 1
B

∑B
i=1 x̂

(t)
i x̂

(t)
i and Λt =181

1
B

∑B
i=1

∂L
∂x̂

(t)
i

x̂
(t)
i . Note that the gradient approx-182

imation in Eq. (2) is proved to be bounded by a183

constant (see Theorem 4 in Shen et al. (2020)),184

which facilitates the robust training process.185

3 Experiments on Paraphrase Generation186

We apply PNLLL to the paraphrase generation task.187

3.1 Experimental Setups188

For paraphrase generation, we use three existing189

paraphrase datasets, Quora, Twitter and Wiki_data,190

in a sequential fashion, that is, the model is first191

trained on the Quora data, then Twitter, then192

Wiki_data. We name this experimental setting as193

QTW. Statistics of the data are provided in Table 1.194

Quora Twitter Wiki_Data total
train 111,947 85,970 78,392 276,309
valid 8,000 1,000 8,154 17,154
test 37,316 3,000 9,324 49,640

Table 1: Dataset stats for QTW

We use a current SOTA generation model, BART, 195

as the seq2seq backbone in our LLL framework, 196

as well as the other methods. We compare our ap- 197

proach with the following baselines. 198

• Finetune: for each task, each model is ini- 199

tialized with the model obtained until the last 200

task, and then fine-tuned with the data of the 201

current task. 202

• Full: we train a model with all the three data 203

sets together. 204

• EWC: the model is trained with the base 205

EWC model on the data from the current task 206

with the initialization of the previous model. 207

See Appendix for details on the implementation. 208

For evaluation metrics, we use Bleu4, RougeL and 209

Meteor for the generation task. To measure the for- 210

getting rates of different methods, we apply models 211

trained using new data to past data. 212

3.2 Results 213

Evaluating on the Current Task 214

For QTW setting, Table 2 shows results for mod- 215

els evaluated on the data corresponding to the cur- 216

rent task. 217

The first three lines are results from independent 218

models, that is, the BART models are trained on 219

only one of datasets in QTW. As expected, mod- 220

els trained on the matched domain achieve higher 221

performance than otherwise. And there is a large 222

performance drop when using models trained from 223

mismatched domains. This is mostly because of the 224

different writing styles of the three datasets. Wiki 225

is the most formal one, and Twitter is the most 226

informal one. 227

In the fourth row, the BART model is trained 228

in finetune mode, i.e., in QTW order, the model 229

is initialized with that trained in the previous do- 230

main and fine tuned using the subsequent domain. 231

We can see that results on both Twitter and Wiki 232

test data are slightly lower than those when models 233

are trained directly on the corresponding training 234

data. Again, this suggests pretraining the model 235
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Quora Test Twitter Test Wiki Test
Models bleu4 rougeL meteor bleu4 rougeL meteor bleu4 rougeL meteor
Quora-trained 30.11 55.85 57.17 2.12 6.13 5.49 4.51 11.21 12.13
Twitter-trained 3.18 11.46 9.01 35.47 57.49 54.57 4.60 9.76 7.50
Wiki_data-trained 22.38 43.44 46.23 9.32 17.93 21.03 42.12 73.86 73.10
Finetune 30.11 55.85 57.17 35.79 56.32 54.93 42.12 73.86 73.10
EWC 30.25 56.16 57.98 . 33.52 54.41 54.21 42.15 73.53 73.59
PNLLL 31.20 58.89 60.33 34.62 57.87 55.12 43.84 74.79 73.72
Full 33.99 59.56 61.67 38.56 58.76 56. 46.86 76.59 75.91

Table 2: Results of model evaluations on QTW setting

Quora test with Model trained with Twitter
Models bleu4 rougeL meteor
Quora-trained 30.11 55.85 57.17
Finetune 15.80 46.59 47.31
EWC 15.63 41.53 46.03
PNLLL 17.58 47.88 49.20

Quora test with Model trained with Wiki_data
Models bleu4 rougeL meteor
Quora-trained 30.11 55.85 57.17
Finetune 19.07 51.76 55.95
EWC 19.63 49.35 53.02
PNLLL 20.34 52.59 56.06

Twitter test with Model trained with Wiki_data
Models bleu4 rougeL meteor
Twitter-based 35.79 56.32 54.93
Finetune 14.09 37.97 45.89
EWC 14.84 38.65 46.33
PNLLL 16.49 39.93 49.28

Table 3: Results of all the methods when testing new
models on previous domains (from 2nd row to the last).

with mismatched data is not beneficial. The results236

from the EWC baseline are not consistently bet-237

ter than the finetune method, showing the limited238

effectiveness of EWC regularization. In contrast,239

our proposed approaches obtain better results than240

Finetune. Even for the first task, Quora, we ob-241

serve around 1% better results for all three metrics.242

This demonstrates that even for pretrained models,243

regularization shows positive effect. For the later244

tasks, twitter data obtains about 3-4% increase and245

wiki data even obtains around 7-9% increase. This246

shows the effectiveness of PNLLL. In addition, six247

out of nine results from PNLLL win about 1% over248

MR. This shows that further regularization with249

quadratic penalty has positive impact on selection250

of important parameters. The last row is the results251

of Full. Since the model has seen all the data, it252

is not surprising that results for both Twitter and253

Wiki_data are better than our models, and it may 254

be partly due to similarity in Quora and Wiki data. 255

Evaluating on Previous Tasks 256

Table 3 shows the results when models trained 257

on new domains are evaluated on data from past do- 258

mains. Since we are using the order of QTW, results 259

are presented for evaluating on Quora and Twitter 260

data. For the Quora test set, we show results after 261

training with Twitter data, and then subsequently 262

Wiki_data. The first row of each sub-table is the 263

result of the BART model trained on the only cor- 264

responding data. The second row uses the baseline 265

fine tuning fashion. 266

Each of them yields much better results than the 267

finetune or EWC baselines, with much less drop 268

rates. This shows each module can reduce forget 269

rates. In addition, after the model is trained on 270

Wiki_data, forgetting rates for Quora Test (the first 271

dataset) are even lower than the model trained on 272

Twitter. This again indicates Wiki_data and Quora 273

are more similar in style than Twitter. On the Twit- 274

ter test set, there is some difference between Bleu, 275

Rouge and Meteor metrics. 276

4 Conclusion 277

In this work, we introduce PNLLL, a generic LLL 278

framework for addressing forgetting in seq2seq 279

language generation learning. Our experimental 280

results have shown that it outperformed SOTA in 281

paraphrase generation, a neural seq2seq language 282

generation task. Future work includes applying PN- 283

LLL to diverse generation tasks and generation 284

network structures. In addition, improvements of 285

domain shift estimation can be made with the in- 286

troduction of topic similarity. In order to make the 287

model more discriminative against domain differ- 288

ences, we may add contrastive learning loss func- 289

tion to our current label smoothing cross entropy 290

loss as in Gunel et al. (2020). 291
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5 Appendix413

5.1 Metrics Details414

Throughout the paper, we use those evaluation met-415

rics that have been widely used in the previous416

work to measure the quality of the paraphrases.417

In general, BLEU measures how much the words418

(and/or n-grams) in the machine generated sum-419

maries appeared in the human reference summaries.420

Rouge measures how much the words (and/or n-421

grams) in the human reference summaries appeared422

in the machine generated summaries. Specifically,423

we use the library1 from HuggingFace to compute424

BLEU scores and py-rouge2 to compute ROUGE425

scores. As BLEU and ROUGE could not measure426

the diversity between the generated and the original427

sentences, we follow unsupervised paraphrasing428

methods and adopt meteor to measure the diversity429

of expression in the generated paraphrases by pe-430

nalizing copying words from input sentences. The431

introduction of Slot error rate, Ωall and Ωfirst can432

be seen in the data setting of MultiWoz2.433

5.2 Implementation Details434

Packages Used for Implementation. The rel-435

evant packages that we use in the imple-436

mentation and their corresponding versions437

are as following: python==3.6.6, fairseq==1.0,438

torch==1.4.0, cuda==10.2, tensorboard==1.10.0,439

numpy==1.14.5, scipy==1.1.0, NLTK==3.4.5 and440

scikit-learn==0.21.3.441

5.3 Related Work442

5.3.1 life-long Learning (LLL)443

life-long learning has been studied from a few per-444

spectives, including data buffering, regularization445

and prototype keeping. Replay based methods can446

be used in data buffering or prototype keeping.447

1https://huggingface.co/metrics/sacrebleu
2https://pypi.org/project/py-rouge/

It usually keeps a small amount of real samples 448

from old tasks or distills the knowledge from old 449

data and recreates pseduo-data of old tasks for later 450

training. Using these sampled data or pseudo data 451

can prevent weights from deviating from previous 452

status (Rolnick et al., 2019; Wang et al., 2020; 453

Lopez-Paz and Ranzato, 2017). The main idea 454

of this approach is to assign a dedicated capac- 455

ity inside a model for each task. After a task is 456

completed, the weights are frozen as one proto- 457

type (Wang et al., 2021; d’Autume et al., 2019). 458

Both data buffering and prototype keeping need 459

storage of either data samples or model weights, 460

i.e., they require extra memory to memorize impor- 461

tant information of previous tasks. Another LLL 462

method is regularization based, which adds a regu- 463

larization term to weights when learning them for 464

a new task in order to minimize deviation from 465

previously trained weights. Most regularization 466

based methods estimate the importance of each 467

parameter and add them as a constraint to the loss 468

function. Different algorithms have been designed 469

to achieve this goal. For example, elastic weight 470

consolidation (EWC) calculates a Fisher informa- 471

tion matrix to estimate the sensitivity of param- 472

eters (Kirkpatrick et al., 2017); memory aware 473

synapses (MAS) (Aljundi et al., 2018) uses the 474

gradients of the model outputs; and episodic mem- 475

ory or gradient episodic memory (GEM) (Li et al., 476

2017; Lopez-Paz and Ranzato, 2017) allows posi- 477

tive backward transfer and prevents the loss on past 478

tasks from increasing. These methods all attempt 479

to slow down the learning of parameters that are 480

important for previous tasks. 481

5.4 LLL in Seq2seq Language Generation 482

In Seq2seq language generation, not much work 483

has been done in LLL. The most relevant work 484

is from Mi et al. (2020) where a framework of 485

sequential learning is designed for task-oriented 486

dialogues. Specifically, they replay prioritized ex- 487

emplars together with an adaptive regularization 488

technique based on EWC. They store representa- 489

tive utterances from previous data (exemplars), and 490

replay them to the Seq2seq language generation 491

model each time it needs to be trained on new data. 492

They achieved good results on the MultiWoZ-2.0 493

dataset. Nonetheless, their work requires to store 494

data from previous tasks, which leads to poor scal- 495

ability on large-scale datasets. In addition, their 496

system is specifically designed for the MultiWoz 497
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Why is German Shepherd/Great
Pyrenees mix coveted
among breeders?

Why is German Shepherd/Great
Pyrenees mix coveted
from browns?

Why is German Shepherd/Great
Pyrenees mix coveted
among breeders?

Why is German Shepherd/Great
Pyrenees mix coveted
among breeders?

eyeing trump, Obama
takes new action to
ban arctic drilling

president Obama takes new action
to ban arctic drilling

Obama takes new action
to ban arctic drilling

please save the earth mr. president .
Obama takes new action to ban
arctic drilling

death toll in 6.5 -
magnitude earthquake in
indonesia’s aceh province
increase to at least 52

a 6.5 earthquake in kills
at least 26 people @cnn

death toll in 6.5 -
magnitude earthquake
in aceh province increase to at least 52

powerfull quake kills dozens
at least 25 people were
killed in an earthquake
that struck indonesia’s aceh province

pipeline 150 miles from
dakota access protests
leaks gallons of oil

the new york times pipeline
150 miles from dakota
access pipeline .

pipeline 150 miles from dakota
access leaks gallons of oil

of oil, or gallons, have
leaked from the pipeline

Table 4: Examples of the generated paraphrases by BART and RMR_DSE on QTW data setting.

Figure 2: Illustration of Domain Shift: (a) Data with three relevant topic/cluster in the embedding space after model
trained on task 1. (b) Data with previous topics in the embedding space after the model trained on task 2, the arrow
indicates the domain shift between two tasks.

task and lacks generalization to other tasks. In con-498

trast, our proposed PNLLL method aims to fit dif-499

ferent seq2seq language generation applications,500

therefore it is easy to be integrated to tasks such501

as summarization, translation, paraphrases, dialog502

response generation.503

5.4.1 Illustrations of Semantic Drift504

As illustrated in Figure 2, each data point and their505

cluster centers trained in Task 1 are shifted after506

training for Task 2. Yu et al. (2020) proposed to507

compensate this gap without using any exemplars508

via domain shift. Nonetheless, these studies mainly509

focused on classification tasks, which limited their510

application on language generation model.511

5.5 Case Studies512

In Table 4, we show some generated samples from513

QTW setting using the baseline Bart model and our514

PNLLL model. All examples are results generated515

by modelt on datat−1. Among the five examples,516

the first one is from Quora, the last one from Wiki517

data and the other three from Twitter. The reason518

that we select more samples from Twitter is that we 519

find Twitter is the most informal in style with quite 520

many fragments. Hence, it is the hardest for the 521

generation task and has lowest metrics and lower 522

forgetting reduction rates. In the four samples, the 523

italicised parts are the key words. From the table, 524

we can observe that compared to BART, PNLLL has 525

better performances on all of the three datasets. The 526

BART model misses all of them except drilling. 527

In contrast PNLLL succeeds in all cases without 528

forgetting the previously learned patterns. 529
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