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ABSTRACT 

The ability of Minkowski Functionals to characterize local structure in different biological tissue types has been 
demonstrated in a variety of medical image processing tasks. We introduce anisotropic Minkowski Functionals (AMFs) 
as a novel variant that captures the inherent anisotropy of the underlying gray-level structures. To quantify the 
anisotropy characterized by our approach, we further introduce a method to compute a quantitative measure motivated 
by a technique utilized in MR diffusion tensor imaging, namely fractional anisotropy. We showcase the applicability of 
our method in the research context of characterizing the local structure properties of trabecular bone micro-architecture 
in the proximal femur as visualized on multi-detector CT. To this end, AMFs were computed locally for each pixel of 
ROIs extracted from the head, neck and trochanter regions. Fractional anisotropy was then used to quantify the local 
anisotropy of the trabecular structures found in these ROIs and to compare its distribution in different anatomical 
regions. Our results suggest a significantly greater concentration of anisotropic trabecular structures in the head and neck 
regions when compared to the trochanter region (p < 10-4). We also evaluated the ability of such AMFs to predict bone 
strength in the femoral head of proximal femur specimens obtained from 50 donors. Our results suggest that such AMFs, 
when used in conjunction with multi-regression models, can outperform more conventional features such as BMD in 
predicting failure load. We conclude that such anisotropic Minkowski Functionals can capture valuable information 
regarding directional attributes of local structure, which may be useful in a wide scope of biomedical imaging 
applications. 
 
Keywords: anisotropic Minkowski Functionals, fractional anisotropy, principal component analysis, proximal femur, 
trabecular bone, computed tomography 

1. MOTIVATION/PURPOSE 
Advanced methods for characterizing local structure properties have been increasingly used in image processing in 
recent years. Classical methods for texture analysis, such as Gray Level Co-occurrence Matrices (GLCM) [1-2] or 
wavelet methods [3], have increasingly be complemented by alternative local structure descriptors that exploit local 
geometric behavior or topological properties for characterizing local structure in pattern recognition problems. Such 
methods are usually applied in such a manner that structure-characterizing quantities are calculated from image patches 
or regions of interest (ROIs), where the size and/or shape of such patches is usually confined to simple pre-specified 
settings in order to enforce locality of feature extraction. Many pattern recognition problems, however, imply rotation-
invariant properties, making it desirable for structure descriptors to capture directional preferences in such imaging 
datasets, which in this body of work will be referred to as capturing “anisotropy”. In addition to identifying directional 
preferences of image features, it is often helpful to also define measures that objectively quantify the degree of rotation-
invariance provided by local feature extraction. 
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In this contribution, we introduce a method to extend the capability of Minkowski Functionals (MFs) [4] to capture 
anisotropic properties in image data. MFs have recently attracted significant attention in a wide scope of pattern 
recognition domains, including biomedical imaging applications [5-8]. The computation of such measures requires ROIs 
to be chosen as fixed local patches with sizes determined by the practical applicability within the image processing task 
at hand, e.g. as (hyper-) spheres or (hyper-) cubes, such as squares in 2D or cubes in 3D. To address the challenge of 
capturing rotation-invariant image features, we generalize the concept of MFs by introducing so-called Anisotropic 
Minkowski Functionals (AMFs). This is accomplished by replacing above mentioned naïve ROI definitions with 
arbitrary kernel functions that will allow us to identify local preferential feature directions in image data. To quantify the 
degree of anisotropy measured in analyzed ROIs by our approach, we adapt a fractional anisotropy measure motivated 
by MR diffusion tensor imaging analysis. 

 
Figure 1: Gaussians kernels skewed in 0°, 45°, 90° and 135° (from left to right) used for computation of AMFs. 

We demonstrate the applicability of our approach to exploring the degree of anisotropy in trabecular bone structures 
distributed in different locations of the proximal femur visualized on multi-detector CT. Previous research has revealed 
that the distribution of trabecular bone is heterogeneous and that structures are anisotropic, i.e., are formed in preferential 
directions [9], and that the degree of anisotropy varies between different bones, and between different locations within 
the bones [10]. We investigate the applicability of anisotropic Minkowski Functionals in quantifying the degree of 
anisotropy in different regions of the femur, i.e. head, neck and trochanter regions for which deviating degrees of 
anisotropy have been demonstrated in the femoral neck and trochanter, using µCT [10]. We also investigate the use of 
such AMFs in predicting the bone strength of proximal femur specimens [11]. Previous research has revealed that the 
bone mineral density of the trabecular compartment in the femoral head is correlated to the failure load of such femur 
specimens [12]. We compare the ability of our AMF approach to predict the failure load of such femur specimens to that 
of the conventionally used mean BMD of the femur, as discussed in the following sections. This work is embedded in 
our group’s endeavor to expedite ‘big data’ analysis in biomedical imaging by means of advanced pattern recognition 
and machine learning methods for computational radiology, e.g. [13-29]. 

2. DATA 
Femur Specimens: 50 left femoral specimens were harvested from fixed human cadavers available from the Institute of 
Anatomy in Munich. The donors had previously given agreement for their body to be used for purposes of teaching and 
research. The surrounding soft tissue was excised prior to imaging and failure load testing. The specimens were degassed 
and sealed in plastic bags filled with 4% formalin/water solution.  
 
Multi-detector Computed Tomography (MDCT): Cross-sectional images of the femora were acquired using a 16-row 
multi-detector (MD)-CT scanner (Sensation 16; Siemens Medical Solutions, Erlangen, Germany). The specimens were 
positioned in the scanner as in an in-vivo exam of the pelvis and proximal femur with mild internal rotation of the femur. 
Each specimen was scanned with a protocol using a collimation and a table feed of 0.75 mm and a reconstruction index 
of 0.5 mm. A high resolution reconstruction algorithm (kernel U70u) was used, resulting in an in-plane resolution of 
0.29 x 0.29 mm2. The image matrix was 512 x 512 pixels, with a field of view of 100 mm. Axial images were acquired 
where each pixel had dimensions 0.1953x0.1953 mm2 and inter-slice distance was 0.5 mm. Bilinear interpolation was 
used to create coronal reconstructions from the axial data. 
 
Volume of Interest (VOI) Selection: The outer surface of the cortical shell of the femur was segmented by using bone 
attenuations of the phantom in each image. A sphere was fitted to the superior surface points of the femoral head using a 
Gaussian Newton Least Squares technique. The fitted sphere was scaled down to 75% of its original size to account for 
cortical bone and shape irregularities, and then saved as the femoral head volume of interest (VOI). Further details 
regarding the fitting algorithm can be found in [12]. 
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Figure 2: LEFT – Coronal reconstruction of femur with ROIs in head (central, light blue), head(medial, dark blue), neck (medial, dark green), neck 
(lateral, light green) and trochanter (red). MIDDLE – Map of FA values; dark areas correspond to isotropic regions  while bright areas correspond to 
anisotropic regions. RIGHT – Color coded direction map for pixels with FA > 0.03; red corresponds to 0°, green to 60° and blue to 120°. 

BMD Measurements: Pixel attenuations in Hounsfield units (HUs) were converted into BMD (mg/cm3) using the 
calibration phantom with properties, HAW= 0 mg/cm3 and HAB= 200 mg/cm3 (hydroxyapatite for the water-like and the 
bone-like phase, respectively).  If the HU for the water-like and bone-like portions of the phantom are HUw and HUB 
respectively, then one use the previously proposed linear relationship between BMD and HU [11] to calculate the BMD 
at each voxel as - 

BMD = [HAB – HAw /(HUB -HUW)] * (HU - HUW).     (1) 
 
Biomechanical Tests: The failure load was assessed using a side-impact test, simulating a lateral fall on the greater 
trochanter as described previously [11-12,30]. Briefly, the femoral shaft and head faced downward and the load was 
applied on the greater trochanter using a universal materials testing machine (Zwick 1445, Ulm, Germany) with a 10 kN 
force sensor and dedicated software. The failure load was defined as the peak of the load-deformation curve. 

3. METHODS 
3.1 Minkowski Functionals 

Minkowski Functionals (MF) are used to characterize morphological properties of binary images i.e. shape (geometry) 
and connectivity (topology) [4]. Three MF features i.e. area, perimeter and Euler characteristic can be calculated from 
binary images as follows –  

MFarea = ns,          (2) 

MFperimeter = – 4ns + 2ne,          (3) 

MFEuler = ns – ne + nv,         (4) 

where “ns“ is the total number of white pixels, “ne“ is the total number of edges and “nv“ is the number of vertices. The 
area feature records the number of white pixels in the binary image, the perimeter measure calculates the length of the 
boundary of white pixel areas and the Euler characteristic is a measure of connectivity between the white pixel regions. 

3.2 Anisotropic Minkowski Functionals 

We introduce anisotropy in the computation of Minkowski Functionals through the use of kernels that provide weights 
for each of the white pixels, edges and vertices. Although any anisotropic kernel function may be chose, we use 
Gaussians skewed in the 0°, 45°, 90° and 135° directions to provide a directionally-dependent weighting in the 
computation of Minkowski Functionals. Examples of such skewed Gaussian kernels are shown in Figure 1. In this study, 
we fixed the ratio of the major-to-minor radii of the skewed Gaussian to 1:4. The weights for the vertices, edges and 
white pixels are determined as follows – (1) for each vertex, the average weight of surrounding four pixels, (2) for each 
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edge, the average weight of the two pixels on either side, and (3) for each white pixel, the corresponding weight from the 
kernel. Thus, four anisotropic measures are computed for each Minkowski Functional outlined in section 1.1. 

 
Figure 3: LEFT Column – FA histograms for head (top),  neck(middle) and trochanter (bottom) regions. RIGHT Column – Direction histograms for 
head (top), neck (middle) and trochanter (bottom) regions. All histograms were derived from AMF Euler characteristic. Note that the FA histogram for 
the trochanter region exhibits a greater fraction of isotropic pixels than other regions. The direction histogram for the neck region shows a strong 
preference for the ~60° direction which is also see on the MDCT image in Fig. 2. 

3.3 Computation of Anisotropic Minkowski Functionals 
Since the ROIs in this study were gray-level images, they were subject to binarization with several thresholds. For each 
binary image obtained, we computed anisotropic Minkowski Functionals in four directions for a square neighborhood of 
5x5 pixels centered on every white pixel. Thus each white pixel is now represented by 4 anisotropic measures for each 
Minkowski Functional. 
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3.4 Measures of Anisotropy 

Once the four directional Minkowski Functionals for a certain measure (eg. Area) are computed for a certain pixel, the 
magnitude and direction are used to generate 2-D Cartesian coordinates. The four measures are duplicated by mirroring 
them in the opposite direction to generate a set of eight 2-D coordinates. Principal Component analysis is performed with 
these eight points to determine the eigenvalues and the corresponding eigenvectors of the point-spread. 

We propose to capture the direction of anisotropy by the eigenvector associated with the largest eigenvalue. We further 
propose to evaluate the anisotropy using a Fractional Anisotropy (FA) measure. For eigenvalues λ1 and λ2,  

                  
             

       (5) 

where a value of 0 indicates perfect isotropy while 1 indicates perfect anisotropy in a specific direction. Such an FA 
measure is computed for each white pixel on every binary image; the FA values for black pixels (background) is set to 0.  

In order to combine the FA information computed from all thresholded images, we then assign each pixel the maximum 
FA value from all the thresholded images. The direction associated with that FA value is also assigned to the pixel. We 
specified an empiric threshold of 0.03 for FA values; pixels with smaller FA were considered to be near isotropic and not 
assigned a direction. The results of FA and direction assignments are shown in Figure 2. 

3.5 Quantative Analysis 

1. We examined the distribution of anisotropic structures in five ROIs extracted from the following regions of the 
proximal femur – (1) head (central), (2) head (medial), (3) neck (medial), (4) neck (lateral) and (5) trochanter. 
Distributions of FA values and angle assignments from different ROIs were converted to distributions of zero mean 
and unit standard deviation and then compared using a t-test. 

2. We investigated the use of features derived from AMFs, i.e. histograms of the distribution of FA and angles, 
extracted from the femoral head of 50 proximal specimens to predict bone strength (failure load). The ability of such 
features was compared to the previously proposed mean BMD of the femoral head and multi-regression was used to 
for the machine learning task. Statistical significance was established using the Wilcoxon signed-rank test. 

3. We also compared the use of isotropic kernels for extracting Minkowski Functionals to the use of our anisotropic 
kernels to further analyze the impact of using our approach in characterizing the trabecular bone compartment in the 
femoral head. 

4. RESULTS 
We observed significant differences between the head, neck and trochanter regions in terms of their FA and direction 
histograms, as seen in Figure 3. The FA histogram for the trochanter exhibited a much larger fraction of “near-isotropic” 
pixels (first bin of histogram in Figure 1 left column), i.e. pixels where the structures in the surrounding kernel-defined 
neighborhood were considered “near-isotropic”, while both the head and neck regions exhibited a greater fraction of 
anisotropic pixels. The direction histogram of the neck region indicated a strong preferential direction among the 
anisotropic pixels, while the same for the head region displayed a more random distribution of direction.  

In terms of bone strength prediction, we noted a significant improvement in performance when using the direction 
histogram derived from AMF feature Euler Characteristic to characterize the trabecular bone micro-architecture in 
comparison to using the conventionally used mean BMD (p < 0.001). While the best performance was achieved with 
perimeter-angle, a general improvements in performance was noted with other features derived from AMFs such as 
perimeter (both FA and direction histogram) and area (FA histogram), as seen in Figure 4. 

Finally, we found that the best AMF feature (direction histogram derived from Euler characteristic) also outperforms all 
MFs extracted with isotropic kernel (square kernel with no Gaussian). However, the feature vectors derived from 
isotropic MFs also exhibited an improvement in prediction performance over using mean BMD alone (p < 0.001), as 
seen in Figure 4. 
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5. DISCUSSION 
While Minkowski Functionals have been previously applied in several medical image processing contexts [5-8], we have 
proposed a method to extend the capability of such measures to capture anisotropic properties in image data. We 
accomplish this through the introduction of anisotropic Minkowski Functionals where the ROIs used to compute such 
measures are defined by arbitrary kernel functions that allow the identification of local preferential feature directions in 
image data. We also propose a fractional anisotropy measure adapted from MR diffusion tensor imaging to quantify the 
degree of anisotropy measured in ROIs using such anisotropic Minkowski Functionals. Our method can be extended in 
multiple ways, e.g. inclusion of 3D anisotropy measures, use of different kernel functions or other anisotropy measures. 

 
Figure 4: Comparison of prediction performance (RMSE) for mean BMD, feature vectors derived from AMFs, and feature vectors derived from 
isotropic MFs (extracted from the femoral head) when used in conjunction with multi-regression. For each RMSE distribution, the central mark 
corresponds to the median and the edges are the 25th and 75th percentile. As noted here, all AMF-derived feature vectors outperform the 
conventionally-used mean BMD. The best performance is achieved with the angle feature vector of AMF perimeter which significantly outperforms all 
feature vectors derived from isotropic MFs (p < 0.01).  

We demonstrate the applicability of our approach to exploring the degree of anisotropy in trabecular structures 
distributed in different portions of the proximal femur visualized on multi-detector CT. Our results suggest that 
differences in orientation of the trabecular bone micro-architecture in different regions of the proximal femur can be 
visualized and quantified through such anisotropic Minkowski Functionals. We specifically note that certain findings, 
such as a high incidence of anisotropic structures in the head and neck regions when compared to the trochanter,  and the 
preferential orientation of structures in the neck when compared to the head region, are in agreement with other studies 
such as [10,12]. Such an approach has significant potential for quantifying trabecular bone micro-structure and maybe 
used in addition to conventionally computed density measures such as bone mineral density or bone volume fraction; 
such measures could serve as diagnostic markers for detection or monitoring of osteoporosis. 

We also investigated the use of feature vectors derived from AMFs, i.e. histograms of angles and FA values computed 
using area, perimeter and Euler characteristic within the femoral head, in their ability to predict bone strength of 
proximal femur specimens. Our results suggest that such feature vectors, specifically the direction histogram derived 
from AMF Euler Characteristic, are able to exhibit significant improvements in prediction performance over 
conventionally used mean BMD (p <0.001), when used in conjunction with multi-regression. This can be attributed to 
the ability of AMFs to characterize the inherent anisotropy in the trabecular bone micro-architecture; such properties are 
not adequately captured by mean BMD. We further investigated the use of isotropic MFs, i.e. Minkowski Functionals 
computed using isotropic square kernels. We do note some improvements in prediction performance over the previously 
used mean BMD, which suggests that such topological texture feature vectors contribute to an improved characterization 
of the femoral trabecular bone compartment. However, they still do not account for anisotropy of the structures as 
evidenced by their poorer performance when compared to AMFs. 
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6. CONCLUSION 
This study presents a new approach to computing anisotropic Minkowski Functionals for purposes of capturing 
anisotropic properties of local tissue structure. We also present a novel approach to quantifying the degree of anisotropy 
in image data analyzed with our approach through a fractional anisotropy measure. We demonstrate the feasibility of our 
approach in quantifying the anisotropic properties of trabecular bone extracted from different regions of the proximal 
femur as imaged by multi-detector CT and show agreement with previous studies that have used µCT. Our results 
further suggest that features derived from such AMFs can also contribute to improvements in evaluating bone strength 
and fracture risk in the proximal femur. 
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