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Abstract

Building temperature prediction is crucial for energy optimization and con-
trol in smart cities. We present a hybrid framework combining XGBoost
with physics-informed neural networks (PINN) in a multi-stage sequential
scaling approach. Starting from single-zone, single-day predictions, we pro-
gressively scale to multi-zone, multi-year forecasts using real-world data
from Google’s Smart Building Simulator. Our method incorporates physics-
enhanced features, temporal encodings, and inter-zone interactions, achieving
mean absolute errors (MAE) as low as 0.169°F for weekly multi-zone pre-
dictions. For longer horizons, we employ ensemble strategies, demonstrating
robust performance up to 2.5 years. This work advances urban Al by en-
abling accurate long-term building dynamics modeling for downstream control
tasks. Link to the code: https://colab.research.google.com/drive/1lul _
Qzwqg-awYVQYI7yLk__jW930ZE5alt?usp=sharing

1 Introduction and Related Work

Urban buildings consume over 70% of city energy, making accurate temperature prediction crucial for
energy-efficient control and planning [Wang and Ma| [2008]]. Forecasting building thermal dynamics
is challenging due to complex inter-zone interactions and temporal variations. Our work leverages
real-world datasets to bridge short-term forecasting and long-term planning, addressing spatial
dependencies, seasonal effects, and temporal drifts |Saha and Shinde, Building energy modeling
has evolved from detailed physics-based simulations, such as EnergyPlus Crawley et al.|[2001], to
machine learning approaches that capture temporal patterns from sensor data using LSTMs and
Transformers [Reza et al| [[2022]]. While deep learning excels in short-term predictions, purely
data-driven models can struggle with long-term extrapolation.

Physics-informed neural networks (PINNs) present a promising alternative by embedding governing
physical laws, such as energy conservation or Newton’s law of cooling, directly into the learning
objective |Goldfeder et al.[[2024]]. By constraining predictions to adhere to known physical principles,
PINNs improve generalization and robustness, particularly in scenarios with limited or noisy data.
Complementing these, hybrid approaches that combine tree-based ensemble methods like XGBoost
with physics-informed features have shown robustness and interpretability in time-series prediction
tasks |Sahin|[2020]. XGBoost effectively captures non-linear dependencies while physics-derived
features constrain the solution space to physically plausible regions.

Building on these advancements, we introduce a multi-stage scaling framework that progressively
extends prediction horizons from short-term, single-zone scenarios to ultra-long-term, multi-zone
forecasts. Unlike prior studies that focus on either isolated short-term predictions or purely physics-
driven models, our approach systematically mitigates cumulative errors and seasonal drifts through
sequential validation, physics-enhanced features, and horizon-specific ensembles. Specifically, our
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framework integrates building metadata (e.g., floorplans, device layouts), physics-informed lag
features, and adjacency-based spatial encodings to enhance predictive fidelity.

The proposed hybrid XGBoost-PINN framework combines the computational efficiency and inter-
pretability of XGBoost with the physical consistency enforced by PINNs (Goldfeder et al.|[2024],
while ensuring scalability via sequential stage-wise modeling. Our contributions are threefold:

* A sequential scaling methodology that extends prediction horizons from one day to 2.5
years, enabling comprehensive temporal coverage and rigorous validation at each stage.

* Development of physics-enhanced features, including adjacency matrices for inter-zone
interactions and cyclical temporal encodings to capture diurnal and seasonal patterns.

» Horizon-specific ensemble strategies for ultra-long-term predictions, which combine spe-
cialized models to achieve state-of-the-art performance.

2 Method

We propose a framework of a multi-stage sequential scaling strategy that methodically increases
both the temporal horizon and spatial complexity of predictions, ensuring that each stage builds
upon the validated foundations of the previous ones to achieve robust and scalable performance.
This progressive approach mitigates the risks of abrupt scaling, such as overfitting or instability,
by allowing incremental incorporation of complexities like inter-zone dependencies and long-term
patterns, while providing clear checkpoints for evaluation and refinement.

2.1 Data Preparation

We utilize the Smart Building dataset from (Goldfeder et al.|[2024], which comprises comprehensive
time-series matrices including observations for sensor readings, actions for control inputs, and
reward information for performance metrics. From this, temperature targets are precisely extracted
from zone air temperature sensors, serving as the primary prediction variables, whereas exogenous
features encompass a range of inputs such as weather conditions and operational setpoints, providing
contextual signals that influence thermal dynamics. The training data is drawn from the 2022_a
split, covering January to June with 51,852 timesteps, offering a diverse representation of seasonal
transitions (see Figure[3|in Appendix). Validation is performed on the 2022_b split, spanning July to
December with 53,292 timesteps, to assess generalization to unseen periods. Additionally, physics
metadata, including device information dictionaries for sensor specifications, zone information for
spatial attributes, floorplan arrays for geometric layouts, and device layout maps for connectivity,
are integrated to enrich the feature space with domain-specific knowledge, enabling more physically
grounded modeling.

2.2 Physics-Enhanced Feature Engineering

To incorporate physical realism into the predictive framework, we construct a set of features that
explicitly capture both spatial and temporal dynamics of building thermodynamics |Gokhale et al.
[2022], [Chen and Guestrin| [2016]. Let A € R%Z*Z denote the adjacency matrix derived from
floorplan metadata, where Z is the number of zones. Each entry A;; encodes a proximity-based
weight between zones ¢ and j, decaying with Euclidean distance, to represent heat conduction and
convection pathways:

Aij = exp(—adij)7 (1)

where d;; is the inter-zone distance and « is a decay coefficient. This captures the principle that
thermal energy transfers more readily between neighboring zones, enabling realistic temperature
propagation across connected spaces. Temporal dynamics are represented using cyclical embeddings
for hour-of-day, day-of-week, and day-of-year:

: : t ¢
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where T is the period (24 hours, 7 days, or 365 days), mapping periodic phenomena into a continuous
space and enabling gradient-based learners to capture recurring patterns |[Elloumi et al.| [2025].



Physics-informed lag features encode thermal inertia. For each zone z, lagged temperature values
at intervals 7 € {1,3,6} hours are appended: z.(t — 7), V7, while inter-zone differences are
computed as: AT;;(t) = Ti(t) — T;(t), V(i,7)s.t. A;j > 0, capturing thermal gradients that drive
diffusive heat flow Incropera et al.[[[1990].

All features are aligned across training and validation sets, with missing values imputed via the
median and dimensional mismatches resolved by truncation, ensuring computationally tractable and
physically meaningful inputs.

2.3 Multi-Stage Scaling

The multi-stage framework incrementally scales both spatial and temporal horizons. Stage 1: Single
zone, one-day prediction using conservative XGBoost settings (shallow depth, strong regularization)
establishes a reliable baseline:
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Stage 2: All zones (123) for one day, trained with inter-zone features to capture heterogeneous
behaviors and spatial interactions. Stage 3: One-week prediction for a single zone, including weekly
temporal features (e.g., business hours) and extended lags to capture accumulated thermal effects.
Stage 4: Multi-zone weekly prediction combining spatial and temporal components, demonstrating
improved MAE (Table[I)). Stage 5: Two-week predictions with bi-weekly features and extended
lags to handle transitional patterns. Stage 6: One-year predictions via seasonal decomposition with
heating/cooling indicators |Crawley et al.[[2001]] to address non-stationary weather effects. Stage
7: Ultra-long-term (2.5 years) predictions incorporating multi-year aging features to model gradual
system degradation (e.g., insulation wear) Wang et al.|[2020].

Across all stages, XGBoost hyperparameters are tuned iteratively, with early stopping for generaliza-
tion. PINNs augment longer stages, optimizing a combined loss:

L = |[Tyrea = Tirue |3 + MIF (Tirea) I3, 4

where F represents the discretized heat transfer operator and A balances data fidelity with physical
consistency |Gokhale et al.|[2022].

3 Experiments and Results

The framework is implemented in Python, utilizing libraries such as XGBoost for core modeling,
scikit-learn for preprocessing and metrics, and NumPy for efficient array operations, ensuring
reproducibility through fixed random seeds and version-controlled dependencies. Experiments are
conducted in a Kaggle/Colab environment with standard CPU/GPU resources, simulating accessible
computational settings for broader applicability. Training times are meticulously recorded for
each stage to assess scalability, while a simple mean prediction baseline, computed from training
temperatures, is used throughout for relative performance benchmarking, highlighting the framework’s
added value over trivial approaches.

Evaluation Metrics. The primary metric employed is the Mean Absolute Error (MAE) for tem-
perature predictions, selected for its direct interpretability in degrees Fahrenheit and sensitivity to
prediction deviations that impact control decisions. Secondary metrics include Root Mean Squared
Error (RMSE) to emphasize larger errors that could signify model instability, and R? to quantify
explained variance, providing insight into how well the framework captures underlying dynamics
relative to a naive mean baseline. These metrics are computed per stage, aggregated across zones for
multi-zone evaluations, and reported with distributions to highlight consistency and outliers.

Results. We evaluate the proposed multi-stage XGBoost framework across increasing temporal hori-
zons and spatial complexities. Table [I] summarizes the mean absolute error (MAE) across all stages,
illustrating a clear progression: Stage 1 (single-zone, one-day) yields an MAE of 0.424°F, which
decreases to 0.101°F at Stage 5 (two-week, multi-zone) before increasing for longer horizons due
to accumulating uncertainties in extended forecasts, highlighting the effectiveness of the sequential
hybrid ML-physics approach in capturing weekly dynamics.



Table 1: Sequential scaling performance of the
proposed framework, reported as mean absolute
error (MAE) in °F across different stages.

Stage Description Zones MAE (°F)

1 Single Zone, 1 Day 1 0.424

2 All Zones, 1 Day 123 0.325

3 Single Zone, 1 Week 1 0.173

4 All Zones, 1 Week 123 0.169 MAE (°F) Best Zone MAE  Worst Zone MAE Training Time (min)

5 All Zones, 2 Weeks 123 0.101

6 All Zones, 1 Year 123 2.080 Figure 1: Sequential scaling analysis of
7 All Zones, 2.5 Years 123 2.826

the multi-stage framework.
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Figure 2: Prediction performance across stages: (a) Stage 5 shows high accuracy and minimal
deviation from ground truth, representing optimal performance of the framework. (b) Stage 7
exhibits significant prediction errors and instability over extended temporal horizons, demonstrating
limitations in long-term forecasting.

Figure[I] provides a performance overview across stages, demonstrating the framework’s ability to
maintain excellent scores for early and mid-term horizons while gradually declining for ultra-long-
term predictions. The MAE trends over prediction horizons for all zones are shown Figure ?? (in
Appendix). Short-term stages (Stages 2—4) show consistent low errors, with 78.9% of zones in Stage 4
below 0.2°F, while Stages 67 exhibit larger deviations, peaking at 2.826°F in Stage 7. These results
indicate that the ensemble strategies mitigate error accumulation to some extent, but the inherent
limitations of the dataset and long-term dependencies remain. Computational Time Analysis.
Training complexity scales with horizon length, from 0.16 seconds in Stage 1 to 10,857 seconds in
Stage 7 (see Figure[I)), reflecting increased data volume and model complexity. Nevertheless, the
offline training remains practical for realistic deployment scenarios.

Discussion. The short-term prediction stages (1—4) provide sub-0.2°F MAE, suitable for real-time
building control and proactive HVAC adjustments (Figure[??]in Appendix). Longer horizons (Fig-
ure[??]in Appendix) exhibit elevated errors due to compounding uncertainties, such as unmodeled
occupant behavior, equipment drift, and external weather variations. Despite these limitations,
predictions remain informative for strategic planning and maintenance scheduling. Incorporating
physics-informed features, including inter-zone interactions through adjacency matrices and temper-
ature gradients, significantly improves generalization and enforces physical plausibility, reducing
dependence on data-driven learning alone. The sequential design enables systematic analysis and
debugging of errors across stages, and the hybrid framework offers a pathway for integrating ML and
physics-based modeling for urban Al applications.

4 Conclusion

In this work, we have developed a scalable hybrid XGBoost-PINN framework for building temperature
prediction that demonstrates robust performance across a wide range of temporal and spatial scales,
from single-day single-zone forecasts to multi-year multi-zone modeling. By integrating physics-
informed features, ensemble strategies, and a multi-stage scaling approach, our method advances
the state of urban Al, providing accurate and physically consistent predictions that enable improved
building control, energy efficiency, and sustainability in smart cities. Future work should address
dataset limitations, particularly the 2.5-year coverage, to better validate multi-year performance.
Extensions could include full PINN loss functions to embed heat dynamics equations and additional
datasets to capture long-term drift and aging effects.
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Figure 3: Building summary for January 1, 2022, showing the top 20 zones with average temperature,
distribution, outliers, and a heatmap for each timestamp. This visualization provides insights into
spatial and temporal temperature patterns, highlighting areas of potential concern or irregular behavior
across the building.

A Zone-Level Sensor Analysis

To evaluate the reliability and interpretability of building sensor data, we conducted a detailed
analysis of two representative zones: Zone 102 and Zone 108 from the 2022_a dataset. Each zone
was examined at a daily resolution (288 timesteps for January 1, 2022), and all available sensors were
categorized, visualized, and summarized. Comprehensive sensor-level plots and CSV summaries
were generated for reproducibility.

Zone 102 Analysis. Zone 102 contained a diverse set of 9 sensors spanning multiple categories,
including temperature setpoints, flow sensors, valve and damper commands, and one zone air
temperature sensor. The sensor breakdown was: Other (1), Valve Command (1), Temperature
Setpoint (3), Temperature (1), Flow Sensor (2), Damper Command (1). All sensors were successfully
analyzed, producing 9 diagnostic plots and a consolidated summary file. Our findings reveal that
more than half of the sensors exhibited binary or status-type behavior (e.g., valve and damper
commands). Three sensors, namely Valve Command, Temperature Setpoint, and Supply Air Flowrate,
demonstrated frequent state changes (3 events each), identifying them as the most active signals
driving thermal regulation dynamics. Meanwhile, two sensors exhibited high variability across
the day, suggesting sensitivity to operational or environmental changes. This diversity highlights
Zone 102 as a control-intensive environment, where both continuous and discrete sensor modalities
interact to regulate comfort and efficiency.

Zone 108 Analysis. Zone 108 was comparatively simpler, with 5 active sensors identified: Other (3),
Temperature Setpoint (1), and Temperature (1). Unlike Zone 102, most sensors here showed limited
variability, with only the Temperature Setpoint changing once during the observation period. Both
the zone air temperature and supporting air temperature sensors remained stable, indicating relatively
static conditions and lower operational complexity compared to Zone 102.

Comparative Analysis. The contrast between Zones 102 and 108 illustrates the heterogeneous nature
of building subsystems. Zone 102 exhibits frequent actuation and strong coupling between control
signals (valve, damper, flowrate) and thermal states, requiring careful modeling of interdependencies.
In contrast, Zone 108 reflects a more stable thermal environment dominated by passive monitoring
with minimal active interventions. These findings emphasize the importance of zone-specific modeling



strategies: control-heavy zones demand feature representations that account for actuator-driven
variability, while monitoring-dominant zones can benefit from simpler, stability-focused forecasting
approaches.
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