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Figure 1: 2DGS and AA-2DGS under change of image sampling rate. We trained the models on single-scale
images and rendered images with different resolutions to simulate Zoom In/Out. While they achieve similar
performance at training scale, strong artifacts appear in 2DGS when changing the sampling rate. Our method
(AA-2DGS) shows significant improvement in comparison.

Abstract

2D Gaussian Splatting (2DGS) has recently emerged as a promising method for
novel view synthesis and surface reconstruction, offering better view-consistency
and geometric accuracy than volumetric 3DGS. However, 2DGS suffers from
severe aliasing artifacts when rendering at different sampling rates than those used
during training, limiting its practical applications in scenarios requiring camera
zoom or varying fields of view. We identify that these artifacts stem from two
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key limitations: the lack of frequency constraints in the representation and an
ineffective screen-space clamping approach. To address these issues, we present
AA-2DGS, an anti-aliased formulation of 2D Gaussian Splatting that maintains its
geometric benefits while significantly enhancing rendering quality across different
scales. Our method introduces a world-space flat smoothing kernel that constrains
the frequency content of 2D Gaussian primitives based on the maximal sampling
frequency from training views, effectively eliminating high-frequency artifacts
when zooming in. Additionally, we derive a novel object-space Mip filter by
leveraging an affine approximation of the ray-splat intersection mapping, which
allows us to efficiently apply proper anti-aliasing directly in the local space of each
splat. Code will be available at AA-2DGS.

1 Introduction

3D reconstruction from multi-view images has been a fundamental problem in computer vision,
graphics, and machine learning for decades. This field has seen renewed interest due to its applications
in autonomous driving, medical imaging, gaming, visual effects, and extended reality experiences,
which all require high-quality 3D modeling and visualization.

Neural Radiance Fields (NeRF) [43] revolutionized this area by introducing a neural representation
that models scenes through differentiable volume rendering. Building on this foundation, 3D Gaussian
Splatting (3DGS) [31] recently revitalized point-based graphics by replacing neural networks with
explicit 3D Gaussian primitives. These primitives are rasterized and rendered via volume resampling
and their parameters are optimized through gradient-based inverse rendering. With its efficient density
control, primitive sorting, and tile-based rasterization, 3DGS achieves state-of-the-art novel view
synthesis while enabling real-time rendering and requiring shorter training times.

The Gaussian Splatting approach has evolved into two primary variants: 3DGS [31] and 2D Gaussian
Splatting (2DGS) [23]. While 3DGS represents scenes using volumetric 3D Gaussian primitives,
2DGS employs flattened 2D Gaussian disks embedded in 3D space. This distinction is significant:
3DGS projects 3D Gaussians onto the screen to obtain 2D screen-space Gaussians, which are then
rendered. In contrast, 2DGS evaluates the Gaussians directly at ray-splat intersections in the local
coordinates of each planar primitive. This approach gives 2DGS superior geometric accuracy,
particularly for depth and normal reconstruction, making it valuable for applications requiring precise
geometry such as mesh recovery [10], physics-based rendering [18], and reflectance modeling [69].

Despite its strengths, 2DGS faces a significant challenge: its formulation complicates the integration
of proper anti-aliasing techniques. The 2DGS method attempts to address this by employing a
screen-space lower bounding approach (clamping) [5], but our investigation reveals that this approach
often exacerbates aliasing artifacts rather than mitigating them. This is particularly evident when
rendering at different sampling rates, such as zooming in or out from a scene (See Tab. 1, Tab. 2
and 3).

Recent work on Mip-Splatting [75] has identified two key sources of aliasing in 3DGS: the lack of 3D
frequency constraints and inadequate screen-space filtering. Mip-Splatting addresses these issues by
introducing a 3D smoothing filter to constrain the frequency content of primitives based on training
view sampling rates, and by replacing the traditional screen-space dilation with a Mip filter that better
approximates the physical imaging process. However, these solutions cannot be directly applied to
2DGS due to its fundamentally different primitive representation and rendering approach.

In this paper, we present Anti-Aliased 2D Gaussian Splatting (AA-2DGS), an approach that makes
two key contributions: • We introduce a world-space flat smoothing kernel that constrains the
frequency content of 2D Gaussian primitives based on the sampling rates of the training views.
This addresses high-frequency artifacts when zooming in on a scene by ensuring that the primitives
respect the Nyquist-Shannon sampling theorem [55]. • We derive an object-space Mip filter that
leverages an affine approximation of the ray-splat intersection mapping used in 2DGS. This allows us
to incorporate Mip filtering directly in the local space of each splat, where the Gaussian evaluation
occurs. The resulting formulation is both mathematically elegant and computationally efficient.
Ablative analysis of these two components is in the supplementary material.

We evaluate AA-2DGS on standard novel view synthesis datasets, including Mip-NeRF 360 [2] and
Blender [43], as well as the DTU [29] mesh reconstruction benchmark. Our results demonstrate
that AA-2DGS consistently outperforms the original 2DGS method, particularly under challenging
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conditions such as varying sampling rates and mixed resolution training. Importantly, our approach
maintains the geometric accuracy that makes 2DGS valuable while significantly reducing aliasing
artifacts.

2 Related Work

Figure 2: Overview. We constrain the maximum fre-
quency of our 2D Gaussians (Red) to a limit estimated
from the training images with a world-space flat smooth-
ing filter. Next, leveraging an affine approximation of
the mapping from screen space to local splat space: mJ

where J = ∂u
∂x

, we can express the reconstruction ker-
nel footprint in screen space (Blue). This enables the
integration of a screen space anti-aliasing Gaussian fil-
ter (Green). Via the affine mapping, we can revert to a
final simpler and computationally lighter expression of
our kernel (Orange) defined in local splat space.

Until recently, implicit representations cou-
pled with differentiable volume rendering
have been at the forefront of 3D shape and
appearance modeling. NeRFs [43] model
scenes with an implicit density and view de-
pendent radiance, parametrized with MLPs.
Anti-aliasing can be implemented in these
representations through cone tracing and
pre-filtering the input positional or feature
encodings [1, 2, 3, 22, 81]. Multiscale
volume rendering requires intensive MLP
querying, thus limiting the rendering frame
rate. This issue can be alleviated with grid
based representations [44, 58, 14, 15, 8].
These can struggle with large unbounded
reconstruction, despite Level-of-detail Oc-
trees [40]. By expressing density as a func-
tion of a signed distance field, NeRFs lead
to powerful geometry recovery methods
[62, 70, 38, 73, 26, 66]. Implicit recon-
struction has been robustified against noise and sparsity from both image and point cloud input using
generalizable data priors (e.g. [74, 9, 30, 36, 46, 24, 48, 49, 52]) and various regularizations (e.g.
[45, 68, 25, 12, 37, 51, 47, 50, 49, 4, 17]).

3D Gaussian splatting [31] subverted this trend lately. Combining volume rendering [42] and EWA
splatting [82] within an efficient inverse rendering optimization [33]. It has spawned substantial
research due to its remarkable novel view performance and high rendering frame rate. Extensions
include generalizable models [7, 41, 28, 60], bundle adjustment [80, 16, 27, 71], higher dimensional
primitives [13], more expressive texture splatting [54, 59, 6, 72], spatiotemporal models [65], in
addition to several methods to improve density control [32, 61, 78], model compactness [35, 63] and
training speed [34, 79, 20]. Recent work augmented 3DGS’s anti-aliasing abilities. [39] analytically
approximates the integral of Gaussian signals over pixel areas using a conditioned logistic function.
However, calculating integrals for every pixel can be computationally intensive, especially for high-
resolution images and large-scale scenes. [67] represents the scene with Gaussians at multiple scales,
rendering higher-resolution images with smaller Gaussians and lower-resolution images with fewer
larger ones. This strategy can lead to important memory overheads nonetheless. [57] uses a frustum-
based supersampling strategy to mitigate aliasing, which can be computationally costly, especially at
higher resolutions. Closest to our contribution, [75] reinstated the EWA screen space filter in 3DGS,
and proposed to use a 3D low-pass filter to band-limit the 3D Gaussian representation based on the
sampling limits of the input images. The 2DGS [23] representation uses planar primitives instead of
volumetric ones. It offers competitive novel view synthesis and state-of-the-art mesh reconstruction
performance, where 3DGS fails to faithfully recover depth. To the best of our knowledge, ours is
the first work that analyses the anti-aliasing capabilities of 2DGS, and proposes a solution to its
limitations in this department.

3 Method

Our method extends the 2DGS framework by incorporating frequency-based filtering techniques to
address aliasing artifacts across varying sampling rates. We first review the sampling theorem and 2D
Gaussian Splatting to establish the foundation for our antialiasing techniques. Then, we introduce
our key contributions: (1) a world-space flat smoothing kernel that effectively limits the frequency of
the 2D Gaussian primitives based on the sampling rate of training views, and (2) an object-space Mip
filter that leverages the ray-splat intersection mapping to accurately perform antialiasing directly in
the local space of each splat.
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3.1 Preliminaries

Sampling Theorem The Nyquist-Shannon Sampling Theorem [55] states that a band-limited signal
with no frequency components above ν can be perfectly reconstructed from samples taken at a rate
ν̂ ≥ 2ν. Otherwise, aliasing occurs as high frequencies are incorrectly mapped to lower ones. To

prevent this, a low-pass filter is applied prior to sampling to suppress frequencies above ν̂
2

. This
principle guides our antialiasing strategy in 2D Gaussian Splatting.

2D Gaussian Splatting 2DGS [23] represents scenes with oriented planar Gaussian disks in 3D
space. Each 2DGS primitive has a center pk ∈ R

3, two orthogonal tangential vectors tu and tv and
scaling factors s = (su, sv). Using rotation matrix R = [tu, tv, tu × tv] and scaling matrix S the
geometry of the primitive is defined in the local tangent plane parameterized by:

P (u, v) = pk + sutuu+ svtvv = H(u, v, 1, 1)⊤, (1)

where H =

[

sutu svtv 0 pk

0 0 0 1

]

=

[

RS pk

0 1

]

. (2)

For a point u = (u, v) in the primitive local space, the kernel value writes:

G2D
I
(u) = exp

(

−
u2 + v2

2

)

, (3)

where I is the identity matrix, representing the covariance of the Gaussian in its local coordinate
system. Rendering is preformed via volumetric alpha blending using primitive opacity αi and color
ci:

C(x) =
∑

i=1

ci αi Gi(u(x))

i−1
∏

j=1

(1− αj Gj(u(x))). (4)

Ray-Splat Intersection 2DGS employs a ray-splat intersection method based on [56, 64] for
rendering. Given an image coordinate x = (x, y), the splat intersection is the intersection of the
x-plane, y-plane, and the splat plane. Homogeneous representations of the x-plane and y-plane are
hx = (−1, 0, 0, x)⊤ and hy = (0,−1, 0, y)⊤. These planes are transformed into the local coordinate
system of the splat using:

hu = (WH)⊤hx, hv = (WH)⊤hy, (5)

where W is the world to screen space transform matrix. The intersection point in local coordinates
u(x) then writes:

u(x) =
h2
uh

4
v − h4

uh
2
v

h1
uh

2
v − h2

uh
1
v

, v(x) =
h4
uh

1
v − h1

uh
4
v

h1
uh

2
v − h2

uh
1
v

, (6)

where hi
u and hi

v denote the i-th component of the 4D planes.

Antialiasing Challenges in 2DGS The original 2DGS implementation addresses the issue of
degenerate cases (when a Gaussian is viewed from a slanted angle) by employing an object-space
low-pass filter:

Ĝ(x) = max

{

G2D
I
(u(x)),G2D

I
(
x− c

σ
)

}

(7)

where c is the projection of the center pk and σ is a scaling factor. This mechanism was inspired by
the heuristic EWA approximation in [5] that was proposed to handle minification and aliasing when
EWA filtering is not possible.

While clamping improves rendering stability, it has notable drawbacks. First, the use of a max
operation introduces discontinuities in the gradient flow, potentially hindering optimization. Second,
the conditional logic in Eq. 7 can cause thread divergence in CUDA warps, reducing GPU efficiency.
Third, the heuristic compares distances at different domains (local splat space vs. screen space) and
lacks the antialiasing quality of true screen space EWA filtering. Even standard EWA can suffer
from aliasing and over blurriness (as demonstrated by Mip-Splatting [75]), issues worsened by this
approximation. In the following, we present our solution to these challenges.
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3.2 World-Space Flat Smoothing Kernel

The goal here is to constrain the maximum frequency of the 3D representation during optimization
based on the Nyquist limit of training views, as highlighted by [75]. However, unlike 3DGS, our
primitives are planar. Therefore, we need to adapt the 3D smoothing filter concept to our flattened
primitive representation.

Multiview Frequency Bounds Following the analysis in [75], we determine the maximal sampling
rate for each primitive based on the training views. For an image with focal length f in pixel units,

the world-space sampling interval T̂ at depth d is T̂ = 1

ν̂
= d

f
where ν̂ is the sampling frequency.

We determine the maximal sampling rate for primitive k as:

ν̂k = max
n=1...N

{

1n(pk) ·
fn
dn

}

, (8)

where N is the total number of training images, and 1n(p) is an indicator function that evaluates to
true if the Gaussian center pk falls within the view frustum of the n-th camera.

Flat Smoothing The 3D smoothing filter in [75] convolves each 3D primitive Gaussian GΣk
with

an isotropic 3D low-pass filter Glow = Gσ2

smooth,k
I3

, with σ2
smooth,k =

sreg

ν̂2

k

, sreg being a hyperparameter.

This results in a 3D Gaussian with covariance Σk + σ2
smooth,kI3.

Our 2D Gaussian primitives are embedded on 2D planes. In the splat plane coordinate system
(spanned by tuk

, tvk
centered at pk), this primitive intrinsically represents a 2D Gaussian distribution

with covariance Vk = diag(s2uk
, s2vk

). To achieve a similar band-limiting effect while keeping the
primitive flat, we project the isotropic 3D smoothing kernel Glow onto the plane of the 2D Gaussian
primitive. This projection yields an isotropic 2D Gaussian filter with the same variance σ2

smooth,kI2 in

the planar coordinates defined by (tuk
, tvk). Next we convolve the primitive’s intrinsic 2D Gaussian

(covariance Vk) with this projected 2D smoothing filter (covariance σ2
smooth,kI2), both on the splat’s

plane. This convolution yields a new 2D Gaussian on the same plane with covariance:

Veff
k = Vk + σ2

smooth,kI2 =

(

s2uk
+ σ2

smooth,k 0
0 s2vk + σ2

smooth,k

)

. (9)

To maintain energy conservation, the primitive’s opacity αk is modulated, analogously to [75]. For
unnormalized Gaussians, this factor is the ratio of the product of scales:

αsmooth
k = αk

suk
svk

√

s2uk
+ σ2

smooth,k ·
√

s2vk
+ σ2

smooth,k

. (10)

The maximal sampling rates ν̂k, and thus σ2
smooth,k, are computed based on the training views and

remain fixed during testing. This world-space flat smoothing effectively regularizes the 2D primitives
by ensuring their footprint on their respective planes adheres to the sampling limits, preventing
high-frequency artifacts when zooming in, analogous to its 3D counterpart.

3.3 Object-Space Mip Filter

While the flat smoothing kernel addresses pre-aliasing from the representation itself, we also need to
handle aliasing during rendering, especially when projecting splats to screen resolutions that differ
from training (e.g., zooming out). Standard 3DGS and Mip-Splatting apply screen space filters.
However, 2DGS evaluates Gaussians at ray-splat intersection points uk(x) in the splat’s local space,
making direct application of a screen space filter non-trivial.

Ray-Splat Intersection Affine Mapping The key insight of our approach is to leverage the ray-
splat intersection mapping used in 2DGS and derive an affine approximation of it, adapting the
principles of Elliptical Weighted Average (EWA) filtering [21, 82, 53] to the 2DGS framework. This
allows us to map a screen space Mip filter to the local space of each splat, where the Gaussian
evaluation actually happens.

Let m be the mapping from pixel coordinates x to local splat coordinates u. Let us approximate this
mapping using a first-order Taylor expansion around a pixel location x0:

m(x) ≈ m(x0) + J · (x− x0) = u0 + J(x− x0), (11)
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where u0 = m(x0) is the intersection of the ray passing through x0 with the splat, and J is the
Jacobian of the mapping evaluated at x0. It captures how the local coordinates change with respect
to small changes in pixel coordinates, and can be computed analytically from the derivation of the
ray-splat intersection formula (Eq.6):

J =

[

∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

]

. (12)

Mip Filter Mapping Using properties of Gaussian functions under affine transformations, we can
express the 2D Gaussian in screen space as:

G2D
I
(u) = G2D

I
(m(x)) =

1

|J|
G2D
J−1J−⊤(x). (13)

To perform antialiasing, we convolve this transformed Gaussian with a Mip filter in screen space.
Similar to Mip-Splatting, we use a Gaussian Mip filter with covariance σI to approximate the box
filter of the physical imaging process, but we note that we can also use the EWA filter here:

G2D
mip(x) = (

1

|J|
G2D
J−1J−⊤ ⊗ G2D

σI )(x). (14)

Using the property that the convolution of two Gaussians results in another Gaussian with the sum of
their covariance matrices, we get:

G2D
mip(x) =

1

|J|
G2D
J−1J−⊤+σI(x). (15)

Mapping Back to Object Space While we could evaluate the Mip filtered Gaussian directly in
screen space, it is more efficient to map it back to the local space of the splat. Using the properties of
Gaussian functions under affine transformations again, we get:

G2D
mip(x) = G2D

I+σJJ⊤(u). (16)

We denote the new covariance in local space: Σ′

local,k(x) = I+ σJJ⊤. The mip filtered Gaussian

contribution for splat k at pixel x is then evaluated in local uv-space at uk(x):

Gobj-mip,k(x) =

√

|I2|

|Σ′

local,k(x)|
exp

(

−
1

2
uk(x)

⊤(Σ′

local,k(x))
−1uk(x)

)

. (17)

Our object-space Mip filter eliminates the computational overhead and numerical instabilities of
screen space evaluation. Unlike object-space EWA splatting [53], which approximates perspective
around the primitive center, we center the affine approximation per pixel for improved accuracy,
especially with large primitives or challenging views.

4 Experiments
We evaluate our work through novel view synthesis on datasets Blender [43] and Mip-NeRF 360 [2]
following the benchmark in Mip-Splatting [75]. These experiments assess generalization to both
in and out of distribution pixel sampling rate. We additionally evaluate our work through the 3D
surface reconstruction experiment on dataset DTU [29] following the benchmark in [23]. We provide
additional results, ablations and an extended discussion on limitations in the supplementary
material.

4.1 Implementation Details

We build our method upon the open-source implementation of 2DGS. Following Mip-Splatting, we
train our models for 30K iterations across all scenes and use the same loss function, Gaussian density
control strategy, schedule, and hyperparameters. For novel view synthesis experiments, we disable
the depth and normal regularizations used by 2DGS and enable them for surface reconstruction
experiment. We follow the Mip-Splatting approach and recompute the sampling rate of each 2D
Gaussian primitive every m = 100 iterations. Similarly, we choose the variance of our object-space
Mip filter as 0.1, approximating a single pixel, and the variance of the flat smoothing filter as 0.2.
We implement our object-space Mip filtering with custom CUDA kernels for both forward and
backward computation. Due to the extra computations required by the Mip filter, our approach incurs
an overhead of 15-30% in rendering time compared to the aliased 2DGS. We conduct all experiments
on NVIDIA RTX A6000 GPUs.
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4.2 Evaluation on the Blender Dataset

The Blender dataset [43] includes 8 synthetically rendered scenes with complex geometry and realistic
materials. Each scene has 100 training views and 200 test views, rendered at 800×800 resolution.

Multi-scale Training and Multi-scale Testing We train our model with multi-scale data and
evaluate with multi-scale data following previous work [1, 22, 75]. We adopt the biased sampling
strategy in [75, 1, 22] where rays from full-resolution images are sampled at a higher frequency (40%)
compared to those from lower resolutions (20% per remaining resolution level). This ensures greater
emphasis on high-resolution data while maintaining coverage across all image scales. Table 1 shows
the quantitative results of this experiment. Except for 2DGS variants, we report numbers for other
methods from [75]. We outperform the 3DGS based Mip-Splatting and state-of-the-art Nerf based
methods MipNeRF and Tri-MipRF on average PSNR, and also almost across most scales. Notice
that we outperform the 2DGS baselines with a large margin across all scales. This shows that our
Object-Space Mip filter enables the model to handle varying levels of detail without overfitting on a
single scale. On the other hand, we showcase the finding that the screen space clamping heuristic
hinders the performance of vanilla 2DGS at the higher scales.

PSNR ↑ SSIM ↑ LPIPS ↓
Full Res. 1/2 Res. 1/4 Res. 1/8 Res. Avg. Full Res. 1/2 Res. 1/4 Res. 1/8 Res. Avg. Full Res. 1/2 Res. 1/4 Res. 1/8 Res Avg.

NeRF w/o Larea [43, 1] 31.20 30.65 26.25 22.53 27.66 0.950 0.956 0.930 0.871 0.927 0.055 0.034 0.043 0.075 0.052
NeRF [43] 29.90 32.13 33.40 29.47 31.23 0.938 0.959 0.973 0.962 0.958 0.074 0.040 0.024 0.039 0.044
MipNeRF [1] 32.63 34.34 35.47 35.60 34.51 0.958 0.970 0.979 0.983 0.973 0.047 0.026 0.017 0.012 0.026

Plenoxels [15] 31.60 32.85 30.26 26.63 30.34 0.956 0.967 0.961 0.936 0.955 0.052 0.032 0.045 0.077 0.051
TensoRF [8] 32.11 33.03 30.45 26.80 30.60 0.956 0.966 0.962 0.939 0.956 0.056 0.038 0.047 0.076 0.054
Instant-NGP [44] 30.00 32.15 33.31 29.35 31.20 0.939 0.961 0.974 0.963 0.959 0.079 0.043 0.026 0.040 0.047
Tri-MipRF [22] 32.65 34.24 35.02 35.53 34.36 0.958 0.971 0.980 0.987 0.974 0.047 0.027 0.018 0.012 0.026
3DGS [31] 28.79 30.66 31.64 27.98 29.77 0.943 0.962 0.972 0.960 0.960 0.065 0.038 0.025 0.031 0.040

3DGS [31] + EWA [82] 31.54 33.26 33.78 33.48 33.01 0.961 0.973 0.979 0.983 0.974 0.043 0.026 0.021 0.019 0.027
Mip-Splatting [75] 32.81 34.49 35.45 35.50 34.56 0.967 0.977 0.983 0.988 0.979 0.035 0.019 0.013 0.010 0.019

2DGS [23] 28.58 30.24 31.42 27.35 29.40 0.938 0.958 0.970 0.952 0.954 0.078 0.047 0.029 0.042 0.049
2DGS w/o Clamping 31.64 33.33 31.61 27.62 31.05 0.960 0.973 0.973 0.957 0.966 0.043 0.023 0.028 0.056 0.038
AA-2DGS (ours) 32.68 34.53 35.65 35.53 34.60 0.965 0.976 0.983 0.988 0.978 0.037 0.02 0.013 0.010 0.020

Table 1: Multi-scale Training and Multi-scale Testing on the Blender dataset [43]. Our approach signifi-
cantly improves 2DGS and achieves comparable or better performance than Mip-Splatting.

Single-scale Training and Multi-scale Testing Following [75], we train on full resolution images
and test at various lower resolutions (1×, 1/2, 1/4, 1/8) to mimic zoom-out effects. Table 2 shows the
quantitative results of this experiment. The Clamping deteriorates the performance of 2DGS in this
experiment as well. Our method outperforms all anti-aliased 3DGS and NeRF based competition
in average PSNR and also across all resolutions, with a large improvement with respect to the
baseline 2DGS. This is a testimony of the effectiveness of our Object-Space Mip filter combined
with the accurate ray splat intersection rendering. These results are clearly reflected in the qualitative
superiority of our renderings especially at lower resolutions compared to training, as shown in Figure
3, or also the zooming out visualization in the teaser Figure 1.

PSNR ↑ SSIM ↑ LPIPS ↓
Full Res. 1/2 Res. 1/4 Res. 1/8 Res. Avg. Full Res. 1/2 Res. 1/4 Res. 1/8 Res. Avg. Full Res. 1/2 Res. 1/4 Res. 1/8 Res Avg.

NeRF [43] 31.48 32.43 30.29 26.70 30.23 0.949 0.962 0.964 0.951 0.956 0.061 0.041 0.044 0.067 0.053
MipNeRF [1] 33.08 33.31 30.91 27.97 31.31 0.961 0.970 0.969 0.961 0.965 0.045 0.031 0.036 0.052 0.041

TensoRF [8] 32.53 32.91 30.01 26.45 30.48 0.960 0.969 0.965 0.948 0.961 0.044 0.031 0.044 0.073 0.048
Instant-NGP [44] 33.09 33.00 29.84 26.33 30.57 0.962 0.969 0.964 0.947 0.961 0.044 0.033 0.046 0.075 0.049
Tri-MipRF [22] 32.89 32.84 28.29 23.87 29.47 0.958 0.967 0.951 0.913 0.947 0.046 0.033 0.046 0.075 0.050
3DGS [31] 33.33 26.95 21.38 17.69 24.84 0.969 0.949 0.875 0.766 0.890 0.030 0.032 0.066 0.121 0.063

3DGS [31] + EWA [82] 33.51 31.66 27.82 24.63 29.40 0.969 0.971 0.959 0.940 0.960 0.032 0.024 0.033 0.047 0.034
Mip-Splatting [75] 33.36 34.00 31.85 28.67 31.97 0.969 0.977 0.978 0.973 0.974 0.031 0.019 0.019 0.026 0.024

2DGS [23] 33.05 27.64 20.61 16.59 24.47 0.967 0.952 0.856 0.720 0.874 0.033 0.037 0.082 0.151 0.076
2DGS w/o Clamping 33.18 33.04 29.74 26.21 30.54 0.968 0.973 0.964 0.945 0.963 0.032 0.024 0.040 0.074 0.042
AA-2DGS (ours) 33.24 34.10 32.11 29 32.11 0.967 0.976 0.978 0.973 0.974 0.034 0.020 0.019 0.024 0.024

Table 2: Single-scale Training and Multi-scale Testing on the Blender Dataset [43]. All methods are
trained on full-resolution images and evaluated at four different (smaller) resolutions, with lower
resolutions simulating zoom-out effects. AA-2DGS yields comparable results at training resolution
to 3DGS-based methods and achieves significant improvements compared to other methods in almost
all metrics at different lower scales.

4.3 Evaluation on the Mip-NeRF 360 Dataset

The Mip-NeRF 360 Dataset [2] is designed to evaluate rendering methods in unbounded, real-world
360◦ scenes with complex backgrounds, varying lighting, and challenging view-dependent effects. It
consists of 9 real-world indoor and outdoor scenes. Each scene contains 100 to 400 training images
and 200 test images.
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Figure 3: Single-scale Training and Multi-scale Testing on the Blender Dataset [43]. All methods are trained
at full resolution and evaluated at different (smaller) resolutions to mimic zoom-out. Our method (AA-2DGS)
consistently demonstrates improved quality across all sampling rates compared to the baseline 2DGS method.

Single-scale Training and Multi-scale Testing Following [75], we train here on 1/8 resolution
images and test at various higher resolutions (1×, 2×, 4×, 8×) to simulate zoom-in effects. Results
are shown in Table 3. We perform on par here with the state-of-the-art anti-aliased 3DGS, with
considerable improvement as compared to the NeRF based methods due to their MLP overfitting.
Removing the clamping from 2DGS increases its performance. Our healthy margins with respect to
the 2DGS baselines demonstrate the utility of our flat smoothing kernel for frequency regularization.
This can be visualized in the qualitative comparison of Figure 4, where AA-2DGS shows reduced
aliasing artifacts compared to its baselines and renders fine details with more fidelity without aliasing.
We also find that the clamping heuristic hurts the performance of vanilla 2DGS. We note that while
the flat smoothing kernel improves results for this magnification experiment, the nature of 2D planar
primitives makes them more likely to become extremely thin during training at low resolution. When
rendered at higher resolutions, they appear as "needle-like" artifacts because they’re too small/thin
relative to the display resolution.

PSNR ↑ SSIM ↑ LPIPS ↓
1× Res. 2× Res. 4× Res. 8× Res. Avg. 1× Res. 2× Res. 4× Res. 8× Res. Avg. 1× Res. 2× Res. 4× Res. 8× Res. Avg.

Instant-NGP [44] 26.79 24.76 24.27 24.27 25.02 0.746 0.639 0.626 0.698 0.677 0.239 0.367 0.445 0.475 0.382
Mip-NeRF 360 [2] 29.26 25.18 24.16 24.10 25.67 0.860 0.727 0.670 0.706 0.741 0.122 0.260 0.370 0.428 0.295
Zip-NeRF [3] 29.66 23.27 20.87 20.27 23.52 0.875 0.696 0.565 0.559 0.674 0.097 0.257 0.421 0.494 0.318
3DGS [31] 29.19 23.50 20.71 19.59 23.25 0.880 0.740 0.619 0.619 0.715 0.107 0.243 0.394 0.476 0.305

3DGS [31] + EWA [82] 29.30 25.90 23.70 22.81 25.43 0.880 0.775 0.667 0.643 0.741 0.114 0.236 0.369 0.449 0.292
Mip-Splatting [75] 29.39 27.39 26.47 26.22 27.37 0.884 0.808 0.754 0.765 0.803 0.108 0.205 0.305 0.392 0.252

2DGS 28.82 24.97 23.79 23.55 25.28 0.869 0.755 0.691 0.713 0.757 0.118 0.251 0.367 0.435 0.293
2DGS w/o Clamping 28.49 26.68 25.85 25.64 26.66 0.855 0.771 0.714 0.729 0.767 0.128 0.241 0.347 0.421 0.284
AA-2DGS (ours) 29.30 27.16 26.10 25.77 27.08 0.877 0.795 0.732 0.735 0.785 0.111 0.215 0.329 0.411 0.266

Table 3: Single-scale Training and Multi-scale Testing on the Mip-NeRF 360 Dataset [2]. All methods
are trained on the smallest scale (1×) and evaluated across four scales (1×, 2×, 4×, and 8×),
with evaluations at higher sampling rates simulating zoom-in effects. Ours method significantly
improves on the baseline 2DGS method across all scales even on the training resolution while having
competitive results to Mip-Splatting.

Single-scale Training and Same-scale Testing We perform here the standard benchmark evaluation
on the Mip-NeRF 360 dataset [2], where models are trained and tested at the same resolution. Indoor
scenes are downsampled by a factor of 2 and outdoor by 4. Table 5 shows that 3DGS based methods
perform slightly better than the 2DGS based counterparts in this setting, where our method is still
comparable to the baseline 2DGS method. Note that antialiasing methods like ours involve an inherent
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Figure 4: Single-scale Training and Multi-scale Testing on Mip-NeRF 360 dataset [2] All models are trained
on 1/8 resolution and tested at different upscaling factors. Our AA-2DGS method maintains high fidelity when
rendering at resolutions higher than the training resolution, reducing magnification artifacts compared to the
baseline 2DGS method.

trade-off: by band-limiting the representation to prevent aliasing artifacts, we necessarily attenuate
some high-frequency content. This can manifest as a small decrease in peak sharpness even at the
original training resolution, resulting in slightly lower PSNR compared to the non-antialiased baseline
method which is a fundamental trade-off between aliasing and sharpness. The minor reduction
in single-scale PSNR is vastly outweighed by the significant improvements in non-training scale
rendering, as demonstrated in the previous experiments.

24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 Mean

im
p

li
ci

t NeRF [43] 1.90 1.60 1.85 0.58 2.28 1.27 1.47 1.67 2.05 1.07 0.88 2.53 1.06 1.15 0.96 1.49
VolSDF [70] 1.14 1.26 0.81 0.49 1.25 0.70 0.72 1.29 1.18 0.70 0.66 1.08 0.42 0.61 0.55 0.86
NeuS [62] 1.00 1.37 0.93 0.43 1.10 0.65 0.57 1.48 1.09 0.83 0.52 1.20 0.35 0.49 0.54 0.84
Neuralangelo [38] 0.37 0.72 0.35 0.35 0.87 0.54 0.53 1.29 0.97 0.73 0.47 0.74 0.32 0.41 0.43 0.61

ex
p

li
ci

t

3DGS [31] 2.14 1.53 2.08 1.68 3.49 2.21 1.43 2.07 2.22 1.75 1.79 2.55 1.53 1.52 1.50 1.96
SuGaR [19] 1.47 1.33 1.13 0.61 2.25 1.71 1.15 1.63 1.62 1.07 0.79 2.45 0.98 0.88 0.79 1.33
GaussianSurfels [10] 0.66 0.93 0.54 0.41 1.06 1.14 0.85 1.29 1.53 0.79 0.82 1.58 0.45 0.66 0.53 0.88
GOF [76] 0.50 0.82 0.37 0.37 1.12 0.74 0.73 1.18 1.29 0.68 0.77 0.90 0.42 0.66 0.49 0.74
2DGS [23] 0.48 0.91 0.39 0.39 1.01 0.83 0.81 1.36 1.27 0.76 0.70 1.40 0.40 0.76 0.52 0.80
2DGS* [23] 0.50 0.77 0.36 0.36 0.91 0.81 0.78 1.26 1.22 0.67 0.68 1.26 0.38 0.85 0.49 0.76
2DGS w/o Clamping 0.49 0.80 0.33 0.36 0.96 0.89 0.78 1.30 1.24 0.67 0.66 1.33 0.37 0.65 0.45 0.75
AA-2DGS (ours) 0.49 0.77 0.35 0.37 0.87 0.83 0.78 1.25 1.23 0.66 0.71 1.19 0.38 0.69 0.47 0.74

Table 4: Quantitative comparison on the DTU Dataset [29]. We use reported
Chamfer distance results from [76]. ∗ indicates that we retrain the model.

PSNR ↑ SSIM ↑ LPIPS ↓
NeRF [43, 11] 23.85 0.605 0.451
mip-NeRF [1] 24.04 0.616 0.441
NeRF++ [77] 25.11 0.676 0.375
Plenoxels [15] 23.08 0.626 0.463
Instant NGP [44] 25.68 0.705 0.302
mip-NeRF 360 [2] 27.57 0.793 0.234
Zip-NeRF [3] 28.54 0.828 0.189
3DGS [31] 27.21 0.815 0.214

3DGS [31] + EWA [82] 27.77 0.826 0.206
Mip-Splatting [75] 27.79 0.827 0.203

2DGS [23] 27.56 0.819 0.209
2DGS w/o Clamping 27.29 0.802 0.232
AA-2DGS (ours) 27.38 0.816 0.216

Table 5: Single-scale Training and

Same-scale Testing on the Mip-NeRF

360 dataset [2]. In the standard in-

distribution setting, our approach still

demonstrates performance on par with

the baseline 2DGS method.

4.4 Evaluation on the DTU Dataset

The DTU dataset [29] counts 15 scenes, each with 49 or 69 images. We use downsampled images
to 800×600. We follow previous methods [76, 23] for this evaluation. We report reconstruction
performances in Table 4. NeuralAngelo [38] is among the state-of-the-art methods in this benchmark.
However, Such implicit methods can be very slow to train, taking more than 12 hours at times on
standard GPUs. The 3DGS representation evidently fails to recover meaningful depth despite good
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novel view synthesis performance. AA-2DGS, 2DGS and 2DGS w/o Clamping perform almost
similarly, with a slight edge in favor of our method. This shows that our anti-aliasing mechanisms
integration within the 2DGS representation preserves its geometric modelling capabilities. The
performance we obtain is on par with recent stat-of-the-art Gaussian Splatting based reconstruction
methods. Additionally, we note that the benefits of our anti-aliasing method are not confined to RGB
output, but naturally extend to all rendered attributes as shown through normal rendering in figure 5.
This can improve accuracy in applications like surface reconstruction and reflective scene modelling,
especially when multiscale input images are used for the training.
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Figure 5: 2DGS and our method’s RGB and normal rendering under different image sampling rates
than the training views. We show results of simulating Zoom In (2x) and Zoom Out (4x). In addition
to anti-aliased color rendering, our method also improves other attributes rendering.

5 Limitations

While our method significantly reduces aliasing in 2D Gaussian Splatting, it is not without limitations.
A fundamental issue stems from the planar nature of 2D Gaussians, which can still produce "needle-
like" artifacts in magnification scenarios or in extreme grazing angles viewing. Our world-space
smoothing mitigates this by enforcing a minimum screen footprint, but it cannot fundamentally solve
the zero-thickness problem in the direction normal to the primitive.

Furthermore, our approach involves a classic trade-off between antialiasing and detail preservation.
The fixed filter parameters, while effective in general, may not be optimal for all scenes and can lead
to over-smoothing. A more detailed analysis of these limitations, is provided in Appendix C.

6 Conclusion

We introduced Anti-Aliased 2D Gaussian Splatting (AA-2DGS), a method that enables high-quality
antialiasing for 2D Gaussian primitives while preserving their geometric accuracy. Our approach
combines a world-space flat smoothing kernel that constrains the frequency content of 2D Gaussian
primitives based on training view sampling rates, and an object-space Mip filter that leverages the
ray-splat intersection mapping to perform prefiltering directly in the local space of each splat. By
incorporating these techniques, AA-2DGS effectively mitigates aliasing artifacts when rendering at
different sampling rates. Our experiments demonstrate that AA-2DGS consistently outperforms the
original 2DGS method across standard novel view synthesis benchmarks for varied sampling rates and
mixed resolution training while maintaining mesh reconstruction capabilities. This work bridges the
gap between the geometric accuracy of 2DGS and the high-quality antialiasing capabilities previously
only available to volumetric 3D Gaussian representations, enabling more robust and visually pleasing
results in applications requiring precise geometry.

Potential Societal Impact We do not identify any specific societal risks that require special attention
within the scope of this work.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We have accurately reflected the paper’s scope and contribution in the intro-
duction and the abstract.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We stated limitations of the work in the Limitations section.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.

• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
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tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: The paper provides the full set of assumptions and complete proofs in the
Method section.
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referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.
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proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have detailed how to reproduce the results of our experiments in the Results
section.
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• The answer NA means that the paper does not include experiments.
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sions to provide some reasonable avenue for reproducibility, which may depend on the
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(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We will make the full code publicly available upon acceptance.
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• The answer NA means that paper does not include experiments requiring code.

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
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• The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have provided the training and testing details in the implementation details
subsection.
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• The answer NA means that the paper does not include experiments.

• The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We follow standard benchmarks in our problem setting which does not include
statistical significance of the experiments.
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• The answer NA means that the paper does not include experiments.

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We mention the type of compute workers.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research respects NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We addressed these impacts in the Potential Societal Impact section.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper cites the original assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a
dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this paper does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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Appendix: Supplementary Material

In this Appendix, we first present ablation studies of our method AA-2DGS in A. We provide
additional qualitative results in B. We then provide further discussion on the limitations of our
method in C

A Ablation Studies

A.1 Effectiveness of the World-Space Flat Smoothing Kernel

PSNR ↑ SSIM ↑ LPIPS ↓
1× Res. 2× Res. 4× Res. 8× Res. Avg. 1× Res. 2× Res. 4× Res. 8× Res. Avg. 1× Res. 2× Res. 4× Res. 8× Res. Avg.

2DGS [23] 28.82 24.97 23.79 23.55 25.28 0.869 0.755 0.691 0.713 0.757 0.118 0.251 0.367 0.435 0.293
2DGS w/o Clamping 28.49 26.68 25.85 25.64 26.66 0.855 0.771 0.714 0.729 0.767 0.128 0.241 0.347 0.421 0.284

AA-2DGS (ours) 29.30 27.16 26.10 25.77 27.08 0.877 0.795 0.732 0.735 0.785 0.111 0.215 0.329 0.411 0.266
AA-2DGS (ours) w/o flat smoothing filter 29.09 26.85 25.63 25.18 26.69 0.875 0.788 0.716 0.709 0.772 0.115 0.226 0.352 0.434 0.282
AA-2DGS (ours) w/o Mip filter 28.75 26.85 26.00 25.78 26.85 0.862 0.777 0.722 0.738 0.775 0.122 0.233 0.338 0.415 0.277

Table 6: Single-scale Training and Multi-scale Testing on the Mip-NeRF 360 Dataset [2]. All
methods are trained on the smallest scale (1×), corresponding to eighth of the original image
resolution, and evaluated across four scales (1×, 2×, 4×, and 8×), with evaluations at higher
sampling rates simulating zoom-in effects. Disabling the world-space flat smoothing filter results in
high-frequency magnification artifacts when rendering higher resolution images. Disabling the 2D
Mip filter causes a slight decline in performance at high magnification.

In order to assess the effectiveness of the World-Space Flat Smoothing Kernel, we show an ablation
with an experiment on the single-scale training and multi-scale testing setting in the Mip-NeRF 360
dataset [2] to simulate magnification or Zoom In effects. We present quantitative results in Table 6. It
shows that performance degrades at higher resolution than the training one when disabling the flat
smooth kernel due to high-frequency magnification artifacts.

In this experiment, the Object-Space Mip filter mostly improves results at the training resolution
and does not improve much at higher ones because it is primarily designed to address aliasing in
minification scenarios as we show in A.2.

However, for magnification, where the rendering sampling rate exceeds the frequency content
available in the trained representation, this additional filtering can sometimes lead to over-smoothing
of details that would naturally become visible when zooming in, especially at extreme magnifications.

2D Gaussians are fundamentally planar primitives with zero thickness orthogonal to their surface.
When viewed from grazing angles, they project to extremely thin lines on the screen, creating "needle-
like" artifacts. This is particularly problematic during magnification, as primitives optimized for
lower resolutions suddenly reveal their orientation-dependent thinness. The flat smoothing kernel
helps mitigate this issue by ensuring a minimum footprint size in the tangent plane, but cannot address
the fundamental zero-thickness property in the normal direction.

In contrast, 3D Gaussians in Mip-Splatting are volumetric primitives that maintain substantial screen
presence even from oblique viewpoints. Their three-dimensional nature allows the 3D smoothing
kernel to effectively regularize their shape in all directions, leading to more consistent results across
viewing angles and scales.

Despite these inherent limitations of planar primitives, our method still demonstrates meaningful im-
provements over the original 2DGS approach. As shown in Table 6, the combination of World-Space
Flat Smoothing Kernel and Object-Space Mip Filter consistently outperforms both the clamping-based
approach of the original 2DGS and the non-clamped variant.

A.2 Effectiveness of the Object-Space Mip Filter

To evaluate the effectiveness of the Object-Space Mip filter, we perform an ablation study with
the single-scale training and multi-scale testing setting to simulate zoom-out effects in the Blender
dataset [43]. Quantitative results are shown in Table 7. Similar to previous experiments, we find
that disabling the clamping heuristic performed by 2DGS [23] (2DGS w/o Clamping), the dilation
artifacts are eliminated, outperforming vanilla 2DGS. However, it still shows severe aliasing artifacts
especially at extreme zoom out. AA-2DGS outperforms all 2DGS variants by a large gap in this
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PSNR ↑ SSIM ↑ LPIPS ↓
Full Res. 1/2 Res. 1/4 Res. 1/8 Res. Avg. Full Res. 1/2 Res. 1/4 Res. 1/8 Res. Avg. Full Res. 1/2 Res. 1/4 Res. 1/8 Res Avg.

2DGS [23] 33.05 27.64 20.61 16.59 24.47 0.967 0.952 0.856 0.720 0.874 0.033 0.037 0.082 0.151 0.076
2DGS w/o Clamping 33.18 33.04 29.74 26.21 30.54 0.968 0.973 0.964 0.945 0.963 0.032 0.024 0.040 0.074 0.042

AA-2DGS (ours) 33.24 34.10 32.11 29.00 32.11 0.967 0.976 0.978 0.973 0.974 0.034 0.020 0.019 0.024 0.024
AA-2DGS (ours) w/o flat smoothing filter 33.38 34.08 31.96 28.84 32.06 0.968 0.976 0.978 0.973 0.973 0.033 0.020 0.019 0.024 0.024
AA-2DGS (ours) w/o Mip filter 33.13 33.51 30.06 26.36 30.76 0.967 0.974 0.966 0.946 0.963 0.033 0.022 0.038 0.072 0.041

Table 7: Single-scale Training and Multi-scale Testing on the Blender Dataset [43]. All methods
are trained on full-resolution images and evaluated at four different (smaller) resolutions, with
lower resolutions simulating minification / zoom-out effects. Our method achieves results that are
comparable at training resolution to 2DGS methods while significantly surpassing them at lower
scales. When disabling the Object-Space Mip filter, we obtain worse results at lower scales, which
shows its effectiveness in this experiment. On the other hand, disabling the world-space flat smoothing
filter leads to mostly similar performance since it is more involved in handling magnification artifacts.

experiment. Disabling the Object-Space Mip filter results in noticeable degradation in performance,
validating its important role in anti-aliasing in this minification experiment. Without the world-space
flat smoothing filter, our method still produces anti-aliased rendering as the smoothing filter is
designed to tackle high-frequency artifacts during magnification as shown previously.

B Additional Qualitative Results

B.1 Additional Results for Single-scale Training and Multi-scale Testing on the Blender
Dataset

In this section, we show additional qualitative results in Figure 6 for the minification/ Zoom Out
experiments of Single-scale Training and Multi-scale Testing on the Blender Dataset [43].
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Figure 6: Additional Results of Single-scale Training and Multi-scale Testing on the Blender Dataset [43].
All methods are trained at full resolution and evaluated at smaller resolutions to simulate Zoom Out/ magnification.
Our method (AA-2DGS) consistently demonstrates improved quality across all sampling rates compared to the
baseline 2DGS method.

B.2 Additional Results for Single-scale Training and Multi-scale Testing on the Mip-NeRF
360 Dataset

In this section, we show additional qualitative results in Figure 7 for the magnification/ Zoom In
experiments of Single-scale Training and Multi-scale Testing on the Mip-NeRF 360 Dataset [2].
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Figure 7: Additional Results of Single-scale Training and Multi-scale Testing on the Mip-NeRF 360
Dataset. All models are trained on 1/8 resolution and tested at different upscaling factors: Bicycle (×8), Garden
(×4), and Bonsai (×2). Our AA-2DGS method maintains high fidelity when rendering at resolutions significantly
higher than the training resolution, reducing artifacts compared to the baseline methods.

C Detailed Discussion on Limitations

While our antialiasing approach for 2D Gaussian Splatting demonstrates significant improvements
over the original implementation, it is important to acknowledge certain limitations.

Balancing Antialiasing and Detail Preservation Like all antialiasing techniques, our method
faces an inherent trade-off between removing aliasing artifacts and preserving fine details. We use
the same filter values as Mip-Splatting: σ = 0.1 for the Object-Space Mip Filter and s = 0.2 for the
World-Space Flat Smoothing Kernel. While these values provide a good balance for most scenes,
optimal parameters may vary across different datasets or viewing conditions.

Inherent Limitations of Planar Primitives A fundamental limitation stems from the nature
of 2D Gaussians as planar primitives with zero thickness orthogonal to their surface. As shown
in our ablation studies (Table 6), when viewed from grazing angles, these primitives project to
extremely thin lines on the screen, creating "needle-like" artifacts. This is particularly problematic
during extreme magnification, as primitives optimized for lower resolutions suddenly reveal their
orientation-dependent thinness.

The World-Space Flat Smoothing Kernel helps mitigate this issue by ensuring a minimum footprint
size in the tangent plane, but cannot address the fundamental zero-thickness property in the normal
direction. In contrast, volumetric primitives like those used in 3D Gaussian Splatting maintain
substantial screen presence even from oblique viewpoints, allowing their smoothing kernels to
regularize shape in all directions.

Magnification and Minification Trade-offs As demonstrated in our ablation studies, the Object-
Space Mip Filter primarily addresses aliasing in minification scenarios (zoom-out), while the World-
Space Flat Smoothing Kernel targets high-frequency artifacts during magnification (zoom-in). For
extreme magnification cases where the rendering sampling rate exceeds the frequency content
available in the trained representation, our filtering approach can sometimes lead to over-smoothing
of details that would naturally become visible when zooming in.

Despite these limitations, our experiments consistently show that the combination of World-Space
Flat Smoothing Kernel and Object-Space Mip Filter outperforms both the clamping-based approach
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of the original 2DGS and non-clamped variants, particularly in challenging multi-scale rendering
scenarios. Our method provides a more principled approach to antialiasing for 2D Gaussian Splatting
while maintaining the computational efficiency and view-consistent geometry that makes 2DGS
attractive.
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